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Lecture O

Introduction

The particle physics master course will be given in the autumn saster of 2011 and
contains two parts: Particle Physics 1 (PP1) and Particle Physs 2 (PP2). The PP1
course consists of 12 lectures (Monday and Wednesday morningdanainly follows the
material as discussed in the books of Halzen and Martin and Gri tis.

These notes are my personal notes made in preparation of thetiges. They can
be used by the students but should not be distributed. The originanaterial is found
in the books used to prepare the lectures (see below).

The contents of particle physics 1 is the following:

Lecture 1: Concepts and History

Lecture 2 - 5: Electrodynamics of spinless particles

Lecture 6 - 8: Electrodynamics of spin 1/2 particles

Lecture 9: The Weak interaction

Lecture 10 - 12: Electroweak scattering: The Standard Model

Each lecture of 2 45 minutes is followed by a 1 hour problem solving session.

The particle physics 2 course contains the following topics:
The Higgs Mechanism
Quantum Chromodynamics

In addition the master o ers in the next semester topical course@ot obligatory) on
the particle physics subjects: CP Violation, Neutrino Physics an®hysics Beyond the
Standard Model

Examination

The examination consists of two parts: Homework (weight=1/3) ad an Exam (weight=2/3).
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Literature

The following literature is used in the preparation of this corse (the comments re ect
my personal opinion):

Halzen & Matrtin: \Quarks & Leptons: an Introductory Course in Modern Particle
Physics "
Although it is somewhat out of date (1984), | consider it to be the best book in the eld
for a master course. It is somewhat of a theoretical nature. tibuilds on the earlier work
of Aitchison (see below). Most of the course follows this bok.

Gri ths: \Introduction to Elementary Particle Physics", second, revisd ed.
The text is somewhat easier to read than H & M and is more up-to-d&e (2008) (e.qg.
neutrino oscillations) but on the other hand has a somewhat éss robust treatment in
deriving the equations.

Perkins: \Introduction to High Energy Physics", (1987) 3-rd ed., (2000)4-th ed.
The rst three editions were a standard text for all experimental particle physics. It is
dated, but gives an excellent description of, in particular, the experiments. The fourth
edition is updated with more modern results, while some oldematerial is omitted.

Aitchison: \Relativistic Quantum Mechanics"
(1972) A classical, very good, but old book, often referreda by H & M.

Aitchison & Hey: \Gauge Theories in Particle Physics"
(1982) 2nd edition: An updated version of the book of Aitchison; a bit more theoretical.
(2003) 3rd edition (2 volumes): major rewrite in two volumes very good but even more
theoretical. It includes an introduction to quantum eld th eory.

Burcham & Jobes:\Nuclear & Particle Physics"
(1995) An extensive text on nuclear physics and particle phgics. It contains more
(modern) material than H & M. Formula's are explained rather than derived and more
text is spent to explain concepts.

Das & Ferbel:\Introduction to Nuclear and Particle Physics"
(2006) A book that is half on experimental techniques and hdl on theory. It is more
suitable for a bachelor level course and does not contain a#atment of scattering theory
for particles with spin.

Martin and Shaw: \Particle Physics ", 2-nd ed.
(1997) A textbook that is somewhere inbetween Perkins and Da & Ferbel. In my
opinion it has the level inbetween bachelor and master.

Particle Data Group: \Review of Particle Physics"
This book appears every two years in two versions: the book ahthe booklet. Both of
them list all aspects of the known particles and forces. The bok also contains concise,
but excellent short reviews of theories, experiments, acdlerators, analysis techniques,
statistics etc. There is also a version on the web: http://pdg.Ibl.gov




The Internet:
In particular Wikipedia contains a lot of information. Howeer, one should note
that Wikipedia does not contain original articles and they e certainly not re-
viewed! This means that they cannot be used for formal citatics.

In addition, have a look at google books, where (parts of) boslare online avail-
able.
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About Nikhef

Nikhef is the Dutch institute for subatomic physics. Although the mme Nikhef is kept,
the acronym "Nationaal Instituut voor Kern en Hoge Energie Fysia" is no longer used.
The name Nikhef is used to indicate simultaneously two overlappy organisations:

Nikhef is a national research lab funded by the foundation FOMhe dutch foun-
dation for fundamental research of matter.

Nikhef is also a collaboration between the Nikhef institute andhte particle physics
departements of the UvA (A'dam), the VU (A'dam), the UU (Utrecht) and the
RU (Nijmegen) contribute. In this collaboration all dutch adivities in particle

physics are coordinated.

In addition there is a collaboration between Nikhef and the Ris Universiteit Gronin-
gen (the former FOM nuclear physics institute KVI) and there arecontacts with the
Universities of Twente, Leiden and Eindhoven.

For more information go to the Nikhef web page: http://www.nikhef.nl

The research at Nikhef includes both accelerator based pargcphysics and astro-
particle physics. A strategic plan, describing the research prggnmes at Nikhef can be
found on the web, from: www.nikhef.nl/ leadmin/Doc/Docs & pdf/StrategicPlan.pdf .

The accelerator physics research of Nikhef is currently focugion the LHC exper-
iments: Alice (\Quark gluon plasma"), Atlas (\Higgs") and LHCb (\C P violation").
Each of these experiments search answers for open issues in parfhysics (the state
of matter at high temperature, the origin of mass, the mechanisrbehind missing an-
timatter) and hope to discover new phenomena (eg supersymmetgxtra dimensions).
The LHC started in 2009 and is currently producing data at incrasing luminosity. The
rst results came out at the ICHEP 2010 conference in Paris, whilthe latest news of
this summer on the search for the Higgs boson and "New Physics" haveebediscussed
in the EPS conference in Grenoble and the lepton-photon caménce in Mumbai. So far
no convincing evidence for the Higgs particle or for New Physit&ve been observed.

In preparation of these LHC experiments Nikhef is/was also activat other labs:
STAR (Brookhaven), DO (Fermilab) and Babar (SLAC). Previousexperiments that
ended their activities are: L3 and Delphi at LEP, and Zeus, Heres and HERA-B at
Desy.

A more recent development is the research eld of astropartielphysics. It includes
Antares & KM3NeT (\cosmic neutrino sources"), Pierre Auger (\high energy cosmic
rays"), Virgo & ET (\gravitational waves") and Xenon ("dark matt er").

Nikhef houses a theory departement with research on quantum eltheory and
gravity, string theory, QCD (perturbative and lattice) and B-physics.

Driven by the massive computing challenge of the LHC, Nikhef alsah a scienti ¢
computing departement: the Physics Data Processing group. Tyheare active in the



development of a worldwide computing network to analyze thbuge datastreams from
the (LHC-) experiments (\The Grid").

Nikhef program leaders/contact persons:

| | Name | oce | phone| email
Nikhef director Frank Linde H232 | 5001 | z66@nikhef.nl
Theory departement: Eric Laenen H323| 5127 | t45@nikhef.nl
Atlas departement: Stan Bentvelsen H241| 5150 | stanb@nikhef.nl
B-physics departement: Marcel Merk N243 | 5107 | marcel.merk@nikhef.nl
Alice departement: Thomas Peitzmann | N325| 5050 | t.peitzmann@uu.nl
Antares experiment: Maarten de Jong H354 | 2121 | mjg@nikhef.nl
Pierre Auger experiment: Charles Timmermans| - - c.timmermans@hef.ru.n
Virgo and ET experiment: Jo van den Brand N247 | 2015 | jo@nikhef.nl
Xenon experiment: Patrick Decowski H349 | 2145 | p.decowski@nikhef.nl
Detector R&D Departement: | Frank Linde H232 | 5001 | z66@nikhef.nl
Scienti ¢ Computing: Je Templon H158| 2092 | templon@nikhef.nl
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History of Particle Physics

The book of Griths starts with a nice historical overview of particle physics in the
previous century. Here's a summary:

Atomic Models

1897 Thomson: Discovery of Electron. The atom contains electrons as \plumis
a pudding".

1911 Rutherford: The atom mainly consists of empty space with a hard and heavy,
positively charged nucleus.

1913 Bohr: First quantum model of the atom in which electrons circled in stble
orbits, quatized as:L = h n

1932 Chadwick: Discovery of the neutron. The atomic nucleus contains both
protons and neutrons. The role of the neutrons is associated Wwithe binding
force between the positively charged protons.

The Photon

1900 Planck: Description blackbody spectrum with quantized radiation. Nonter-
pretation.

1905 Einstein: Realization that electromagnetic radiation itself is fundanentally
guantized, explaining the photoelectric e ect. His theory eceived scepticism.

1916 Millikan: Measurement of the photo electric e ect agrees with Einsteigs’
theory.

1923 Compton: Scattering of photons on particles con rmed corpuscular chacter
of light: the Compton wavelength.

Mesons

1934 Yukawa: Nuclear binding potential described with the exchange of a qona
tized eld: the pi-meson or pion.

1937 Anderson & Neddermeyer:Search for the pion in cosmic rays but he nds a
weakly interacting particle: the muon. (Rabi: \Who orderedthat?")

1947 Powell: Finds both the pion and the muon in an analysis of cosmic radiatn
with photo emulsions.

Anti matter

1927 Dirac interprets negative energy solutions of Klein Gordon equatn as energy
levels of holes in an in nite electron sea: \positron".

1931 Andersonobserves the positron.



1940-1950Feynman and Stuckelberg interpret negative energy solutions as the positive
energy of the anti-particle: QED.

Neutrino's

1930 Pauli and Fermi propose neutrino's to be produced in -decay (mn = 0).
1958 Cowan and Reinesobserve inverse beta decay.
1962 Ledermanand Schwarzshowed that . 6 . Conservation of lepton number.

Strangeness

1947 Rochesterand Butler observeV? events: K © meson.
1950 Andersonobservesv® events:  baryon.

The Eightfold Way

1961 Gell-Mann makes particle multiplets and predicts the
1964 particle found.

The Quark Model

1964 Gell-Mann and Zweig postulate the existance of quarks
1968 Discovery of quarks in electron-proton collisions (SLAC
1974 Discovery charm quarkJ= ) in SLAC & Brookhaven.
1977 Discovery bottom quarks () in Fermilab.

1979 Discovery of the gluon in 3-jet events (Desy).

1995 Discovery of top quark (Fermilab).

Broken Symmetry

1956 Lee and Yangpostulate parity violation in weak interaction.
1957 Wu et. al. observe parity violation in beta decay.

1964 Christenson, Cronin, Fitch & Turlay observe CP violation in neutral K meson
decays.

The Standard Model

1978 Glashow Weinberg Salamformulate Standard Model for electroweak inter-
actions

1983 W-boson has been found at CERN.
1984 Z-boson has been found at CERN.
1989-2000 LEP collider has veri ed Standard Model to high jecision.
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Natural Units

We will often make use ofhatural units. This means that we work in a system where
the action is expressed in units of Planck's constant:

h 1.055 10 %*Js
and velocity is expressed in units of the light speed in vacuum:
c=2:998 10m=s

In other words we often uséh = c= 1.
This implies, however, that the results of calculations must bé&anslated back to
measureable quantities in the end. Conversion factors are thalowing:

guantity conversion factor natural unit | normal unit
mass 1kg =561 10°GeVv GeV Ge\=e
length 1m=5:07 10°GeV ! Gev ! hc=GeV
time 1s=152 10**Gev ! Gev ! h=GeV

. pP—— P—
unit charge e= 4 1 hc

Cross sections are expressedlarn, which is equal to 102*cm?. Energy is expressed
in GeV, or 1¢ eV, where 1 eV is the kinetic energy an electron obtains when i
accelerated over a voltage of 1V.

Exercise -1:
Derive the conversion factors for mass, length and time in the lbde above.

Exercise O:

The Z-boson patrticle is a carrier of the weak force. It has a mase§91.1 GeV. It can
be produced experimentally by annihilation of an electronral a positron. The mass of
an electron, as well as that of a positron, is 0.511 MeV.

(a) Can you guess what the Feynman interaction diagram for teiprocess is? Try to
draw it.

(b) Assume that an electron and a positron are accelerated in opgite directions and
collide head-on to produce a Z-boson in the lab frame. Calctdethe beam energy
required for the electron and the positron in order to produca Z-boson.

(c) Assume that a beam of positron particles is shot on a target caaihing electrons.
Calculate the beam energy required for the positron beam in der to produce
Z-bosons.

(d) This experiment was carried out in the 1990's. Which methi do you think was
used? Why?
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Lecture 1

Particles and Forces

Introduction

After Chadwick had discovered the neutron in 1932, the elemeny constituents of
matter were the proton and the neutron inside the atomic nucleus, and theelectron
circling around it. With these constituents the atomic elemets could be described as
well as the chemistry with them. The answer to the question: \Whais the world
made of?" was indeed rather simple. The force responsible foteractions was the
electromagnetic force, which was carried by thphoton

There were already some signs that there was more to it:

Dirac had postulated in 1927 the existence @nti-matter as a consequence of his
relativistic version of the Schrodinger equation in quantum mchanics. (We will
come back to the Dirac theory later on.) The anti-matter parber of the electron,
the positron, was actually discovered in 1932 by Anderson (see Fity1).

Pauli had postulated the existence of an invisible particle thawas produced in
nuclear beta decay: theneutrino. In a nuclear beta decay process:

Na! Ng+e

the energy of the emitted electron is determined by the mass éience of the nuclei
Na and Ng. It was observed that the kinetic energy of the electrons, hower,
showed a broad mass spectrum (see Fig. 1.2), of which the maximurasaequal
to the expected kinetic energy. It was as if an additional ingible particle of low
mass is produced in the same process: the (anti-) neutrino.

1.1 The Yukawa Potential and the Pi meson

The year 1935 is a turning point in particle physics. Yukawa studd the strong inter-
action in atomic nuclei and proposed a new particle, a-meson as the carrier of the
nuclear force. His idea was that the nuclear force was carriéy a massive particle

11
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Figure 1.1: The discovery of the positron as reported by Andersan 1932. Knowing
the direction of the B eld Anderson deduced that the trace was rginating from an
anti electron. Question: how?
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Figure 1. The Beta Decay Spectrum for Molecular Tritium

The plot on the left shows the probability that the emerging electron has a particular
energy. If the electron were neutral, the spectrum would peak at higher energy and
would be centered roughly on that peak. But because the electron is negatively
charged, the positively charged nucleus exerts a drag on it, pulling the peak to a
lower energy and generating a lopsided spectrum. A close-up of the endpoint

(plot on the right) shows the subtle difference between the expected spectra for

a massless neutrino and for a neutrino with a mass of 30 electron volts.

Figure 1.2: The beta spectrum as observed in tritium decay to hem. The endpoint
of the spectrum can be used to set a limit of the neutrino masQuestion: how?
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(in contrast to the massless photon) such that the range of this foe is limited to the
nuclei.

The qualitative idea is that a virtual particle, the force carier, can be created for a
time t < h=2mc?. Electromagnetism is transmitted by the massless photon and has
an in nite range, the strong force is transmitted by a massive mesoand has a limited
range, depending on the mass of the meson.

The Yukawa potential (also called the OPEP: One Pion ExchangPBotential) is of

the form:
r=R

ur)= @ °

where R is called therange of the force.
For comparison, the electrostatic potential of a point charge as seen by a test
chargee is given by:

r

V(r) = e2r1

The electrostatic potential is obtained in the limit that the range of the force is in nite:
R = 1 . The constantg is referred to as thecoupling constantof the interaction.

Exercise 1:

(&) The wave equation for an electromagnetic potential V isigen by:

_ . @
2V=0 2 @@ T

which in the static case can be written in the form of Laplace eation:
r2vs=o

Assuming spherical symmetry, show that this equation leads to thedDlomb po-
tential V(r)
Hint: remember spherical coordinates.

(b) The wave equation for a massive eld is the Klein Gordon equian:
2U+m?U=0
which, again in the static case can be written in the form:
r2u m?u=o0

Show, again assuming spherical symmetry, that Yukawa's poteatiis a solution
of the equation for a massive force carrier. What is the relatobetween the mass
m of the force carrier and the rangeR of the force?

(c) Estimate the mass of the -meson assuming that the range of the nucleon force is
1.5 10 ®m=1:5fm.
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Yukawa called this particle amesonsince it is expected to have an intermediate mass
between the electron and the nucleon. In 1937 Anderson and Neddeyer, as well as
Street and Stevenson, found that cosmic rays indeed consist of lsuc middle weight
particle. However, in the years after, it became clear that tavthings were not right:

(1) This particle did not interact strongly, which was very strange for a carrier of the
strong force.

(2) Its mass was somewhat too low.

In fact this particle turned out to be the muon, the heavier brother of the electron.

In 1947 Powell (as well as Perkins) found the pion to be presemt cosmic rays. They
took their photographic emulsions to mountain tops to study tle contents of cosmic rays
(see Fig. 1.3). (In a cosmic ray event a cosmic proton scatters tvihigh energy on an
atmospheric nucleon and produces many secondary particles.joRs produced in the
atmosphere decay long before they reach sea level, which is vilingy were not observed
before.

1.2 Strange Particles

After the pion had been identi ed as Yukawa's strong force carer and the anti-electron
was observed to con rm Dirac's theory, things seemed reasonghinder control. The
muon was a bit of a mystery. It lead to a famous quote of Isidore Raat the conference:
\Who ordered that?"

But in December 1947 things went all wrong after Rochester arBlutler published
so-calledV° events in cloud chamber photographs. What happened was thaharged
cosmic particles hit a lead target plate and as a result many derent types of particles
were produced. They were classi ed as:

baryons:particles whose decay product ultimately includes a proton.
mesons:particles whose decay product ultimately include only leptws or photons.

Why were these events calledtrange? The mystery lies in the fact that certain (neutral)
particles were produced (the V°'s") with a large cross section (10 ?’cm?), while they
decay according to a process with a small cross section {0 4°cm?). The explanation
to this riddle was given by Abraham Pais in 1952 and is calledssociated production
This means that strange particles are alwaygroducedin pairs by the strong interaction.
It was suggested that strange particle carries atrangenessquantum number. In the
strong interaction one then has the conservation rule S = 0, such that a particle with
S=+1 (e.g. a K meson) is simultaneously produced with a particle with S=-1 (g. a

baryon). These particles then individuallydecaythrough the weak interaction, which
does not conserve strangeness. An example of an associated prodaativent is seen in
Fig. 1.4.
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Figure 1.3: A pion entering from the left decays into a muon ahan invisible neutrino.
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Figure 1.4:. A bubble chamber picture of associated production
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In the years 1950 - 1960 many elementary particles were disemd and one started
to speak of the particle zoo. A quote: \The nder of a new partite used to be awarded
the Nobel prize, but such a discovery now ought to be punished by 4Gk000 ne."

1.3 The Eightfold Way

In the early 60's Murray Gell-Mann (at the same time also Yuvan Neman) observed
patterns of symmetry in the discovered mesons and baryons. He péat the spin 1/2

baryons in a so-called octet (the \eightfold way" after the ajhfold way to Nirvana in

Buddhism). There is a similarity between MendeleeVv's perioditable of elements and
the supermultiplets of particles of Gell Mann. Both pointed at a deeper structure of
matter. The eightfold way of the lightest baryons and mesons displayed in Fig. 1.5
and Fig. 1.6. In these graphs the Strangeness quantum numberpistted vertically.

O=-1 Q=0 Q=+1

Figure 1.5: Octet of lightest baryons with spin=1/2.

S=1 - K K
- \\2 =+
S_-l ____________ — \\\* \\\\
K. KC '

O=-1 Q=0 Q=1
Figure 1.6: Octet with lightest mesons of spin=0

Also heavier hadrons could be given a place imultiplets. The baryons with spin=3/2
were seen to form a decuplet, see Fig. 1.7. The particle at thettmm (at S=-3) had not
been observed. Not only was it found later on, but also its predad mass was found to
be correct! The discovery of the particle is shown in Fig. 1.8.
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) " mass

S=0------- D 8 b o ~1230 MeV
_ S -

S—'l ““““““ . Q:+2 1380 Mev

YTy N Q=+1 ~1530 MeV

ISEe N — g \'Q:O ~1680 MeV

0=-1

Figure 1.7: Decuplet of baryons with spin=3/2. The was not yet observed when
this model was introduced. It's mass was predicted.

Figure 1.8: Discovery of the omega particle.
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1.4 The Quark Model

The observed structure of hadrons in multiplets hinted at an uglerlying structure. Gell-
Mann and Zweig postulated indeed that hadrons consist of morerfdamental partons:
the quarks. Initially three quarks and their anti-particle were assumed to exist (see Fig.
1.9). A baryon consists of 3 quarks:d; q; q, while a meson consists of a quark and an
antiquark: (g;g). Mesons can be their own anti-particle, baryons cannot.

S=0------- vd u S=+3----------- ig
\\\ U —
______ \S \\ SZO________ \\ \d\

'Q=-1/3 0=-2/3 O=+1/2

Figure 1.9: The fundamental quarks: u,d,s.

Exercise 2:
Assign the quark contents of the baryon decuplet and the meson ett

How does this explain that baryons and mesons appear in the foroh octets, decu-
plets, nonets etc.? For example a baryon, consisting of 3 quankéh 3 avours (u,d,s)
could in principle lead to 3x3x3=27 combinations. The answelds in the fact that
the wave function of fermions is subject to a symmetry under elkange of fermions.
The total wave function must be anti-symmetric with respect to he interchange of two
fermions.

(baryon) = (spacg (spin) (flavour) (color)
These symmetry aspects are re ected in group theory where onecennters expressions
as:3 3 3=10 8 8 land3 3=8 1.

For more information on the static quark model readk2.10 andx2.11 in H&M, x5.5

and x5.6 in Gri ths, or chapter 5 in the book of Perkins.

1.4.1 Color

As indicated in the wave function above, a quark has anothertiernal degree of freedom.
In addition to electric charge a quark has a di erent chargeof which there are 3 types.
This charge is referred to as the color quantum number, labbetl asr, g, b. Evidence
for the existence of color comes from the ratio of the cross secti

e'e | hadrons X
( ) = N¢ Qi2

R (efe !+ ) i

where the sum runs over the quark types that can be produced ate available energy.
The plot in Fig. 1.10 shows this ratio, from which the resuliN¢ = 3 is obtained.
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Figure 1.10: The R ratio.

Exercise 3: The Quark Model

(@)

Quarks are fermions with spin 1/2. Show that the spin of a meso(2 quarks) can
be either a triplet of spin 1 or a singlet of spin 0.

Hint: Remember the Clebsch Gordon coe cients in adding quanton numbers.

In group theory this is often represented as the product of twdoublets leads to
the sum of a triplet and a singlet:2 2= 3 1 or, in terms of quantum numbers:
1=2 1=2=1 0.

(b) Show that for baryon spin states we can writel=2 1=2 1=2=3=2 1=2 1=2

(€)

or equivalently2 2 2=4 2 2

Let us restrict ourselves to two quark avours: u and d. We introduce a new
guantum number, calledisospinin complete analogy with spin, and we refer to
the u quark as the isospin +1/2 component and thed quark to the isospin -1/2

component (oru= isospin \up" and d=isospin \down"). What are the possible

isospin values for the resulting baryon?

(d) The ** particle is in the lowest angular momentum state(L = 0) and has

(e)

spin J3 = 3=2 and isospinl;z = 3=2. The overall wavefunction (L) space-part,
S) spin-part, 1) isospin-part) must be anti-symmetric under exchange of any of
the quarks. The symmetry of the space, spin and isospin part has a seguence
for the required symmetry of the Color part of the wave functin. Write down
the color part of the wave-function taking into account thatthe particle is color
neutral.

In the case that we include thes quark the avour part of the wave function
becomes3 3 3=10 8 8 1.

In the case that we include all 6 quarks it becomess 6 6. However, this is
not a good symmetry. Why not?



1.5. The Standard Model 21

1.5 The Standard Model

The fundamental constituents of matter and the force carrier in the Standard Model
can be represented as follows:

The fundamental particles:

charge| Quarks
2 u (up) c (charm) t (top)
3 1.5{4 MeV 1.15{1:35GeV | (1743 5:1)GeV
1 d (down) s (strange) b (bottom)
3 4{8 MeV 80{130 MeV 4.1{4:4 GeV
charge| Leptons
0 e (e neutrino) ( neutrino) ( neutrino)
< 3eV < 0:19MeV < 182 MeV
1 e (electron) (muon) (tau)
0:511 MeV 106 MeV 1:78 GeV

The forces, their mediating bosons and their relative strength

Force Boson Relative strength

Strong g (8 gluons) s O (1)
Electromagnetic (photon) O (10 ?)

Weak Z%W (weak bosons) w O (10 9

Some de nitions:

hadron (greek: strong) particle that feels the strong interaction

lepton (greek: light, weak) particle that feels only weak interagbn

baryon (greek: heavy) particle consisting of three quarks

meson(greek: middle) particle consisting of a quark and an anti-qu&

pentaquark a hypothetical particle consisting of 4 quarks and an anti-qul
fermion half-integer spin particle

boson integer spin particle

gauge-boson force carrier as predicted from local gauge invariance

In the Standard Model forces originate from a mechanism catldocal gauge invari-
ance, which wil be discussed later on in the course. The strong ferr color force) is
mediated by gluons, the weak force by intermediate vector bassy and the electromag-
netic force by photons. The fundamental diagrams are represed below.
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e q

T G4

et +

Figure 1.11: Feynman diagrams of fundamental lowest order garbation theory pro-
cesses in a: electromagnetic, b: weak and c: strong interaction

There is an important di erence between the electromagnetiforce on one hand, and
the weak and strong force on the other hand. The photon does noarry charge and,
therefore, does not interact with itself. The gluons, howevecarry color and do interact
amongst each other. Also, the weak vector bosons carry weak isospimd undergo a
self coupling.

The strength of an interaction is determined by the couplinganstant as well as the
mass of the vector boson. Contrary to its name the couplings aret constant, but
vary as a function of energy. At a momentum transfer of 0 GeV the couplings of
electromagnetic, weak and strong interaction all have the sawalue. In the quest of
uni cation it is often assumed that the three forces unify to a gand uni cation force at
this energy.

Due to the self coupling of the force carriers the running of ¢hcoupling constants
of the weak and strong interaction are opposite to that of elemmagnetism. Electro-
magnetism becomes weaker at low momentum (i.e. at large dista), the weak and the
strong force become stronger at low momentum or large distanc&he strong interac-
tion coupling even diverges at momenta less than a few 100 Metfi¢ perturbative QCD
description breaks down). This leads to con nement: the exishce of colored objects
(i.e. objects with net strong charge) is forbidden.

Finally, the Standard Model includes a, not yet observed, saal Higgs boson, which
provides mass to the vector bosons and fermions in the Brout-glert-Higgs mechanism.

Figure 1.12: Running of the coupling constants and possible uration point. On the
left: Standard Model. On the right: Supersymmetric Standardodel.
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Open Questions

Does the Higgs in fact exist?

Why are the masses of the particles what they are?
Why are there 3 generations of fermions?

Are quarks and leptons truly fundamental?

Why is the charge of the electrorexactly opposite to that of the proton. Or: why
is the total charge of leptons and quarks exactly equal to 0?

Is a neutrino its own anti-particle?

Can all forces be described in a single theory (uni cation)?
Why is there no anti matter in the universe?

What is the source of dark matter?

What is the source of dark energy?
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Lecture 2

Wave Equations and Anti Particles

Introduction

In the course we develop a quantum mechanical framework to debe electromagnetic
scattering, in short Quantum Electrodynamics (QED). The way w build it up is that
we rst derive a framework for non-relativistic scattering of smless particles, which
we then extend to the relativistic case. Also we will start with thewave equations for
particles without spin, and address the spin 1/2 particles lateon in the lectures (\the
Dirac equation’).

What is a spinless particle? There are two ways that you can thiknof it: either as
charged mesons (e.g. pions or kaons) for which the strong inteti@n has been \switched
o " or for electrons or muons for which the fact that they are sjin-1/2 particles is
ignored. In short: it not a very realistic case.

2.1 Non Relativistic Wave Equations

If we start with the non relativistic relation between kinetic energy and momentum

&
E=_—
2m

and make the quantum mechanical substitution:

. @ :
= |
E! I@t and p! Iy
then we end up with Schredinger's equation:
@ _ 1.
@t 2m

In electrodynamics we have the continuity equation (\Gaussaw") which relates a
current to a change of charge:
~ @
f

= ot

25
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wherej = the current density and = the charge density.

This is a rather general law stat can be stated in words as: \The emge of charge
in a given volume equals the current through the surrounding siace."

Can we make use of the continuity equation in quantum mechnics®et us mul-
tiply the Schredinger equation from the left by  and do the same for the complex
conjugates:

i Q = 71 r 2
@t 2m
i @7 71 r 2
@t 2m
@ o _ _
— = F — T F

In the result we can recognize again the continuity equatiorf we interpret the density
and current as indicated.
Example: Consider a solution to the Schmedinger equation fa free particle:

= N e'(Px EV ( show it is a solution )
then:
= = JNJ2
)
[ _ INJ
= - F~ = <
I 2m m
Exercise 4:

Derive the expressions for and j in the above example explicitly starting from the
Schredinger equation and its complex conjugate.

2.2 Relativistic Wave Equations

If we start with the relativistic equation:

E2= F+ m?
and again make the substitution:
. @ :
E! i—= and ! r
[ ot P [
then we end up with the Klein Gordon equation for a wavefunatin
@ 2 2

= +m

@t
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or in 4-vector notation:
2+m? (x)=0
or : @@+ m? (x)=0
A solution is again provided by plane waves:
(x)= Ne P X with eigenvalues E? = & + m?

In the same way as before we can de ne a current density by multjpng the K.G.
equation for from the left with and doing the same to the complex conjugate
equation:

: @ _ 2 2
[ @. = i r +m
i %2{ =i r 2 +m?
i +
' h i
e e e _ . % .
@tI @t @t} | {z }
: T
where we can recognize again the continuity equation. In 4&etor notation it becomes:
= 1 =il (@) (@ ) ]
@ =0
Let us substitute the plane wave solutions = N e P then:
= 2 jNj*E
F = 2iNip
or:! j = 2|Nj°p

Exercise 5:
Derive the expressions for andj explicitly starting from the Klein Gordon equation.

But now we really have an interpretation problem! There arévo solutions: E = P £+ mZ,
The solution with E < 0 is di cult to interpret as it means < 0.

Exercise 6:
The relativitic energy-momentum relation can be written as:

E:qp2+ m?2 (2.1)

This is linear in E = @=@but we don't know what to do with the square root of the
momentum operator. However, for smalp we can expand the expression in powers of
p. Do this up and including to order and write down the resulting wave equation.
Determine the probability density and the current density.
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E ! Et

Figure 2.1: Dirac's interpretation of negative energy solutns: \holes"

2.3 Interpretation of negative energy solutions

2.3.1 Dirac's interpretation

In 1927 Dirac o ered a new interpretation of the negative engy states. He introduced
a new wave equation which in fact walnear in time and space, which will be discussed
later on in the course. It turned out to automatically describeparticles with spin 1/2.
At this point in the course we consider spinless particles. Statestherwise: the wave
function or is a scalar quantity as there is no individual spin \up" or spin \cown"
component.

According to the Pauli exclusion principle, Dirac knew that tkere can not be two
identical particles in the same quantum state. Dirac's pictug of the vacuum and of a
particle are schematically represented in Fig. 2.1.

The plot shows all the avaliable energy levels of an electrorit's lowest absolute
energy level is given byjEj = m. Dirac imagined the vacuum to contain an in nite
number of states with negative energy which are all occupiedSince an electron is
a spin-1/2 particle each state can only contain one spin \up" el#ron and one spin-
"down" electron. All the negative energy levels are lled. Sch a vacuum (\sea") is not
detectable since the electrons in it cannot interact, i.e. gm another state.

If energy is added to the system, an electron can be kicked out thie sea. It now
gets a positive energy withE > m . This means this electron becomes visible as it can
now interact. At the same time a \hole" in the sea has appeared. his hole can be
interpreted as a positive charge at that position. Dirac's hopwas that he could describe
the proton in such a way.
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2.3.2 Pauli-Weisskopf Interpretation

Pauli and Weiskopf proposed a simpler scheme in 1934 in which theyinterpreted the
opposite sign solutions of the Klein Gordon equation as the opgite charges:
= electric charge density

T = electric current density
and the and + solutions indicate the electron and positron. The positno then had
of course the mass as the electron. The positron was discovered @81 by Anderson.

2.3.3 Feynman-Stsckelberg Interpretation

The current density for a particle with charge e and momentum E; p) is:
i (&= 2ejNj*p = 2ejNj* (E;p)

The current density for a particle with charge +e and momentum E; p) is:

j (+e=+2ejNj°p = 2ejNj°( E; P

This means that the positive energy solution for a positroms the negative energy
solution for an electron.

Note that indeed the wave functionNe® * = NeP * is invariant under: p ! p
andx !  x . Sothe wave functions that describe particles also describetigparticles.
The negative energy solutions give particles travelling bwards in time. They are the
same as the positive energy solutions of anti-particles tralielg forward in time. This
is indicated in Fig. 2.2.

E>0 E<O

Figure 2.2: A positron travelling forward in timeis an electron travelling backwards in
time.

As a consequence of the Feynman-Stuckelberg interpretatidhe process of an ab-
sorption of a positron with energy E is the same as the emission of an electron with
energyE (see Fig.2.3). In the calculations with Feynman diagrams weakie made the
convention that all scattering processes are calculated in tes of particles and not an-
tiparticles. As an example, the process of an incoming positronadtering o a potential
will be calculated as that of an electron travelling back initme (see Fig. 2.4).

Let us consider the scattering of an electron in a potential. Tén probability of a
process is calculated in perturbation theory in terms of basiscattering processes (i.e.
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/e

absorption

time]

emission
+e
/ (-E-p)

Figure 2.3: There is no di erence between the process of an aljgimn of a positron
with p =( E; P and the emission of an electron wittp = (e;f.

e+

time

\

Figure 2.4: In terms of the charge current density, ¢..,(+€) | g.n( €
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Feynman diagrams). In Fig. 2.5 the rst and second order scatterg of the electron is
illustrated. To rst order a single photon carries the interacton between the electron and
the potential. When the calculation is extended to second oed the electron interacts
twice with the eld. It is interesting to note that this scatter ing can occur in two
time orderings as indicated in the gure. Note that the obsendle path of the electron
before and after the scattering process is identical in the twarocesses. Because of our
anti-particle interpretation, the second picture is also poskle. It can be viewed in two
ways:

The electron scatters at timet, runs back in time and scatters att;.

First at time t; \spontaneously" ane e* pair is created from the vacuum. Later-
on, at time t,, the produced positron annihilates with the incoming electmn, while
the produced electron emerges from the scattering process.

In quantum mechanics both time ordered processes (the left atide right picture)
must be included in the calculation of the cross section. We rézg that the vacuum
has become a complex environment since particle pairs can sfameously emerge from
it and dissolve into it!

e
time

Figure 2.5: First and second order scattering.
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2.4 The Dirac Deltafunction
infinite
The de nition of the Dirac delta function is:

0 forx60 surface =
(x) = 1 forx=0 -

in such a way that: Z,
(x)dx=1

In that case one hasf (x) (x) = f(0) (x) for any function f. Therefore:
z 1 z 1 z 1

f(x) (x)dx= f(0) (x)dx=f(0) (x) dx = f (0)
1 1

Exercise 7:
The consequences of the de nition of the Dirac Delta functioare the following:

(a) Prove that: L
(kx) = K (x)

(b) Prove that:

I

X)) = 0
° i1 19°(xi)]
where the sumi runs over the 0-points ofg(x), i.e..g(x;) =0:
Hint: make a Taylor expansion ofg around the O-points.

(X Xi)

Exercise 8
Characteristics of the Dirac delta function:
R
(a) Calculate @ In(1+ x) (  x)dx
R
(b) Calculate § (2x?+7x+4) (x 1)dx

R
(c) Calculate §In(x%) (x=e 1)dx

(d) Simplify q(5x 1) x 1

(e) Simplify (sinx) and draw the function



Lecture 3

The Electromagnetic Field

3.1 Maxwell Equations

As we eventually want to calculate processes in QED, let us lookthe electromagnetic
eld and the photon. The Maxwell equations in vacuum are:

(1)  E= Gauss law

(2)  B=0 No magnetic poles

(3) - E+ Cg =0 Faraday% law of induction

. @ _ .
4) - B @t Relate B eld to a current
From the rst and the fourth equation we can indeed derive the antinuity equation:
: @
[

r ot

In scattering with particles we want to work relativistic, so it would be suitable if
we could formulate Maxwell equations in a covariant way; i.ein a manifestly Lorentz
invariant way.

To do this we introduce a mathematical tool: the potentialA = V;A . We note

at this point that the elds E;B are physical, while the potential isnot. Remember
that the following identities are valid for any vector eld A and scalar eld V:

r~ v =20 ( rotation of gradientis 0)
rr A =20 ( divergence of a rotationis 0)

We choosethe potential in such a way that two Maxwell equations are autmatically
full lled:

1.B=1r A
Then, automatically it follows that: ©~ B =0.

33



34 Lecture 3. The Electromagnetic Field

2. E= & rvVv

Then, automatically it follows that: © E = @r@f) 0= %t.

So, by a suitable de tion of how the potential A is related to the physical elds,
automatically Maxwell equations (2) and (3) are full lled.

Exercise 9:

(a) Show that Maxwell's equations can be written as:
@@A @Q@A =]

Hint: Derive the expressions for andj explicitly and note that ™ QA =
r 2R+ F A

(b) It can be made even more compact by introducing the tensoF: @A @A .
Show that with this de nition Maxwell's equations reduce ta

@F =]
Intermezzo: 4-vector notation
Assume that we have a contravariant vector:
A = A%ALAZAS = AOK
then the covariant vector is obtained as:
A =(AgALAA) =g A = A% AL AZ A2 = A0 A

since we use the metric sensor:

°1 0 0 ot
o %o 1 0 O E
9 79 “%o o 1 o0
0O 0 0 1
There is one exception to this:@ @%. For the derivative 4-vector we then nd:
| |
_ @ _ _ @ _

which is opposite to the contravariant and covariant behaviar of a usual 4-vectorA
de ned above.
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3.2 Gauge Invariance

Since we have introduced the potentiaA as a mathematical tool rather than as a
physical eld we can choos@any A potential as long as theE and B elds don't change.
After re-examining the equations that de neA we realize that there is a freedom to make
so-caled gauge transformations which do not a ect the physicatlds E and B':

Al A = A +@ or
Al A = A +@ for any scalar eld

In terms of the VoltageV and vectors potential A we have:

@
Ve = V+ =
@t
A = K 1

Exercise 10:
Show explicitly that in such gauge transformations th&€ and B elds do not change:

B = r A’=::=B
@O

E° = = rVl=u=E
@t

The laws of physics are gauge invariant. This implies that weaa choose any gauge
to calculate physics quantities. It is most elegant if we can pirm all calculations in
a way that is manifestly gauge invariant. However, sometimes whoose a particular
gauge in order to make the expressions in calculations simpler.

A gauge choice that is often made is called tHeorentz condition, in which we choose
A according to:

@A =0

Exercise 11:

Show that it is always possible to de ne @A eld according to the Lorentz gauge. To
do this assume that for a giverA eld one has: @A 6 0. Give then the equation
for the gauge eld by which that A eld must be transformed to obtain the Lorentz
gauge.

In the Lorentz gauge the Maxwell equations simplify further:

@Q@A @@A = | now becomes :
@@A = |
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However, A still has some freedom since we have xed@ (@ ), but we have not
yet xed @ ! In other words a gauge transformation of the form:
Al A=A +@ with: 2 = @@ =0

is still allowed within the Lorentz gauge@A = 0. However, we can in addition impose
the Coulomb condition

A°=0 or equivalently : r A=0

At the same time we realize, however, that this is not elegantsawe give the \0-
th component" or \time-component" of the 4-vector a special teatment. Therefore the
choice of this gauge is not Lorentz invariant. This means th@ne has to chose a di erent
gauge condition if one goes from one reference frame to a deat reference frame. This
is allowed since the choice of the gauge is irrelevant for théysics observables, but it
sometimes considered \not elegant”.

3.3 The photon

Let us turn to the wave function of the photon. We start with Maxwell's equation and
consider the case in vacuum:

2A = ! vacuum:j =0 ! 2A =0

Immediately we recognize in each component the Klein Gordaguation of a quantum
mechanical particle with massm = 0: (2 + m?) (x) = 0 (see previous Lecture). This
particle is the photon.

The plane wave solutions of the massless K.-G. equation are:

A (X)=N" (pe®* with: p>=pp =0

We are describing avector eld A since the eld has a Lorentz index . The vector
" (P is the polarization vector: it has 4 components. Does this mean that the photon
has 4 independent polarizations (degrees of freedom)?

Let us take a look at the gauge conditions and we see that thereessome restrictions:

Lorentz condition:
@A =0 ) p" =0

This reduces the number of independent components to threEor the gauge eld
this implies2 =0 and we see that we can choose the gauge eld as:

= jae P X
@ = apeP*
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wherea is a constant. Thus the gauge transformation looks like
Al A°=N "ePX +gpex
or, in terms of the polarization vector:
n ! IIO - n + ap

Therefore, di erent polarization vectors which di er by a multiple of p describe
the same physical photon.

Coulomb condition:

We choose the zero-th component of the gauge eld such that? = 0. Then the

Lorentz condition reduces to:

AR ‘oz

r 0 ) * p=0

So, instead of 4 degrees of freedorh § we now only have 2 independent polarization
vectors which are perpendicular to the three-momentum of thphoton. If the photon
travels along thez-axis the polarization degrees of freedom can be:

transverse polarizations:
* =(1;0,0) *=(0;1,0)

circular polarizations:

Exercise 12
Show that the circular polarization vectors", and " transform under a rotation of
angle around the z-axis as:

i u

+

&
I
® @™ O

im

5
Hence*, and* describe a photon of helicity +1 and -1 respectively.

Since the photon is a spin-1 particle we would expeab, = 1;0;+1. How about
helicity 0? The transversality equation* p= 0 arises due to the fact that the photon is
massless. For massive vector elds (or virtual photon elds!) thisemponent is allowed:

—'l::-p
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3.4 The Bohm Aharanov E ect

Later on in the course we will see that the presence of a vector ceX a ects the phase
of a wave function of the particle. The phase factor is a ectetby the presence of the
eld in the following way:

0_ el% (1)
whereq is the charge of the particleh is Plancks constant, and is given by:
z

(1) = dff AE*L)

Let us now go back to the famous two-slit experiment of Feynmam which he
considers the interference between two possible electron &ajories. From quantum
mechanics we know that the intensity at a detection plate positned behind the two
slits shows an interference pattern depending on the relatiphases of the wave functions

1 and , that travel di erent paths. For a beautiful description of this see chapter 1 of
the \Feynman Lectures on Physics" volume 3 (\2-slit experimerl) and pages 15-8 to
15-14 in volume 2 (\Bohm-Aharanov"). The idea is schematicall depicted in Fig. 3.1.

detector
slits —
=
Y_Z____,_—: _____________ (9]
e ||@ J z
source =
Y, coil <

Figure 3.1: The schematical setup of an experiment that invegtates the e ect of the
presence of an A eld on the phase factor of the electron wave fttions.

In case a eld A is present the phases of the wave functions are a ected, such tha
the wave function on the detector is:

= 1eiq 1(Kt) 4 zeiq 2(5t) — 1eiC1( 102 4 5 gd 2

We note that the interference between the two amplitudes demds on the relative phase:
z z |

1 2 = d‘l“cl)Al d‘l"gAz = d‘f‘o A(f‘o; t)
zZ't r2 z
r AGH%t) dS= B dS=
S S
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where we have used Stokes theorem to relate the integral araua closed loop to the
magnetic ux through the surface. In this way the presence of a agnetic eld can
a ect, (i.e. shift) the interference pattern on the screen.

Let us now consider the case that a very long and thin solenoid i®gtioned in the
setup of the two-slit experiment. Inside the solenoid the B- elds homogeneous and
outside it is B = 0 (or su ciently small), see Fig. 3.2. However, from electrodymmics
we recall theA eld is not zero outside the coil. There is a lot oA circulation around
the thin coil. The electrons in the experiment pass through ils A eld which quantum
mechanically a ects the phase of their wave function and thefor also the interference
pattern on the detector. On the other hand, there is ndB eld in the region, so
classically there is no e ect. Experimentally it has been veed (in a technically di cult
experiment) that the interference pattern will indeed shift

B
il

Figure 3.2: Magnetic eld and vector potential of a long solemid.

Discussion:

We have introduced the vector potential as a mathematical @ to write Maxwells
equations in a Lorentz covariant form. In this formulation ve noticed that the A- eld
has some arbitraryness due to gauge invariance. Quantummenltally we observe,
however, that the A eld is not just a mathematical tool, but gives a more fundamental
description of \forces". The aspect of gauge invariance seems @amvanted (\not nice" )
aspect now, but later on it will turn out to be a fundamental corept in our description
of interactions.
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Exercise 13 The delta function

(&) Show that
d®p

@ yE (3.2)
is Lorentz invariant (d®p = dpcdp,dp,). Do this by showing that
Z z d3p
M(p)2dp (p* m?) (p)= M(®Z (3.2)

The 4-vectorp is (E; px; py; Pz), and M (p) is a Lorentzinvariant function of p and
(p°) is the Heavyside function.

(b) The delta-function can have many forms. One of them is:

1sin® x
=

(x) = lim (3.3)
Make this plausible by sketching the functionsin?( x )=( x ?2) for two relevant
values of .

(c) Show that another (important!) representation of the Dilac delta function is given

by 7
1%+
(x) = > e dk

1
To do this use the de nition of Fourier transforms:

Z+
f 17T G € dk
) = 3 . 9k
Z,

g(k) f(x) e * dx



Lecture 4

Perturbation Theory and Fermi's
Golden Rule

4.1 Non Relativistic Perturbation Theory

Let us start to examine a scattering processA+ B! C+ D. As an example we
take in mind the case where two electrons scatter in an electragnetic potential A as
schematically depicted in Fig. 4.1

Figure 4.1: Scattering of two electrons in a electromagnetpotential.

The ingredients to calculate the counting rate for a scatteng processA+B ! C+D
are:

1. The transition probability W;; to go from an initial state °?°to a nal state ¢ %

2. The experimental conditions called the ux " factor. It includes both the beam
intensity and the target density.

3. The Lorentz invariant \phase space"factor (also referred to as dLIPS). It takes
care of the fact that experiments usually can not observe inddual states but
integrate over a number of (allmost identical) states.
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42 Lecture 4. Perturbation Theory and Fermi's Golden Rule

The formula for the calculation of a (di erential) cross sectn is:

_ Wy
Flux

Note that the \real" physics, (i.e. the Feynman diagrams) is inalded in the transition
probability Ws; . The ux and the phase space factors are the necessary \bookkeegi
needed to compare the physics theory with a realistic experimte (The calculation of
the phase space can in fact be rather involved.)

4.1.1 The Transition Probability

In order to calculate the transition probability we use the franework of non-relativistic
perturbation theory. In the end we will see how we can use the rdsun a Lorentz
covariant way and apply it to relativistic scattering.

Consider the scattering of a particle in a potential as depictein Fig. 4.2 Assume
that beforethe interaction takes place, as well aafter, the system is described by the
non-relativistic Schredinger equation: -

@ -
@t

where Hg is the unperturbed Hamiltonian, which does not have a time degmdence.
Solutions of this equation can be written in the as:

Ho

o= m(_x) e iEmt
with eigenvalueskEp,.
The ,, form a complete set orthogonal eigenfunctions oMy , = E, m, SO:

Z
m(¥)  n(¥) o o

t=-T/2 t=T/2

Figure 4.2: Scattering of a particle in a potential.
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Assume that att = 0 a perturbation occurs such that the system is described by:

i@@t: (Ho+ V (1)) 4.2)
The solutions can generally be written as:
* .
= an(t) n(x)e " (4.2)
n=0

wherea, (t) is the coe cient to nd the system in state \ n".
To determine these coe cients a, (t) substitute 4.2 in 4.1:

dan (1)

—at n(?()eiEnt+i>4 ( )E,an(t) n(x)e Ent =
n=0

n=0

. * .
Enan(t) n(¥e ™'+ V(xtan(t) o()e =
n=0 n=0
and the two terms proportional to E,, cancel.

Multiply the resulting equation from the left with: , = (%) €51t and integrate
over volumed®x to obtain:

R Z .
i daﬂ(t) dSX f('X) n(_x) e I(En Ef)t —
=0 AU 2 }

fn

z
an(t) b (V6 n(x)e G B
n=0
Next we use the orthonormality relation:
z

d®x m(®) ()= m
so that we nd:

Z
daét(t): a0V ame B

n=0

We will assume two simpli cations:

We prepare the incoming wave in a single state: The incoming wevs: ; =
(%) e Eit, In other words: a;(1 )=1and a,(1 )=0for(n6i).

We will assume that the inital condition is true during the time that the pertur-
bation happens! This implies that we work with aweakinteraction. In fact this is

*

the lowest order in perturbation theory in which we replace by just one term:
n=0

n = i. It means that a (t) << 1 is assumed at all times.
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Then we get:

Z
da(;t(t) = i d3X f(')()V(-X, t) I(X) e i(Ei Ef)t

Our aim is to determineas (t):

Z 0 da (1) L g 3 h iE ti h iE-ti
a (19 = Tzszt= i T=2dt dBx (e Bt Vet (%)e E

We de ne the transition amplitude Ty as the amplitude to go from statei nal state f
at the end of the interaction:

Z i, z
Ti &(T=2)= | dt  Bx () VEGt) (1)
T=2
Finally we take the limit: T ! 1 . Then we can write the expression in 4-vector
notation: 2
Ti= i d% ((X)VX) i(x)
Note:

The expression fofT;; has a manifest Lorentzinvariant form. It is true for each Loretz
frame. Although we started with Schmdinger's equation (i.e non-relativistic) we will
always use it: also for relativistic frames.

1-st and 2-nd order perturbation

What is the meaning of the initial conditions: g;(t) = 1;a,(t) =0 ? It implies that the
potential can only makeone quantum perturbation from the initial state i to the nal
state f . For example the perturbation:i! n! f is notincluded in this approximation
(it is a 2" order perturbation).

If we want to improve the calculation to second order in perturation theory we
replace the approximationa, (t) = 0 by the rst order result:

dal) _ .y g e
dt f|2

3
: X Z ' i)to i(Er En)t
T G ) YA dtCeEn ENt5 v g (Er En)
nei T=2

where we have assumed that the perturbation is time independeand introduced the
notation: z

Vi dBx () V() (%

See the book of Halzen and Martin how to work out the second ordealculation. A
graphical illustration of the rst and second order perturbation is given in Fig. 4.3.



4.1. Non Relativistic Perturbation Theory 45

1-st order 2-nd order
f f

space J

time

Figure 4.3: First and Second order approximation in scatterm

Can we interpretT; j2 as the probability that a particle has scattered from state
to state f ? Consider the case where the perturbation is tim@ dependent. Then:

Z, .
Ts = ini dt e'(Ef Ei)t = 2iV fi (Ef E|)
1

The -function expresses energy conservation in  f. From the uncertainty princple
it can then be inferred that the transition between two exacl de ned energy states
E; and E; must be in nitely seperated in time. Therefore the quantityjTs j* is not a
meaningfull quantity. We de ne instead the transition probablity per unit time as:

. .2
o T
The calculation of the transition probability is non-trivial as it involves the square of a
-function. A proper treatment is rather lengthy* and involves the use of wave packets.
Instead we will apply a \trick". If we assume that the interaction occurs during a time
period T fromt= T=2 until t =+ T=2 we can write:

1 221 . Z 1= _ .
Woi = m v ad® e T god(er e)
T T 1 -
. .2 . 1 Z 1=
= Mij°2 (B¢ Ei) lim — dt°
T T | T2
|—{TZ—}

The -function in the rst integral implies that there is only contribution for E; equal
to E; in the second integral.

Then we note that the arbitrary chosen time periodl' drops out of the formula such
that the transition probability per unit time becomes:

. )
o JTsi ]
Wi = Jip T3

This is the transition probability for a given initial state into a speci ¢ nal state.

=2 Wi’ (Er E)

lsee e.g. the book by K.Gottfried, \Quantum Mechanics" (1966), Volume 1, sectims 12, 56.



46 Lecture 4. Perturbation Theory and Fermi's Golden Rule

In particle physics experiments we typically have:
Well prepared initial states
An integral over nal states that are reached: (E¢)dE;.

Finally we arrive at Fermi's Golden rule:

-
Z

2 dEr (E¢) jVij®> (Ef E)
2 jVui® (E)

Wi

Exercise 14

Assume that there is a constant perturbation potential between= T=2andt= T=2
(&) Write down the expression forTy; at time T=2 and do the integral overt.

(b) Write down the expression forWs . Show that this expression corresponds to the
one in the lecture in the limit that T ! 1

(c) Assume that density for nal states (E;) is a constant and perform the integral
over all nal states dE;. Compare it to the expression of Fermi's Golden rule.

. in 2
Hint: 7% SXdx =

X2

4.1.2 Normalisation of the Wave Function

Let us assume that we are working with solutions of the Klein-Gdon equation:
=Ne ™

We normalise the wave function in a given volum¥ to 1:

z 1
dv =1 ) N = p=
v V

The probability density for a Klein Gordon wave is given by (se&ecture 2):

2E
=2 Nj* E = =
JNj ) Y,
In words: in a given volumeV there are E particles. The fact that is proportional to
E is needed to compensate for the Lorentz contraction of the wwhe elementd®x such
that d3x remains constant. The volumeV is arbitrary and in the end it must drop
out of any calculation of a scattering process.
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%

QN B -0

A B

Figure 4.4: A beam incident on a target.

4.1.3 The Flux Factor

The ux factor or the initial ux corresponds to the amount of particles that pass each
other per unit area and per unit time. This is easiest to considen the lab frame.
Consider the case that a beam of particleA| is shot on a target B), see Fig. 4.4

The number of beam particles that pass through unit area per untime is given by
j¥aj Na. The number of target particles per unit volume isng. The density of particles
nis given byn= = % such that:

FIUX = j¥a] Na Np = JVa] Z\E/A Z\E/B

Exercise 15
In order to provide a general, Lorentz invariant expression fahe ux factor replace v
by va W and show using:wy = Pao=Ex and s = Pg=Eg, that:

o]
Flux=4 (pa pg)> mZm3 =V?2

4.1.4 The Phase Space Factor

How many quantum states can be put into a given volum¥ ? Assume the volume is
rectangular with sidesLy, Ly, L,. A particle with momentum p has a \size" given by:
=2 =p. Using periodic boundary conditions to ensure no net particleow out of the

volume we see that the number of states with a momentum betwegn= (0;0;0) and
P=(Px: Py P2) IS
Lx Ly Lz _ Lxpx Lypy L:2P; \%

T2 2 2 T ypkbhk

N =nynyn, =

< |5

Yy z
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AU T T
LZ”\JX/

Lx

Figure 4.5: Schematic calculation of the number of states int@ox of volumeV.

An alternative view is given by Burcham & Jobes on page 305. Thmimber of nal
states is given by the total size of the available phase space ftvet nal state divided
by the volume of the elementary cell:h® (within an elementary cell states cannot be
distinguished):

z z

1
N=—- dxdydzdpdp dp,= ——=—

Vv
ha dp. dpy dp; = ———3 Px By P

)
As a consequence, the number of states with momentum betwepiand p+ dp(i.e.
between 0x; py; p;) and (px + dps;py + dpy;p, + dp,) ) is:

V
dN = —— dp,dp, d
2 ) Px dpy dp;

The wave functions were normalized according th%, dV = 2E, therefore the number
of states per patrticle is:
d*p
(2 )% 2E
For a process in the formA+ B! C+ D + E + ::;: with N nal state particles the
Lorentz invariant phase space factor is:

# states=particle =

d =dLIPS =
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4.1.5 Summary

Finally we arrive at the formula to calculate a cross section fdhe process

A +B;! Ci+D;s+

dn = iWfi d

ux

2

T!lZ T
T = 1 d% ;(Xx)V(X) i(x)
g = VvV dn

i=:(L:I (2 )3 2E;
ux = 4 (pa pg)® m3m3 =V?

Exercise 16
Show that the cross section does not depend on the arbitrary uohe V.

Exercise 17

Why is the phase space factor indeed Lorentz invariantH{nt: Just refer to a previous
exercise.)
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4.2 Extension to Relativistic Scattering

The transition amplitude of the scattering proces#A + B ! C + D, for incoming and
outgoing plane waves = Ne '™ takes the form:

Tri = iNaANgNcNp 2 )* (pa+pPs Pc Po)M

whereM is the so-calledMatrix elementand the delta function takes care of the energy
and momentum conservation in the process.
To nd the transition probability we square this expression:

Z Z
ijijZ — jNANBNCNDjZ iMj 2 d*xe (Pa*tpPs Pc Po)X d*x%e i(Pa+Ps Pc Pp )x°
Z
= jNaNeNcNpj? jMj 22 )* *(pa+pPs pc Po) _lim _ d%
vl TV

jNANgNcNpj? jMj 2(2 )* *(pa+Ps  Pc Pp) _lim TV

T;vil

This gives for the transition probability per unit time and volume:

iTi j2
T;\I/rn. TV
jNANgNcNpj® jMj (2 )* (pa+Ps Pc  Po)

Indeed we see that the delta funtion provides conservation ohegy and momentum.

Wy

The cross section is again given By

_ Wy
Flux

2

The phase space factor is:

_ Vdpc Vdm
T (2 )% 2Ec (2 ) 2Ep

and the Flux factor is:
q
Flux=4 (pa ps)> m32m3=V?

Taking it all together with N = 1p V:

1. . 2 V2 VOGpC Vdng
d = IM “(2 )4 4(pA +Ps Pc Po) —*
v 4 (pa ps)? mimg ()7 2Ec(2)’ 2Ep

In this formula the arbitrary volume factors V cancel again.

2Usually we will write this as:

_ iMj 2
" Flux
and absorb the delta function in the phase space factor.

d

d
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We nally have for the cross section oA+ B! C+ D:

4 =@ )4 “(ba+ P8 Pc  Po) M 2 *pc ®pp

4 (pa ps)’? m2m3 2 )° 2Ec (2 )® 2Ep

Similarly the formula for decayA! C+ D is:

(2 )4 “(Pa Pc Po) ., 2 d*pc d*po

d = M
2F M 226 2 ) 265,

Exercise 18 (See also H&M Ex. 4.2)
Calculate the two particle phase space in the interactiodA + B! C+ D.

(a) Start with the expression:
z

a3 a3
2 = (2 )4 “(pa+Ps Pc Po) R i

(2 )° 2Ec (2 )° 2Ep
Do the integral overd®pp using the function and show that we can write:

Z 2
1 prdpd
= Eart+E E E
2 2 )2 4EcEp (Ea B C D)
where we have made use spherical coordinates (i.d®pc = jpcj?dpc d ) and of

Pr ] Pl
(b) In the C.M. system we can Write:p s W = E, + Eg. Show that the expression
becomes (hint: calculatedW=dp ):

Z 1 P 1
(2 ) 4 Ec+Ep

So that we nally get: .
= g P

»= dwd (W Ec Ep)

(c) Show that the ux factor in the center of mass is:

F :4pip§

and hence that the di erential cross section for 2! 2 process in the center of
mass frame is given by:

4 _ 1.p
d 6425p|JJ

cm

For the decay rateA! B + C one nds (4pip s! 2Exr =2mjp):
d

d 322m2|OfJJ

cm
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Lecture 5

Electromagnetic Scattering of
Spinless Particles

Introduction

In this lecture we discuss electromagnetic scattering of spislgarticles. First we de-
scribe an example of a charged particle scattering in an exteinelectric eld. Second
we derive the cross section for two particles that scatter in ela®thers eld. We end
the lecture with a prescription how to treat antiparticles.

In classical mechanics the equations of motion can be derivesing the variational
principle of Hamilton which states that the action integrall should be stationary under
arbitrary variations of the generalized coordinatesj;g: | =0, where:

Ztl
| = L(g;q)dt with L(g;q9)=T V
0

t

This leads to the Euler Lagrange equations of motion (see Appdir A):

da _a
dt @ @q
These may also be written in the form

N
Q—@ﬂ with p @

the generalized (or canonical) momentum.

5.1 Electrodynamics

How do we introduce electrodynamics in the wave equation of astgm? The Hamilto-
nian of a free particle is:
_F

~2m

53
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In the presence of an electromagnetic eld the equation of mement is:

_dp
gl

The Hamiltonian that leads to the desired equation of motion i¢see e.g. Jackson):

= ;n P qﬁ(f;t)2+q(+:t)

This means that we replace the kinematic energy and momentuiny the canonical
energy and momentum:E! E g and p! p 0gA. In 4-vec notation:

p! p 0dA
This is called minimal substitution contains the essential physs of electrodynamics.

=qgE+v B

Exercise 19
The Lagrangian for a charged particle moving in a electromagtic eld is:

L = ;mv2+ qv A(#t) q( £t)

(@) Show that for a uniform magnetic eld, we may take:

1
VvV =0; A= _B
> *

If we choose thez-axis in the direction of B we have in cylindrical coordinates
(r;z):

1
V=0; A =0; A=§Br; A,=0

Hint: In cylindrical coerdinates the cross product is de n ed as:

1@A @A @A @A.1 @A) @A
r @ @z’ @z @r'r @r @

(b) Write down the Lagrangian in cylindrical cosrdinates

r A=

(c) Write out the Lagrangian equations:

i @ @

dt @ @q

in the cylindrical coerdinates.

(d) Show that the equation of motion in terms of the coordina¢ —yields (assume
r=constant):

=0 or _= a8
m

i.e. that it is in agreement with the law:
F= 9P qgE+~v B

T odt
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In quantum mechanics we make the replacemept ! i@, such that we have now:

@'! @+ igA

This is the heart of quantum electrodynamics. As we will see latan the lectures
this substitution is mandatory in order make the theory quantun electrodynamics lo-
cally gauge invariant! (This was exactly the substitution in he example of the Bohm-
Aharanov e ect wherep! P oA in the phase of the wave function.)

Start with the free particle Klein-Gordon equation:

@@+m*> =0
and substitute @ ! @ ieA for a particle with charge e
(@ eA)(@ ieA) +m? =0

which is of the form:
@@+ m*+V(x) =0

from which we derive for the perturbation potential:
V(X)= ie(@A +A @) A2
Since€? is small ( = =4 = 1=137) we can neglect the second order terne?A? 0.

Ho

X

Ho

Figure 5.1: Scattering potential

From the previous lecture we take the general expression fortkransition amplitude:
z
Ti = 0 d% (V) i(x)
z
idx () ( ie) (A @+ @A) i(x)

Use now partial integration to calculate:
Z h i 4

d4X f@(A i)= fA i @ f A id4X

I
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notethatatt= 1 andatt=+1:A =0.

We then get:
z h i
iel 1 () (@ (X)) o @ ((x) i(x)} A dx

fi

Th =

]
We had the de nition of a Klein-Gordon current density:
j = e[ (@) (@ )]

In complete analogy we now de ne the \transition current dengy" to go from initial
statei to nal state f:
. h i
"= e (@) @

so that we arrive at:

-
A

Ts = i jﬂ A d4X

This is the expression for the transition amplitude for going tm free particle solutioni
to free particle solutionf in the presence of a perturbation caused by an electromagnetic
eld.
If we substitute the free particle solutions of the unperturbedlein-Gordon equation
in initial and nal states we nd for the transition current of sp inless particles:

i Ni e ipi X : ‘ - Nf elpfx

eNiN, p +p &l P)

i fi

J

Verify that the conservation law @] = 0 holds. From this equation it can be derived
that the charge is conserved in the interaction.

5.2 Scattering in an External Field

Consider the case that the external eld is a static eld of a poihcharge Z located in
the origin:

Ze

A = VA =V, ith V(X)= ——

; ;0 wit (x) 2 %
The transition amplitude is:
z
z

i (NN, p+p A & P)xgiy
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Insertthat A = V;0 andthus:p A = EV:

z
Ti =i eNiN; (Ei+ Ef) V(x) &P P)x gty

Split the integral in a part over tigle and in a part over space ath note that V(%) is not
time dependent. Use also again: €(§* E)tdt=2 (E; E;)to nd that:
z
z

28 il m)x gy

Ts = ieNiNf (E| + Ef) 2 (Ef E|) ) J'Xj

Now we make use of the Fourier transform:

Using thiswith 4 (& f) we obtain:

: Ze
Ty = ieNiN¢ (Ei+Ef)2 (B E) ———
B Al
The next step is to calculate the transition probability:
. .2
o JTsi ]
Wi = lllrln T '
2(E. + 12
= im 2NN, g ey BT
T in A
We apply again our \trick" (or calculate the integral explic ity and let T!1 ):
im[2 (B ENP? = 2 (Ef Ej) lim fre drel(Er Et
TI1 f ! f RS 1) T=2
Z -
— N ot
= 2 (Ef Ej) TI!|£n T e dt
| —fz—1}
T

= i 2 E E)) T
TI!T ( f |)

Putting this back into Wy we obtain:

|
Ze?(E; + E;) °

TNiNij? 2 (Ef E) = -
s B

W = lim

T

—| =

The cross section is given By

Wy .
d = Flux dLips

INote that E = my and p= mg ¥ so that v= p=E.
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with :
Fl = = = =
=YY TEV TV
. VvV dEp
dLips = —
P (2 )3 2E; i
Normalization: N = p% ! dv =1
\Y

In addition, from energy and momentum conservation we writde = E; = E; and
P=jRi=]n
Putting everything together:
|
1 Ze(E+E) ° V. oV B
d = 72 (Ef Ei) : ( : _Zf) T 3 B

v in A 2jpj (2 ) 2
Note that the arbitrary volume V drops from the expression!
Use nowd®pr = p?dpr d  and jprj = jpij = p to get:

!
1 ze?(Ei + E¢) ° pfdp d

d = —— (E E: —
ey & B iy e 2ipj 2E
0 1,

_ 1 | BZe*(Ei+ Ef)g pdpd
Ter Y éﬁpﬂ{zﬁ;g i

4p? sin? =2

N

now, sinceE? = m? + ¢, usep dp= E dE such that:

pcr;d E E)= dE (Ef4 Ei) d _ d4
We arrive at the expression for the di erential cross section:
g 7eE?
4p2sin? =2
or:
d ZZEZe4 ZZEZ 2
d 16 2phsint =2 - ptsint =2
In the classical (i.e. non-relativistic) limit we can takeE ! m and Eyj, = % such
that:
d ZZmZ 2 ZZ 2
d ~ 4mPEZ_ sin® =2 4EZ_ sin’ =

the well known Rutherford scattering formula.
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5.3 Spinless K Scattering

Let us proceed to the case of QED scattering of a particle on aK particle. We
ignore the fact that pions and kaons also are subject to the strgnnteraction (e.g. we
could consider scattering at large distances).

B: K D: K
A We know from the previous calculation how a
particle scatters in an external eld. In this case
the eld is not external as the particles scatter
A C: in each others eld. How do we deal with it?
Ansatz:

Consider rst only the pion. It scatters in the eld of the kaon. How do we nd the eld
generated by the kaon? This eld is again caused by the transin current j 5, of the
scattering kaon. The eld is then found by solving Maxwell's egations for this current
(adopting the Lorentz gauge condition):

@@A =jgp = eNsNp (ps + pp) g(Po Po)x

(see the previous section.)
Since@@e '* = ¢? e ' we can verify that
A —EN Ny (pg + )ei(po PB)X — i .
T @ B P * Pp = qZJBD :
where we have used thatj=(pp ps)= (Pc pa) is the 4-vector momentum that is
transmitted from the pion particle to the kaon particle via the A eld, i.e. the photon.
In this case the transition amplitude becomes:
z z 1 z g
Ti= 1 jacA d'x= i juc $J‘BD d'x = i jac TJ—BD d’x

1. The expression is symmetric in the two currents. It does not mi@r whether we
scatter the pion in the eld of the kaon or the kaon in the eld ofthe pion.

2. There is only scattering ifg? 6 0. This is interesting as for a \normal" photon
one hase? = m? = 0. It implies that we deal with virtual photons; i.e. photons
that are \o mass-shell".

Writing out the expression we nd:

4
Ti = ie? (NaNg) (pa + pc) €Pc P q21 (NsNp) (pg + pp) € Peld'x
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Next, do the integrals overx in order to obtain the energy-momentum conservation
-functions:

. 1
Tri = i€ (NaNg) (Pa + Pc) ?(NBND) PP+p® @) *(pa+ps Pc Po)

Usually this is written in terms of the matrix elementM as:

Ti = iNANgNcNp 2) “(pa+ps Pc po) M
. . . ig .
with : iM = je + — je +
e (Pat Pe), ¢ e (Ps & Po),
vertex factor | - —} vertex factor

propagator

The matrix elementM contains:

a vertex factor:  for each vertex we introduce the
factor: iep , where:
e is the intrinsic coupling strength of the par-
ticle to the e.m. eld.
p is the sum of the 4-momenta before and af-
ter the scattering (remember the particle/anti-
particle convention).

a propagator: for each internal line (photon) we
introduce a factor —2—, where:
g is the 4-momentum of the exchanged photon
quantum.

Using Fermi's golden rule we can proceed to calculate the ralastic transition
probability:

2

2
_ 1 . DD 4 4
™1 TV TI\I/rIT:][ TV INANgNcNp ™ jMj = (2 )" “(Pa+ P8 Pc Pp)

Again we use the \trick" :

1 Z+122 Zav= 5 inx
= lim dt d>x e
(p) VL (2)* 1= V=2

such that

1400 1
TV (P = TV (p

lim
T:VI1 TV

We get for the transition amplitude:

Wi = jNaNgNcNpj® jMj 2 (2 )* “(pa+ P pc  Po)
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For the scattering processA + B! C + D the cross section is obtained from:

_ Wfi .
d = F(!ux dLips

Flux = 4 (pa ps)®> mZmZ=V?
V d3pc V d3pD
(2 ) 2Ec (2 )* %o

dLips =

The volumeV cancels again and we obtain:

_ @), teatps P Po) o P o

d
4 (pa ps)> mZm3 (2 )?2Ec (2 )*2Ep

which leads to the di erential cross section for 2 2 electromagnetic scattering is (see
exercise 18):

pa = (p;p;0;0) oN %/pc
P = (p; p;0;0) > [

pc = (p;pcos;psin; 0) ~

P = (p; pcos; psin; 0) pD// D
qd = (po ps) =(0;p(1 cos); psin;O0)

We calculate the matrix element and the di erential cross se@n using:

(2p;p(1 +cos );psin ; 0)
(2p; p(L+cos ); psin;0)

(Pa + Ppc)
(ps + pp)

to get:

p? (6 + 2 cos )
2p*(1 cos)

(Pa+pc) 9 (Ps+ Po)

of

We then nd for the matrix element:

iM

. ig .
ie (pa + pc) q% ie(ps + Po)

ezp2(6+2cos)_ 3+cos
2°(1 cos) 1 cos

M
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and then: |
C o 2 3+cos
Mj = e 1 cos
Finally we obtain from:
- = Z 5 iM
d 64 2sp M

the cross section ( = €=4 ):

11 2 2 3+cos ° 2 34+cos °
S

d
d 642 1 cos 4 1 cos

This is the QED cross section for spinless scattering.

5.4 Particles and Anti-Particles

We have seen that the negative energy state of a particle can b#erpreted as the
positive energy state of its anti-particle. How does this e ecénergy conservation that
we encounter in the -functions? We have seen that the Matrix element has the form
of: z

M/ f(X)V(X) i(x)dx

Let us examine four cases:

Scattering of an electron and a photon:

' Z
pl M / e ips X e ikx e ipi X dX
Z
>_>; pf = e i(pi+k pf)X dX
k = @2 ) (E+! E) ®p+k p

) Energy and momentum conservation are
guaranteed by the -function.

Scattering of a positron and a photon:

Replace the anti-particles always by particles by
Pi reversing €; p! E; 1 such that now:

incoming state = pf, outgoing state = p;:
P z
M / e 0 p)x g ik o i( pr)x gy

Z
= e I(pl Pt +k)X dX

2 ) (E+! E) ®p+k p
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Electron positron pair production:
_p+
Z
k M / e ip x e i( p+ +k)x dx
z
p = g 'k P P Xy

=@2) «k p p)
Electron positron annihilation:

VA
Z

-p+ — e i(p +p+ k)x

= 2) (p+p Kk

p

Exercise 20
Decay rate of !

(a) Write down the expression for the total decay rate for the decay:A! C+ D

(b) Assume that particle A is a © particle with a mass of 140 MeV and that particles
C and D are photons. Draw the Feynman diagram for this decay
(i) assuming the pion is auu state.
(i) assuming the pion is add state.
(c) For the Matrix element we have: M f €, where for the decay constant we
insertf =m .
(i) Where does the factore? come from?
(i) What do you think is the meaning of the factorf ? Describe it qualitatively.

(d) The Cis actually auu+ dd wave with 3 colour degrees of freedom.

(i) Give the expression for the decay rate.
(i) Calculate the decay rate expressed in GeV.

(i) Convert the rate into seconds using the conversion tablefahe introduction
lecture.

(iv) How does the value compare to the Particle Data Group (PDvalue?
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Lecture 6

The Dirac Equation

Introduction

It is sometimes said that Schmdinger had rst discovered the Kdin-Gordon equation
before the equation carrying his own name, but that he had regted it because it was
quadratic in -2, In Lecture 2 we have seen how indeed the Klein-Gordon equatiteads

@t
to the Bﬁterpretation of negative probabilities: = 2jNj?E, where the energy can be:
E= £+ m2.

To avoid this problem Dirac in 1928 tried to make a relativistt correct equation that
was linear in @@f He wanted to combine the merits of a linear combination (no wative
probabilites) with the relativistic correctness of the K.G. eqgation. Since he wanted the
equation to be linear in @@1, Lorentz covariance requires it to be also linear if .

What Dirac found, to his own great surprise, was an equation thaescribes particles
with spin % i.e. the fundamental fermions. At the same time he predicteche existence
of anti-matter. This was not taken serious untill 1932, when Aderson found the anti-
electron: the positron.

6.1 Dirac Equation

Write the Hamiltonian in a general form':

H =(~ p+ m) (6.1)
with coe cients ;; ,; 3; . These must be chosen such that after squaring one nds:
HZ = g+ m?
Let us try eq 6.1 and see what happens:
H?2 = (P m )? with: i=1;23 )
= %ﬁl{zi pi2+ﬁ BN pipj+ﬁi_+z_i;pim+|{2§ m2i
=1 =0 > =0 =1

'Here ~ P= xPxt yPyt+ zP:

65
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So we have the following requirements:

2 2_- 2- 2_
1= 2~ 37 =1

1, 2; 3, anti-commute with each other.

Note that Dirac discovered this just a few years after the begnning of the formulation of
guantum mechanics and commuting operators. He was highly ierested in the mathematical
behaviour of the operators.

Immediatly we conclude that~ cannot be ordinary numbers, but that they must
be matrices. They now operate on a wave function which has bewe a column vector
(called aspinor). This was not believed when Dirac rst published his theory.

The lowest dimensional matrices that have the desired behavioare 4 4 matrices
(see the book of Aitchison (1972) chapter 8; section 1). The cheiof the (= ) is
howevernot unique. Here we choose the Dirac-Pauli representations:

|

_ 0 ~ ) 1 0
~ 0 ' -0 |
where~ are the Pauli maFrices: | |
_ 01 0 i 1 0
1= 10 27 0 3T 0 1

Note that the physics is independent of the representation. Itrdy depends on the
anti-commuting behaviour of the operators. Another represeation is the Weyl repre-
sentation: ! !

~ 0 _ _ 01

0 ~ ’ ~ 10

Exercise 21

(a) Write a general Hermitian 2 2 matrix in the form S 2 where a and ¢

are real. Write then b = s+ it and show that the matrix can be written as:
flat =gl +s,; t,+f(a =29 3
How can we conclude that- and cannot be2 2 matrices?

(b) Show that the ~ and matrices in both the Dirac-Pauli as well as in the Weyl
representation have the required anti-commutation behavio.

One can show using the fact that the energy must be real (see Aitchigahat the
i and matrices are Hermitian:

Y= : Y =
|
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6.2 Covariant form of the Dirac Equation

We had
H =(~ p+ m)
Now we replaceH ! i&, p! if to nd:
. @ o
— = ~ F+ m
I@t [
Multiply this equation from the left side by (note that 2 = 1):
[ @@)Dt = i~ rm +m
G .
=, + i~ r m =0
@t !
. @ : @ . @ . @
=, + i — + 1 — + 1 — m =0
@t ‘@x  ‘@y ez
in which we see a nice symmetric structure arising. We write the egtion in a covariant
notation:
i @ m) =0
with : =(;~) Dirac  matrices
In fact the Dirac eq. are really 4 coupled di erential equabns:
2 3
for each XX _
j=1!213s4 k=1 * =0 | ( )Jk @ m Jk5 ( k) B O
20 1
oo 0 1 00 O1 0 1 to0 0 !
o a8.B oo 0100§ EZE_EOE
or :glg....£@ %o o1o0x ™ sKT @0
: Do 0 001 4 0

or even more speci C.

I I ! I I #

1 @t 1 0 @x 2 0 @y s 0 @z

1 001
! ! ! ! ! 1
1 0 i@ o . i@ 0o , i@ 0 5 I@ 1 0 %} 2§_%0§
0 u a@x - @z o1 M JK - @0
4 0

Take note of the use of the Dirac (or spinor) indicesj;k = 1;2;3;4) simultaneously
with the Lorentz indices ( =0;1,;2;3).
On the other hand, there is an alternative and very short notabn: an electron is
described by:
(i@ m =0 ) (@ m =0
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while the equation:
i@ =0

contains everything you want to know about a neutrino (assumopm = 0).

6.3 The Dirac Algebra

From the de nitions of ~ and we can derive the following relation:

+ f ; 0=29
Thus:
0%_q 12 22_ 2%2_ g
Also we have the Hermitean conjugates:
oy _ o . y —
iy _ iYWy i = i
- n 0 - -
Then the relation %; ° =0 implies:
k 0 — 0 k_— 0KY
2
thus: © kKO0 = 02 k¥_ K
In general:
y— 0 0

In words this means that we can undo a hermitean conjugate ¥ °© by moving a °
\through it ¥ 0= 0
Furthermore we can de ne:

with the characteristics:

6.4 Current Density

Similarly to the case of the Schredinger and the Klein-Gordo equations we can derive
a continuity equation to determine the current densityj : Write the Dirac equation as:

0@+ikg

at @k m =0 k=1:2;3
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We work now with matrices, so instead of complex conjugates we udermitean conju-
gates:

@, @
@t @X%

But now we have a problem! The additional sign in k' disturbs the Lorentz
invariant form of the equation. This means we cannot use thisgeation.

We can restore Lorentz covariance by multiplying the equatio from the right by

i i m Y=0

0

Or, in other words, we can de ne theadjoint spinoras: = Y ©.
0 1
1
Dirac spinor : % 2 § Adjoint Dirac spinor: ;5 5 3 a4
3

4

The adjoint Dirac equation the becomes:
| — m =0 k=1:2;3

Now we multiply the Dirac equation from the left by and we mulitply the adjoint
Dirac equation from the right by

i@ +m =
- (i@ m) =
+
(@ )+ @ =0

We recognize again the continuity equation:

@ =0 with: j =
6.4.1 Dirac Interpretation
Consider ¥

o
|
o
|

<
o
o
|

<

I

j >0
i=1
Therefore the probability density is always greater then 0! his is the historical moti-
vation of Dirac's work.

However, we had seen in the Pauli-Weiskopf interpretation thgt = ;] was the
charge current density In that case:

j = e

is the electric 4-vector current density (just as we used it befe). In the Feynman-
Stackelberg interpretation the particle solution with negtive energyis the antiparticle
solution with positive energy.
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Note:

In the case of Klein-Gordon waves, the current of an antipartie (§ = 2jNjp ) gets

a minus sign w.r.t. the current of the particle, due to reversabf 4-momentum. In

order to keep this convention an additional, ad-hoc, sign is required for the current
of a spin-1/2 antiparticle (e.g. positron). This additional sign between particles and
antiparticles is only required for fermionic currents and at for bosonic currents. It

is related to the spin-statistics connection: bosonic wavefutens are symmetric, and
fermionic wavefunctions are anti-symmetric. In eld theory the extra minus sign is
related to the resulting fact that bosonic eld operators folbw commutation relations,

while fermionic eld operators follow anti-commutation relations. This was realized
rst by W.Pauli in 1940. In conclusion: fermionic anti-particle currents get an ad-hoc
additional  sign to maintain the Feynman-Stackelberg interpretation!

If we use the ansatz: = u(p)e ™ for the spinor then we get for the interaction
current density 4-vector:

eu%/ 0 uiei(pf pi )X

= eus uje igx

jfi
10 1

i = e( U )% S%Uig e ¥

Exercise 22: Traces and products of matrices
For the matrices we have:

+ =2 g
Use this relation to show that:
@ ab+rbdba=2(ab

(b) ) =4
i)y @& = 2a
i) @&a® =4(ab
iv) @66 = 2666
() i) Tri=4

i) Tr (odd number of 's) =0
i) Tr(éa ®)=4(a b
iv) r(a®6 @)=4[(a b(c d (a c(b d+(a d(b 0]

(d i) Tr 5=Tri 9123=0

i)y Tr @ ®6=0
iy Optional excercise for "die-hards™:Tr @ 66 6 = 4i" abcd
where" =+1( 1) for an even (odd) permutation of 0,1,2,3; and 0O if two

indices are the same.

2See Aitchison & Hey, 3rd edition x7.2



Lecture 7/

Solutions of the Dirac Equation

7.1 Solutions for plane waves with  p=0

We look for free particle solutions of:

i @ m =0
A quick way to get wave solutions withp= 0 is to realize that this implies i =0,
or that the wavefunction has no explicit space dependence. In that case the Dirac
equation § @ m) = 0 reduces toi © %t = m , or written in the Dirac-Pauli
representation:
| | | | |
1 0 @ . A A e ™ A(0)
t = = = .
o 1 ¢ mey ) . e 5(0)

where the solution is given immediately. Note that 5 represents a two-component
spinor with positive energy and g a two-component spinor with negative energy. In
the following, however, we will follow the standard textbooknethod to derive the Dirac

solutions.

Exercise 23
Each of the four components of the Dirac equation satis es thel&in Gordon equation:
(@@ + m?) ; =0.

Show this explicitly by operating on the Dirac equation fronthe left with:  @.
Hint: Use the anticommutation relation of the -matrices.

Ansatz:
This suggests to try the plane wave solutions:

(x) = u(p) e ™

Since (x) is a 4-component spinor, alsa(p) is a 4-component spinor. After substitution
in the Dirac equation we nd what is called the Dirac equationin the momentum

71
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representation:

0
0

( p m)u(p)
or: (@ m) u(p)

Remember that the Dirac equation is a linear set of equationsige here the Pauli-Dirac
representation):

! ! ! # !
f]]. 0 0 i i 1]- 0 Ua —
o 1 F o0 P on ™ y 7O
In fact we can recognize two coupled equations:
(
(=~ Pu = (E mua
(~ Pun = (E+m)us
whereu, and ug are now each two component spinors.
Let us rst look at solutions for a particle at rest: p=0:
( (
(~ Pu = (E m)ua ) Eua = mua
(~ PDun = (E+mug Eug = mug

For these equations there are 4 independent solutions, the aigectors:
0 1 1 0 0 1 0 0 1 0
o§ %1% %o§ %
1 = . @ = . 3 = . @ =
u % 0 ;u 0 ;ou 1 ;ou
0 0 0

with eigenvalues:E = m; m; m; m, respectively.

u®, u®@ are the positive energy solutions oé .

u®, u® are the negative energy solutions a&f and thus the positive energy solutions
of e*.

%

 OOOoO

We de ne the antiparticle solutions as follows:

v® (p) u®( p)
v@(p) u®( p)

The sign inu® is chosen such that the charge conjugation transformation (sestér)
impliesu® 1 v andu@ 1 v,
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7.2 Solutions for moving particles p60

Again look at: Choosenow for the two E > 0 solutions:
( ! !
(~ Dus = (E mua G- 1 @z 0
(~ Pus = (E+m)ug A 0 ToA 1

Then it follows:

W ~ P ~P8 1
B E+m”* E+m O |
U@ = ~ P U@ = ~ P 0
B E+m”* E+m 1
So, the two independent solutions are:
1 2
® = Up’ .y = Uy
u ) U )
Ug Ug
Analogously: chooséor the two E < 0 solutions:
! !
3) _ N
s g 5 U=
then it follows:
|
@ = ~ P e ~ P 1
A E m?©® jEj+m O
g9 = = P U@ = -~ P 0
A E m?©® jEj+m 1
So, the two independent solutions are now:
| |
3 4
@_. Uy @ — Uy
== ® U @
Ug Ug
To gain insight, let us write them out in more detail.
Use the explicit representation:
! ! !
_._ 01 , 0 i , L0
P= 10 T j o T o 1 P
we nd: I I I
@ _ Pz Px ipy 1 _ Pz
~ u = ) = .
(= 9 Ua Px + ipy Pz 0 Px + ipy

and similar for uﬁ\z), u(Bg), ugl).
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Then we nd the solutions:

0 1 0 1
1 0
) 0 1
electron spinors : u® = N% o, E - @ = N % o iny E
E+m E+m
Px+1py pz
E+m E+m
0 Px_ipy 1 0 Pz
JEj+m JEj+m
: . P _{px+ipy)
positron spinors: v = N 1516m - y@ = N JEJ+1m
1 0

and we can verify that theu® - u® solutions are indeed orthogonal.

Exercise 24

Show explicitly that the Dirac equations describes relatigtic particles. To do this
substitute the expression:

- ﬁuA into Up = - P

UB:E+m E m

Hint: Work out the product (~ #)? in components.

7.3 Particles and Anti-particles
The spinorsu(p) of matter waves are solutions of the Dirac equation:
(® m)u(p)=0 ) solutions withp® = E> 0

For the antiparticles (the solutionsv(p)) we have substitutedv(p) = u( p). Remember
that we interpret an antiparticle as a particle travelling back in time. Let us make the
same substitution in the Dirac equation (for negative® !):

(6p m)u( p=0 ) replacedp! p

Then we nd for solutions with the newp® (= E> 0) the Dirac equation for anti-particles:

(@ +m)v(p)=0
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7.3.1 The Charge Conjugation Operation

The Dirac equation for a particle in an electromagnentic el is obtained by substituting
@'! @+ igA inthe free Dirac equation. For an electrond= e) this leads to:

[ ((@+eA) m] =0
Similarly, there must be a Dirac equation describing the positn (q = + €):
[ (@ eA) m] ¢=0 ;

where the positron wave function ¢ is obtained by a one-to-one correspondence with
the electron wave function . Let us assume that the positron wave function can be
obtained using a charge conjugation matrixC, which operates as follows:

C:C7T:CO

We note that is the \row-wise" solution of the adjoint Dirac equation (while Y is not!

- see previous lecture) and ' is the associated column vector (like).
Let us take the complex conjugate of the electron equation:

[ (i@ eA) m] =0
Assume that there is a matrix C °), such that:
Cc% = (€9
then we can use the complex conjugated electron equation to shthat:

(COI (i@ eA) mj =0
[ (@ eA) mlC° =0

and that we indeed obtain the positron equation if c = C °
A possible choice of the matrix C °) can be shown to be:

0 11

Co:izzg L §

1

7.4 Normalisation of the Wave Function

We choose again (similar to the Klein-Gordon case) a normalisati of the wave function
such that there are E particles in a unit volume:
z z z z

dv =  %4dv = y 0 0gy = Y dv
V
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Substitute now the plane wave solution: = u(p) e P¥:
z z z
dv = uw(p) €™ u(p)e P dv = W (pu(p) dv
\%

Choose the unit volume and normalise toE:
z

dv=1 ; w(p)u(p) = 2E
\%
where foru we must substitute: u*(p); u?(p); vi(p); v3(p). Using orthogonality of the
solutions we get the relations:

u’u® = 2 rs=1;2
vy = 2 o rs=1:2
Explicit calculation gives: 0
0
u(1)yu(1) = N2 1:0; o §

E +m’ E + m E+m

px+lpy

0 E+m

) (E+m) %(E+m) +PR;?§42-p§§:2E
----- y N oE(E+m)=2E
..... (E+p m?

) N= E+m

Analogously foru®, vib, v,

7.5 The Completeness Relation

Let's look again at the Hermitian conjugate Dirac equation fothe adjoint spinorsu, V:

Dirac : ® mu
Look at : [(( p mM)u

0
0y’ ) W Y% m =0

Multiply this from the right side by ©:

‘m=0

Usenow: Y= 9 Oto nd:

00 =0

P{z} 423 P P{z}

then : uap um =20
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The conjugate Dirac equation is therefore:

ua@® m)=0

Also in exactly the same way:
(+m)v=0 ) v(e+m)=0
We can now (see exercise 25) derive tltempleteness relations

Note: uu is not an inproduct but we have
here 4x4 matrix relations:

u@(p)u(p) = (6 +m) 1 0 1

0:1 0
U fh Beb s o

vVOE V() = (6 m)

s=1;2

These rslations will be used Ia{_.,er on in the calculation of thedynman diagrams.
(Note : o534 UO(PUO(P) = oy, VO PVI( P= (p+m))

Exercise 25: (See also H&M p.110-111 and Gri ths p. 242)
The spinorsu, v, u and v are solutions of respectively:

(® mu =0
(+m)v =0
u(@ m) = 0
vip+m) = 0
(a) Use the orthogonality relations:
u(r)y U(S) - 2E rs
V(r)yV(S) = 2E rs
to show that:
u®u® = 2m
V(S) V(S) - 2m

(b) Show that: (~ p? = jg2
(c) Derive the completeness relations:

u®(p) u®(p)

s=1;2

v (p) v (p)

s=1;2

@+ m

® m
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7.6 Helicity

The Dirac spinors for a given momentunp have a two-fold degeneracy. This implies
that there must be an additional observable that commutes withd and p and the eigen-
values of which distinguish between the degenerate states.

Could the extra quantum number be spin? So, egu® = spin \up", and u® =spin \down"?
No! Because spin does not commute witH (see exercise 26).

Exercise 26: (Exercise 7.8 Griths, see also Exercise 5.4 of H & M)

The purpose of this problem is to demonstrate that particles deribed by the Dirac
equation carry \intrinsic" angular momentum (S) in addition to their orbital angular

momentum (C). We will see thatC and S are not conserved individually but that their
sumis.

(&) Compare the Dirac equation

with Schredinger's equation
H =E;

and derive an expression for the Hamiltoniaid from this (see previous lecture).

(b) The orbital angular momentum isC = + f Show that [p;;x;] = i j and use
this to show that C does not commute withH :
h i
H:C = i °% p:

(c) Show that S, given by: |

also does not commute with H:

h i
H;S =i °(~ 9 :

We see from (b) and (c) that the sum of the commutators is equal t6, and
thereforeJ’ = C + S is conserved.

The fact that spin is not a good quantum number can also be realg@pon inspec-
tion of the solutions u:

0 1
1
u® = % g E So solutions can havep, 60 & p, 60 & p, 60.
E+m
Px+1py

E+m
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The spin operator is de ned as:

If it commutes, the states should be eigenstates of the spin opevatand we expect:
u®=su® ?

This is not possible as can be seen by requiring the equation:
0 ! 1 0 ! 1

, 1 1
-~ OE 0 ,g % 0 ,E
0 ~ p,=(E + m) ' S p,=(E + m) .

(px + ipy) =(E + m) (px + ipy) =(E + m)

.o

to be true for any px, py, p;.
However, it can be made to work if we de ne thénelicity as:
[
- 1. D 1 ~-p 0
S 2 2 0 ~2p

We could interpret the helicity as the \spin component in the drection of movement".
(Or: we choosep, = p, = 0 and consider only , in the equation above). In this case
the orbital angular momentum is zero by de nition and andJ = S is conserved.

One can verify that indeed commutes with the HamiltonianH = ~ p+ m:

h i
H; = p=:1=0

Choosep= ((0;0; p). For the spin component in the direction of movement we have
the eigenvalues:

(= 1) s

2 ) us

3Ua = U

3Uug = SUs

NIFRNI -
NI DN

Positive helicity = spin and momentum parallel
Negative helicity = spin and momentum anti-parallel
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Exercise 27: (Exercise 5.5 of H & M)

(a) Use the equations
(~ Bua=(E+m)ug (7.1)

to show that, for a non-relativistic electron with velocity , ug is een factor%
smaller then us. In a non-relativistic description 5 and g are often called
respectively the \large" and \small" components of the electon wavefunction.

(b) Show that the Dirac equation for an electron with charge ein the non-relativistic
limit in an electromagnetic eld A = (A% A) reduces to the Schredinger-Pauli
equation

1 2, € 0 :
% 'p+ eA + %“‘ B eA A ENR A (72)

where the magnetic eldB = r
Assume thatjeA% << m .

Do this by substituting p + eA for p in eq 7.1 and solve the equations for,.
Use:

A, and the non-relativistic energyEng = E- m.

p A+A p= ir A;
wherep= i .
The term with eA® in 7.2 is a constant potential energy that is of no further

importance. The term with B arises due to the fact thatpand A don't commute.
In this term we recognise the magnetic eld:

~ B= g%s B:

Here g is the gyromagnetic ratiq i.e. the ratio between the magnetic moment
of a particle and its spin. Classicaly we havg = 1, but according to the Direc

equation (S = %~) one nds g=2. The current value of(g 2)=2is according to

the Particle Data Book

(g 2)=2=0:001159652193 0:000000000010

This number, and its precision, make QED the most accurate thepin physics.
The deviation from g = 2 is caused by high order corrections in perturbation
theory.



Lecture 8

Spin 1/2 Electrodynamics

8.1 Feynman Rules for Fermion Scattering

With the spinor solutions of the Dirac equation we nally have he tools to calculate
cross section for fermions (spin-1/2 particles). Analogously tdé case of spin O particles
(K.G.-waves) we determine the solutions of the Dirac equati@nin the presence of a
perturbation potential. So we work with the free spin-1/2 soltions = u(p) e ™ that
satisfy the free Dirac equation: ( p m) =0.

In order to introduce an electromagnetic perturbation we mie again the substitution
for a particle with q= e p ! p + eA . The Dirac equation for an electron then

becomes:
(p m +e A =0 (8.1)

Again, we would like to have a kind of Schredinger equationgi an equation of the type:
(Ho+V) =E

In order to get to this form, we multiply eq 8.1 from the left by ©:

! °p ‘m +e°® A =0
I E %K m = e? A
I E = 9K+ Om e A
| {z } | —{z—}

Ho=~’p+ m v

For such a theory we can write, in analogy to spinless scattering:
z
T = i {(X)V(X) i(x)d*x

Note, that the di erence with the case of the KG solutions in spirgss scattering is that

we had: z
Ti= 0 (V) i(x)d

where we now have Hermite conjugates instead of complex corgtes.
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We substitute for the potential: V(x)= e ° A to obtain the expression:
z
Ti = 0 {0 e% AX (x)d*
z
= 0 09 (A (X d

For the current density we had in a previous lecture the expressi:

j = e
So we nd, in complete analogy to the spinless particle case:
z
Ty = i jﬁ A d4X
with | = e i

= eUf U ei(pf Pi)X

andj' can be interpreted as the electromagnetic transition curréfetween statei and
state f .

a) 10 1
o T E=

i"=( w)®  Kouk= |’

Remember that:

Similar to the spinless case we will use thA solutions of the Maxwell equations
to determine the Feynman rules for scattering of particle wit spin. Consider again the
case in which patrticle 1 scatters in the eld of particle 2: ie. wconsider the interaction:
A+B! C+D:

Us i o Up We had from Maxwell:
- to which the solution was:

Un J Ue L

A = —j
qz 2
The transition amplitude is then again:
Z 1 Z g
Tfi = i J ) F J @ d4X = i j(l) q2 j(z) d4X

which is symmetric in terms of particle (1) and (2). We insert tle explicit expression
for the current: _
in = e u g(p pi)x
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to obtain:

4

T = | ele Uy e P 32 eUp g &P Pe)X iy

So that we arrive at the \Feynman Rules":

Ti = i) *“(oo+pc pe pa) M

. : [ .

M = le (UC{Z UAg gz le (U%Z UB¥

vertex | —& —} vertex
propagator
without spin: with spin:

. Ui u
e(pr +pi 1 ie f

Figure 8.1: Vertex factors forleft: spinless particlesyight: spin 1/2 particles.

Exercise 28:

A spinless electron can interact withA only via its charge; the coupling is proportional
to (pr + p)) . An electron with spin, on the other hand, can also interact withthe
magnetic eld via its magnetic moment. This coupling involes the factori  (pr  pi).
The relation between the Dirac current and the Klein-Gordorcurrent can be studied as
follows:

(a) De ne the antisymmetric tensor as:
[
= 5 )
Show that the Gordon decomposition of the Dirac current can bmade:

1 h _ i
U u = %Uf (pe+p) +i (Pt P) U
Hint: Start with the term proportional to and use: + =2g and
use the Dirac equations: p; Uy = mu; and Uy pr = mU;.

(b) (optional) Make exercise 6.2 on page 119 of H& M which showsahthe Gordon
decomposition in the non-relativistic limit leads to an elecic and a magnetic
interaction. (Compare also to exercise 27.)
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8.2 Electron - Muon Scattering

We proceed to use the Feynman rules to calculate the cross sectiof the process:
e I e . We want to calculate theunpolarized cross section:

The incoming particles are not polarized. This implies thatve averageover spins
in the initial state.

The polarization of the nal state particles is not measured. his implies that we
sum over the spins in the nal state.

The spin summation and averaging means that we replace the mitelement by:

iMi 2 L iMi 2 _ iMi 2
M= sy v ness 1)

where %, + 1 is the number of spin states of particle A and & + 1 for particle B. So
the product (2sp +1) (2sg + 1) is the number of spin states in the initial state.

T Ug : Up

€ : Ua e : Uc
We have to take the square of the diagram and sum over all spin stateFor a given
spin state:

iM = €Uz Uy —Up Ug
" qzl #" 1 #
iMj 2 = & (uc Un) & (Go U) (Uc Un) 5 (Uo Us)
- gl_l Lmuon
q4 electron
Intermezzo:
If
M =ADB
then
iMj? = [AB][AB]

jAszjBsz AOAlBOBl AOAZBOBZ AOAgBOB3
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A1A BB, + jA1j%B1j? + A1A,B1B, + A1A;B1B,
ALAB,B, + AA B,B, + jA,j%B2j? + AA;B,B,
A3AB3B, + AzA B3B; + AsA,B3B, + jA3j?B3j?

A A
B B

with :

Next we proceed to take into account the spin. We have:

. 1 1 X 1¢t

M = M 2 = I |_ Lmuon
o (2sp +1) (2s5 +1) Spinj J 4Xq4 electron
with L electron = [Uc  ua] [Uc ual
eXspin
LmuOn = [UD UB] [UD UB]
spin

L is called the lepton tensor.
We have now split the sum over all spinstates in a sum over electroniisp and a
sum over muon spins. So, for each vertex there is a tendor which has the form:

2 0 10 13 2 0 10 13
L =8 u)B® XBukid(u) B XBuks
| z } z }

a number a number

These numbers are calledhilinear covariants Their general formis (4 4) and they
have speci c properties under Lorentz transformations (see Hadn & Martin section 5.6
or Gri ths section 7.3 for characteristics). They will also appear in the weak interaction
later on, but there they will have a di erent form then the pure vector form:

Note: To do the spin summation is rather tedious. The rest of the lecturés just
calculations in order to do this!

Since we work with_numberscomplex conjugation is the same as hermitean conju-
gation:

[Uc ua]l = [hUc UA]y, )
| |
i y
while [Uc ua) = hu}’: O up = ul Y Ouc
|
= Ux % YO = [Ua uc]

) Complex conjugation just reverses the order in the product!
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Using this aspect we then write for the lepton tensor:

X
Le = (Uc ua) (Ua Uc)
e spin

Next we write out the tensor explicitly in all components and wesum over all incoming
spin statess and over all outgoing spinss®

X X
- U(Cs% u® gl ug")

s0 s

e

where , , , are the individual matrix element indices that take care of hie matrix
multiplication.

At this point we apply Casimir's Tric:

Get the factor uéso’ all the way up in front such that it falls outside the summation oer
s. Why can we do this?

Because we have written out all terms of the matrix multiplicion in indices; i.e. in
numbers The behaviour of the matrix multiplication is still valid because of the sum
rules of the indices!

So, now we have:

X X
L, = uu® ul® ol
0
1= {z— 1} 1S _{z—)
(6 +m) (@ +m)

and we can use the completeness relations (see previous legfure

U(S) U(S) :@ +m
S

(Remember that these are 4 4 relations which are valid for each component.)
So we use the completeness relations in order to do the sums over spins!
The result is:

Le =(Bc + m) (a + m)
Here is the next trick: look at the indices , , , ; they are components of 44
matrices. Perform the sum over the indices, , and say that the result is: A. Then

we ndthat L, / A and we have to do the remaining sum over, which means that
we take the traceof the matrix. In other words, the fact that we sum over all indies
means:

Le =Tr[(@c +m)  (Ba +m) ]

Yor anti-fermions this gives an overall \ " sign in the tensor: L, ! L. for each particle !
anti-particle.
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Where are we at this point? We look at the reactiore I e and we have:
1 X
iMi 2 - iMi 2
N (25n +1) (255 +1) gy
= ! f L, L™
(2sa+1)(2sg +1) ¢
with : Le =Tr[(fc +m) (Pa +m) ]
L™ =Tr[(@ +m) (P + m) ]

In order to evaluate these expressions we make use of trace ik

Intermezzo: Trace theorems

In general:

{ Tr(A+B)=Tr( A)+Tr( B)
{ Tr(ABC)=Tr( CAB) =Tr( BCA)

For

Tr (odd number of

Tr( )=4g9g .)
Tr(a®)=4a b

Lot W et W e W e |

-matrices: from the de nition: +

Tr(a®6@)=4[(a bh(c d)

=2g it follows:

's=0). ) only O on the diagonal.
note that this is a matrix of traces!

(@ g(b d)+(a d)(b o]

We are calculating:
Le Tr[( @c + m)

(s +m) ]

[i®e O Jrprim,m J*]rife, m Jqrim P |

case 2

Case 1:Tr[m m ]= m?Tr[

Case 2:Tr[@c 1=

®a

Use the rule for Tr(@ ® @ @) with a= pc and c= pa, but what are b and d?
) b must be chosen such that
) d must be chosen such that

Therefore (note that and are Lorentz-indices while the trace theorem works
in Dirac space!):
T[fc 6 ] :
=4 pcg pag (PcPa) 9 9 9 +(Pcg ) Pag
= 4[pcPa*t PcPa  (Pc Pa)9 |

case 1 30%)0 306)0

]=4m’g

b=
d=

) b=g
) d=g

87
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Finally we nd for the tensors:

h i
Le = 4 hpCpA+ PcPa Pc Pa MZ g i
L™ = 4 pp ps + Po Ps Pb P M5 9
To recapitulate, the matrix element fore I e
— 1 et
jMj 2= L, L™

S (2sat1)@se+1) of
and will just Il in the results of the tensors we just calculated:
h i h i
4 pePatPcPa Pc Pa ME 9 4 pops tPoPs Po Pe ML g
= 16
(pc Po)(pa Pe)+(pc Pe)(Pa Po) (Pc Pa)(Po Pe)+(Pc Pa)mZ
(pc Ps)(pa Po)+(pPc Po)(pa Pe) (Pc Pa)(Po Pe)+(Pc Pa)m?
(Pc Pa)(Po Pe) (Pc Pa)(Po Pe)+(Pc Pa)(Po Pe) 4 (Pc pa)mi 4
+mg (o Pe)+ M (o Pe)  4mZ (Po pe)+4mimy,
= 32 (pa ps)(Pc Po)+(pa Po)(Pc Ps) mM2(pp Ps) mMA(Pa Pc)+2mZm?

m

L, L™

We then obtain:

11 €&

. . 2 _ - - = m
gth i
= 8 (Pc Po)(Pa Pe)*(Pc Pa)(Pa Po) mZ(po Pe) Mp (Pa Pc)+2mimy
ieUD
iM = IelUc Ua
e e

Figure 8.2: e I e scattering. left: the Feynman diagram. right: the scattering
process.

Let us consider the ultrarelativistic limit; ie. we ignore themasses of the particles
with respect to their momentum. Also we use the Mandelstam variabs:

s (pa+pe)’=pi+pE+2(pa Pe) ' 2(pa Ps)
t (o ps)’ ' 2(po Pe)
u (pa o)’ ' 2(pa Po)
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In addition we have the following relations following from eergy and momentum
conservation P, + pg = Pc + Pp):

(Pa+ Ps)* = (Pc+ po)’ ) PA Ps = Pc Po
(m pe)® = (P pa)’ Po Ps = Pc Pa
(Pa pD)2 = (ps pc)2 P Po = Ps Pc
such that:
_1.1 1,
(Pa Pe) (Pc Po) = 5S55= s
~ 1 11,
(Pa Po) (Pc Pe) = Su Su = U
=(pp pe)t = t°
Then the ultrarelativistic limit gives us:
|
——_8 1, 1, ., s+u?
M] © = v 4s + 4u =2¢€ v
We de ne the particle momenta now according to Fig. 8.2:
Take now: Pa = (p; p;0;0) Pc = (p;pcos;p sin ; 0)
pe =(p; P;0;0) Po =(p; pcos; psin;0)
We get the for the Mandelstam variables:
s=4p? t= 2p*°(1 cos) u= 2p°>(l+cos )

and we nally obtain the di erential cross section:

d 1 1

_ = _ MJ 2
d cm: 64 2 S
_ 2 4+(1+cos )
2s (1 cos)?

e
4

with =
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8.3 Crossing: the process €'e !

We will use the \crossing" principle to obtainjMj 2 +  fromthe result ofjMj 2(e |

(ete ! e )
- - + _
EM=€m € €~ mm
0 e e =) ] %)
A pC pA C
1 p'
P 2 + D
B mD Be m
An anti-particle is a particle where
p is replaced by -p. The diagram i
Replace: terms of particles is:
F,)A - FK p' e p'
B— -P A C
R P
FE) - PC _p| _pl
B e m D
Figure 8.3: The principle of crossing. Use the anti-particle ietrpretation of a particle
with the 4-momentum reversed in order to related the Matrix eédment of the \crossed"
reaction to the original one.
So we replace in the previously obtained result:
s = 2(pa Ps) ! 2(pa p3)=u°
t = 2(pa pc) ! 2(pa pg)=¢°
u = 2(a po) ! 2(pa p2) = t°
2 2
Mo, . = 26 :2u \t-channel”: ~ O =t
such that we havé: 4e + (@

Mee - = 2€ s@ \s-channel": M
F=s

2We ignored two times the " " sign introduced by replacing fermions by antifermions!
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Again we go to the center of mass: pA 9 pC
pa = (Pip;0;0;) icﬁ
P = (p; p;0;0;) > 0
pc = (p;pcos;psin; 0;) pD// )
po = (p; pcos; psin;0;)

We calculate the Mandelstam variables:
s = 2(pa ps)=4p°
t 2(pa Pc)= 20°(1 cos)
u 2(pa Po)= 2p*(1+cos)
We immediately get for the matrix element:

M 2=2e“T: e 1+cos

This means that we obtain for the cross section:

d 2 2
—=-— 1+co
d 4s

To calculate the total cross section for the process we integeabver the azimuthal angle

and the polar angle :

2
s

wl b

Exercise 29:
Can you easily obtain the cross section of the processe ! €"e from the result of
e'e ! T ?Ifyes: give the result, ifno: why not?

Exercise 30: The processefe ! *

We consider scattering of spin 1/2 electrons with spin-0 pions. Wassume point-
particles; i.e. we forget that the pions have a substructure ceisting of quarks. Also we
only consider electromagnetic interaction and we assume thate particle masses can
be neglected.

(a) Consider the process of electron - pion scattering: I e . Give the matrix
elementM for this process.

(b) Use the principle of crossing to nd the matrix element fore"fe ! *
(Note: watch out for ad-hoc -sign: see footnotes previous pages for antiparticles!)

(c) Determine the di erential cross sectiond =d in the center-of-mass of thee" e -
system
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Lecture 9

The Weak Interaction

In 1896 Henri Becquerel observed that Uranium a ected photogphic plates. He was
studying the e ect of uorescence, which he thought was causedylthe X-rays that
were discovered by Wilhelm Rentgen. To test his hypothesis heanted to observe that
this uorescence radiation also a ected photographic platesHe discovered by accident
that the Uranium salt he used also a ected the photographic platevhen they werenot
exposed to sunlight. Thus he discovered natural radioactivity

We know now that the weak interaction in nature is based on theatay:n! p+e + —
and has a lifetime of = 886s.

+
P
n
e
e
Compare the lifetimes of the following decays:
weak : ! - =2:6 10 8sec
I e =2:2 10 ®sec
with:  em:: 0 =8:4 10 Y sec
strong : ! =4:4 10 »®sec ( =150 MeV)

and realise that the lifetime of a process is inversely propootal to the strength of the
interaction. Note in addition that:

1. All fermions \feel" the weak interaction. However, when preent the electromag-
netic and strong interactions dominate.

2. Neutrino's feel only the weak interaction. This is the reasowhy they are so hard
to detect.

93
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9.1 The 4-point interaction

Based on the model of electromagnetic interactions Fermi iemted in 1932 the so-
called 4-point interaction model introducing the Fermi constant as the strength of the
interaction: Ge 1:166 10 5GeV 2

n p* The \Feynman diagram" of the 4-point in-
teraction \neutrino scattering on a neutron”
has the following matrix element:

M =Gr (Up Un) (Ue U)

e e
This is to be compared to the electromagnetic diagram for elgon proton scattering:

Here the matrix element was:

p p*
M= @ w) e w
qZ
1. =4 s replaced byGer
e e 2. 1=¢f is removed

We take note of the following facts of the weak interaction:

1. The hadronic currentj” has Q = 1, the leptonic current has Q = 1. We
refer to this as: charged currents since there is a net charge transferred from the
hadron current to the lepton current. We will see later that netral weak currents
turn out to exist as well.

2. There is a coupling constanGg, which now plays a similar réle as in QED.
3. There is no propagator; ie. a \4-point interaction".

4. The currents have what is called a \vector character" simdr as in QED. This
means that the currents are of the form

The vector character of the interaction was in fact just a guedbat turned out successful
to describe many aspects of-decay. There was no reason for this choice apart from
similarity of QED. In QED the reason that the interaction has a \ector behaviour is the
fact that the force mediator, the foton, is a spin-1, or vectoparticle.
In the most general case the matrix element of the 4-point intaction can be written
as:
M=G ,(@ 4 (4 4

where (4 4) are combinations of -matrices. Lorentz invariance of the interaction puts
restrictions on the form of the bilinear covariants of any possie interaction.
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For any possible theory (or \force") the bilinear covariants an be of the following type:

current | # components | # -matrices | spin
Scalar o 1 0 0
Vector B 4 1 1
Tensor B 6 2 2
Axial vector |  ° 4 3 1
Pseudo scalanr ~ ° 1 4 0

Table 9.1: Possible forms of the bilinear covariants.
the total number of components is 16.

). Note that

NI—
—~

In the most general case the 4-point weak interaction can be \Wwen as:

SIPRSAT
M = Gg . Cij (Up Oi up) (Te Oj u)

whereO;, O; are operators of the formS, V, T, A, P.

It can be shown with Dirac theory (see eg. Perkins: \Introductia to High Energy
Physics", 39 edition, appendix D) that:

S, P, T interactions inn! pe . imply: helicity e = helicity —,

V, A, interactionsinn! pe. imply: helicity e =-helicity .

In 1958 Goldhaber et. al. measured experimentally that the \&& interaction is of
the type: V, A, (ie. itis not S, P, T). See Perkins ed 3x7.5 for a full description of
the experiment. The basic idea is the following.

Consider the electron capture reaction’*Eu+e ! 2Sm@J=1)+

1
1520, + e ——» P%Sm o+ n

1/2— 1= 12—

A) o + e — -—o + — | =+1r
1/2= 1= 12

B) o + e — -—O0 + —_— I n: -1/2

By studying the consecutive decay®’Sm ! %2 Sm+ it was observed that only
case B actually occurred. In other words: neutrino's have heity -1/2. From this it
was concluded that in the weak interaction only the/, A currents are involved and not
S, P, T!



96 Lecture 9. The Weak Interaction

9.1.1 Lorentz covariance and Parity

Let us consider a Lorentz transformation:x° =  x . The Dirac equation in each of
the two frames is then, respectively:
@ (x)
m (x) = 0
o M ®
@ 1x9
m (x) = 0
o ™ 9
For the wave function there must exist a relation with an operair S, such that:
“©)=s (¥

Since the Dirac spinor is of the form (x) = u(p) e %, S is independent ok and only
acts on the spinoru. The Dirac equation after the Lorentz transformation becons

@] (x))
@R
and if we act on this equation byS ! from the left:
S(@ (x))
@R
This equation is consistent with the orginal Dirac equation ithe relation

St s= holds and we used thai@=@x @=@x

i mS( (x))=0

is ! mS 'S (x)=0

Let us now take a look at the parity operator which inverts spae ie.t! t;f! +
The parity Lorentz transformation is:

Which is the \Dirac" operator that gives: qx9 =S (x)?
The easiestway isto nditis to use the relation:S,* S, = =( 9% L 2 3,
or, more explicitly, to nd the matrix S, for which:

Spl Osp: 0

which has the solutionS, = °.
Alternatively, we can get the parity operator from the Dirac guation. Assume that
the wave function (#;t) is a solution of the Dirac equation:

Ogt"' k@@;( m (F1)=0
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then, after a parity transformation we nd:

e e
‘@t “@x
So, ( ®t)is not a solution of the Dirac equation due to the additional - sign!

Multiply the Dirac equation of the parity transformed spinor from the left by ©, to
nd:

m ( ft)=0

@ @
0 04, k=g M ( H1)=0
@@t @@k |
) 0,0t k=z 0 Mo ( K)=0
@] @% !
) ogt+ k@@i m o ( &t)=0

We conclude that if (¥;t) is a solution of the Dirac equation, then o ( *t) is also
a solution (in the mirror world).
In other words: under the parity operation §= 9): (&t)! o ( ®1).

An interesting consequence can be derived from the explicit rgsentation of the °

matrix: I
o_. 1L O
-0 1

from which it is seen that the parity operator has an opposite sigfor the positive and
negative solutions. In other words: fermions and anti-fermi@have opposite parity.

What does this imply for the currents in the interactions? Undethe Parity operator
we get:

S: o ! 00 = Scalar

P: 5 ! - 050 = -5 Pseudo Scalar
C — 0

vV: ! o0 = — K Vector
( - 0

A: > 1 0 50 = — K Axial Vector.

We had concluded earlier that the weak matrix element in neabn decay is of the

form:
XA

M = G Cij (Upoi Up) (UerU )
ij
But: if there is a contribution from vector as well asfrom axial vector then we must
have parity violation!
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9.2 The V A interaction

It turns out that the only change that is needed in the pure vetor coupling of Fermi is:

1

(e u)! "W =1 > u
2

This is the famousV A interaction where the vector coupling and the axial vectorau-

pling are equally strong present. The consequence is that theeemaximal violation

of parity in the weak interaction.

Exercise 31: Helicity vs Chirality
(a) Write out the chirality operator 5 in the Dirac-Pauli representation.

(b) The helicity operator is de ned as = ~ p. Show that helicity operator and the
chirality operator have the same e ect on a spinor solution, i.e

! !
(s) (s)
5  _

5
- ~p (s ~-B (9
E+m E+m

in the ultrarelativistic limit that E >>m .

(c) Explain why the weak interaction is calledleft-handed .

For neutron decays there is a complication to test th& A structure since the
neutron and the proton are not point particles. The observed ntex element for neutron
decays is:

It has the follwing values for the vector and @ @
+

axial vector couplings: N p
Cy =1:000 0:003,Cp =1:260 0:002

However, the fundamental weak interaction

between the quarks and the leptons are pure n e
vV A

o
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9.3 The Propagator of the weak interaction

The Fermi theory has a 4-point interaction: there is no propgator involved to transmit
the interaction from the lepton current to the hadron curren. However, we know now
that forces are carried by bosons:

the electromagnetic interaction is carried by the massless oo which gives rise
toa! & propagator

the weak interaction is carried by the massiv&V, Z bosons, for which we have
the propagators: le 7 and
w

1
MZ ?°
Let us consider an interaction at low energy; ie. the case thal >> g 2. In that case
the propagator reduces toM%.
w

>< — gwg<

strength: e g

2
2 8My

We interpret the coupling constantg of the weak interaction exactly likee in QED.
How \weak" is the weak interaction? In QED we have: = £=-1

4 137
In the weak interaction it turns out: , = 2—2 = 1
The interaction is weak because the masd |s hlghI The intrinsic coupling constant
is not small in comparison to QED. As a consequence it will turn outhat at high
energies: M2 the weak interaction is comparable in strength to the electroagnetic

interaction.

9.4 Muon Decay

Similar to the processee ! * in QED, the muon decay process ! e . is
the standard example of a weak interaction process.
€P) (k)

M(p) _ s
< rb(k) mp) \\\W< e- (pl)
k) Ne(-k')
Figure 9.1: Muon decay:left: Labelling of the momenta,right: Feynman diagram. Note
that for the spinor of the outgoing antiparticle we useu _( k9 = v (k9.

Using the Feynman rules we can write for the matrix element
1 1

meABEY 2t R g R 2t

outgoing incoming outgomg e outgoing ~e

NI =

propagator
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Next we square the matrix element and sum over the spin states, exicsimilar
to the case ofe'e ! * . Then we use again the tric of Casimir as well as the
completeness relations to convert the sum over spins into a tecThe result is:

of ? : 5 0 5 g0
Tr 1 (p°+ mye) 1 &

fz . .
M T= 2 M 2=

n

(0]
Tr 1 °> & 1 °@+m)

2
Now we use some more trace theorems (see below) and &1%0: SWQT to nd the result:
w

fz
Mj “=64GE (k p) (K° p)

Intermezzo: Trace theorems used (see also Halzen & Martin p 261):
TT( & ) Tr( 6 @)=32[(a c)(bd+(a d (b 0]
Tr @ °6 Tr 6 °@ =32[(ac(bd (ad(bo)]
Tr 1 *a 1 °*>6 Tr 1 °>6 1 °> @ =256(a ¢ (b d)

The decay width we can nd by applying Fermi's golden rule:

R
d = —jMj d
d®p° d3k d3kO

2)2 )2 @)2a0
with : E muon energy

E® = electron energy

1 0 = electron neutrino energy

' = muon neutrino energy

where : dQ @) “(p p° k° k)

First we evaluate the expression for the matrix element. We havthe relation
(p=(m ;0;0;0)):

p=p’+ k+ Kk so:  k+p)=(p K
We can also see the following relations to hold:

(k+p)° = |+ B +2(k P
=0

mZ 0

2 _ 2 @
(P K" = g+ IEZO} 2(p, <)

m2 m2 m! 0
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Therefore we have the relation: 2( p% = m?2 2m! © which we use to rewrite the
matrix element as:

Mj2=64G2 (k p) (K p)=32G2 m? 2m!° m!°©
We had the expression for the decay time:

1668 >

=M CdQ= TO°F (m

EJ
(E is replaced bym since the decaying muon is in rest). For the total decay width we
must integrate over the phase space:

d = 2m! ° m! °dQ

Z 2 Z
1 16G
—jMj “dQ= F

> 1M Q m
We note that the integrand only depends on the neutrino eneyg! ° So, let us rst
perform the integral in dQ over the otherenergies and momenta:

(m?> 2m! % m! °dQ

Z Z
1 B d®KkO R
dQ = EC 19 1) 3 £+RO+ R — — —
otrer 02 8(2)° (m ) o ¥ E0 10 |
1 ¢ &P KO

= 52 ) (m E° 19 1)

EAQ

since the -function gives 1 for the integral overk.
We also have the relation:

I = jkj= jP+Ky= IOE@+ I ®+2E9 O%os

where is the angle between the electron and the electron neutrindMe choose the
z-axis alongR® the direction of the electron neutrino. From the equationdr ! we
derive: .
2E9 %sin !
p , d = oo —
2, E®+ 1 ®42E °cos, E% %sin

|

d' =

Next we integrate overd®*= E®sin dE°d d with d as above:
z

_ 1 o o0 E®sin 0 d*RO 1
dQ = 82 )° (m E” ! ) o dEddﬁ!—
Z 3170
= %2 (m E° 19 1)dEd! %
8(2) !
(using the relation: E®sin d = [, d!).
Since we integrate ovet , the -function will cancel:
z
1 o OFKO
dQ= dE Te



102 Lecture 9. The Weak Interaction

such that the full expression for becomes:

2 Z 34,0
2G¢ m? 2m! %1 0dEoﬁ
2)* | ¢

Next we do the integral overk® as far as possible with:
z z z
k%= 1 ®sin °d! % °d °=4 1 @®ql

so that we get: .

2
CEM ™ m 209 1 0g) OgE?

@)

Before we do the integral ovet °we have to determine the limits:
maximum electron neutrino energy: 1 o %e
19= Zm My
minimum electron neutrino energy: e"

1 0= lm EO nn 60 — ™
. 2 - _—
Ne

Therefore we obtain the spectrum:

2m 21 2 2 0
d _GEm I a9 0g 0= GEM E
dE® (2 )% im eo 12 3
which can be measured experimentally.
Finally we obtain for the decay of the muon:

1_Gm
192 3

A measurement of the muon lifetime: = 2:19703 0:00004s determines the Fermi
coupling constant: G = (1:16639 0:00002) 10 5GeV 2. This is the standard method

. 2
to determine Gg or MgTzv

9.5 Quark mixing

In muon decay we studied the weak interaction acting betweenptons: electron, muon,
electron-neutrino and muon-neutrino. We have seen in the press of neutron decay
that the weak interaction also operates between the quarks. Aflindamental fermions
are susceptible to the weak interaction. Both the leptons andugrks are usually ordered

in a representation of three generations:
! ! ! ! ! !

. e . c t
Leptons : e Quarks : S b

o C
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Ina rstassumption the charged current weak interaction worksnside the generation
doublets:

° g © g g

u g d c g S t g b

To test the validity of this model for quarks let us look at the &amples of quark
diagrams of pion decay and kaon decay:

1. pion decay
u _
T s,
! - P 7 W Ny
g 2
/ '\va/ Gz
2. kaon decay
u m
S (-
This decay does occur! . W Ny

9.5.1 Cabibbo - GIM mechanism
We have to modify the model by the replacements:

d! d°=dcos .+ ssin .
s | s%= dsin .+ s cos .
or, in matrix representation:
! ! !
o CoS . Sin ¢ d
s0 sin . €oS . s
where . is the Cabibbo mixing angle.
In terms of the diagrams the replacement implies:

0
u g d u g d u oS d u sin S
\W ) \m/ _ \%VV ) \%TNV
Both the u, d coupling and theu, s coupling exist. In this case the diagrams of pion
decay and kaon decay are modi ed:
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1. Pion decay
U gcoy 9 m
o JINE
| G2cog . W Ny
2. Kaon decay

U gsing m
K 1 - K-D fffffff ol
«k | GZsin® . W Ny

In order to check this we can compare the decay rate of the tweactions. A proper

calculation gives: |
-2

(K ) 2 m 3 mg m
tan® .
( ) Mk m2 m?2

As a result the Cabibbo mixing angle is observed to be:

‘ c = 12:8° ‘

The couplings for the rst two generations are:

u cos d ¢ cos S u sin S ¢ sin d
| {z 1 | {z }

Cabibbo \favoured °decay Cabibbo \suppressed ®decay

Formulated in a di erent way:

The avour eigenstatesu, d, s, c are the mass eigenstates. They are the solution

of the total Hamiltonian describing quarks; ie. mainly strong iteractions.
! !

The states are the eigenstates of the weak interaction Hamiltonian,

u c
d® s
which a ects the decay of the particles.

The relation between the mass eigenstates and the interacti@genstates is a rota-
tion matrix: ! ! !
(s L CcoS . Sin . d

s? sin . CoS ¢ s

with the Cabibbo angle as the mixing angle of the generations.
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9.5.2 The Cabibbo - Kobayashi - Maskawa (CKM) matrix

We extend the picture of the previous section to include all fiee generations. This

means that we now make the replacement:
! ! ! ! ! !
u C t ) u C t
d s b d° s? o3

with in the most general way can be written as:

Odol 0 10 1

Bk B v Ve kB s

th\{/tsvtb} b

CKM  matrix
The \g" couplings involved are:
u Vu ub b
C Vc cb b
t Vig Vio b

It should be noted that the matrix is not uniquely de ned since he phases of the
guark wavefunctions are not xed. The standard representatio of this unitary 3 3
matrix contains three mixing angles between the quark geraions 15, 13, »3, and one
complex phase :

0 .

C12C13 _ S12513 - se!

Vekm = %) S12C23  C12523513€  C12C3  S12523S13€  Sp3Ci3
S12S23  C12C23S13€ C12S23  S12C23S13€  C23C13

wheres; =sin j andc; =cos j.

In the Wolfenstein parametrization this matrix is:
0 1
1 2=2 A3 i)
VCKM % 1 2:2 A 2 g
A 31 i) A 2 1
It can be easy seen to includes 4 parameters:

3 real parameters DA,
1 imaginary parameter :i



106 Lecture 9. The Weak Interaction

This imaginary parameter is the source of CP violation in the tandard Model. It
means that it de nes the di erence between interactions inglving matter and those
that involve anti-matter.

We further note that, in case neutrino particles have mass, a silar mixing matrix
also exists in the lepton sector. The Pontecorvo-Maki-Nakagawakata matrix Up yns
is then de ned as follows:

0 1 0 10 1

e Uip Upp Ugs 1
%) K = %}UZI Uzo Uzsggb 22
| Us; l{;z Us3 } 3

PMNS matrix

In a completely similar way this matrix relates the mass eigenastes of the leptons (4,

2, 3) to the weak interaction eigenstates (, , ). There is an interesting open
guestion whether neutrino's are their own anti-particles (Majorana" neutrino's) or not
("Dirac" neutrino's). In case neutrinos are of the Dirac type,the Upyns matrix has
one complex phase, similar to the quark mixing matrix. Alternately, if neutrinos are
Majorana particles, theUpyns matrix includes three complex phases.

It is currently not clear whether the explanation for a matte dominated universe lies
in quark avour physics ("baryogenesis”) or in lepton avour physics ("leptogenesis”)
and whether it requires physics beyond the Standard Model. Is however interesting
to note that there exist 3 generations of particles!
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Exercise 32: Pion Decay

Usually at this point the student is asked to calculate pion decayvhich requires again
guite some calculations. The ambitious student is encouragetiy and do it (using some
help from the literature). However, the exercise below requs little or no calculation
but instead insight in the formalism.

(a) Draw the Feynman diagram for the decay of a pion to a muon anan anti-neutrino:
| _

Due to the fact that the quarks in the pion are not free particks we cannot just apply

the Dirac formalism for free particle waves. However, we know ah the interaction is

transmitted by a W and therefore the coupling must be of the typeV or A. (Also,

the matrix element must be a Lorentz scalar.) It turns out the deay amplitude has the

form:

M=BS@f) up) 1 f vk

wherep andk are the 4-momenta of the muon and the neutrino respectivelynd q is
the 4-momentum carried by theW boson.f is called the decay constant.

(b) Can the pion also decay to an electron and an electron-neirto? Write down the
Matrix element for this decay.
Would you expect the decay width of the decay to electrons toeblarger, smaller,
or similar to the decay width to the muon and muon-neutrino?
Base your argument on the available phase space in each of the wases.

The decay width to a muon and muon-neutrino is found to be:

|
s 2
GZ m2 m2
ifzm m2 —
8 m

The measured lifetime of the pion is = 2:6 10 s which means thatf m . An
interesting observation is to compare the decay width to the nan and to the electron:

| |
_ -2 2 2° 2
( 'ed_ M M M~ 4,04
( ! ) m m2  m?2

(c) Canyou give a reason why the decay rate into an electron ama electron-neutrino
is strongly suppressed in comparison to the decay to a muon and a memeutrino.
Consider the spin of the pion, the handedness of the W coupling éithe helicity
of the leptons involved.
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Lecture 10

Local Gauge Invariance

In the next three lectures the Standard Model of electrowealkiteractions will be intro-
duced. We will do this via the principle of gauge invarianceThe idea of gauge invariance
forms now such a rm basis of the description of forces that | fed is suitable to be
discussed in these lectures. As these lectures are not part of a thetmal master course
we will follow a - hopefully - intuitive approach. Certainly we will try to focus, as we
did before, on the concepts rather then on formal derivatian

A good book on this topic is:

Chris Quigg, \Gauge Theories of the Strong, Weak, and Eleamagnetic Interactions”,
in the series of \Frontiers in Physics", Benjamin Cummings.

10.1 Introduction

The reason why we chose the Lagrangian approach in eld theorythat it is particularly
suitable to discuss symmetry or invariance principles and consation laws that they are
related to. Symmetry principles play a fundamental role in grticle physics. In general
one can distinguish in general 4 groups of symmetries. There is a theorem stating tha
a symmetry is always related to a quantity that is fundamentdy unobservable. Some
of these unobservables are mentioned below:

permutation symmetries: Bose Einstein statistics for integer spin particles and
Fermi Dirac statistics for half integer spin particles. The unobervable is the
identity of a particle.

continuous space-time symmetriesranslation, rotation, acceleration, etc. The re-
lated unobservables are respectively: absolute position in spaabsolute direction
and the equivalence between gravity and accelleration.

discrete symmetriesspace inversion, time inversion, charge inversion. The unob-
servables are absolute left/right handedness, the direction tine and an absolute
de nition of the sign of charge. A famous example in this respecs to try and

1T.D. Lee: \Particle Physics and Introduction to Field Theory"

109
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make an absolute de nition of matter and anti-matter. Is this possible? This
guestion will be addressed in the particle physics Il course.

unitary symmetries or internal symmetriesgauge invariances. These are the sym-
metries discussed in these lectures. As an example of an unobserajplantity
we can mention the absolute phase of a quantum mechanical wavadtion.

The relation between symmetries and conservation laws is egssed in a fundamental
theorem by Emmy Noether: each continuous symmetry transformiain under which the

Lagrangian is invariant in form leads to a conservation law.nhvariances underexternal

operations as time and space translation lead to conservatiohenergy and momentum,
and invariance under rotation to conservation of angular moentum Invariances under
internal operations, like the rotation of the complex phase of wave futiens lead to

conserved currents, or more speci ¢, conservation of charge.

We believe that the fundamental elementary interactions athe quarks and leptons
can be understood as consequences of gauge symmetry pricipldg iflea of local gauge
invariant theory will be discussed in the rst lecture and will befurther applied in the
uni ed electroweak theory in the second lecture. In the thirdecture we will calculate the
electroweak process'e ! ;Z ! * | using the techniques we developed before.

10.2 Lagrangian

In classical mechanics the Lagrangian may be regarded as thadamental object, lead-
ing to the equations of motions of objects. From the Lagrangm one can construct \the
action" and follow Hamilton's principle of least action to nd the physical path:
Zy,
S = dtL (g;9 =0
1

t

whereq;q are the generalized coordinate and velocity.

Exercise 33:
Prove that satisfaction of Hamilton's principle is guaranteedby the Euler Lagrange
equations:

@L d el

@q dt @

The classical theory does not treat space and time symmetricalas the Lagrangian
might depend on theparametert. This causes a problem if we want to make a relativis-
ticaly covariant theory.

In a eld theory the Lagrangian in terms of generalized cooiidates is replaced.(q;q)
by a Lagrangian density in terms of elds (x) and their gradients:

z
L( (x);@ (x)) where L  dxL(;@ )
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The elds may be regarded as a separate generalized coordmait each value of its
argument: the space-time coordinate. In fact, the eld theory is the limit of a system
of n degrees of freedom when tends to in nity.
In this case the principle of least action becomes:
Zy,
: dxL(;@ )=0
1
wheret,; t, are the endpoints of the path.
This is guaranteed by the Euler Lagrange equation:
@ _o @
@ (x) @@ (x))
which in turn lead to the equation of motion for the elds.
Note: If the Lagrangian is a Lorentz scalar, then the theorysiautomatically relativistic
covariant.
What we will do next is to try and construct the Lagrangian for éectromagnetic and
weak interaction based on the idea of gauge invariance (or ggisymmetries).

Exercise 34: Lagrangians versus equations of motion
(a) Show that the Euler Lagrange equations of the Lagrangian

ee _ 1 1
L=l =5(@)(@) m?

of a real scalar eld leads to the Klein-Gordon equation.
For a complex scalar eld one can show that the Lagrangian becast
L=j@ i mj |’
(b) Show that the Euler Lagrange equations of the Lagrangian
L=Lpe. =i @ m

leads to the Dirac equation:
i @ m x)=0
and its adjoint. To do this, consider and as independent elds.

(c) Show that the Lagrangian

L=lLew= (@A @A)(@ @A) jA= ;FF jA

leads to the Maxwell equations:
@ (@A @A)=]

Hence the current is conserved@j =0), sinceF is antisymmetric.
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10.3 Where does the name \gauge theory" come
from?

The idea of gauge invariance as a dynamical principle is due Hermann Weyl. He
called it \eichinvarianz" (\gauge" = \calibration"). Hermann Weyl ? was trying to nd
a geometrical basis for both gravitation and electromagnetin. Although his e ort was
unsuccesfull the terminology survived. His idea is summarizedree

Consider a change in a functior (x) between pointx and point x + dx . If the
space has a uniform scale we expect simply:

f(x+ dx) = f(x)+ @f (x)dx

But if in addition the scale, or the unit of measure, foff changes by a factor (1 +S dx )
betweenx and x + dx, then the value off becomes:

fx+dx) = (f(x)+ @f (x)dx ) (1+ S dx )

f(x)+(@f (x)+ f(x)S )dx + O(dx)?

So, to rst order, the increment is:
f=(@+ S )fdx

In other words Weyl introduced a modi ed di erential operator by the replacement:
@! @+S.

One can see this in analogy in electrodynamics in the replacent of the momen-
tum by the canonical momentum parameterp ! p  gA in the Lagrangian, or in
Quantum Mechanics:@ ! @ + igA , as was discussed in the earlier lectures. In this
case the \scale" isS = igA . If we now require that the laws of physics are invariant
under a change:

(A+Sdx)! (1+igA dx) exp(gA dx)

then we see that the change of scale gets the form of a change ohage. When he later
on studied the invariance under phase transformations, he kepsimg the terminology
of \gauge invariance".

10.4 Phase Invariance in Quantum Mechanics

The expectation value of a quantum mechanicalbservableis typically of the form:
z
hOi = O

If we now make the replacement (x) ! € (x) the expectation value of the observable
remains the same. We say that we cannot measure the absolute phasdéhe wave

2H. Weyl, Z. Phys. 56, 330 (1929)
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function. (We can only measureaelative phases between wavefunctions in interference
experiments, see eg. the CP violation observables.)

But, are we allowed to choose a di erent phase convention on, sahe moon and
on earth, for a wave function (x)? In other words, we want to introduce the concept
of local gauge invariance. This means that the physics observable staggariant under
the replacement:

! =€ Y (x)
The problem that we face is that the Lagrangian density. ( (X); @ (X)) depends
on both on the elds (x) and on the derivatives@ (x). The derivative term yields:

@ x)! @ =€ @ N+i@ (x) (x)

The second term spoils the fact that the transformation is simplan overall (unobserv-
able) phase factor. It spoils the phase invariance of the theorput, if we replace the
derivative @ by the gauge-covariant derivative:

@! D @ + igA
and we require that the eld A at the same time transforms as:

A AYX)= A (x) :@ )

then we see that we get an overall phase factor for the covariagérivative term:
|

W @ ()+i@ () (X)+igA () (X) iq;@ X (%)

¢ WD (x)

D x)! D )

As a consequence, quantities like D  will now be invariant under local gauge
transformations.

10.5 Phase invariance for a Dirac Particle

We are going to replace in the Dirac Lagrangian:
@! D @ + igA (x)
What happens to the Lagrangian?

L = (i D m)
i @ m) qA
= Lfree L int
with:
Lin=J A and J =g

which is the familiar current we discussed in previous lectures.
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Exercise 35: Gauge invariance

(@) (i) Consider the Lagrangian for a complex scalar eld:
L=j@ © m "
Make a transformation of these elds:
(x)! €9 (x) ; x)! e'd  (x):

Show that the Lagrangian does not change.

(i) Do the same for the Dirac Lagrangian while considering thsimultaneous
transformations:

x)! € (x) ; x)! e (x)

(i) Noether's Theorem: consider an in nitesimal transformaton: ! 0=
e (+1i ) . Show that the requirement of invariance of the Dirac
Lagrangian (L(;@ ; ;@ ) = 0) leads to the conservation of charge:
@j =0, with:

0 1
_leg @ L A=
2 Q@) @@

(b) (i) Start with the Lagrange density for a complex Klein-Gadon eld
L=(@) (@ ) m’
and show that alocal eld transformation:
(x)! €™ (x) ; (x)! e® ® (x)

doesnot leave the Lagrangian invariant.

(i) Replace now in the Lagrangian:@ ! D = @ + igA and show that the
Lagrangian nowdoes remain invariant, provided that the additional eld
transforms with the gauge transformation as:

AX! A=A KX) @ (X):
(c) (i) Start with the Lagrange density for a Dirac eld
L=i @ m
and show that alocal eld transformation:
() ! €% (x) ; (x)! e’ (x)

also doesot leave the Lagrangian invariant.
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(i) Again make the replacement.@! D = @ + igA where again the gauge
eld transforms as:

AX! A=A KX @ X):
and show that the physics howdoes remain invariant.

In fact, the full QED Lagrangian includes also the so-called ketic term of the eld
(the free fotons):

1
Loep = Lfree J A ZF F
with F = @A @A , where the A elds are given by solutions of the Maxwell

equations (see lecture 3):
@F =1

10.6 Interpretation

What does it all mean?

We started from a free eld Lagrangian which describes Dirac pacles. Then we re-
quired that the elds have a U(1) symmetry which couples to the ltarge g. In other
words: the physics does not change if we multiply by a unitary @se factor:

) =61 (%)

However, in order to obtain this symmetry wemustthen introduce a gauge eld, the
photon, which couplesto the chargeq:

D =@+ igA (x)
and which transforms simultaneously as:
A=A (x) @ (¥

the familiar gauge invariance of the electromagnetic eldsee Lecture 3: ) )!

This symmetry is called local gauge invariance under U(1) traformations. While
ensuring the gauge invariance we have obtained the QED Lagan that describes the
interactions between electrons and photons!

Note:
If the photon would have a mass, the corresponding term in the Leangian would be:

1
L =>m’A A
2

This term obviously violates local gauge invariance, since:

AA!l A @)A @)6AA

Conclusion: the photon must be massless. Later on, in the PPIl coursg will be
discussed how masses of vector bosons can be generated in the Higgbaném.
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10.7 Yang Mills Theories

The concept ofnon abeliangauge theories is introduced here in a somewhat historical
context as this helps to also understand the origin of the term @ak iso-spin and the
relation to (strong-) isospin.

Let us look at an example of the isospin system, i.e. the proton atide neutron. Let
us also for the moment forget about the electric charge (we swit 0 electromagnetism
and look only at the dominating strong interaction) and writethe free Lagrangian for
nucleons as:

L=p( @ m)p|+n(i @ m)n

or, in terms of a composite spinor = E

!
10
01

If we now, instead of a phase factor as in QED, make globalrotation in isospin
space: |

L= ( 1@ Im) with I=

0_ .
! =exp | 5

where~ = ( 1, ,; 3) are the usual Pauli Matrices® and ~ = ( 1, ,; 3)is an arbitrary

three vector. We have introduced a SU(2) phase transformatiorf epecial unitary 2x2

transformations (i.e. unitary 2x2 transformations with det=+1).

What does it mean? We state that, if we forget about their elecic charge, the
proton and neutron are indistinguishable, similar to the case divo wavefunctions with
a di erent phase). It is just convention which one we call theproton and which one
the neutron. The Lagrangian does not change under suchgdobalSU(2) phase rotation.
Imposing this requirement on the Lagrangian leads (again Ndwer's theorem) to the

conserved current (use in nitesimal transformation: ! %= (1+ ‘i~ ~) )
L= 2 @%)<@) 6 oo ©
= Oge ¥ - fqo s ~(@)
- o- L8

where the Euler Lagrange relation has been used to eliminag@® =@ . The equation can
be written in the form of the continuity equation with correspnding conserved current:

@ =0 with T = > ;

= O

. o 1 .
a representatlon IS 1 = 0 , 2 = i 0 y 3 — 0 1
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However, as this is a global gauge transformation, it impliehat once we make a
de nition at given point in space-time, this convention must ke respected anywhere in
space-time. This restriction seemed unnatural to Yang and Mdlin a local eld theory.

Can we also make #ocal SU(2) gauge transformation theory? So, let us try to de ne
a theory where we chose the isospin direction di erently for angpace-time point.

To simplify the notation we de ne the gauge transformation asdllows:

) Ax) G(x) (x)

with G(x) exp |§~ ~(X)

But we have again, as in the case of QED, the problem with the tresformation of
the derivative:

@ (x)! G(@ )+(@QC)

(just write it out yourself).
So, also here, we must introduce a new gauge eld to keep the Laggian invariant:
1 ]

_ : . I ¢ 10
L= (i D Im) with = n and | = 01

where we introduce the new covariant derivative:
l@! D =1@ + igB

whereg is a new coupling constant that replaces the chargein electromagnetism. The
object B is now a (2x2) matrix:
!
1 1 1 bs by by
B = >~b = -t°¢ = = .
2 2 b+ ib, bs

b = (by; ;) are now three gauge elds. We need now 3 elds rather then 1, erfor
each of the generators of the symmetry group of SU(2);; »; 3.
We want get again a behaviour:

D ! D°°%=G(D )

because in that case the Lagrangian(i D  m) s invariant for local gauge trans-
formations. If we write out the covariant derivative term we @t:

@+igBO 0
G(@ )+(@G) +igB°(G )

DOO

If we compare this to the desired result:

G(@ +igB )
G(@ )+igG(B )

DOO
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then we see that the desired behaviour is obtained if the gaugeld transforms simul-
taneously as:

igB°(G )=igG(B ) (@G)
which must then be true for all values of the nucleon eld . Multiplying this operator
equation from the right by G ! we get:

B= GB G 1+éj(@c;)c; :

Although this looks rather complicated we can again try to inérpret this by comparing
to the case of electromagnetism, whei@,,, = €4 ),
Then:

i
A° = GenA Gl + a(@Gem)ee,;
= A @

which is exactly what we had before.

Exercise 36: (not required)
Consider an in nitesimal gauge transformation:
[ -
G:1+§~~ Jij<<1

Use the general transformation rule foB° and useB = %~ B to demonstrate that
the elds transform as:

1
= ~ b @~
g@
(use: the Pauli-matrix identity: (~ &)(~ D =4a b+ i~ (a D).

So for isospin symmetry thd?® elds transform as an isospin rotation and a gradient
term. The gradient term was already present in QED. The rotatn term is new. It
arises due to the non-commutativity of the 2x2 isospin rotatios. If we write out the
gauge eld transformation formula in components:

- 1
bd=H jk|JH( a@l

we can see that there is a coupling between the di erent compents of the eld. This
is called self-coupling of the eld. The e ect of this becomeslear if one also considers
the kinetic term of the isospin gauge eld (analogous to the QERase):

. 1
Lsu(z) = (I D m) ZF F
Introducing the eld strength tensor:
1 1
F =2F ~=ZF2 2
2
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the Lagrangian is usually written as (using the Pauli identitytr ( & P) =2 2ab):
. 1
Lsu(z) = (I D m) Etr(F F )
with individual components of the eld strength tensor:
Fl' =@d @O +g b b
The consequence of the last term is that the Lagrangian terfda F  contains contri-
butions with 2, 3 and 4 factors of theb- eld. These couplings are respectively referred
to as bilinear, trilinear and quadrilinear couplings. In QEDthere's only the bilinear

photon propagator term. In the isospin theory there are self ierections by a 3-gauge
boson vertex and a 4 gauge boson vertex.

10.7.1 What have we done?

[
We modi ed the Lagrangian describing isospin 1/2 doublets = E
LS,y = (@ m)

We made the replacemen@! D = @+ igB with B = %~ b, to obtain:

Lsup = i D m)
— free g
- LSU(Z) éb -
— f i i
= L&Y, LS
— free
whereJ” = §  ~ s the isospin current.

Let us compare it once more to the case of QED:
— 1 free
Luw = Ly A I

with the electromagnetic currentd = q
We have neglected here the kinetic terms of the elds:

. 1
Lsu(z) = (I D m) étrF F

which contains self-coupling terms of the elds.
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10.7.2 Assessment |
We see a symmetry in the E system: the isospin rotations.

If we require local gauge invariance of such transformationseweed to introduce
D gauge elds.

But what are they? B must be three massless vector bosons that couple to
the proton and neutron. It cannot be the ; % * since they are pseudoscalar
particles rather then vector bosons. It turns out this theory des not describe the
strong interactions. We know now that the strong force is mediad by massless
gluons. In fact gluons have 3 colour degrees of freedom, suchttthey can be
described by 3x3 unitary gauge transformations (SU(3)), for wth there are 8
generators, listed here:

0 1 0 1 0 1
010 0 i 0 1 0 0
=®100% ,L,=Bi 0o ok .=Bo0 1 o0%
00 0 0 0 0 0 0 0
0 1 0 o1 0 1
00 1 00 i 00 0
=00 0% =Boo ok =Boo 1k
100 i 0 0 010
0 1 0 1
00 O L.100
=B0 0 i%X s=p—BO01 0X%
0i 0 3 00 2

The strong interaction will be discussed later on in the particlgphysics course.
Next lecture we will instead look at the weak interaction and itroduce the concept
of weak iso-spin.

Also, we have started to say that the symmetry in thep, n system is only present
if we neglect electromagnetic interactions, since obviouslsofn the charge we can
absolutely de ne the proton and the neutron state in the double In such a case
where the symmetry is only approximate, we speak of laoken symmetryrather
then of an exact symmetry



Lecture 11

Electroweak Theory

In the previous lecture we have seen how imposing a local gaugensyetry requires a
modi cation of the free Lagrangian such that a theory with ineractions is obtained. We

studied:

local U(1) gauge invariance:

(i D m = (i @ m) F—EZ—}A
local SU(2) gauge invariance:
(D m = (( @ m g* ~ b
f—{z—}
J

For the U(1) symmetry we can identify theA eld as the photon and the Feynman
rules for QED, as we discussed them in previous lectures, followt@matically. For the
SU(2) case we hoped that we could describe the strong nuclear irdetions, but this
failed. !

Let us now, instead of the strong isospin doublet = E introduce the following

doublets: ! !

L uL
= and =
- e - d.

and we speak instead of \weak isospin” doublets. Note that the ferom elds have an
L index (for \left-handed"). These left handed states are de nd as:

1 1
L_E(l 5) UL—é(l 5) U
1 1
Q_Zé(l 5) € d_=§(1 5) d
with the familiar projection operators:

1 1
Lzé(l 5) and R:§(1+ 5)

121
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(Remember: for massless particles”, = heiciy and r = +helicity -)

The origin of the weak interaction lies in the fact that we nowimpose a local gauge
symmetry in weak isospin rotations of left handed fermion elds.This means that if
we \switch 0" charge we cannot distinguish between a, and ae_or au, and a
d. state. The fact that we only impose this on left handed states imigs that the
weak interaction is completely left-right asymmetric. (Inuitively this is very di cult
to accept: why would there be a symmetry for the left-handed stas only?!). This is
called maximal violation of parity.

It will turn out that the three vector elds ( by; by; b; from the previous lecture) can
later be associated with the carriers of the weak interactiorthe W* ;W ;Z bosons.
However, these bosons are not massless. An explicit mass tetny (= Kb b ) would
in fact break the gauge invariance of the theory. Their masseart be generated in a
mechanism that is called spontaneous symmetry breaking and olves a new hypothet-
ical particle: the Higgs boson. The main idea of the symmetry ba&ing mechanism is
that the Lagrangian retains the full gauge symmetry, but thatthe ground state, i.e. the
vacuum, is no longer at a symmetric position. The realizationfdhe vacuum selects a
preferred direction in isospin space, and thus breaks the symmetFuture lectures will
discuss this aspect in more detalil.

To construct the weakSU(2), theory we start again with the free Dirac Lagrangian
and we imposeSU(2) symmetry (but now on the weak isospin doublets):

Lree = T i @ m)

Again we introduce the covariant derivative:

@' D =@+igB with B:;~’b

then:
I—free 'L free b J

weak

with the weak current:

Jyer = 20

weak — 2 L L

This is just a copy from what we have seen in the strong isospin exalap

The model for the weak interactions now contains 3 massless galmpsons if*; b?; b°).
However, in nature we have seen that the weak interaction is gragated by 3 massive
bosonsw*; W ;Z°,

From the Higgs mechanism it turns out that the physical elds assdated with b
and I? are the chargedw bosons:

bt ib?
W ﬁQﬁ—
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11.1 The Charged Current

We will use the de nition of the W - elds to re-write the rst two terms in the Lagrangian
of the weak current:
L = Lfree *+ Lot

weak

with L™ = b J..= bJt J? bPJI3

The charged current terms are:

Lec = bIY BPJ2

with:
Jt = QT 1L J? = QT 2 L
2 2
Exercise 37: »
Show that the re-de nition W = Ep'ii leads to:
LCC = w*J* W J
with: 3 = P [t . J = pe L L
2 | 2
- . 0 1 00
and with: = 00 and = 10

So, for the physical eldsW* and W the leptonic currents are:
J*=pg—§L e ; J =pg—§€ L

or written out with the left-handed projection operators:

91 5 1 5
=p="= 1+ -1
7EPs 2 ©
Note that we have the identity:
1+ 5 1 5 + 5 5 5 5

such that we get for the leptonic charge raising currentW/*):

Jv =48~ (1 Dde

2 2
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and for the leptonic charge lowering current\V ):

J =Fse (1 %)

Remembering that a vector interaction has an operator in the current and an axial
vector interaction aterm  °, we recognize in the charged weak interaction the famous
\V-A" interaction.

The same is true for the quark-currents and we can recognizeetifollowing currents
in the weak interaction:

Charge raising:

e
W+MNV\/<
e

Charge lowering:
e
W N\N\'\/<
e

11.2 The Neutral Current

u
ool
d
u
v el
d

11.2.1 Empirical Appraoch

The Lagrangian for weak and electromagnetic interactions:i

Lew = Lfree L weak L em
Lweak = W+J+ + W J + &\]3
LEM = a ‘]EM

Let us again look at the interactions for leptons , e, then:

— 1 O
J; = g L3 L:%T L gl{ e weused:s=
Jem = g8 e=q(e e)+tqgER  er)
Exercise 38:

Show explicitly that:

=L L+ R R

making use of = | + R and the projection operators% (1 s)and %(1 + 5)
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Experiments have shown that in contrast to the charged weak iataction, the neutral
weak current associated to th& -boson isnot purely left-handed, but:
We=37' ol it
2
where C{, and C,i are no longer equal to 1, but they are constants that express the
relative strength of the vector and axial vector componentsfdhe interaction. Their
value depends on the type of fermiofy, as we will see below.

Taking again the leptons = o We get:
JNC:g* C, C,°5 +%e cc ceSoe

At this point we introduce the left-handed and right-handedcouplings:

1
Ck Cy Ca Cy = é(CR + Cp)
1
C. Cy+Cap Ca = E(CL Cr)
then: I I

5
e e S S S A S
Cr CL
so that we can write:

Cv Ca® = |+ g (Ck r*+CL 1)=Cr r r*CL L o

For neutrino's we haveC, = 1 and C; = 0. So, for leptons the observed neutral
current can be written as:

he=a (T O+ J(Ca a)+ J(Chem &)
We had for the electromagnetic current:
Jem = q(er e) + (&R €r)
and for the SU(2) current:
B3t 0 & a)
We now insert that J; is in fact a linear combination ofJy . and Jgy, :

Jz = a Jyc + b Jgy
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look at the | terms:a=1

look at the eg terms: JC5 + g b=0 ) Cg= %qb
look ate terms 1 4Cf+q b= § ) cg= 1 X
Therefore:
1 1 29
= = + e — _ _°
Cv > (Cr+ CL) ) Co > g b
1 1
CA = é (CL CR) ) CK = é

The vector coupling now contains a constan which gives the ratio in which theSU(2)
current (9) and the electromagnetic current §) are related. The constantbis a constant
of nature and is written asb=sin? : where represents theweak mixing angle

We will study this more carefully below.

11.2.2 Hypercharge vs Charge

Again, we write down the electroweak Lagrangian, but this tira we pose a di erent
U(1) symmetry (see H&M, Chapter 13):

I—EW = Lfree g\TSU(z) o] %JYa

whereY is the so-calledhyperchargequantum number.
The U(1) gauge invariance in now imposed on the quantity hyperchge rather the
charge, and it has a coupling strengtiy®2.
As before we have the physical charged currents:
bt ib?
WP

For the neutral currents we say that the physical elds are thedllowing linear combi-
nations:

a cos , + B’sin (massless)
a sin ,, + b’ cos (massive)

A
V4

and the origin of the nameweak mixing angldor ,, becomes clear.

We can now write the terms forb® and a in the Lagrangian:
!

0
gJ; b? %JYa = gsin wJ; + g’cos WJ; A

. J
gcos wJ;  g’sin W% z

Qdem A Oz Inc

1Halzen and Martin, Quarks & Leptons: \An Introductory Course in Modern Particl e Physics"




11.2. The Neutral Current 127

The weak hypercharge is introuced in complete analogy witthé strong hypercharge,
for which we have the famous Gellmann - Nishijima relationQ = I3 + %Ys. In the
electroweak theory we useQ = T3 + %Y which means:

Jem = J3 + 3y

then, indeed, for theA eld we have:

g°cos 1
gsin ,, 2

gsin  J; +

provided the following relation holds:
gsin w = g°cos = e

The weak mixing angle is de ned as the ratio of the coupling ostants of the SU(2),
group and theU(1)y group:

(0]
tan = g
For the Z-currents we then nd:
!
o .
gcos yJ; §sm w 20en J3) Z
- e
= _— ] sin® ,J Z
cos ySin WEEM

So we see that:

— in2
JNC - vJ3 Sln WJEM

which is in agreement with what we had obtained earlier:

J;=a Jyc+b Jy with a=1 and b=sin? ,,

11.2.3 Assessment

We introduce a symmetry groupSU(2). U(1)y and describe electroweak interactions
with: !
go
gJ, b+ §JY a
The coupling constantsg and g° are free parameters (we can also takeand sirf ).
The electromagnetic and neutral weak currents are then gineby:

I
[}
w
+
[
[
<

JEM

Jye = J3  sin® ,Jgy =cos? ,Jy s -
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and the interaction term in the Lagrangian becomes:

e

el A+ ——
EM COS  SiN

in terms of the physical eldsA andZ .

11.3 The Mass of the W and Z bosons

In the electroweak model as introduced here, the gauge eldsust be massless, since ex-
plicit mass terms ( ) are not gauge invariant. In the Standard Model the mass of
all particles are generated in the mechanism of spontaneous syetry breaking, intro-
ducing the Higgs particle (see later lectures.) Here we just give &mpirical argument
to predict the mass of theW and Z patrticles.

1. Mass terms are of the following form:

M2=h jHj i forany eld

2. From the comparison with the Fermi 4-point interaction we nd:

Si— g ) Mz_pigz_ p? €
2 8Mg2 W™ 8Gr  8G sin?

Thus, we get the following predictions:
Vv

ﬁ 2 e
8Gg sin

Mz = Mw (g;=09 = My=cos =91 GeV

My = =81 GeV

11.4 The Coupling Constants for zZ! ff

For the neutral Z-current interaction we have for the interaction in general

ig; Jye Z = Cog J, st Wy Z
w
_ . g — 1 5 2
= I -1 Tz sin Z
cos y | 2 {23 WQ} f

3(cy ¢ )

which we can represent with the following vertex and Feynmarute:
f

.9 1 f 5
ZO '\/\/\/\/\/< | oS y 2 CV CA
f
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with:

Cl = T3 Qs
ct = Qfsir?

) Cy, = T 2Q'sin?,

Ch = T
fermion | T; | Q | Y | C) cl
1 1 1
N +g 0 1 El 1 i 2
e 5 1 1 5 5*+2sin”
1 2| 1 1 17 4 o2
Geb| 1|2 1] A At
2 3 3 2 2 3 w

Table 11.1: The neutral current vector and axial vector coumgs for each of the fermions
in the Standard Model.

Exercise 39:

What do you think is the di erence between an exact and a brokesymmetry?

Can you make a (wild) guess what spontaneous symmetry breakingeans?

Which symmetry is involved in the gauge theories below? Whicbf these gauge sym-
metries are exact? Why/Why not?

(a) U1(Q) symmetry

(b) SU2(u-d- avour) symmetry
(c) SU3(u-d-s- avour) symmetry
(d) SU6(u-d-s-c-b-t) symmetry
(e) SU3(colour) symmetry

(f) SU2(weak-isospin) symmetry
(f) SU5(Grand uni ed) symmetry
(g) SUSY
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Lecture 12

The Process e e' |

12.1 The Cross Section of e e* !

Equipped with the Feynman rules of the electroweak theory wproceed to calculate
the cross section of the electroweak process:e” ! ;Z ! * . We assume the

following kinematics:
y / )

m

Figure 12.1: Kinematics of the process €' !

There are two Feynman diagrams that contribute to the process:

e

S 2e

e+ +
Figure 12.2: Feynman diagrams contributing te e* ! *

In complete analogy with the calculation of the QED process'e ! e"e we obtain
the cross section using Fermi's Golden rule:

fz
_ iMj

d F

dQ

With the phase factordQ ux factor F:
do = = & 4

424 s

131
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F = 4st
1 1 ——
+| + - - H B
ee ! 642 s IM]
The Matrix element now includes:
Moo= @ m e e
h q [ 2 h [
_ g m ~ms 9 qg=MZ N e e 5 |
M = — C C C C
z 4 co2 N m Vv A m q2 M22 e vV A e

The propagator for massive vector boson& ¢boson) is discussed in Halzen & Martin
x6.11 andx6.12. The wave equation of a massless spin-1 particle is:

220 = 0 i 9
) ¢
_ . g +qq=M?
2°+M? 2z =0 ) A VE

We can simplify the propagator of theZ if we ignore the lepton masses. In practice
this means that we work in the limit of high-energy scattering In that case the Dirac
equation becomes:

. (i@ my=0 ) e( Pe)=0
Sincepe = 3q we also have:

1_
5 (. a)=0 ) g q=M?=0

Thus the propagator simpli es:

g 4ag=MZ g
¢ MZ ¢ MZ

Thus we have for theZ -exchange matrix element the expression:

gz 1 h m m 5 th_ e e 5 |
~ Z4cog P M2 " Gy Ca m e G Gy e
w z

Mz

To calculate the cross section by summing ovéd and M 7 is now straightforward but
a rather lengthy procedure: applying Casimir's trick, tracetheorems, etc. Let us here
try to follow a di erent approach.

We rewrite the M ; matrix element in terms of right-handed and left-handed cou
plings, using the de nitions: Cr = Cy Cpa ; C. = Cy + Ca. As before we have:

1 5

1
Cy Ca® =(Cy Cpn) 5 1+ ° +(Cy + Cp) 5 1
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Thus:
Cy Ca°’ =Cr r+CL L

Let us now look back at the QED process:

e _ _
M = — m m e e
S
with (see previous lecture):
7m m = Tm Lm + 7Rm Rm
7e e = Te Le + Re Re
The fact that there are no terms connectinglL-handed to R-handed ( g, Lm)

actually implies that we have helicity conservation for highenergies (i.e. neglecting
m=E terms) at the vertices:

R R L L R L
R S G
L R
Figure 12.3: Helicity conservation.left: A right-handed incoming electron scatters into
a right-handed outgoing electron and vice versa in a vector aial vector interaction .
right: In the crossed reaction the energy and momentum of one electrgreversed: i.e.
in the e"e pair production a right-handed electron and a left-handed gsitron (or vice

versa) are produced. This is the consequence of a spin=1 forceriea. (In all diagrams
time increases from left to right.)

As a consequence we can decompose the unpolarized QED scattepragess as a
sum of 4 cross section contributionsNote: e Le €tc.(1)

d unpolarized 1 d . . d . .

d :szeL%! LR+TeL%! R L
d + + d + +
d e ! | g t d e ! R L O

where weaverageover the incoming spins andum over the nal state spins.
Let us look in more detail at the helicity dependence (H&M6.6):
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Initial state:

,,,,,, . z-axis In the initial state the e and

e e €' have opposite helicity (as they
produce a spin 1).

e
Final state: / The same is true for the nal state
—q and .

So, in the center of mass frame, scattering proceeds from artiadi state with Jz =
+1 or 1 along axisz'into a nal state with J2 = +1 or 1 along axisz® Since the
interaction proceeds via a photon with spin] = 1 the amplitude for scattering over an
angle is then given by the rotation matrices.

. D _
dhom( ) imTe jim

where they-axis is perpendicular to the interaction plane.
In the example we havg =1 and m;m°= 1

dis( )

di +()

¢y ()= (1 +cos )

d'1i()= 5(1 cos)

From this we can see that:

2

d + + d 4 +
d ee! L r = £(1+COS )? = d erel ! R L
d + + 2 d 4 +
d ee! rL = E(l cos )* = d el ! L R

Indeed the unpolarised cross section is obtained as the spindaged sum over the
allowed helicity combinations &ee lecture & % [(D+@2)+(3)+@4)] =

d unpol 1 2 h ) 2i 2 32
—_— = - —2 (1+cos + (1 Ccos = — 1+co
d 4 4s ( )+ ) 4s

1See H&MX2.2:

. X
e Vzjimi=" d o )jim
mO

and also appendix H in Burcham & Jobes
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Now we go back to the , Z scattering. We have the individual contributions of the
helicity states, so let us compare the expressions for the mat@tementsM and M z:

e? h L i h L i
M = g Lm Lm + Rm Rm Le Le + Re Re
2 h I
g 1 m — m ——
Mz = C L tm tC R R
4co¢ , s M2z Tt m m R m o
W 2 L L i
e e
CL Le Le t CR Re Re

At this point we follow the notation of Halzen and Martin and introduce:

erP  rM (P rLe( P k(P rRWP), R RLm( D).
Since the helicity processes do not interfere, we can see (Execl0 (a)) that:

d 2 . .
d . ee! L r = 25 (1+cos )* jL+rCl"CEj?
d e e ! .o (1 cos)? jl+rCrCej?
d . L& rRL T 4 J rR “L)
with:
. ¢ 1 s 'OEGFMZ2 s
€ 4co8 w5 M2 e s M2

where we used that:

Ge _ o _ o5
P35 = 8M2 ~ 8MZcog

Similar expressions hold for the other two helicity con gurabns.

We note that there is& strange behaviour in the expression of theross section of
the Z-propagator. When™ s! M the cross section becomek . In reality this does
not happen (that would be unitarity violation) due to the fact that the Z-particle itself
decays and has an intrinsic decay width ;. This means that the cross section has a
Breit Wigner resonance shape. We are not going to derive it, buéfer to the literature:
e.g. Perking.

Alternatively, a simple argument followed by H&M x2.10 goes as follows: The wave
function for a non-stable massive particle state is:

i M7 = j (0jFe ' with the lifetime :
(t) e M e 2t with M the mass

2Perkins: Introduction to high energy Physics 3¢ ed. x4.8.
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Breit Wigner

6L
As function of the energy of thee'e i
pair the state is described by the Fourier 5 |\A/|:=12%
transform: al G=25
z 1 ;
E)= t)e™ dt _ ; 3t
(E) ® E M+(i =2 ;
Such that experimentally we would observe: 2
1 L
: : A i
J (E)Jzz 2 _\2 1 0’ s RN AR AP
(E M)"+( =2) 0 5 10 15 20 25 30 35 40
E
the so-called Breit-Wigner resonance shape.
In the propagator for the z-boson we replace:
1 1 1
5 | 5 = 5 > .
S MZ S MZ |7Z S MZ TZ + IM zZ Z
We observe two changes:
1. The maximum of the distribution shifts fromM2! M2 T%.
2. The expression will be nite because of the termm Mz
For our expressions in the process " ! ;Z | * it means that we only replace:
r_'OEGFMZ2 s r_'OEGFMZ2 s
e s M2 Y ¢ s M iz’

The total unpolarized cross section nally becomes the averagver the fourL, R
helicity combinations. Inserting \lepton universality" C° = C, ; C§ = Cy and therefore
also: C§ = C,, ; Cz = C, , the expression becomes (by writing it out):

d 2 h i

|
= = = Ao 1+cos + A, (cos)

with  Ag=1+2 Re(r) C2 + jrj2 C2+ C2 °
A1 =4 Re(r) CZ +8jrj>’CZCz
In the Standard Model we have:C, = 1andCy = 1+2sin?

The general expression fog e ! ;Z ! ™ is (assuming seperate couplings for
initial and nal state):

Ao = 1+2Re(r)CeC! +jrji2 ce2+ce2 ¢+ cl’

A1

4Re(r) CECh +8jrj2cec! csch



12.1. The Cross Section of e ! * 137

To summarize, on theamplitude levelthere are two diagrams that contribute:

e e
M >‘N‘< Mz >_Z“<
e+ + e+ +
Introducing the following notation:

3 Z;2] = _z_<

d . <
121 =
« . »X
di [ ' ] -
Explicitly, the expression is:

d _ d _. d _ d .
a4 7[1 ]+d7[z1z]+d7[1z]

d d
ith —1[; 1= — 1+co
W d L 4s
d 2
T Zz]= i c§? e CR ci?+cl® 1+cog +8cechcec! cos
d 2 o h f i
d—[;Z]: 75 Relir] CéCy, l+cos +2C:C,cos
Let us take a look at the cross section close to the peak of the dibution:
iy S = S
s M; i+ s M2 £+ +iMz ;

The peak is located atsy = M 2 T%.
In Exercise 40 (b) we show that:

Re(r)= 1 %jrjz with  jrj? =

s M2 2 +MZ2
This shows that the interference term is O at the peak.
In that case (i.e. at the peak) we have for the cross section terms:

Ao = 1+jr2 cg2+cCg? C)'+cl’

A; = 8jrj> C¢cCscCl ch
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The total cross section (integrated oved ) is then:

GEM7 s 2 2
= e2 e2 f f
(s) = A 6 Cy "+ Cy Cy +Ca
s Mz oE +mEl
Z T T T T T
2 :
...................... >
- 40F 5 —
]
= ALEPH !
%2 DELPHI H \
L3 {
30 OPAL / 4
20 1

o measurements, error bars /
increased by factor 10 /

/
10-__ s from fit /

- .
= 1 1 1 \i/M Z

86 88 90 92 94
E,, M5eVN

Figure 12.4:left: The Z-lineshape as a function orf) S. right: The Lineshape parameters
for the lowest order calculations and including higher ordezorrections.

12.2 Decay Widths

We can also calculate the decay width: f
zZ1 ff o <

which is according Fermi's golden rule:

f

1 1 2
= M
16 Mgz
g M
48 cog ,
G M3
&2

z! ff =

f2 f2
C, +C,

f2 f2
Cy, +C,

Using this expressionfor ,  (Z! €e"e )and (Z! ff)we can re-write:

12

9= 17
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Close to the peak we then nd:

12 12
peak 317 e l= "> BR(Z! ed BR(Z! ff)
Z Z Z

Let us now nally consider the case wherf = q (a quark). Due to the fact that
quarks can be produced in 3 color-states the decay width is:

G M3

2 2
(Z! ad= P35 Cy +Cy” Nc

with the colorfactor N¢ = 3. The ratio between the hadronic and leptonic width:
Ri = had= 1ep Can be de ned. This ratio can be used to test the consistency of the
standard model by comparing the calculated value with the obseed one.

12.3 Forward Backward Asymmetry

The forward-backward asymmetry can be de ned using the polamgle distribution. At
the peak and ignoring the pure photon exchange:

d
dcos

/| 1+cos + zAFB cos

This de nes the forward-backward asymmetry with:

< 3 2c! cf
of _ 2 — V ~A
ARs = JAGA; where A i

The precise measurements of the forward-backward asymmetryndae used to determine
the couplingsCy and Ca.

Y7 R —
: h 68Y CL|
0.018 1 1
S £
<
0.014 A ]
—Ir
e'e
mm )
R ,t+t' s
0.01 \ \
20.6 20.7 20.8 20.9

Figure 12.5: left: Test of lepton-universality. The leptonicA¢, vs. R,. The contours
show the measurements while the arrows show the dependency omrstard Model
parameters.right: Determination of the vector and axial vector couplings.
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12.4 The Number of Light Neutrino Generations

Since the total decay width of theZ must be equal to the sum of all partial widths the
following relation holds:
z= + + +3 wWw+3 @w*+3 ss*+3 c+t3 wt+ N

ee

From a scan of theZ-cross section as function of the center of mass energy we nd:

z 2490 MeV

1
ee = 84 MeV Cv 0 Ca = E
1 1
= 167 MeV Cy= C.= L
e v 5 " 5
1
ad o b= 360 MeV Cy 035  Cu= ;

(Of course y =0 since the top quark is heavier than theZ.)

3
N = 2 | had —5.984 0:008 :

Figure 12.6: TheZ-lineshape for respN =2; 3; 4.
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Figure 12.7: Standard Model t of the predicted value of the Higs boson.
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Exercise 40:
(a) Show how the unpolarised cross section formula for the prese™e ! z; ! *
can be obtained from the expression of the helicity cross sectsoim the lecture:
d 2 ) 2
g &= €. ! R R = £(1 cos )* 1+rCgxC i

(b) Show, using the expression of from the lecture, that close to the peak of the
Z-lineshape the expression

Re(r)= 1 sz’ irj?

with s = M2 2=4 holds.
(c) Show also that at the peak:

12
(d) Calculate the relative contribution of the Z-exchange and the exchange to the
cross section at theZ peak.
Usesin® w =0:23 M, =91 GeV and ; =2:5GeV.

(e) The actual line shaps of theZz-boson is not a pure Breit Wigner, but it is asym-
metrical: at the high = s side of the peak the cross section is higher then expected
from the formula derived in the lectures.

Can you think of a reason why this would be the case?

(f) The number of light neutrino generations is determinedrbm the \invisible width"
of the Z-boson as follows:

N:z3| had

Can you think of another way to determine the decay rate aof ! directly?
Do you think this method is more precise or less precise?



Appendix A

Variational Calculus

This appendix is a short reminder of variational calculus lefing to the Euler Lagrange
equations of motion. Let us assume that we have a cartesian coimi@e system with
coordinatesx andy, and consider the distance between an initial positiorxg; yo) and a
nal position ( X1;y;). We ask the simple question: \What is the shortest path between
the two points in this space?"

Assume that the path of the particle can be represented as= f (x) = y(x). So
Y(Xo) = Yo and y(X1) = yi.

Consider now the distancell of two in nitesimal close points:

V Pay 14
q_ H N dyl 2J- q
di= dx2+dy2="t dx2@1+ o A= Lryedx
with y°= dy=dx
The total length from (Xo; Yo) to (X1; Y1) iS:
Zy, Zx. 9
| = dl = 1+ y®dx

The problem is to nd the function y(x) for which the I is minimal. The variational
principle states that for the shortest path this integral shouldbe stationary for possible
di erent paths; i.e. for di erent functions of y(x).

To nd the solution we shall look at a more general case. Assume thahé path
length is given by the integral:
z

| = " f (y; y)dx

X

In the above example we havé (y;y%) = f (y9 = Pis ye,
According to the variational principle the physics path is obained via | = 0. First
we consider the in nitesimal change

_ef af ,
1E_@nyr@Vy
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where y°= & = 4 (y)
So we nd: of @f d
f=—y+ _——
@y " @yax Y
and the variation of the integral is:
2 3

le
o, o

=Yyt = (y)% dx
@y @

(€] @
The 2-nd term can be integrated in parts:

Xo

_ %xd @f @f
(2) = ‘o &@/ydx"' @yx
|—£g—?

The second term is zero due to the boundary conditions (the tral and nal point are
xed: y =0.)
Therefor a the stationary path requires:

I#
Zx @f d @f

| = w @y dx @Y y(x)dx=0
This is obtained when the integrand is 0, or:
@t daer_,
@y dx@y

For the straigywt line example above we had (y9) = P 1+ y2, such that @f=@y 0 and
@f=@y y= 1+ y®@. So the variational principle states that:
|

4a ¥
dx 1+y®

or that y%is a constant dy=dx= a) and the solution is therefore:y = ax + b.

In mechanics involving conservative forces we apply the stahary action principle
to the Lagrangian function (L), which depends on the generalized coordinateg ;(@):

Lgi)=T V
such that we write for the equation of motion:

da _@ .
d@ @q
Hamilton's principle states that the action integral
Z,,
= L(g;q) dt

to

is stationary: | =0.



Appendix B

Some Properties of Dirac Matrices

and

This appendix lists some properties of the operators and in the Dirac Hamiltonian:

1.

. @ :
E =1Z = ~ F+ m
[ ot [
i and are Hermitean.
They have real eigenvalues because the operat&rsand p are Hermitean. (Think

of a plane wave equation: = Ne P * )

.Tr( i)=Tr( )=0.

Since | = i, we have also: ; 2 = i . Since ? = 1, this implies:
= i and thereforeTr( ;)= Tr( ;)= Tr( i )= Tr( ), where
we used thatTr(A B)= Tr(B A).

. The eigenvalues of; and are 1.

To nd the eigenvalues bring ;; to diagonal form and since (;)? = 1, the square
of the diagonal elements are 1. Therefore the eigenvalueg arl. The same is
true for

. The dimension of ; and matrices is even.

The Tr( ;) =0. Make ; diagonal with a unitary rotation: U ;U *. Then, using
againTr(AB) = Tr(BA), we nd: Tr(U ;U )= Tr( ;U *U)= Tr( ;). Since
U ;U ! has only +1 and 1 on the diagonal (see 3.) we haveTr(U ;U 1) =
j(+x1)+(n j)( 1) =0. Thereforej = n j orn = 2j. In other words: n is
even.
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