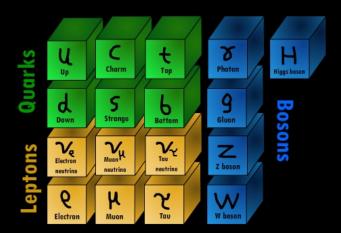


PHY3004: Nuclear and Particle Physics Marcel Merk, Jacco de Vries

The Standard Model



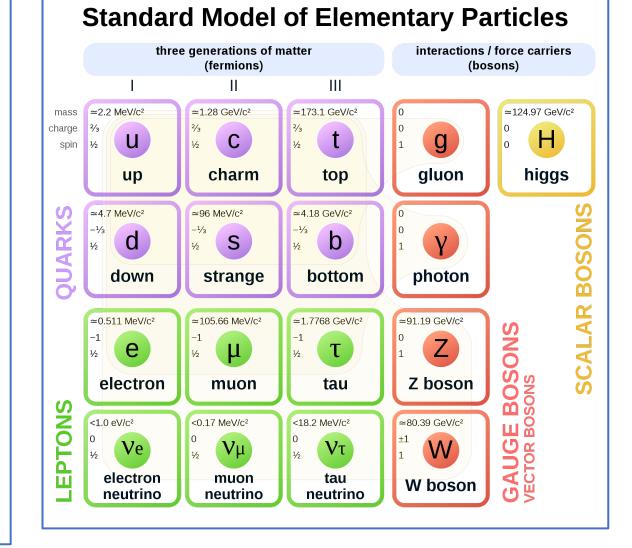
Standard Model: particles and forces

Classification of particles

- Lepton: fundamental particle
- Hadron: consist of quarks
 - Meson: 1 quark + 1 antiquark (π^+ , B_s^0 , ...)
 - Baryon: 3 quarks (*p* ,*n* , Λ, ...)
 - Anti-baryon: 3 anti-quarks

• Fermion: particle with half-integer spin.

- Antisymmetric wave function: obeys Pauliexclusion principle and Pauli-Dirac statistics
- All fundamental quarks and leptons are spin-1/2
- Baryons (S=1/2, 3/2)
- Boson: particle with integer spin
 - Symmetric wave function: Bose-Einstein statistics
 - Mesons: (S=0, 1), Higgs (S=0)
 - Force carriers: *γ*, *W*, *Z*, *g* (S=1); graviton(S=2)



Wave Equations

Contents:

- 1. Wave equations
 - a) Wave equations for spin-0 fields
 - Schrödinger (non relativistic), Klein-Gordon (relativistic)
 - b) Wave equation for spin-1/2 fields
 - Dirac equation (relativistic)
 - Fundamental fermions
 - c) Wave equations for spin-1 fields
 - Gauge boson fields; eg. electromagnetic field
- 2. Gauge field theory
 - a) Variational Calculus and Lagrangians
 - b) Local Gauge invariance
 - i. QED
 - ii. Yang-Mills Theory (Weak, Strong)
- Required Quantum Mechanics knowledge:
 - Angular momentum and spin: study Griffiths sections 4.2 ,4.3, In particular Pauli Matrices

Griffiths chapter 7 and PP1 chapter 1

Griffiths chapter 10 and PP1 chapter 1

Part 1 Wave Equations and Probability

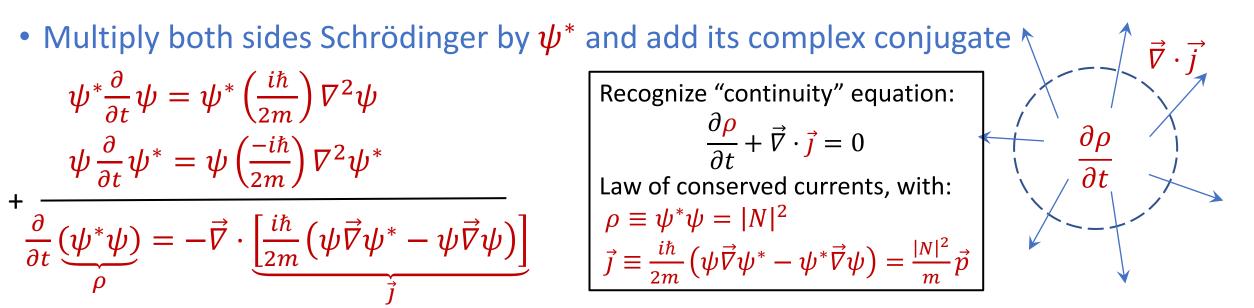
1a) Spin-0

Schrödinger Equation and probability

• Quantization of classical non-relativistic theory:

• Take $E = \frac{\vec{p}^2}{2m}$ and substitute energy and momentum by operators that operate on ψ : $E \to \hat{E} = i\hbar \frac{\partial}{\partial t} \quad ; \quad p \to \hat{p} = -i\hbar \vec{\nabla}$ • Result is Schrödinger's equation: $i\hbar \frac{\partial}{\partial t} \psi = -\frac{\hbar^2}{2m} \nabla^2 \psi$

• Plane wave solutions: $\psi = Ne^{i(\vec{p}\vec{x}-Et)/\hbar}$ with the kinematic relation $E = p^2/2m$



Use: $\vec{\nabla} \cdot (\psi^ \vec{\nabla} \psi - \psi \vec{\nabla} \psi^*) = \psi^* \nabla^2 \psi - \psi \nabla^2 \psi^*$

Interpret: probability waves!

Relativistic: Klein-Gordon equation

- Quantization of relativistic theory

 - Start with $E^2 = p^2 c^2 + m^2 c^4$ and substitute again $E \to i\hbar \frac{\partial}{\partial t}$ and $p \to -i\hbar \vec{\nabla}$ Result is Klein-Gordon equation: $-\frac{1}{c^2} \frac{\partial^2}{\partial t^2} \phi = -\nabla^2 \phi + \frac{m^2 c^2}{\hbar^2} \phi$ Us Use now: $\hbar = c = 1$
 - Plane wave solutions: $\psi = Ne^{i(\vec{p}\vec{x}-Et)/\hbar}$ with relativistic relation $E^2 = \vec{p}^2 + m^2$
- Use the covariant notation:

 $p_{\mu}p^{\mu} = m^2$

$$\begin{array}{ll} \partial^{\mu} = \left(\frac{\partial}{\partial t}, -\vec{\nabla}\right) & ; & \partial_{\mu} = \left(\frac{\partial}{\partial t}, \vec{\nabla}\right) \\ \partial_{\mu} \partial^{\mu} \equiv \frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} - \nabla^{2} & (\text{usually take } c = \hbar = 1) \\ p^{0} = E \text{ and } x^{0} = t \end{array}$$

- Klein-Gordon in four-vector notation: $\partial_{\mu}\partial^{\mu}\phi + m^{2}\phi = 0$
- Plane wave solutions: $\psi = Ne^{-i(p_{\mu}x^{\mu})}$
- Time and space coordinates are now treated fully symmetric
 - This is needed in a relativistic theory where time and space for different observes are linear combinations of each other

Klein-Gordon conserved currents

• Similar to the Schrödinger case multiply both sides by $-i\phi^*$ from left and add the expression to its complex conjugate

$$-i\phi^*\left(-\frac{\partial^2\phi}{\partial t^2}\right) = -i\phi^*(-\nabla^2\phi + m^2\phi)$$
$$i\phi^*\left(-\frac{\partial^2\phi^*}{\partial t^2}\right) = i\phi(-\nabla^2\phi^* + m^2\phi^*)$$

$$\frac{\frac{\partial}{\partial t}}{\underbrace{i\left(\phi^*\frac{\partial\phi}{\partial t}-\phi\frac{\partial\phi^*}{\partial t}\right)}_{\rho}} = \vec{\nabla}\cdot\underbrace{\left[i\left(\phi^*\vec{\nabla}\phi-\phi\vec{\nabla}\phi^*\right)\right]}_{-\vec{j}}$$

- The quadratic equation leads to double solutions: $E^2 = \cdots \Rightarrow E = \pm \cdots$
 - Positive and negative energy solutions
 - Negative solutions imply negative probability density ho
 - This bothered Dirac and therefore he looked for an equation linear in *E* and *p* ...

Again recognize "continuity" equation, the law of conserved currents:

$$\partial_{\mu} j^{\mu} = 0$$

With now:

 $j^{\mu} = (\rho, \vec{j}) = i[\phi^*(\partial^{\mu}\phi) - \phi(\partial^{\mu}\phi^*)]$

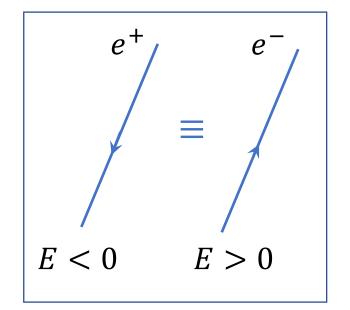
It gives for plane waves: $\rho = 2|N|^2 E$ $\vec{j} = 2|N|^2 \vec{p}$ Or in 4-vector: $j^{\mu} = 2|N|^2 p^{\mu}$

Antiparticles

- Feynman-Stückelberg interpretation
 - Charge current of an electron with momentum \vec{p} and energy E $j^{\mu}(-e) = -2e|N|^2 p^{\mu} = -2e|N|^2 (E, \vec{p})$
 - Charge current of a positron

 $j^{\mu}(+e) = +2e|N|^2 p^{\mu} = -2e|N|^2(-E, -\vec{p})$

The positron current with energy -E and momentum $-\vec{p}$ is the same as the electron current with E and \vec{p}



- The negative energy *particle* solutions going backward in time describe the positive-energy *antiparticle* solutions.
 - The wave function $\phi = Ne^{-ix_{\mu}p^{\mu}}$ stays invariant for negative energy and going backwards in time
 - Consider eg. $e^{-i(-E)(-t)} = e^{-iEt}$
- A positron *is* an electron travelling backwards in time

Part 1 Wave Equations and Probability

1b) Spin-½

Dirac Equation

• Dirac did not like negative probabilities and looked for a wave equation of the form $E = i \frac{\partial}{\partial t} \psi = H \psi = (?)$, but relativistically correct.

• Try:
$$H = (\vec{\alpha} \cdot \vec{p} + \beta m)$$
 where $\vec{\alpha} \cdot \vec{p} = \alpha_1 p_x + \alpha_2 p_y + \alpha_3 p_z$; $\vec{\alpha}$? β ?

- We know that: $H^2\psi = E^2\psi = (\vec{p}^2 + m^2)\psi$
- Write it out: $H^{2} = (\sum_{i} \alpha_{i} p_{i} + \beta m) (\sum_{j} \alpha_{j} p_{j} + \beta m)$ $= (\sum_{i,j} \alpha_{i} \alpha_{j} p_{i} p_{j} + \sum_{i} \alpha_{i} \beta p_{i} m + \sum_{i} \beta \alpha_{i} p_{i} m + \beta^{2} m^{2})$ $= \left(\sum_{i} \alpha_{i}^{2} p_{i}^{2} + \sum_{i>j} (\alpha_{i} \alpha_{j} + \alpha_{j} \alpha_{i}) p_{i} p_{j} + \sum_{i} (\alpha_{i} \beta + \beta \alpha_{i}) p_{i} m + \beta^{2} m^{2}\right)$

= 0

- This works out if:
 - $\alpha_1^2 = \alpha_2^2 = \alpha_3^2 = \beta^2 = 1$
 - $\alpha_i, \alpha_2, \alpha_3, \beta$ anti-commute: ie.: $\alpha_1 \alpha_2 = -\alpha_2 \alpha_1$ etc
- Anti-commutator: $\{\alpha_i, \alpha_j\} = 2\delta_{ij}$; $\{\alpha_i, \beta\} = 0$; $\beta^2 = 1$
 - Using definition: $\{A, B\} = AB + BA$:

Dirac's idea

- Clearly α_i and β cannot be numbers. Let them be *matrices*!
 - In that case they operate on a wave function that is a column vector
 - The simplest case that allows the requirements are 4x4 matrices.
 - Dirac's equation becomes:

- It is possible making use of the Pauli spin matrices
 - $\alpha_i = \begin{pmatrix} 0 & \sigma_i \\ \sigma_i & 0 \end{pmatrix}$ and $\beta = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ with $\sigma_1 = \sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$; $\sigma_2 = \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$; $\sigma_3 = \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
 - Note that α and β are hermitian: $\alpha_i^{\dagger} = \alpha_i$ and $\beta^{\dagger} = \beta$ (Since Hamiltonian has real *E* eigenvalues.)
- This is a very complicated equation!
 - What does it mean that the wave function ψ is now a 1-by-4 column vector?
 - ψ is **not** a 4-vector, since the indices do not represent kinematic variables, but matrices indices!

Covariant form of Dirac's equation

• Dirac equation:
$$i \frac{\partial}{\partial t} \psi = (-i \vec{\alpha} \cdot \vec{\nabla} + \beta m) \psi$$

- Multiply Dirac's eq. from the left by β ; then it becomes:
 - $\left(i\beta\frac{\partial}{\partial t}\psi + i\beta\vec{\alpha}\cdot\vec{\nabla} m\right)\psi = 0$
- Introduce now the Dirac γ -matrices: $\gamma^{\mu} \equiv (\beta, \beta \vec{\alpha})$ (vector of 4 matrices!)
 - Covariant form of Dirac eq:

$$(i\gamma^{\mu}\partial_{\mu}-m)\psi=0$$

• Realise that Dirac's equation is a set of 4 coupled differential equations.

Dirac Gamma Matrices

- There is some freedom to implement: $\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu}$ in 4x4 matrices.
 - We will use the Dirac-Pauli representation

$$\gamma^{0} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \qquad \gamma^{1} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix}$$

$$\gamma^{2} = \begin{pmatrix} 0 & 0 & 0 & -i \\ 0 & 0 & i & 0 \\ 0 & i & 0 & 0 \\ -i & 0 & 0 & 0 \end{pmatrix} \qquad \gamma^{3} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

Or:
$$\gamma^0 = \beta = \begin{pmatrix} \mathbb{1}_2 & 0 \\ 0 & -\mathbb{1}_2 \end{pmatrix}$$
 and $\gamma^k = \beta \alpha_k = \begin{pmatrix} 0 & \sigma_k \\ -\sigma_k & 0 \end{pmatrix}$

Note the indices: (confusing!)

 μ , $\nu = 0,1,2,3$ are the **Lorentz indices in space-time**:

Dirac matrix indices: 1,2,3,4 Have to do with the row and column indices of the matrix (and spinors)

 Note: although the gamma matrices indices are Lorentz-indices ("spacetime", the gamma-matrices are not 4-vectors!

- Dirac algebra:
 - Write the explicit form of the γ -matrices
 - Show that : $\{\gamma^{\mu},\gamma^{\nu}\}\equiv\gamma^{\mu}\gamma^{\nu}+\gamma^{\nu}\gamma^{\mu}=2g^{\mu\nu}$
 - Show that : $(\gamma^0)^2 = \mathbb{1}_4$; $(\gamma^1)^2 = (\gamma^2)^2 = (\gamma^3)^2 = -\mathbb{1}_4$
 - Use anti-commutation rules of α and β to show that: $\gamma^{\mu \dagger} = \gamma^0 \gamma^{\mu} \gamma^0$

• Define
$$\gamma^5 = i\gamma^0\gamma^1\gamma^2\gamma^3$$
 and show: $\gamma^{5^\dagger} = \gamma^5$; $(\gamma^5)^2 = \mathbb{1}_4$; $\{\gamma^5, \gamma^\mu\} = 0$

Exercise – 14: Solutions of free Dirac equation

See Griffith for a derivation of the solutions

a) Show that the following plane waves are solutions to Dirac's equation

$$\psi_{1} = \begin{pmatrix} 1 & \\ 0 & \\ p_{z}/(E+m) \\ (p_{x}+ip_{y})/(E+m) \end{pmatrix} e^{i(\vec{p}\cdot\vec{x}-Et)} ; \psi_{2} = \begin{pmatrix} 0 & \\ 1 \\ (p_{x}-ip_{y})/(E+m) \\ -p_{z}/(E+m) \end{pmatrix} e^{i(\vec{p}\cdot\vec{x}-Et)}$$

$$\psi_{3} = \begin{pmatrix} p_{z}/(E-m) \\ (p_{x}+ip_{y})/(E-m) \\ 1 \\ 0 \end{pmatrix} e^{i(\vec{p}\cdot\vec{x}-Et)} ; \psi_{4} = \begin{pmatrix} (p_{x}-ip_{y})/(E-m) \\ -p_{z}/(E-m) \\ 0 \\ 1 \end{pmatrix} e^{i(\vec{p}\cdot\vec{x}-Et)}$$

- b) Write the Dirac equation for particle in rest (choose $\vec{p} = 0$) and show that ψ_1 and ψ_2 are *positive energy* solutions: $E = +\left|\sqrt{p^2 + m^2}\right|$ whereas ψ_3 and ψ_4 are *negative energy* solutions: $E = -\left|\sqrt{p^2 + m^2}\right|$.
- c) Consider the *helicity* operator $\vec{\sigma} \cdot \vec{p} = \sigma_x p_x + \sigma_y p_y + \sigma_z p_z$ and show that ψ_1 corresponds to *positive helicity* solution and ψ_2 to *negative helicity*. Similarly for ψ_3 and ψ_4 .

Spin and Helicity – hint for exercise 14c)

- For a given momentum p there still is a *two-fold degeneracy*: what differentiates solutions ψ_1 from ψ_2 ?
- Define the spin operator for Dirac spinors: $\vec{\Sigma} = \begin{pmatrix} \vec{\sigma} & 0 \\ 0 & \vec{\sigma} \end{pmatrix}$, where $\vec{\sigma}$ are the three 2x2 Pauli spin matrices
- Define *helicity* λ as spin "up"/"down" wrt direction of motion of the particle $\lambda = \frac{1}{2} \vec{\Sigma} \cdot \hat{p} \equiv \frac{1}{2} \begin{pmatrix} \vec{\sigma} \cdot \hat{p} & 0 \\ 0 & \vec{\sigma} \cdot \hat{p} \end{pmatrix} = \frac{1}{2|p|} (\sigma_x p_x + \sigma_y p_y + \sigma_z p_z)$
- Split off the Energy and momentum part of Dirac's equation: $(i\gamma^{\mu}\partial_{\mu}-m)\psi=0$

$$\begin{bmatrix} \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix} E - \begin{pmatrix} 0 & \sigma_i \\ -\sigma_i & 0 \end{pmatrix} p^i - \begin{pmatrix} I & 0 \\ 0 & I \end{pmatrix} m \end{bmatrix} \begin{pmatrix} \psi_A \\ \psi_B \end{pmatrix} = 0$$

- Exercise: Try solutions ψ_1 and ψ_2 to see they are *helicity eigenstates* with $\lambda = +1/2$ and $\lambda = -1/2$
- Dirac wanted to solve negative energies and he found spin-¹/₂ fermions!

Antiparticles

- Dirac spinor solutions $\psi_i(x^{\mu}) = \psi_i(t, \vec{x}) = u_i(E, \vec{p})e^{i(\vec{p}\vec{x}-Et)} = u_i(p^{\mu})e^{-ip_{\mu}x^{\mu}}$ with i = 1,2,3,4
- Since we work with antiparticles, instead of *negative energy particles* travelling backwards instead in time, *antiparticle solutions* are defined $u_3(-E, -\vec{p})e^{i((-\vec{p})\vec{x}-(-E)t)} = v_2(E, \vec{p})e^{-i(\vec{p}\vec{x}-Et)} = v_2(p^{\mu})e^{ip_{\mu}x^{\mu}}$ $u_4(-E, -\vec{p})e^{i((-\vec{p})\vec{x}-(-E)t)} = v_1(E, \vec{p})e^{-i(\vec{p}\vec{x}-Et)} = v_1(p^{\mu})e^{ip_{\mu}x^{\mu}}$
 - Where now the energy of the antiparticle solutions v_1 and v_2 is positive: E > 0

• Explicit:
$$v_1 = \begin{pmatrix} (p_x - ip_y)/(E+m) \\ -p_z/(E+m) \\ 0 \\ 1 \end{pmatrix}$$
 and $v_2 = \begin{pmatrix} p_z/(E+m) \\ (p_x + ip_y)/(E+m) \\ 1 \\ 0 \end{pmatrix}$

• Where *E* and \vec{p} are now the energy and momentum of the antiparticle

Adjoint spinors

- Adjoint spinors
 - Solutions of the Dirac equation are called *spinors*
 - Current density and continuity equation require *adjoints* instead of *complex conjugates*

$$i\gamma^{0}\frac{\partial\psi}{\partial t} + i\sum_{k=1,2,3}\gamma^{k}\frac{\partial\psi}{\partial x^{k}} - m\psi = 0 \qquad \text{ The minus sign in } (-\gamma^{k}) \text{ disturbs the Lorentz invariant form}$$
$$-i\frac{\partial\psi^{\dagger}}{\partial t}\gamma^{0} - i\sum_{k=1,2,3} \frac{\partial\psi^{\dagger}}{\partial x^{k}}(-\gamma^{k}) - m\psi^{\dagger} = 0 \qquad \text{ Restore by defining adjoint spinor:} \\ \overline{\psi} = \psi^{\dagger}\gamma^{0} \qquad \overline{\psi} = \psi^{\dagger}\gamma^{0}$$
$$\frac{\psi^{0}}{\left[\psi^{0} + \gamma^{0}\right]}, \text{ adjoint Dirac spinor: } \overline{\psi} = (\overline{\psi_{1}}, \overline{\psi_{2}}, \overline{\psi_{3}}, \overline{\psi_{4}})$$
$$\frac{\psi^{0}}{\psi} - m\psi = 0 \quad \text{; adjoint Dirac equation: } i\partial_{\mu}\overline{\psi}\gamma^{\mu} - m\overline{\psi} = 0$$

Dirac Current density and conserved current

- Apply a similar trick as before:
 - Multiply adjoint Dirac eq from from right by $oldsymbol{\psi}$ and multiply Dirac eq. from left by $oldsymbol{ar{\psi}}$

	$\left(i\partial_{\mu}ar{\psi}\gamma^{\mu}+mar{\psi} ight) \ \psi=0$	Define the 4-vec current:
+	$ar{\psi} \left(i \partial_\mu \psi \gamma^\mu - m \psi ight) = 0$	$j^{\mu} = ar{\psi} \gamma^{\mu} \psi$
	$\bar{\psi} \left(\partial_{\mu} \gamma^{\mu} \psi \right) + \left(\partial_{\mu} \bar{\psi} \gamma^{\mu} \right) \psi = 0 -$	Satisfies the continuity equation: $\partial_{\mu}j^{\mu} = 0$

- Probability: Zero-th component of the current: $j^{0} = \bar{\psi}\gamma^{0}\psi = \psi^{\dagger}\psi = \sum_{i=1}^{4} |\psi_{i}|^{2}$
- This always gives a positive probability, which was the motivation of Dirac.

- Dirac was looking for an explanation for positive and negative energy solutions by linearising Klein-Gordon equation
 - He found that his solutions described spin-¹/₂ particles
 - He predicted, based on symmetry, that for each particle there should exist an antiparticle (the negative energy solution).
- We had relativistic fields:
 - Spin-0: Klein-Gordon: e.g. pion particles
 - Spin-1/2: Dirac : e.g. quarks and leptons
 - How about forces? Spin=1

Part 1 Wave Equations and Probability

1c) Spin-1

The Electromagnetic Field – including exercise 15

- Maxwell equations describe electric and magnetic fields induced by charges and currents: (used Heavyside-Lorentz units: $c = 1, \epsilon_0 = 1, \mu_0 = 1$)
 - 1. Gauss' law: $\vec{\nabla} \cdot \vec{E} = \rho$
 - 2. No magnetic charges: $\vec{\nabla} \cdot \vec{B} = 0$
 - 3. Faraday's law of induction: $\vec{\nabla} \times \vec{E} + \frac{\partial \vec{B}}{\partial t} = 0$
 - 4. Modified Ampère's law: $\vec{\nabla} \times \vec{B} \frac{\partial \vec{E}}{\partial t} = \vec{J}$

From 1. and 4. derive continuity

$$\vec{\nabla} \cdot \vec{j} = -\frac{\partial \rho}{\partial t}$$

- → charge conservation
 This was the motivation for
 Maxwell to modify Ampère's law
- Define a Lorentz covariant 4-vector field $A^{\mu} = (V, \vec{A})$ as follows:
 - $\vec{B} = \vec{\nabla} \times \vec{A}$ (then automatically 2. follows)
 - $\vec{E} = -\frac{\partial \vec{A}}{\partial t} \vec{\nabla} V$ with $V = A^0$ (then automatically 3. follows)
- a) Show Maxwell equations can be summarized in covariant form: $\partial_{\mu}\partial^{\mu}A^{\nu} - \partial^{\nu}\partial_{\mu}A^{\mu} = j^{\nu}$ (Derive expressions for ρ and \vec{j} and use: $\vec{\nabla} \times (\vec{\nabla} \times \vec{A}) = -\nabla^2 \vec{A} + \vec{\nabla} (\vec{\nabla} \cdot \vec{A})$

Gauge Invariance (including exercise 15)

- b) Field A^{μ} is just introduced as a mathematical tool
 - Choose any A^{μ} as long as \vec{E} and \vec{B} fields don't change

$$A^{\mu} \to {A'}^{\mu} = A^{\mu} + \partial^{\mu} \lambda$$

$$V \to V' = V + \frac{\partial \lambda}{\partial t}$$
$$\vec{A} \to \vec{A'} = \vec{A} - \vec{\nabla}\lambda$$

- Exercise: show this explicitly!
- c) Choose the Lorentz gauge condition: $\partial_{\mu}A^{\mu} = 0$
 - Exercise: show that we can chose a gauge field such that this is possible
- Maxwell equation in Lorentz gauge becomes: $\partial_{\mu}\partial^{\mu}A^{\nu} = j^{\nu}$ also: $A^{\nu} = j^{\nu}$
 - Very similar to Klein-Gordon equation $\partial_{\mu}\partial^{\mu}\phi + m^{2}\phi = 0$
 - But now mass of the photon = 0.
 - Also now 4-equations \rightarrow polarizations states of the photon field
- Photon field solutions: $A^{\mu}(x) = N \varepsilon^{\mu}(p) e^{-ip_{\nu}x^{\nu}}$
 - A gauge transformation implies: $\varepsilon^{\mu} \rightarrow \varepsilon'^{\mu} = \varepsilon^{\mu} + ap^{\mu}$
 - Different polarization vectors which differ by multiple of p^{μ} describe same photon

Exercise – 16 Antisymmetric tensor $F^{\mu\nu}$

• Maxwell's equation $\partial_{\mu}\partial^{\mu}A^{\nu} - \partial^{\nu}\partial_{\mu}A^{\mu} = j^{\nu}$ can be further shortened by introducing the antisymmetric tensor: $F^{\mu\nu} \equiv \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}$:

$$F^{\mu\nu} = \begin{pmatrix} 0 & -E_{\chi} & -E_{y} & -E_{z} \\ E_{\chi} & 0 & -B_{z} & B_{y} \\ E_{y} & B_{z} & 0 & -B_{\chi} \\ E_{z} & -B_{y} & B_{\chi} & 0 \end{pmatrix}$$

- Show that Maxwell's equations become: $\partial_{\mu}F^{\mu\nu} = j^{\nu}$
- Hint: derive the expressions for charge $(q = j^0)$ and current $(\vec{l} = \vec{j})$ separately. Use the identity: $\vec{\nabla} \times (\vec{\nabla} \times \vec{A}) = -\nabla^2 \vec{A} + \vec{\nabla} (\vec{\nabla} \cdot \vec{A})$. Remember the definitions: $A_\mu = (A_0, -\vec{A})$; $\partial_\mu = (\frac{\partial}{\partial t}, \vec{\nabla})$; $g^{\mu\nu} = g_{\mu\nu} = \text{diag}(1, -1, -1, -1)$

Part 2 Gauge Theory

2a) Variational Calculus and Lagrangians

Lagrange Formalism classical

- Classical Mechanics: The Lagrangian leads to equations of motion
 - $L(q_i, \dot{q}_i) = T V$ where q_i and \dot{q}_i are the generalized coordinates and velocities.
 - The path of a particle is found from Hamilton's principle of least action

$$S = \int_{t_1}^{t_2} dt \, L(q, \dot{q}) = 0 \qquad \qquad \delta S = 0$$

From this the Euler Lagrange equations follow and provide the equations of motion:

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q_i}} \right) = \frac{\partial L}{\partial q_i}$$
 See: https://en.wikipedia.org/wiki/Lagrangian_mechanics

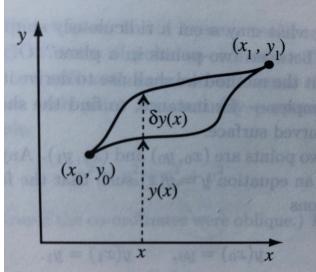
- Example: Ball falls from height y = h : q = y, $\dot{q} = dy/dt = v_y$
 - $E_{pot} = T = mgq$
 - $E_{kin} = \frac{1}{2}m\dot{q}^2$
- Euler Lagrange: dL/dq = mg ; $dL/d\dot{q} = m\dot{q}$
 - $\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_i}\right) = \frac{\partial L}{\partial q_i}$ gives $m\ddot{q} = mg \rightarrow \dot{q} = gt + v_0 \rightarrow q = y = \frac{1}{2}gt^2 + v_0t + y_0$

Exercise – 17 : Lagrange Formalism classical

- Example of variational calculus and least action principle: what is the shortest path between two points in space?
 - Distance of two close points:

$$y = \sqrt{dx^2 + dy^2} = \sqrt{dx^2 \left(1 + \left(\frac{dy}{dx}\right)^2\right)} = \sqrt{1 - y'^2} dx \quad \text{with } y' = dy/dx$$

- Total length from (x_0, y_0) to (x_1, y_1) : $l = \int_{x_0}^{x_1} dl = \int_{x_0}^{x_1} \sqrt{1 + y'^2} dx = \int_{x_0}^{x_1} f(y, y') dx$
- Task is to find a function y(x) for which l is minimal
- In general assume the path length is given by: $I = \int_{x_0}^{x_1} f(y, y') dx$
- Variational principle: shortest path is stationary: $\delta I = 0$
 - a) Write $\delta f(y, y') = \frac{\partial f}{\partial y} \delta y + \frac{\partial f}{\partial y'} \delta y'$ where $\delta y' = \delta \left(\frac{dy}{dx}\right) = \frac{d}{dx} (\delta y)$ Show using partial integration that $\delta I = 0$ leads to the Hamilton Lagrange equation $\frac{\partial f}{\partial y} - \frac{d}{dx} \frac{\partial f}{\partial y'} = 0$
 - b) Here for the shortest path we have $f(y') = l = \sqrt{1 + {y'}^2}$. Then $\partial f / \partial y = 0$ and $\partial f / \partial y' = y' / \sqrt{1 + {y'}^2}$ Show that the variational principle leads to a straight line path: $\frac{d}{dx} \left(\frac{y'}{\sqrt{1 + {y'}^2}} \right) = 0$ or that y' is a constant: dy/dx = a; y = ax + b



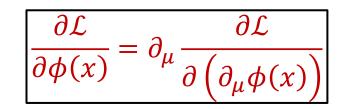
Lagrange Formalism in field theory

- Relativistic Field theory: fields replace the generalized coordinates
 - Also time and space will be treated symmetric
 - Replace $L(q, \dot{q})$ by a Lagrange density $\mathcal{L}(\phi(x), \partial \phi(x))$ in terms of fields and gradients such that $L \equiv \int d^3 x \mathcal{L}(\phi, \partial \phi)$
- Principle of least actions becomes:

 $S = \int_{t_1}^{t_2} d^4 x \mathcal{L}(\phi(x), \partial \phi(x))$ and again $\delta S = 0$

 t_1, t_2 are endpoints of the path

• Euler Lagrange Equations of motion becomes:



• Scalar Field ("pion")

a) Show that the Euler-Lagrange equations for $\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi) (\partial^{\mu} \phi) - m^2 \phi^2$ results in the Klein-Gordon equation

• Dirac Field (Fermion)

b) Show that the Euler-Lagrange equations for $\mathcal{L} = i\overline{\psi}\gamma_{\mu}\partial^{\mu}\psi - m\overline{\psi}\psi$ results in the Dirac equation

• Electromagnetic field (photon)

c) Show that
$$\mathcal{L} = -\frac{1}{4} (\partial^{\mu} A^{\nu} - \partial^{\nu} A^{\mu}) (\partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu}) - j^{\mu} A_{\mu}$$

results in Maxwell's equations

The Gauge Principle: Interactions

- global gauge invariance: the phase of the wave function is not observable: Changing the wave function $\psi(x) \rightarrow \psi'(x) = e^{i\alpha}\psi(x)$ should not change the Lagrangian for an electron
 - Look at Dirac Lagrangian: $i\bar{\psi}\gamma_{\mu}\partial^{\mu}\psi m\bar{\psi}\psi$
 - It should not change for $\psi \to \psi'$ and $\overline{\psi} \to \overline{\psi'} = \psi'^{\dagger} \gamma^{0}$; $\overline{\psi'} = e^{+i\alpha} \overline{\psi} \twoheadrightarrow OK$.
- *local* gauge invariance: invariance under chaging phases in space and time
 - An electron wave function can have a different phases at different places and times
 - $\psi(x) \to \psi'(x) = e^{i\alpha(x)}\psi(x)$ and $\overline{\psi}(x) \to \overline{\psi'}(x) = e^{-i\alpha(x)}\overline{\psi}(x)$
 - Check this for the Dirac Lagrangian

Problem in the term: $\partial_{\mu}\psi(x) \rightarrow \partial_{\mu}\psi'^{(x)} = e^{i\alpha(x)} \left(\partial_{\mu}\psi(x) + i\partial_{\mu}\alpha(x)\psi(x)\right)$

• It seems that the Lagrangian will change, but this is not allowed!

Part 2 Gauge Theory

2b) Local Gauge Invariance i) QED

Exercise – 18: Covariant Derivative

- Griffiths §10.3
- We insist that the Lagrangian does not change and invent a "covariant" derivative:
 - Replace in $i\bar{\psi}\gamma_{\mu}\partial^{\mu}\psi m\bar{\psi}\psi$ the derivative by: $\partial^{\mu} \rightarrow D^{\mu} \equiv \partial^{\mu} + iqA^{\mu}$
 - Require that the vector field A^{μ} transforms together with the particle wave ψ

$$\psi(x) \to \psi'(x) = e^{iq\alpha(x)}\psi(x)$$
$$A^{\mu}(x) \to A'^{\mu}(x) = A^{\mu}(x) - \frac{1}{q}\partial^{\mu}\alpha(x)$$

- → Exercise: check that the Lagrangian now is invariant!
- What have we done?
 - We *insist* the electron can have a local phase factor $\alpha(x)$ without changing the physics
 - We then *must* at the same time introduce a photon, which couples to charge!
 - Gauge invariance implies interactions!
- Remember gauge transformations EM field: $A^{\mu} \rightarrow A'^{\mu} = A^{\mu} + \partial^{\mu} \lambda$
 - λ is coupled to the phase of the wave function of the electrons
- The same principle can also be used for weak and strong interactions: implement other symmetries

Quantum Electrodynamics (QED)

- The free Dirac Lagrangian is: $\mathcal{L} = i \overline{\psi} \gamma_{\mu} \partial^{\mu} \psi m \overline{\psi} \psi$
- Introducing electromagnetism implies: $\partial^{\mu} \rightarrow D^{\mu} \equiv \partial^{\mu} + iqA^{\mu}$
- Resulting in: $\mathcal{L} = i\bar{\psi}\gamma_{\mu} D^{\mu}\psi m\bar{\psi}\psi$ $\mathcal{L} = i\bar{\psi}\gamma_{\mu} \partial^{\mu}\psi - m\bar{\psi}\psi - q\bar{\psi}\gamma_{\mu}A^{\mu}\psi$ $\mathcal{L} = \mathcal{L}_{\text{free}} - \mathcal{L}_{\text{int}} \text{ with } \mathcal{L}_{\text{int}} = -J_{\mu}A^{\mu} \text{ and } J_{\mu} = q\bar{\psi}\gamma_{\mu}\psi$
 - Remember that the probability current was $\bar{\psi}\gamma_{\mu}\psi$ such that we now have a charge current: $J_{\mu} = q\bar{\psi}\gamma_{\mu}\psi$
 - The system is described as free Lagrangian plus an interaction Lagrangian of the form: "current × field" $\mathcal{L}_{int} = -J_{\mu}A^{\mu}$

Part 2 Gauge Theory

2b) Local Gauge Invariance ii) Yang-Mills theories^{*} (Weak, Strong)

* Note: this is a more technical part: focus on the concept involved; the precise mathematics is less important for now

Yang Mills Theories

- QED is called a U(1) symmetry. It means that a 1-dimensional unitary transformation (the phase factor) does not change the physics.
 - The unitary symmetry couples to the charge quantum number
- Let us require that the weak interaction can not differentiate between an up and a down quark
 - $\mathcal{L} = \overline{u}(i\gamma^{\mu}\partial_{\mu} m)u + \overline{d}(i\gamma^{\mu}\partial_{\mu} m)d$ where u and d are spinor waves
- Rewrite it as $\mathcal{L} = \overline{\psi} (i\gamma^{\mu} I \partial_{\mu} I m) \psi$ with $\psi = \begin{pmatrix} u \\ d \end{pmatrix}$ and $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
 - We think of the "up" and "down" directions in weak isospin space

SU2 Gauge Invariance

- We require gauge invariance: $\psi(x) \to \psi'(x) = G(x)\psi(x)$ with $G(x) = \exp\left(\frac{i}{2}\vec{\tau}\cdot\vec{\alpha}(x)\right)$
 - $\vec{\tau} = \tau_1, \tau_2, \tau_3$ are the Pauli Matrices
 - This is now a rotation in isospin space generated by 2x2 Pauli matrices!
- Just like QED there is the problem that the Lagrangian does not automatically stay invariant (just write it out), because: $\partial_{\mu}\psi(x) \rightarrow \partial_{\mu}\psi'(x) = G(x)(\partial_{\mu}\psi) + (\partial_{\mu}G)\psi$
- To solve a corresponding covariant derivative must be introduced to keep the Lagrangian invariant: $I\partial_{\mu} \rightarrow D_{\mu} = I\partial_{\mu} + igB_{\mu}$ $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
 - g is the coupling constant that replaces charge q in QED and B_{μ} is now e a new vector force field that replaces A_{μ} of QED.
 - The object B_{μ} is now a 2x2 matrix: $B_{\mu} = \frac{1}{2}\vec{\tau} \cdot \vec{b}_{\mu} = \frac{1}{2}\tau_1^a b_{\mu}^a = \frac{1}{2} \begin{pmatrix} b_3 & b_1 ib_2 \\ b_1 + ib_2 & -b_3 \end{pmatrix}$ $\vec{b}_{\mu} = (b_1, b_2, b_3)$ are now three new gauge fields
 - We need 3 instead of one, because there are three generators of 2x2 rotations
- We now get the desired behaviour if : $D_{\mu}\psi(x) \rightarrow D'_{\mu}\psi'(x) = G(x)(D_{\mu}\psi)$

Gauge transformation for B_{μ} field – (for experts)

- We get the desired behaviour if: $D_{\mu}\psi(x) \rightarrow D'_{\mu}\psi'(x) = G(x)(D_{\mu}\psi)$
- The left side of this equation is:

$$D'_{\mu}\psi'(x) = (\partial_{\mu} + igB'_{\mu})\psi'$$

= $G(\partial_{\mu}\psi) + (\partial_{\mu}G)\psi + igB'_{\mu}(G\psi)$

- While the right hand side is: $G(D_{\mu}\psi) = G(\partial_{\mu}\psi) + ig \ G \ B_{\mu}\psi$
- So the required transformation of the field is: $igB'_{\mu}(G\psi) = igG(B_{\mu}\psi) (\partial_{\mu}G)\psi$
- Multiply the equation by G^{-1} on the right (and omitting ψ): $B'_{\mu} = GB_{\mu}G^{-1} + \frac{i}{g}(\partial_{\mu}G)G^{-1}$
- Compare this to the case of electromagnetism where $G_{em} = e^{i\alpha(x)}$ gives:

$$A'_{\mu} = G_{em}AG_{em}^{-1} + \frac{i}{g} \left(\partial_{\mu}G_{em}\right)G_{em}^{-1} = A_{\mu} - \frac{1}{q}\partial_{\mu}\alpha$$

... which is exactly what we had before.

Interpretation

- We try to describe an interaction with a symmetry between two states:
 - "up" and "down" states with invariance under SU2 rotations
- To do this requires the existence of three force fields, related to the gauge field: \vec{B}_{μ}
 - What are they?
 - They must be three massless bosons, similar to the photon, that couple to "up" and "own" states.
 - They are the W^- , Z^0 , W^+ bosons.
 - How come they have a mass (unlike the photon? ightarrow Higgs mechanism
- Again the interaction Lagrangian will be of the form "current x field:" $\vec{J}_{\mu}\vec{b}^{\mu}$, where the current is now: $J_{\mu} = \frac{\overline{g}}{2}\psi\gamma_{\mu}\vec{\tau}\psi$
- The "up" and "down" states are $\psi = \begin{pmatrix} u \\ d \end{pmatrix}$ and $\psi = \begin{pmatrix} v \\ e \end{pmatrix}$ and we describe the *weak interaction*.
- How about the *strong interaction*?

The strong interaction

- The "charge" of the strong interaction is "colour"
- The wave function of a quark has three components:
 - $\psi = \begin{pmatrix} \psi_r \\ \psi_g \\ \psi_b \end{pmatrix}$; Require a symmetry generated by 3x3 rotations in 3-dim color space: SU(3)
- There are 8 generator matrices λ_i and as a consequence there are 8 vector fields needed to keep the Lagrangian invariant
 - There exist 8 gluons, related to:

$$\lambda_{1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \lambda_{2} = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \lambda_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \lambda_{4} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
$$\lambda_{5} = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix} \qquad \lambda_{6} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \qquad \lambda_{7} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & -i & 0 \end{pmatrix} \qquad \lambda_{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

The Standard Model

- The Standard Model applies gauge invariance at the same time to
 - Electromagnetism (U(1) symmetry transformations) \rightarrow 1 photon
 - Weak interaction (SU(2) symmetry transformations) \rightarrow 3 weak bosons
 - Strong interaction (SU(3) symmetry transformations) \rightarrow 8 gluons
- The SM gauge group is $SU(3) \otimes SU(2) \otimes U(1)$
- For an exact symmetry the force particles should be massless for
 - SU(3) is exact.
 - $SU(2) \otimes U(1)$ is an approximate (ie "broken") symmetry.
 - It is broken in the Higgs mechanism such that there remains one massless boson and three massive particles.

Standard Model

