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Recap:	“Seeing	the	wood	for	the	trees”
• Lecture	1:	“Particles”
• Zooming	into	constituents	of	matter
• Skills:	distinguish	particle	types,	Spin

• Lecture	2:	“Forces”
• Exchange	of	quanta:	EM,	Weak,	QCD
• Skills:	4-vectors,	Feynman	diagrams

• Lecture	3:	“Waves”
• Quantum	fields	and	gauge	invariance
• Dirac	algebra,	Lagrangian,	co- &	contra	variant

• Lecture	4:	“Symmetries”
• Standard	Model,	Higgs,	Discrete	Symmetries
• Skills:	Lagrangians,	Chirality	&	Helicity

• Lecture	5:	“Scattering”
• Cross	section,	decay,	perturbation	theory
• Skills:	Dirac-delta	funtion Feynman	Calculus

• Lecture	6:	“Detectors”
• Energy	loss	mechanisms,	detection	technologies

38 LECTURE 2. PERTURBATION THEORY AND FERMI’S GOLDEN RULE

You may wonder why we need to consider a finite time interval T . The reason is that
when we assume that the initial state is an eigenstate of the free Hamiltonian with fixed
momentum (or energy), we have lost track of where a particle is in both space and

time. A moving wave packet would see the static potential during a finite time, but the
plane waves do not. Just like we will need to normalize the wave functions on a finite
volume, we will need to normalize the potential to a finite time. A proper treatment is
rather lengthy and relies on the use of wave packets. (See e.g. the book by K.Gottfried,
“Quantum Mechanics” (1966), Volume 1, sections 12, 56.) In the end, we can write
transition probabilities in terms of plane waves, provided that we normalize to T and
V . We discuss the normalization in more detail below.

2.3 Relativistic scattering

Fermi’s golden rule allows us to compute the scattering rate of non-relativistic particles
on a static potential. In scattering experiments at high energies we need to deal with two
scattering particles, rather than single particles scattering on a source. As an example,
consider two spin-less electrons scatter in their mutual electromagnetic field, as depicted
in Fig. 2.3.
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Figure 2.3: Scattering of two electrons in an electromagnetic potential.

Such scattering processes can be described by the exchange of virtual particles, Yukawa’s
force carriers. Even without understanding the details of the interaction, we can readily
identify one place where it should di↵er from the discussion above: the result must
somehow encode four-momentum conservation and not just energy conservation.

Our master formula for the di↵erential cross-section, Eq. (2.8) is essentially a gener-
alization to problems with more than one particle in the initial or final state. We
cannot derive the expressions for a scattering cross section at high energies without
going through the machinery of quantum field theory. (This is not entirely true: see
Thomson, chapter 3 and section 5.1.) Instead, we will sketch the main results, then work
through the electrodynamics of spin-less particles as an example in the next lectures.

𝑔"𝑔"

1
𝑞% − 𝑀"

%

𝑍



Lecture	1:	“Particles”	- Nuclear

• Neutrons ‘glue’ protons together —> force between nucleons 

• Must be very short range (~fm) 

• Must be attractive, but repulsive at very short scales 

—> Square well? (infinities —> binding energies problematic?) 
  

Nuclear force

14

Lecture 2

Kernkrachten

• Een model voor de potentiaal
• ‘Vierkante put’ potentiaal

• Nucleonen gevangen in put

• In werkelijkheid natuurlijk niet  
zo scherp afgebakend

• Maar er is ook de elektromagnetische Coulomb interactie
• Extra bijdrage aan de totale potentiaal voor nucleonen (protonen)

• Hierdoor schematisch potentiaal ‘vervormd’ naar:

41

Neutron Proton

1

1 Nuclear fusion
• Light elements —> Fuse together to free !m 

• Need to overcome Coulomb barrier, but nuclear force helps  
—> fuse H, or D (or T?)  
 
 
 
 
 
 
 

• Classically possible to fuse? —> Exercise 
• Quantum-mechanical tunneling helps! —> Gamow factor.

37

Nuclear fusion and fission

35



Lecture	1:	“Particles”	- subatomic

36 1 Historical Introduction to the Elementary Particles

Once again, diagonal lines determine charge and horizontal lines determine
strangeness, but this time the top line has S = 1, the middle line S = 0, and the
bottom line S = −1. (This discrepancy is again a historical accident; Gell-Mann
could just as well have assigned S = 1 to the proton and neutron, S = 0 to the
!’s and the ", and S = −1 to the #’s. In 1953 he had no reason to prefer that
choice, and it seemed most natural to give the familiar particles – proton, neutron,
and pion – a strangeness of zero. After 1961, a new term – hypercharge – was
introduced, which was equal to S for the mesons and to S + 1 for the baryons. But
later developments revealed that strangeness was the better quantity after all, and
the word ‘hypercharge’ has now been taken over for a quite different purpose.)

Hexagons were not the only figures allowed by the Eightfold Way; there was
also, for example, a triangular array, incorporating 10 heavier baryons – the baryon
decuplet:∗

∗ In this book, for simplicity, I adhere to the old-fashioned notation in which the decuplet parti-
cles are designated !* and #*; modern usage drops the star and puts the mass in parentheses:
!(1385) and #(1530).

18 Lecture 1. Particles and Forces
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Figure 1.7: Decuplet of baryons with spin=3/2. The Ω− was not yet observed when
this model was introduced. It’s mass was predicted.

Figure 1.8: Discovery of the omega particle.

1.7 The Eightfold Way (1961–1964) 35

photon don’t experience strong forces at all, so strangeness does not apply to
them.)

The garden that seemed so tidy in 1947 had grown into a jungle by 1960, and
hadron physics could only be described as chaos. The plethora of strongly interacting
particles was divided into two great families – the baryons and the mesons – and
the members of each family were distinguished by charge, strangeness, and mass;
but beyond that there was no rhyme or reason to it all. This predicament reminded
many physicists of the situation in chemistry a century earlier, in the days before
the periodic table, when scores of elements had been identified, but there was no
underlying order or system. In 1960, the elementary particles awaited their own
‘periodic table’.

1.7
The Eightfold Way (1961–1964)

The Mendeleev of elementary particle physics was Murray Gell-Mann, who intro-
duced the so-called Eightfold Way in 1961 [23]. (Essentially the same scheme was
proposed independently by Ne’eman.) The Eightfold Way arranged the baryons and
mesons into weird geometrical patterns, according to their charge and strangeness.
The eight lightest baryons fit into a hexagonal array, with two particles at the center:∗

This group is known as the baryon octet. Notice that particles of like charge lie along
the downward-sloping diagonal lines: Q = +1 (in units of the proton charge) for
the proton and the !+; Q = 0 for the neutron, the ", the !0, and the #0; Q = −1
for the !− and the #−. Horizontal lines associate particles of like strangeness: S = 0
for the proton and neutron, S = −1 for the middle line, and S = −2 for the two #’s.

The eight lightest mesons fill a similar hexagonal pattern, forming the (pseudo-
scalar) meson octet:

∗ The relative placement of the particles in the center is arbitrary, but in this book I shall always
put the neutral member of the triplet (here the !0) above the singlet (here the ").

Baryon	Octet

Spin	– ½	

1.5 Neutrinos (1930–1962) 25

Fig. 1.5 The beta decay spectrum of tritium (3
1H → 3

2He).
(Source: Lewis, G. M. (1970) Neutrinos, Wykeham, London,
p. 30.)

In modern terminology, then, the fundamental beta decay process is

n → p+ + e− + ν (1.8)

(neutron goes to proton plus electron plus antineutrino).
Now, you may have noticed something peculiar about Powell’s picture of the

disintegrating pion (Figure 1.3): the muon emerges at about 90◦ with respect to
the original pion direction. (That’s not the result of a collision, by the way; collisions
with atoms in the emulsion account for the dither in the tracks, but they cannot
produce an abrupt left turn.) What this kink indicates is that some other particle
was produced in the decay of the pion, a particle that left no footprints in the
emulsion, and hence must have been electrically neutral. It was natural (or at any
rate economical) to suppose that this was again Pauli’s neutrino:

π → µ + ν (1.9)

A few months after their first paper, Powell’s group published an even more striking
picture, in which the subsequent decay of the muon is also visible (Figure 1.6). By
then muon decays had been studied for many years, and it was well established
that the charged secondary is an electron. From the figure there is clearly a neutral
product as well, and you might guess that it is another neutrino. However, this
time it is actually two neutrinos:

µ → e + 2ν (1.10)

Baryon	Decuplet

Spin	– )
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Lecture	2:	“Forces”

Vertex:	𝑒Vertex:	𝑒

Propagator:	 9
:;

Weak interaction
• Original idea, Fermi: 4-point ‘contact’ interaction (1933) 

• Short range, so not a bad idea at low energies 
• However, force = exchange of particle: ‘intermediate vector boson’

�22

- W is (electrically) charged! 
- (q2 = ‘energy’ of W) 
- if q2 > Mw2 —> effect visible 
- note: if MW large —> force small

- GF ~ 10-5 (~ g2/MW2) 
- compare to ! ~ 10-2

g2

M2
W � q2

GF

✓
⇡ g2

M2
W

◆

Not just ‘vertex’, 
but also ‘propagator’

Vertex: <
% %�

Vertex: <
% %�

Propagator:					
9

	>?
; 7:;

𝑞

𝑞

𝑔@AB 𝑔@AB

𝑔@<B

𝑔<AB 𝑔@AB

𝑔<@̅

𝑔A@̅

𝑔<@̅

EM	(QED) Weak

Strong	(QCD)
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Lecture	3:	“Waves”	– wave	equations

Quantum	Mechanics: 𝐸 → 𝐸D = 𝑖ℏ G
GH

;							𝑝 → 𝑝̂ = −𝑖ℏ𝛻

𝐸 = 	
𝑝⃗%

2𝑚	

𝐸% = 𝑝%𝑐% + 𝑚%𝑐M −
1
𝑐%

𝜕%

𝜕𝑡%
𝜙 = −𝛻%𝜙 +

𝑚%𝑐%

ℏ%
𝜙

𝜕Q𝜕Q𝜙 +𝑚%𝜙 = 0

𝑖ℏ
𝜕
𝜕𝑡
𝜓 = −

ℏ%

2𝑚
𝛻%𝜓

Non-relativistic	spin	0: Schrödinger:

𝜕𝜌
𝜕𝑡
+ 𝛻 ⋅ 𝚥 = 0

𝜌 ≡ 𝜓∗𝜓 = 𝑁 %

𝚥 ≡ Zℏ
%[	

𝜓𝛻𝜓∗ − 𝜓∗𝛻𝜓 = \ ;

[
𝑝⃗

Relativistic	spin	0:

Relativistic	spin- ½:	

𝐻 = 𝛼⃗ ⋅ 𝑝⃗ + 𝛽𝑚 𝑖
𝜕
𝜕𝑡
𝜓 = −𝑖	𝛼⃗ ⋅ 𝛻 + 𝛽𝑚 𝜓

𝑖𝛾Q𝜕Q − 𝑚 𝜓 = 0

Klein-Gordon:

Dirac:

𝑗Q = 2 𝑁 %𝑝Q

𝜌 = 2 𝑁 %𝐸
𝚥 = 2 𝑁 %𝑝⃗

𝜓 = 𝑁𝑒Z a⃗b⃗7cH

𝑗d = 𝜓B𝛾d𝜓 = 𝜓e𝜓 = f 𝜓Z %
M

Zg9	

Probability	interpretation
(Continuity	equation)

𝜙 = 𝑁𝑒Z a⃗b⃗7cH

𝜓 = 𝑢(𝑝)𝑒Z a⃗b⃗7cH

𝑢 𝑝 =

.

.

.

.
𝑗Q = 𝜓B𝛾Q𝜓



Lecture	3:	“Waves”	– gauge	invariance
Lagrangians Spin	0	Scalar	field:	ℒ = 9

%
𝜕Q𝜙 𝜕Q𝜙 −𝑚%𝜙%

Spin	½	Dirac	fermion	ℒ = 𝑖𝜓B𝛾Q𝜕Q𝜓 −𝑚𝜓B𝜓

Spin	1	gauge	boson	(photon)	:	ℒ = − 9
M
𝜕Q𝐴n − 𝜕n𝐴Q 𝜕Q𝐴n − 𝜕n𝐴Q − 𝑗Q𝐴Q

𝜕ℒ
𝜕𝜙 𝑥

= 𝜕Q
𝜕ℒ

𝜕 𝜕Q𝜙 𝑥
Euler	Lagrange	lead	to	the	wave	equations:	

Forces	result	from	requiring	a	symmetry	principle:	Lagrangian should	stay	invariant

𝜓 𝑥 →	𝜓p 𝑥 	= eZ:r b 𝜓 𝑥

𝐴Q 𝑥 → 𝐴pQ 𝑥 = 𝐴Q 𝑥 −
1
𝑞
𝜕Q𝛼 𝑥

1)	QED	=	U(1)	symmetry ℒ = 𝑖𝜓B𝛾Q𝜕Q𝜓 −𝑚𝜓B𝜓 ℒ = 𝑖𝜓B𝛾Q	𝐷Q𝜓 −𝑚𝜓B𝜓

𝜕Q → 𝐷Q ≡ 𝜕Q + 𝑖𝑞𝐴Q

ℒ = 𝑖𝜓B𝛾Q	𝜕Q𝜓 −𝑚𝜓B𝜓	 − 𝑞𝜓B𝛾Q𝐴Q𝜓

Covariant	derivative:

“free” “interaction”

2)	Weak	=	SU(2)	symmetry

3)	QCD	=	SU(3)	symmetry



Lecture	4:	“Symmetries”	– Standard	Model	
• The	Lagrangian of	the	Standard	Model	includes	electromagnetic,	weak	and	strong	
interactions	according	to	the	gauge	field	principle

• Construction	of	the	Lagrangian:	ℒ = ℒtuvv − ℒwxyvuz{yw|x = ℒ}wuz{ − 𝑔𝐽Q𝐴Q
• With	𝑔 a	coupling	constant,	𝐽Q a		current	(𝜓BΟZ𝜓)	and	𝐴Q a	force	field
A. Local	𝑈 1 gauge	invariance:	symmetry	under	complex	phase	rotations
• Conserved	quantum	number:	(hyper-)	charge

• Lagrangian:	ℒ = 𝜓B 𝑖𝛾Q𝐷Q − 𝑚 𝜓 = 𝜓B 𝑖𝛾Q𝜕Q − 𝑚 𝜓 − 𝑞𝜓B𝛾Q𝜓
���
�

𝐴Q

B. Local	𝑆𝑈 2 gauge	invariance:	symmetry	under	transformations	in	isospin	doublet	space.
• Conserved	quantum	number:	weak	isospin

• Lagrangian: ℒ = Ψ� 𝑖𝛾Q𝐷Q − 𝑚 Ψ = Ψ� 𝑖𝛾Q𝜕Q − 𝑚 Ψ− <
%
Ψ�𝛾Q𝜏Ψ𝑏Q

�?���
�

C. Local	𝑆𝑈 3 gauge	invariance:	symmetry	under	transformations	in	colour triplet	space
• Conserved	quantum	number:	color

• Lagrangian:	ℒ = Φ� 𝑖𝛾Q𝐷Q − 𝑚 Φ = Φ� 𝑖𝛾Q𝜕Q − 𝑚 Φ− <�
%
Φ�𝛾Q𝜆Φ
�⃗���
�

𝑐Q



Lecture	4:	“Symmetries”	– Standard	Model

ℒ = 𝜓B 𝑖𝛾Q𝐷Q −𝑚 𝜓 = 𝜓B 𝑖𝛾Q𝜕Q − 𝑚 𝜓 − 𝑞𝐽c>
Q 𝐴Q 	−

𝑔
2
𝐽�vz�
Q 𝑏Q −

𝑔�
2
𝐽���	
Q 𝑐Q

132 Lecture 11. Electroweak Theory

and the interaction term in the Lagrangian becomes:

−i
(

eJµ
EM · Aµ +

e

cos θw sin θw
Jµ

NC · Zµ

)

in terms of the physical fields Aµ and Zµ.

11.3 The Mass of the W and Z bosons

In the electroweak model as introduced here, the gauge fields must be massless, since ex-
plicit mass terms (∼ φµφµ) are not gauge invariant. In the Standard Model the mass of
all particles are generated in the mechanism of spontaneous symmetry breaking, intro-
ducing the Higgs particle (see later lectures.) Here we just give an empirical argument
to predict the mass of the W and Z particles.

1. Mass terms are of the following form:

M2
φ = 〈φ |H|φ〉 for any field φ

2. From the comparison with the Fermi 4-point interaction we find:

GF√
2

=
g2

8M2
W

⇒ M2
W =

√
2g2

8GF
=

√
2

8GF

e2

sin2 θ

Thus, we get the following predictions:

MW =

√
√
√
√

√
2

8GF

e

sin θw
= 81 GeV

MZ = MW (gz/g) = MW /cos θ = 91 GeV

11.4 The Coupling Constants for Z → f f̄

For the neutral Z-current interaction we have in general:

−igZ Jµ
NC Zµ = −i

g

cos θw

(

Jµ
3 − sin2 θwJµ

EM

)

Zµ

= −i
g

cos θw
ψ̄fγ

µ
[
1

2

(

1 − γ5
)

T3 − sin2 θwQ
]

︸ ︷︷ ︸

1
2(Cf

V −Cf
Aγ5)

ψf · Zµ

which we can represent with the following vertex:

Z0

f

f
−i

g

cos θw
γµ 1

2

(

Cf
V − Cf

Aγ
5
)

𝐴QQED	U(1)	ℒwxy	 = −𝐽Q𝐴Q with		𝐽Q = 𝑞𝜓B𝛾Q𝜓	

Weak	SU(2)	:	ℒwxy	 = −𝐽Q𝑏Q with		𝐽Q =
<
%
	Ψ�	𝛾Q𝜏	Ψ

9.2. THE CHARGED CURRENT 147

As you will show in exercise 9.2 we can rewrite the charged current Lagrangian as

LCC = �g W+

µ
J+µ

� g W�
µ

J�µ (9.24)

with

Jµ,± =
1
p

2
 L �µ ⌧±  L (9.25)

and ⌧± = 1

2
(⌧1 ± i⌧2), or in our representation

⌧+ =

✓
0 1
0 0

◆
and ⌧� =

✓
0 0
1 0

◆
. (9.26)

The leptonic currents can then be written as

J+µ =
1
p

2
⌫L �µ eL and J�µ =

1
p

2
eL �µ ⌫L (9.27)

or written out with the left-handed projection operators:

J+µ =
1
p

2
⌫

1

2

�
1 + �5

�
�µ

1

2

�
1� �5

�
e (9.28)

and similar for J�µ. Verify for yourself that
�
1 + �5

�
�µ

�
1� �5

�
= 2�µ

�
1� �5

�
(9.29)

such that we can rewrite the leptonic charge raising current as

J+µ =
1

2
p

2
⌫ �µ

�
1� �5

�
e (9.30)

and the leptonic charge lowering current as

J�µ =
1

2
p

2
e �µ

�
1� �5

�
⌫ . (9.31)

Remembering that a vector interaction has an operator �µ in the current and an axial
vector interaction a term �µ�5, we recognize in the charged weak interaction the famous
“V-A” interaction. The story for the quark doublet is identical. Drawn as diagrams,
the charged currents then look as follows:

Charge raising: W+

e�

⌫e

W+

d

u

Charge lowering: W�

e�

⌫e

W�

d

u
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and the interaction term in the Lagrangian becomes:

−i
(

eJµ
EM · Aµ +

e

cos θw sin θw
Jµ

NC · Zµ

)

in terms of the physical fields Aµ and Zµ.

11.3 The Mass of the W and Z bosons

In the electroweak model as introduced here, the gauge fields must be massless, since ex-
plicit mass terms (∼ φµφµ) are not gauge invariant. In the Standard Model the mass of
all particles are generated in the mechanism of spontaneous symmetry breaking, intro-
ducing the Higgs particle (see later lectures.) Here we just give an empirical argument
to predict the mass of the W and Z particles.

1. Mass terms are of the following form:

M2
φ = 〈φ |H|φ〉 for any field φ

2. From the comparison with the Fermi 4-point interaction we find:

GF√
2

=
g2

8M2
W

⇒ M2
W =

√
2g2

8GF
=

√
2

8GF

e2

sin2 θ

Thus, we get the following predictions:

MW =

√
√
√
√

√
2

8GF

e

sin θw
= 81 GeV

MZ = MW (gz/g) = MW /cos θ = 91 GeV

11.4 The Coupling Constants for Z → f f̄

For the neutral Z-current interaction we have in general:

−igZ Jµ
NC Zµ = −i

g

cos θw

(

Jµ
3 − sin2 θwJµ

EM

)

Zµ

= −i
g

cos θw
ψ̄fγ

µ
[
1

2

(

1 − γ5
)

T3 − sin2 θwQ
]
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1
2(Cf

V −Cf
Aγ5)

ψf · Zµ

which we can represent with the following vertex:

Z0

f

f
−i

g

cos θw
γµ 1

2

(

Cf
V − Cf

Aγ
5
)𝐽Q) =

9
%
Ψ�𝛾Q𝜏)Ψ	 with			𝜏± = 9

%
𝜏9 ± 𝑖𝜏%

𝐽Q± =
9
%�
Ψ�𝛾Q𝜏±Ψ	 with			𝜏± = 9

%
𝜏9 ± 𝑖𝜏%𝑊Q± ≡

1
2�
𝑏Q9 ∓ 𝑖𝑏Q%

𝑍Q = 𝑏Q)

		𝛾Q	= 			 𝐴Q cos 𝜃¡ 	+	𝑏Q) sin 𝜃¡
𝑍Q = −AQ sin 𝜃¡ 	+	𝑏Q) cos 𝜃¡

Electroweak	SU(2)xU(1):

𝑆𝑈 3 {|¥|u×𝑆𝑈 2 §×𝑈 1 ¨Standard	Model:	



Lecture	4:	“Symmetries”	– Symmetry	breaking

• Start with a (new) scalar field !:  (Klein-Gordon), with a potential:  
 
 
 
 
 
                                Imaginary mass? —> makes no sense!  
                                

Simple example

�61

For a real scalar field for example:

Lscalar =
1

2
(@µ�) (@

µ
�)�

1

2
m

2
�
2
! Euler-Lagrange ! (@µ@

µ +m
2)� = 0| {z }

Klein-Gordon equation

In electroweak theory, kinematics of fermions, i.e. spin-1/2 particles is described by:

Lfermion = i ̄�µ@
µ
 �m ̄ ! Euler-Lagrange ! (i�µ@

µ
�m) = 0| {z }

Dirac equation

In general, the Lagrangian for a real scalar particle (�) is given by:

L = (@µ�)
2

| {z }
kinetic term

+ C|{z}
constant

+ ↵�|{z}
?

+ ��
2

|{z}
mass term

+ ��
3

|{z}
3-point int.

+ ��
4

|{z}
4-point int.

+ ... (1)

We can interpret the particle spectrum of the theory when studying the Lagrangian under
small perturbations. In expression (1), the constant (potential) term is for most purposes
of no importance as it does not appear in the equation of motion, the term linear in the
field has no direct interpretation (and should not be present as we will explain later), the
quadratic term in the fields represents the mass of the field/particle and higher order terms
describe interaction terms.

1.3 Simple example of symmetry breaking

To describe the main idea of symmetry breaking we start with a simple model for a real
scalar field � (or a theory to which we add a new field �), with a specific potential term:

L =
1

2
(@µ�)

2
� V(�)

=
1

2
(@µ�)

2
�

1

2
µ
2
�
2
�

1

4
��

4 (2)

Note that L is symmetric under � ! �� and that � is positive to ensure an absolute
minimum in the Lagrangian. We can investigate in some detail the two possibilities for the
sign of µ2: positive or negative.

1.3.1 µ
2
> 0: Free particle with additional interactions

)φV(

φ

To investigate the particle spectrum we look at the Lagrangian for
small perturbations around the minimum (vacuum). The vacuum
is at � = 0 and is symmetric in �. Using expression (1) we see that
the Lagrangian describes a free particle with mass µ that has an
additional four-point self-interaction:

L =
1

2
(@µ�)

2
�

1

2
µ
2
�
2

| {z }
free particle, mass µ

�
1

4
��

4

| {z }
interaction
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1.3.2 µ
2
< 0: Introducing a particle with imaginary mass ?

φ

)φV( v

η

The situation with µ
2
< 0 looks strange since at first glance it

would appear to describe a particle � with an imaginary mass.
However, if we take a closer look at the potential, we see that it
does not make sense to interpret the particle spectrum using the
field � since perturbation theory around � = 0 will not converge
(not a stable minimum) as the vacuum is located at:

�0 =

r
�
µ2

�
= v or µ

2 = ��v
2 (3)

As before, to investigate the particle spectrum in the theory, we have to look at small
perturbations around this minimum. To do this it is more natural to introduce a field ⌘

(simply a shift of the � field) that is centered at the vacuum: ⌘ = �� v.

Rewriting the Lagrangian in terms of ⌘

Expressing the Lagrangian in terms of the shifted field ⌘ is done by replacing � by ⌘+ v in
the original Lagrangian from equation (2):

Kinetic term: Lkin(⌘) =
1

2
(@µ(⌘ + v)@µ(⌘ + v))

=
1

2
(@µ⌘)(@

µ
⌘) , since @µv = 0.

Potential term: V(⌘) = +
1

2
µ
2(⌘ + v)2 +

1

4
�(⌘ + v)4

= �v
2
⌘
2 + �v⌘

3 +
1

4
�⌘

4
�

1

4
�v

4,

where we used µ
2 = ��v

2 from equation (3). Although the Lagrangian is still symmetric
in �, the perturbations around the minimum are not symmetric in ⌘, i.e. V(�⌘) 6= V(⌘).
Neglecting the irrelevant 1

4
�v

4 constant term and neglecting terms or order ⌘2 we have as
Lagrangian:

Full Lagrangian: L(⌘) =
1

2
(@µ⌘)(@

µ
⌘)� �v

2
⌘
2
� �v⌘

3
�

1

4
�⌘

4
�

1

4
�v

4

=
1

2
(@µ⌘)(@

µ
⌘)� �v

2
⌘
2

From section 1.2 we see that this describes the kinematics for a massive scalar particle:

1

2
m

2

⌘ = �v
2
! m⌘ =

p

2�v2
⇣
=

p
�2µ2

⌘
Note: m⌘ > 0.
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𝑣

ℒ =
1
2
𝜕Q𝜙

% − 𝑉 𝜙 =
1
2
𝜕Q𝜙

% −
1
2
𝜇%𝜙% −

1
4
𝜆𝜙M

Massive	Klein-Gordon
term	(Spin	0,	mass	=𝜇)

Interaction	
term

The	Lagrangian has	a	minimum	for	𝜙d = 	 − Q;

­

�
= 𝑣	or 𝜇% = −𝜆𝑣%	

Conclusion:	
• The	symmetry	of	the	Lagrangian by	adding	a	
symmetric	potential	𝜙 has	not	been	destroyed

• The	vacuum	is	no	longer	in	a	symmetric	position

The	real	case	includes	a	complex	field	𝜙



Lecture	4	:	“Symmetries”	– Violation
• The combination of C and P, then, sound like a reasonable invariant  
 
 
 
 
 
 
 
 
 
 

CP
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L

L

R

R

R

R

W+
e+R

nL

W+
e+L

nR

W-
e-R

nL

W-
e-L

nR

P

C

1)	Weak	interaction	maximally	violates	parity	“P”	and	also	charge	symmetry	“C”

• Parity turns right-handed chirality into left-handed chirality. 

• Weak interaction maximally violates parity: 
—> only couples to left-handed particles  
       (or right-handed antiparticles)! 

• Then how can we explain the decay to a right-handed muon? 
- muon and anti-neutrino must have same helicity 
- anti-neutrino is right-handed, so muon must be as well 
  —> but weak force only couples to left-handed particles?

Parity

�49
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• But what if there are two phases: 
- weak phase !, that flips sign under CP 
- strong phase δ (due to bound state) which is invariant under CP 

• Now there is a difference in the amplitude!

CP violation
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1

Chapter 1. Introduction

of a single Feynman diagram, such as B+
æ fi0µ+‹µ. There is a weak phase associated to

the CKM element Vub (Eq. 1.1.13), but since the probability of the process is proportional
to the absolute square of Vub, this phase does not a�ect the decay rate. In order to be
sensitive to the CP -violating phase, one requires two diagrams of the same process P æ f

that will interfere, with a relative phase di�erence between the two,

A1 = |A1|e
iÏ1 ,

A2 = |A2|e
iÏ2 ,

|A|
2 = |A1 + A2|

2 = |A1|
2 + |A2|

2 + |A1||A2|(ei(Ï1≠Ï2) + ei(Ï2≠Ï1))
= |A1|

2 + |A2|
2 + 2|A1||A2| cos(�Ï), (1.2.4)

where A is an amplitude and �Ï = (Ï1 ≠ Ï2). The phase Ïi consists of the CP -conserving,
or strong phase ”i and the CP -violating, or weak phase „i: Ïi = („i + ”i). Now consider
the CP -conjugate process (i.e. „ æ ≠„ and ” æ ”),

|A|
2 = |A1 + A2|

2 = |A1|
2 + |A2|

2 + 2|A1||A2| cos(�” + �„)
|A|

2 = |A1 + A2|
2 = |A1|

2 + |A2|
2 + 2|A1||A2| cos(�” ≠ �„). (1.2.5)

Notice that without a di�erent CP -conserving phase, i.e., �” = 0, we would not be able to
observe a di�erence in decay rates between CP -conjugate processes due to the symmetric
nature of the cosine. This CP -conserving phase is due to the strong interaction.

The amount of CP violation in a process can be expressed as the asymmetry in the
decay rates,

A = �(P æ f) ≠ �(P æ f)
�(P æ f) + �(P æ f)

(1.2.6)

where �(P æ f) is the CP -conjugate process of �(P æ f).
An intuitive process where two diagrams with a relative weak phase di�erence contribute,

is a decay into a final state containing a same-flavour quark-antiquark pair. This indicates
a contribution from a loop diagram called a “penguin diagram”, as is the case in the decay
B+

æ fi0K+, see Fig. 1.4. This type of CP violation is called direct CP violation or Adir
CP

,

u u

b u

W

s

u

B

K

+

+
+

Vub
*

Vus

fi0

u u

b

u

W
s

u

B K
+ ++

t

g

Vtb ts
* V

fi0

Figure 1.4: The main (left) tree and (right) penguin diagrams of the decay B+
æ K+fi0. The

interference between the two diagrams results in an observable amount of direct CP violation.
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2)	Weak	interaction	subtly	violates	simultanous “CP”
• Requires	Quantum	Mechanical	interference
• Requires	existence	of	three	particle	generations	(CKM)
• Not	sufficient	to	explain	absence	antimatter	in	

theuniverse



Lecture	5	:	“Scattering”	– non-Rel.
Perturbation	theory

2.2. NON-RELATIVISTIC SCATTERING 33

The ‘physics’ (the dynamics of the interaction) is contained in the transition rate Wfi.
The flux and the phase space factors are just ‘bookkeeping’, required to compare the
result with the measurements.

The rigorous computation of the transition rate requires quantum field theory, which
is outside the scope of this course. However, to illustrate the concepts we discuss non-
relativistic scattering of a single particle in a time-dependent potential and formulate
the result in a Lorentz covariant way. In the next chapter we will derive the lowest order
amplitude for the scattering of A + B ! A + B, which can still be done without field
theory. We can link that result to the ‘Feynman rules’ derived in field theory.

2.2 Non-relativistic scattering

t=0 

H

V(x,t)ψ
i

ψ
f

0

0H
t=T/2t=−T/2

Figure 2.1: Scattering of a single particle in a potential.

Consider the scattering of a particle in a potential as depicted in Fig. 2.1 Assume that
both long before and long after the interaction takes place, the system is described by
the free Schrödinger equation,

i~ @ 
@t

= H0  (2.9)

where H0 is the unperturbed, time-independent Hamiltonian for a free particle. Let
�m(x) be a normalized eigenstate of H0 with eigenvalue Em,

H0�m(x) = Em�m(x). (2.10)

The states �m form an orthonormal basis,
Z
�⇤

m
(x) �n(x) d3x = �mn. (2.11)

We use the Kronecker delta, as if the spectrum of eigenstates is discrete. In chapter 2 we
considered a continuous spectrum of eigenstates for the free Hamiltonian, ‘numbered’
by the wave number k. Eventually, we could do that here, too, replacing the Kronecker
delta by a Dirac delta-function. However, it is trivial to change between the two and
the notation is a bit easier when we work with a discrete set of states.

38 LECTURE 2. PERTURBATION THEORY AND FERMI’S GOLDEN RULE

You may wonder why we need to consider a finite time interval T . The reason is that
when we assume that the initial state is an eigenstate of the free Hamiltonian with fixed
momentum (or energy), we have lost track of where a particle is in both space and

time. A moving wave packet would see the static potential during a finite time, but the
plane waves do not. Just like we will need to normalize the wave functions on a finite
volume, we will need to normalize the potential to a finite time. A proper treatment is
rather lengthy and relies on the use of wave packets. (See e.g. the book by K.Gottfried,
“Quantum Mechanics” (1966), Volume 1, sections 12, 56.) In the end, we can write
transition probabilities in terms of plane waves, provided that we normalize to T and
V . We discuss the normalization in more detail below.

2.3 Relativistic scattering

Fermi’s golden rule allows us to compute the scattering rate of non-relativistic particles
on a static potential. In scattering experiments at high energies we need to deal with two
scattering particles, rather than single particles scattering on a source. As an example,
consider two spin-less electrons scatter in their mutual electromagnetic field, as depicted
in Fig. 2.3.

µ

B

e

C

e− −

e

e

−

−

A

D

i
i

f

f

A

Figure 2.3: Scattering of two electrons in an electromagnetic potential.

Such scattering processes can be described by the exchange of virtual particles, Yukawa’s
force carriers. Even without understanding the details of the interaction, we can readily
identify one place where it should di↵er from the discussion above: the result must
somehow encode four-momentum conservation and not just energy conservation.

Our master formula for the di↵erential cross-section, Eq. (2.8) is essentially a gener-
alization to problems with more than one particle in the initial or final state. We
cannot derive the expressions for a scattering cross section at high energies without
going through the machinery of quantum field theory. (This is not entirely true: see
Thomson, chapter 3 and section 5.1.) Instead, we will sketch the main results, then work
through the electrodynamics of spin-less particles as an example in the next lectures.

𝑖
𝜕𝜓
𝜕𝑡

= 𝐻d + 𝑉 𝑥⃗, 𝑡 𝜓

2)	Scattering	in	each	particle’s	field

1)	Scattering	in	external	potential

Solve	wave	equation
Iteratively…

…use	plane	waves 𝜓 = f𝑎° 𝑡 𝜙° 𝑥⃗ 𝑒7Zc±H
²

°gd

2.2. NON-RELATIVISTIC SCATTERING 35

In some cases the set of equations (2.17) can be solved explicitly. A general solution is
obtained in perturbation theory, by expanding in Vkn. The approximation of order p+1
can be obtained by inserting the p-th order result on the right hand side of Eq. (2.17),

i~da(p+1)

k
(t)

dt
⇡

X

n

a(p)

n
(t)Vkn(t)ei!knt (2.20)

Without loss in generality we now assume that the incoming wave is prepared in eigen-
state i of the free Hamiltonian, i.e. ak(�1) = �ki. The zeroeth order approximation

then is a(0)

k
(t) = �ki (no interaction occurs) and the first order result becomes

i~da(1)

k
(t)

dt
= Vki(t)e

i!kit (2.21)

Using that af (�1) = 0 and integrating this equation we obtain for the coe�cient a(1)

k
(t)

at time t,

a(1)

k
(t) =

Z
t

�1

daf (t0)

dt
dt0 =

1

i~

Z
t

�1
Vki(t

0)ei!kit
0
dt0 for k 6= i (2.22)

Higher order approximations can be obtained by inserting the lowest order solution in
the right side of Eq. (2.20). (See textbooks.) A graphical illustration of the first and
second order perturbation is given in Fig. 2.2. Note that the lowest order approximation
makes one ‘quantum step’ from the initial state i to the final state f , while the second
order approximation includes all amplitudes i! n! f .

V

fi

fn

ni
space

time

i

f

i

f
1−st order 2−nd order

V V

Figure 2.2: First and second order approximation in scattering.

In the following we only consider the first order approximation (Born approximation).
We define the transition amplitude Tfi as the amplitude to go from a state i to a final
state f at large times,

Tfi ⌘ af(t!1) =
1

i~

Z 1

�1
dt

Z
d3x  ⇤

f
(x, t) V (x, t)  i(x, t) (2.23)

where we substituted the definitions of Vkn and !kn. We can write the result more
compactly as

Tfi =
1

i~

Z
d4x  ⇤

f
(x) V (x)  i(x) (2.24)

1)	𝑉 𝑥, 𝑡 	is	fixed

2)	Determine	𝑉 from	𝐴 field	scattering	particles
(Solve	Maxwell	equation)

𝑊³Z ≡ lim
¶→²

𝑇³Z
%

𝑇
d𝜎 =

𝑊³Z
flux

dΦ

𝑇³Z = −𝑖	½dM𝑥	𝜓³∗ 𝑥 𝑉 𝑥 𝜓Z 𝑥 	
�

�

= −2𝜋𝑉³Z𝛿 𝐸³ − 𝐸Z

Relativistic: 𝑉³Zè	ℳ “matrix	element”



Lecture	5	:	“Scattering”	- Relativistic

Before	 After	
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Eg:	“2-to-2”	scattering:

𝜎 =
𝑆

64𝜋% 𝐸9 + 𝐸% 𝑝⃗9
½ ℳ %	 2𝜋 M𝛿M 𝑝9 + 𝑝% − 𝑝) − 𝑝M 	
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% 𝑆 ℳ %

𝐸9 + 𝐸% % 	
𝑝⃗³
𝑝⃗Z

𝑡

𝐴

𝐴 𝐵

𝐵
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𝑝9

𝑝%

𝑝)

𝑝M

𝑞

−𝑖𝑔

−𝑖𝑔

Feynman	rules	“ABC”	theory:
1. Diagrams:	see	sketch
2. Labels:	see	sketch	
3. One	vertex:	−𝑖𝑔
4. Propagators:	no	internal	lines
5. Conservation	of	energy	and	momentum:	 2𝜋 M	𝛿M 𝑝9 − 𝑝% − 𝑝)
6. Integrate:	no	internal	momenta
7. Discard	delta-function	and	multiply	by	𝑖.

ℳ =
𝑔%

𝑝M − 𝑝% % − 𝑚�
%

Example	diagram:	
𝐴 + 𝐴à𝐵 + 𝐵

Cross	section:

How	to	determine	ℳ?à Feynman	rules	(depend	on	actual	theory/interaction):

Standard	Model	interactions	require	real	Lagrangians and	dealing	with	spinor	objects	àMaster	level	education


