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Today: Scattering Theory and Feynman Calculus

Part 1 : Decay and Cross Section
Part 2 : Perturbation Theory and the Golden Rule
Part 3 : Feynman Calculus



Scattering Theory and Feynman Calculus

Part 1
Decay and Cross Section Griffiths §6.1




Exercise — 27: Dirac delta function (1)

e Consider a function defined by the following prescription: in?nite
5(x) = lim 1/A for |x| <_A/2
A—0 0 otherwise B
0 /surface =1
* The integral of this function is normalized: J S(x)dx =1

0
* For a function f(x) we have: f(x)d(x) = f(0)6(x)

...and therefore: foof(x)cS(x) dx = £(0)

* Exercise:
a) Prove that: §(kx) = I_llcl d(x)
b) Prove that: 5(g(x)) = Z?ﬂmﬂx — x;) , where g(x;) = 0 are the zero-points

* Hint: make a Taylor expansion of g around the 0-points.



Exercise — 27: Dirac delta function (2)

: : 1 sin?
* The delta function has many forms. One of them is: 6(x) = Jlr?o ;Slzxfx

c) Make this plausible by sketching the function sin“(ax) /(mwax?) for two relevant
values of «

Co

1 |
e Remember the Fourier transform: f(x) = %j g(k) e*** dk

g(k) = f F() etk dx

d) Use this to show that another (important!) representation of the Dirac delta-
function is given by:

(00)
d(x) = 2—f e * dk € We will use this later in the lecture!
mJ)_»



Terminology: Decays

A\?\\Q DQ(G\)
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* A quantum particle decays with equal

probability per unit time
e dN = —I'Ndt such that:
N =N(0)e Tt = N(0)e t/"

e ' =decay rate 7 = mean lifetime

e Often particles can decay in many quantum ways; each with its own partial
decay width I;

* Total decay rate T, = Y., T; and lifetime T = L

and Branching Ratio BR; =

tot [tot



Terminology: Cross Section

* A scattering process is measured using “cross section”; the effective surface seen by a
particle colliding with a target. We use the same for collisions:

* e.g. proton-proton colliders.

* For colliding protons many processes may happen:
* Exclusive cross section g; : cross section for one specific process “i”
* Inclusive cross section g,;: sum all possible exclusive cross sections: g3, = Y1’ 0;

[
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* The cross section can for example depend on
the energy of the collision

* Look at the process ete™ — qgq

Cross-section (pb)
=
=
T
%
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* There is a resonance at 91 GeV; the mass of the 03 !
Z-boson et +te >qg
* And there is a peak near 0 GeV; the photon . Faxrm
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Scattering

 Scattering of particles with  Scattering on a “hard sphere”
Coulomb interaction

Scattering center

b = R sina
2a+0 =m
sina = sin(r/2 — 0/2) = cos(0/2)
b=Rcos(0/2)

b = Impact Parameter
6 =Scattering Angle
1-to-1 relation b and 6



Hard Sphere Scattering

 Calculation of hard sphere scattering Then: |
If particle goes through do it will scatter through solid angle d() : D(O) = Rb sin(6/2)
2sin 6
do = D(6)dQ 40 = lsing do d
do = |b db do sin 6 d6 do _ R? cos(6/2)sin(6/2)
~. Hard scattering: ~ 9 sin O
do b (db _ 2
D(H) = = = | ( )‘ b _RCOS(Q/Z) — R_ (cosasina=1(sin2a))
dQ [sing \d6 db R /6 4 i
“Differential cross-section” do - 2 Sin (E)

do jdﬂzfsin0d9d¢=4n

szdaz jD(Q)dQ

¥

Particle incident in
Area do scatters into

solid angle d)

RZ
= | —dQ = nR?
J4 "

This corresponds to the projected
surface of the circle seen by the particle



Rutherford Scattering

* Scattering of charged particles D(0) = do
with Coulomb force

dQ
* Eg alpha particles on nucleus target

b (db
sinf (d@)‘
014> (MY
* Coulomb Force law: F=—> Do) = (4E sin2(6/2))

Consider as given (see Griffiths):

o= jda = jD(B) dQ
— 1192 cot 9/2 —————————————
2F q19>

3 1
4E) fo sin*(6/2)

6
/X The integral turns out to be infinite!

Particle sees an infinitely large scattering surface?
- - - - —— - - Reason is that Coulomb force has infinite range.

Scattering center

b

y a=2n(

sin @ df

Most “collisions” will happen at large distance,
which is what Rutherford observed.



Luminosity

e Consider beam of particles on a target
* Luminosity L is number of particles per unit time, per unit area.
 Number of particles passing through areado: dN = L do
* Same number of particles scattering into solid angle dQ : dN = L do = L D(6) dQ
e By counting one can measure the differential cross section: d_a _
dQ

do

These aspects are
needed when you
Compare theory

with experiments.




Scattering Theory and Feynman Calculus

Griffiths §6.2 and PP1 Chapter 2

Part 2
Perturbation Theory and the Golden Rule



Scattering with waves

* An incoming particle is | =0 Ve
represented by a wave packet of ' o
incoming plane waves: ¥(x) = Ne ¥

* Example 1:

e Calculate the scattering of these
waves in an external potential

* Example 2:

* For collisions the scattering potential
A" of particle A is determined by the
field of particle B and vice versa.




Fermi’s Golden Rule

* To calculate decay rates and cross section in relativistic scattering we use a
general formula that we cannot fully derive within the scope of these lectures

* For a fully relativistic derivation: quantum field theory

* We will "7make it plausible” using non-relativistic single particle theory
* see also Nikhef PP1 lecture notes chapter 2, or the book of Thomsom §2.3.6 and chapter 3

e Here is the end-result:

. Golden Rule fordecays: 1 - 2+34+44+:--n

n

S d*p;

— 2 4 o4 _ _ _ 2 _ .,2 0 J

[ = Zmlfl]\/fl 2m)*6*(py — P2 — P3 .. — Pp) X ]‘_2‘ 2n5(pj m; )H(p] oL
e Golden Rule for scattering:14+2 ->34+4+5+:n

S
- 4\/(291 - p2)?% — (mymy)?

n
d*p;
jIJV[I2 (2m)*6*(py + P2 = P3 - — Pn) X 1_[ 218 (p; —m7)6(p;) (Zn)ﬁ
j=3

o)

OK, let’s go....



Perturbation Theory

d
* Consider the free Schrodinger equation ia—l/: = Hyy

* H, is time-independent Hamiltonian Hy¢,(X) = E; ¢ (X)

 Eigenstates equation: fqbi;l(f)qbn(f)d% = 8

 where ¢,, (%) form orthonormal basis for any solution Y, (%,t) = ¢, (X)e~Emt

: : : : : d
* Hamiltonian with time-dependent perturbation ia—l/: = (Hy + V(X )¢

* Solutions are of the form can be writtenas ¥ = Z an (t) P, (X)e Ent

n=0

e Substituting gives:

co

i z daggt) ¢, (X)e tEnt = Z)V(f, Ha,, (t)p, (3)e Ent

n=0



Perturbation Theory

co

* Multiply the equation: iz

n=0

day, (t)
dt

pn(X)e~ Pt = Z V(X t)a,(t)p, (X)e Ent
n=0

... from the left by fl/J;d3x with  yF = ¢re'st
to find:

o 00

iz dag(t) Jd3x¢;(f)¢n(3_€>) e—i(En—Ef)t — z an(t) f d3x qb]"é(fc’)V(fc’, t)(]bn(.’)_f)e_i(E"_Ef)t

t

n=0 n=0

—

S}n 00
* Using orthonormality gives: day () — z a,(t) f d3x pF(XV (%, ), ()e {(En=Er)t

dt

0 n=0

or in short: ida];j(tt) — Z an(t)an plwrnt

=0 with @ = (Ef — Ep)

and the transition matrix element Vg = J d*x pr VX, t) ¢ (X)



Perturbation Theory

* Solving differential equation: idag(t) _ Z @y (D) et
t
n=0
 Start with some assumption of zero-th order (0+1) 00
da; " (¢) (0) (0t
for a,, and then for each order o: i = Z a, (Ve e'@rm
n=0

* First order: assume one step interaction: a;(—%) = 1and as(—) =0

“during” interaction: a}o)(t) =85 da(l)(t) -

l T — Vfl-(t)e fi

t /
* Perturbation theory: a](})(t) =J daf(;(tt)

t
dt’ = —if Vfi(t’)eiwfit,dt' for f # i

1—st order 2—nd order

time
space




Perturbation Theory 1-st order 2-1d order

time
* First order perturbation: { ‘
t da t, t . !/ Space
as(¢) = f s )dt’ — —if V(e it de’ :

dt

(Vpi = }d?’x ¢r V(E L) $:(X) )
Results in (“Born approximation”) “transition amplitude” T¢;:

Toi = ap(t - 00) = —i f t f B3 E, OV E Oy ) = —i j dx 7 OV ()P (x)

Note: co-variant form!

* If the potential is time independent (“static”) we find:

Tri = as(t > ) = —i Vj j e'®fitdt = —2nV;;6(E; — E;)

* Where we have used an implementation 1 (®
. : S(x) = —f tex d ke
of the Dirac delta function: 21 J)_



Golden Rule — non-relativistic

|2

. : : Ts;
e Transition rate is defined as: Wy = lim | L

Jim — T; = —2nVy6(Ef — E;)

e After squaring of the delta function (not trivial, see 5
PP1) results in transition probability per unit time: |Wy; = 27 |V;| 8(Ef — E;)

 Where the delta function takes care of energy conservation
* The name Vf; was used here since it relates to the potential V
* We adapt the more common name for the matrix element M

: : . Wei
* The differential cross section is: do = 2L dd
* Where flux represents the “density” of the number of flux
incoming states per particle: states = particle
* The phase space factor d® (also ‘dLIPS’) is the density of For more, see Chapter 2
outgoing states (final state “realisation possibilities”) of the Nikhef PP1 Lectures

* Next extend it to relativistic scattering using the matrix element M’



Fermi’s Golden Rule - Relativistic

* In Griffiths the relativistic Golden Rule for decay and scattering are just
stated.

* Try to gain understanding by considering the terms in comparison to the non-
relativistic case that we derived.

 Golden Rule fordecays: 1 - 2+34+4+-'n

n
S 2 2
= 2—,’TL1J|]\/[|2 (2m)*6*(py — P2 — P53 . — Pn) X U 26 (pj —m;’ )0 (p; ) (271)4

* Golden Rule for scattering:14+2—->34+4+5+4+ -

_ S 2 4 o4 _ m2 0
o= 4\/(}91 % — (a2 j|M| (2m)*8%*(p1 + P2 — D3 ... — Pn) X HZTHS(}?J )H(p]) (27.[)4

e We will discuss them in turn...



Decay
* Golden Rule for Decay:
n d .
— P2~ D3~ Pn) X 1_[27?5(29,? - m,?)@
j=2

e S is a guantum factor to prevent double counting for identical particles
* Each species with s particles in the final state gives factor 1/s!
 Eg.:decaya »> b+ b + c + ¢ + c gets factor (1/2!)x(1/3!) =1/12

« 2m,; = 2E: density of incoming states (see lecture 3: p = 2|N|?E).

« M is the Matrix Element: contains the dynamics (the interesting particle physics). It is
given by the Feynman rules.

. f implements the integral over all realization possibilities to obtain the final state.

e § is the Dirac delta function. §* implements energy-momentum conservation and

[16 assures produced particles are on-mass shell: p?> = m? - E? — p* = m? .

* 0 step function sothatonly E > 0. |
* Each §-function comes with a factor 27 (ex. 27) and each d*p with 1/(27) . u;ie;z'gi reason:




0(pj) =
“Heavyside function”

* Decay:

S 2 2 0 d4pf
[ = 2_7’)11 j |M|2 (27'[)454(}91 — P2 — D3 .. — Pp) X 1_[ 27‘[5([)]- —m,; )9(pj (2m)*

j=2

* Using the mathematical characteristics of Dirac 6 functions (optional exercise,
Griffiths page 205: “the H(p}))—function kills the 5('p](-’)”), the second part can be
shortened into:

n

S 1 d3p;
[=— | |M2@2n)*6*(py — py — P3 .. — Pp) X J
2m1 f | | ( T[) (pl P2 P3 pn) g ZE] (271_)3
J=2 Eg:.K->nt +m~
* Consider the example A - B+ C A
C < ° > B
d*p, d°ps
2 4
L= o j 1" 6%(P1 = P2 = P3) - £ A: py = (my,0,0,0)
. . . B: pg = (EZ;pz;O; 0)
. Kinematics for the two-particle case......

C: py = (E3ps,0,0)



Two-particle decay ... calculate...

d*p, d°ps
[ =—— M|? 54
32m2m, j | M| (p1 — P2 — p3) E, E,
54(291 — P2 —DP3) = 5(291 _pz _P3)53(ﬁ1 — P2 — D3)

Now: p) = m; and p; = 0

5 (ma VB - 534 m3)

r=o [ 12
© 32m2%my

Next: use p; =

JEE [+ m3
5 (ma VI - [53-+m3)

V5 +

5<m1 —Vp*+mj —\/pz +m§>

Vp? +m%Jp2 +m;

—D2

r=p [ 1P
- 32m2%my

d3p2

A
° > B

A: pi = (m4,0,0,0)
B: pé‘ = (Ez,pz,0,0)
C: py = (E3ps3,0,0)

83 (py + P3)d>pod>ps

Next, go to spherical coordinates:

- (p,0,¢)

pzdpjsine do d¢

- g

ATT



Two-particle decay ... calculate...

The integral over dp is not easy to calculate. Make the substitution: u = \/pz +m5 + \/pz + m3

du up du A
Then: dp — ; pdp =— [p?+ m%\/Pz +m3
VP2 +m3 Jp2+m§ u
Such that we recognize:
S (00]
[ = J |IM|? §(my — u) Bdu which only has a contribution for u = m, (§-function):
8mm, (my+ms3) u

Note: m; > m, + ms

Inverting the equation for u and p and putting u = m, gives (exercise):

1
12 4 4 4 2.2 2.2 2.2
p = |p| = _2m1 \/ml + m; + m; — 2mim5 — 2mim3 — 2m5m;

S -
and putting u = m4 gives finally: [ = i|2 |]\/l“|2
8mrmy

Note that the §-functions were enough to do all the integrals and put the required kinematic value for p



Exercise — 28: Kinematics relation

e Show explicitly that by inverting the equation:

m1=x/p2+m%+\/p2+m§

it follows that:

_ 1 4 4 4 2.2 2.2 2.2
p \/ml + my +m3 — 2mim; — 2mims — 2m5ms;

- 2m1



 Golden rule for cross section:

o= d JIMI2 (2m)*6*(p1 + P2 — P3 . — Pn) X 1£[27r5(p2 —m7)6(p;) at
4\/(291 ' p2)? — (mymy)? " =3 ! ! 77 (2m)*
e Can be shortened, just as for decay, by doing the integrals over p°
requiring on-mass relation: pJ(-) = \/p]z + mj2 = E; to find:
S 1 d3p;
= M| 2n)*6*(py + py — P3 oo — Pp) X /
o 4\/(}91 T )2 j| 1“ (2m)*6%(p1 + p2 — b3 Pn) L | 2E, (2m)3
* Consider the (“2-to-2”) example A+ B - C+ D
* Kinematics for the two-particle case...... D3 C
o< o 18

A D1 p, B p P
Before After



Two-to-Two cross section ...

0
> @ <€ ®:--- _X __________
cA+B->C+D A D1 D, B y
Before After
Kinematics for the two-particle case in Center-of-Mass: p, = —p;
S f 1 d°p;
o= (M |? 2m)*8*(p1 + P2 — P3 — Pa) X
4/ (1 p2)? = (mym,)? L 12£; (2m)?

Use: pf = (E4,|p¢],0,0) and pé‘ = (E,, —|p4],0,0) to see that, after kinematic calculation’s — see Griffiths...

d3ps; d3p
o (2m)*8*(py + P, — D3 — Pa) —— —r

= — | IM]?
6412 (Ey + E;)|pi | f Es E,
Again, split up the §*(p; + p, — p3 — py) into 8 (E; + E, — E3 — E,) X 63(pP3 + py) ...etc... similar as decay.

Complication: there is an angle 6 in the game and we cannot carry out the integral , since M can depend on it.
(Q: Why was there no 6 in the case of decay?).

2o Sim1? |By
(Ey + E3)? |pil

do 1
Determine the angle dependent cross section: — = ( )
dq) 81



Scattering Theory and Feynman Calculus

Part 3
Feynman Calculus Griffiths §6.3

Or: how to find the matrix element M



Feynman Rules: ABC Toy theory

* All the “real” particle physics is in the calculation of the matrix M.

* A full derivation of QED is not in the scope of the lectures. We give a “recipe”.

B e Consider ABC example theory
A  ABC model is simplest possible “theory”.
C * Particles have no spin: no “arrows” needed
 Think of ¥, K°,7 particles etc
Only one fundamental vertex * No real forces, just “particles”

* For the following recipe keep perturbation theory and the golden rule in mind.



Feynman rules: ABC Toy Theory

* Recipe to find M :
1. Draw all the possible diagrams

2. Label the external 4-momenta p; and
put an arrow for the direction forward
in time

For each vertex write a factor —ig
4. Propagators: for each internal line

. l
write: ———
q;—m;

* Note that for an internal line: qu 7> mjz

w

5. Conservation of energy and momentum:

* For each vertex write a §-function of the form: (2m)* §*(k, + k, + k3) , with a positive sign for
momenta going into the vertex. This § makes sure that no momentum is “disappearing into a vertex”

1 4
(27.[)4d di
7. Delta function: Result will include a delta function: (2m)*6*(p, + p, — p3 ... — p,,) reflecting

overall energy and momentum conservation. Erase this factor and multiply by i

6. Integrate over all internal momenta. For each internal line write a factor



Decay: Lifetimeof A = B+ C

Feynman rules: p}, B
1. Diagrams: see sketch A i
2. Labels: see sketch J
3. Onevertex: —ig —r
4. Propagators: no internal lines P1 p3\A C
5. Conservation of energy and momentum: (2m)* 6*(p; — p, — p3)
6. Integrate: no internal momenta
7. Discard delta-function and multiply by i.

Result for the amplitude: M = g

SI3 2|5 _ . :
|p|2 |IM|? = g |p2| (no identical particles: § = 1)
87TmA 8nmA

We obtain: ' =

> 1 4 4 4 2.2 2.2 2.2

1 8nm§l

So that the lifetimeis: T = — S
g<|pl




Exercise — 29: Pion Decay

Calculate the lifetime of the neutral pion z°

The neutral pion decays mainly via: ¥ — yy. Assume that the amplitude has
dimensions [mass]Xx |[velocity].

a) Motivate the reason that the amplitude should be proportional to the
coupling constant a. Try to sketch a diagram of the decay.

b) Use Fermi’s golden rule for two-body decays to estimate the lifetime of the
pion.

c) Compare it with the experimental value. What do you think?



A+ A - B + B Scattering: M

> @ <«

Feynman rules: A Dy

: p, A
1. Diagram: see sketch Before
2. Labels: see sketch
3. Two vertices: (—ig)? = —g?
4. Propagators: one internal line: — l 5
q-—mgc
5. Conservation of energy and momentum twice:

(27T)4 54(291 —p3—q) ar11d (27T)4 54(292 +q —ps)

: : : 4
6. Integrate: one integral: ) d*q
Result so far:
[ 3
—(2m)*g? j pep— 6*(pr —p3 —q)8*(p2 + q —pa)diq g
C

Doing integral over 2" §* sets ¢ = p4 — p,, into first §* to find

L
~g* ———— 2m)*6*(p1 + p2 — 3 —Ps)
q~ —M¢ gz
7. Erase delta-function and multiply by i to find: M = > 5
(s — p2)* — Mg




A+ A - B + B Scattering: M

> @ <
A D1 p, A

Before

* There is a second diagram: see sketch

* Repeat the computation?

* No, just replace: p3 < p, and fill in the end result:

2 2

g g
M = n
(p3 —p2)? —mé  (pg — pz)? —m¢

* Note: M does not depend on Lorentz frame: itis a
Lorentz invariant (scalar) quantity.



A + A - B + B Scattering: dao /d X}

N6
4 Dy > @< 4 2550 A
Before P2 V After
* Look at the matrix element and assume that 5 5
my, = mg = mand m, = 0 (eg. a photon): M = g ~+ g ~
(ps — p2) (ps — D2)
(p4 o pz)z _ m(zj — pz% 2+ p% 2_ 2p2 " P4 Note that for 4-vectors:
:mz}"‘mz_2192'294_> . pi*pj =pi, p; = EiEj— D bj
= 2m? — 2E,E, + 2(p, - D) and that p* = p,p* = E? — p*> = m?

= 2m? —2 (\/'m2 + ﬁz) (\/m2 + ﬁz) + 2p? cos O
= —2p*(1 — cos 6)
(p3 — p2)* —m¢ = —2p*(1 + cos 6)

* Plugin: (s =1/2)
do [ 1\* SIMI|*> |pf
. g? X g7 N o (87T) (B, + E,)? |7,
—2p2(1 —cosB) —2p%(1+ cosB) 2p2 sin? 6 d_o' B 1( g2 )2
dQ  2\16mEp?sin? 6

M




Exercise — 30: Two-to-Two Scattering

Consider the process: A + B - A + B in the ABC theory
a) Draw the (two) lowest-order Feynman diagrams, and calculate the amplitudes

b) Find the differential cross-section in the CM frame, assumingmy = mg = m,m. = 0,
in terms of the (incoming) energy E and the scattering angle 0.

c) Assuming next that B is much heavier than A, calculate the differential cross-section
in the lab frame.

d) For case c), find the total cross-section.



From ABC to QED

* ABC does not describe electrodynamics in the real world
* We have charged particles and photons

* Fermions have spin=J), forces have spin=1
e Spin is a complication, we will leave that for a course at master level

* How to get the matrix element and Feynman rules for QED scattering?
* This section will be quite “dense” but try to get the gist of it...



A taste of Relativistic QED Scattering

* Dirac equation in QED: (y,p* — m)y + ey, A* = 0
oH — g¥ — jeAH pt - pH + eAH \
—— B
* Perturbation theory: (Hy, + V)Y = EY ¢ -
S~ ’ 1
— 7.7 — 1,0,k k 0 R T
Hy=a-p+pm=y7y"p +ym e  Scatter charged particles
>V = —eyoy AH T D £ in each-others A-field
— . S

* Transition amplitude: no spin (see before): T; = —i fd‘*x POV (0);(x)
spin % (Dirac): Ty = —i Jd‘*x 1/J}r(x)V(x)1/Ji(x)

7 = —i | d*x At @) = i [ jakats

Ju = “transition current”

= —2n6*(py +Pp —Pc —Pp) M

* To determine M insert the electromagnetic field that one particle A observes
from the other particle B and vice versa. Remember also lecture 3:

~ ?
‘h_——‘

/
/

LQED = Lfree = Lint = Lpirac — ql/;VuAMl/J 2> Lint = _]#Aﬂ with ]u = C[lﬁ]/ﬂl/J -



A sketch of QED scattering

* Particle BD scatters in the field A of particle AC
* The field A* is obtained from Maxwell: 9,0V A* = j,fltc -

1 r - - .
Solution: A* = —_]Ac i Remember: j* = €¢V”¢ | /
D/ ¢t

| Transition current: j4 . = —el,I)C)/”tlJAI

-—

* Transition amplitude becomes: T TTTTTTTTTTTTITITIS |
BD) —1 BD) —1 .
Tf lf]flA d*x = lf]( ) 2]54(;) _lf]( = 2](,4(;)

Inserting plane wave solutions: P (x) = u(p)e ¥ Up Up

into the current gives: ](AC) —etlioyHuy etPcPa)X iBD
and: ](BD) —etipytuy e!(Pp=PBIX

Hence: Ty = —i(2m)*6*(pp + pc —Pp —Pa) M

. —i .
with: —iM = ie (Y u,) quuv ie(tipy“ug) Jac

vertex ———— vertex
propagator

“Matrix element”



A taste of Relativistic QED Scattering

* Note that the current is of the form:
. = ) i It is a 4-vector in Lorentz space (t, x,y, z); u = 0,1,2,3
K — : u : )
Jfi ( by ) ( I : ) <¢l> It is a scalar in Dirac space (1, 2, 3, 4)

* Finally:
* Feynman rules for QED are given in Griffiths section 7.5

To calculate cross sections with spin-Y% particles is mathematically involved; it requires taking
the square of the matrix element and summation over spin states of spinor objects.

We leave this fun for a topic of a master level course

Section 7.6, 7.7 and 7.8 of Griffiths give you an idea
* |t goes beyond the scope of this course

* Next week: “Detectors”, measuring the particle processes



