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Standard Model: particles and forces

Classification of particles

* Lepton: fundamental particle

* Hadron: consist of quarks
« Meson: 1 quark + 1 antiquark (7 *,BY, ...)
e Baryon: 3 quarks (p ,n, A, ...)

* Anti-baryon: 3 anti-quarks

* Fermion: particle with half-integer spin.

* Antisymmetric wave function: obeys Pauli-
exclusion principle and Pauli-Dirac statistics

e All fundamental quarks and leptons are spin-%
* Baryons (S=1/,, 3/,)

e Boson: particle with integer spin

* Symmetric wave function: Bose-Einstein statistics
* Mesons: (S5=0, 1), (S=0)
* Force carriers: y, W, Z, g (S=1); graviton(S=2)

Standard Model of Elementary Particles

three generations of matter

interactions / force carriers
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Wave Equations

Contents:

1. Wave equations Griffiths chapter 7 and PP1 chapter 1

a) Wave equations for spin-0 fields

* Schrodinger (non relativistic), Klein-Gordon (relativistic)
b) Wave equation for spin-% fields

* Dirac equation (relativistic)

* Fundamental fermions
c) Wave equations for spin-1 fields

e Gauge boson fields; eg. electromagnetic field

2. Gauge field theory Griffiths chapter 10 and PP1 chapter 1

a) Variational Calculus and Lagrangians

b) Local Gauge invariance
i QED
ii. Yang-Mills Theory (Weak, Strong)

* Required Quantum Mechanics knowledge:
* Angular momentum and spin: study Griffiths sections 4.2 ,4.3, In particular Pauli Matrices



Griffiths §7.1-§7.3

Part 1
Wave Equations and Probability

1a) Spin-0



Schrodinger Equation and probability

* Quantization of classical non-relativistic theory:
~2

e Take E = zpm and substitute energy and momentum by operators that operate on y:
E—>l:7=ihi ;. pop=—ihV
2
e Result is Schrodinger’s equatlon lh o 1/) = —h—\721/1

i(px— Et )/h

* Plane wave solutions: Y = Ne with the kinematic relation E = p?/2m

. Multiply both sides Schrodinger by Y™ and add its complex conjugate /‘ ;.7
1/) 1/) 1/1 ( ) \721/} Recognize “continuity” equation: ’/\\/’\\\/\/
at L F— ap 7
Y a_l/) =1 (_) V2y* ot / | \ 3
t 2m Law of conserved currents, with: \ W\
Yo = Tk, S ~ p l/)l/) INI2 :/Z\_ -7

j
*Use: V- (YT —YV*) = Y 72y — Y2y * Interpret: probability waves!



Relativistic: Klein-Gordon equation

* Quantization of relativistic theory

e Start with E% = p?c? + m?c* and substitute again E — ih% and p > —ihV

2
e Result is Klein-Gordon equation: —ia—qb = —\72(]5 +

c? 0t2

m2c
hz

(15 Usenow: h=c=1

i(BX—Et)/h

e Plane wave solutions: ) = Ne with relativistic relation E? = p? + m?*

* Use the covariant notation: 7 o 9 =
w= (<L _ : _ (2
J (at’ 2\7) ;O (at’V)
p=190"_p2 _
p pt = m2 00" = -5 —V*= (usually take c = h = 1)
# p® =Fandx? =t

* Klein-Gordon in four-vector notation: d,,0*¢ + mép =0

* Plane wave solutions: i = Ne~Hpux¥)

* Time and space coordinates are now treated fully symmetric

* This is needed in a relativistic theory where time and space for different observes are
linear combinations of each other



Klein-Gordon conserved currents

* Similar to the Schrodinger case multiply both sides by —i¢p™ from left and
add the expression to its complex conjugate

e 62¢ " : : “ : TR .
—i¢h (_ 6_2) = —i* (V2 + m2¢) Again recognize “continuity” equation,
Zt the law of conserved currents:
. 0-¢” . " . U
ip*(—55) = ip(-V2¢p* +m2p) 0" = 0
+ t With now:
j* = (p,)) = i[¢p"(0%d) — p(aH™)]
ot _ ot ot /. S —_ > It gives for plane waves:
p - p =2|NI°E
: : J = 2|N|*p
* The quadratic equation leads to Orin 4_Vector:]jﬂ _ |2|1|V|€p”

double solutions: E? = +- = E = + ---
* Positive and negative energy solutions

* Negative solutions imply negative probability density p

* This bothered Dirac and therefore he looked for an equation linear in E and p ...



Antiparticles

* Feynman-Stuckelberg interpretation
* Charge current of an electron with momentum p and energy E
j*(—e) = —2e|N|*p* = —2e|N|*(E,p)
* Charge current of a positron
j*(+e) = +2e|N|*p* = —2e|N|*(—E,—p)
The positron current with energy —E and momentum —p is the
same as the electron current with E and p

et -

E<O E>0

* The negative energy particle solutions going backward in time describe the

positive-energy antiparticle solutions.

* The wave function ¢ = Ne~ixup” stays invariant for negative energy and going backwards in
time

e Consider eg. e "{(-E)(=t) = o—iEt

* A positron is an electron travelling backwards in time



Griffiths §7.1-§7.3

Part 1
Wave Equations and Probability

1b) Spin-%



Dirac Equation

* Dirac did not I|ke negative probabilities and looked for a wave equation of
the form E = l—l/} Hy = (?) , butrelativistically correct.

*Try:H = (d-p + fm) where d - p = a;p, + azp,, + asp, ;ooa? B?
* We know that: H?y = E?y = (%2 + m?)y
* Write it out: H? = (X, a;p; + Bm)(X; ajp; + pm)

= (X, qapip; + X aifpim + X Bagpym + B2m?)

(z aipf + z(a a; + aja;)pip; + Z(alﬁ + Bay)pm + B*m )

l 1>
lJ J

* This works out if: v
caf=ai=at=p%=1 =0
* a;, Ay, a3, f anti-commute: ie.: ¢y, = —a,aq etc

» Anti-commutator: {a;, a]-} =26 ;{a,p}=0; p*=1
 Using definition: {4, B} = AB + BA:



Dirac’s idea

* Clearly a; and 8 cannot be numbers. Let them be matrices!
* In that case they operate on a wave function that is a column vector
* The simplest case that allows the requirements are 4x4 matrices.

* Dirac’s equation becomes: A . C e
S U I 0 /A R o [
lat by |~ l(_ ) Vi + ( o > m Wy

l/)4_ \ = . \ B . l/)4

* It is possible making use of the Pauli spin matrices

im0 Gas= (3 B omen(! D= ( imman( )
T _—

; = a; and LT = B (Since Hamiltonian has real E eigenvalues.)

* Note that @ and 8 are hermitian: a
* This is a very complicated equation!

* What does it mean that the wave function iy is now a 1-by-4 column vector?
* 1 is not a 4-vector, since the indices do not represent kinematic variables, but matrices indices!



Covariant form of Dirac’s equation

* Dirac equation: i%l/) = (—i d-V+ ,Bm)l/)

Multiply Dirac’s eq. from the left by ; then it becomes:
c (B +ipd-7—m)yp =0

* Introduce now the Dirac y-matrices: y* = (B, a) (vector of 4 matrices!)

e Covariant form of Dirac eq:
(iy“(')u — m)t/) =0

Realise that Dirac’s equation is a set of 4 coupled differential equations.



Dirac Gamma Matrices

* There is some freedom to implement: {y*,yV} = 2g*" in 4x4 matrices.
* We will use the Dirac-Pauli representation

1 0 O 0 0 0 0 1 Note the indices:
o_(0 1 O 0 1| O 0 1 0 (confusing!)
Zlo o -1 o0 Zlo -1 0 o
0 0 0 —1 —1 0 0 0 u,v=20,1,2,3 are the
Lorentz indices in space-time:
00 0 ! 00 10 Dirac matrix indices: 1,2,3,4
y? = 0 O L0 y3 = 00 0 -1 Have to do with the row and
0 ¢ 0 O -1 0 0 0 column indices of the matrix
-i 0 0 0 0O 1 0 O (and spinors)
1 0 0 o
or: y0 =p = (02 —ﬂz) and y* = Ba; = (—Uk Ok)

* Note: although the gamma matrices indices are Lorentz-indices (“space-
time”, the gamma-matrices are not 4-vectors!



Exercise — 13: Dirac Algebra

* Dirac algebra:
* Write the explicit form of the y-matrices
Show that : {y#,y¥} = y#yY + yVyH = 2g*
Show that: ()% =1,; (1) = ¥4 = )4 = -1,
Use anti-commutation rules of @ and 8 to show that: y‘”L = )/O]/“]/O

Define y® = iy%yly?y® and show: y*' =y5 ; ()2 =1, ; (% y#} =0



Exercise — 14: Solutions of free Dirac equation ekl

derivation of the solutions

a) Show that the following plane waves are solutions to Dirac’s equation

1 0
0 o 1 o
b=l pErm) €T = — i) B +m) | €T
(px +ipy)/(E +m) —p,/(E+m)
p,/(E —m) (px — ipy)/(E —m)
W, = (px + ipyz/(E —m) pl(BX—Et) P, = —pz/(g' —m) pi(B-E—Et)
0 1

b) Write the Dirac equation for particle in rest (choose p = 0) and show that ¥, and i, are positive

energy solutions: E = +‘\/p2 + mz‘ whereas Y; and Y, are negative energy solutions: E =
—_ ‘\/p2 + mZ‘.

c) Consider the helicity operator ¢ - }_5 = OxPx + OyPy + 0Pz and show that Y, corresponds to
positive helicity solution and Y, to negative helicity. Similarly for ¥; and y,.




Spin and Helicity — hint for exercise 14c)

* For a given momentum p there still is a two-fold degeneracy: what differentiates
solutions Y4 from Y, ?

* Define the spin operator for Dirac spinors: Y = (% 9) , Where g are the three 2x2

o

Pauli spin matrices
* Define helicity A as spin “up”/”down” wrt dlrectlon of motion of the particle
A—lf-“=1(5_.ﬁ 0) (0 + o + 0 )

 Split off the Energy and momentum part of Dirac’s equation: (iy“aﬂ — m)t/J =0

I 0 0 o
G 2E-(5 S -G Dm () =0
* Exercise: Try solutions i, and Y, to see they are helicity eigenstates with
A=4+1/2and 1 =-1/2

* Dirac wanted to solve negative energies and he found spin-% fermions!



Antiparticles

e Dirac spinor solutions  1;(x*) = ;(t, %) = u;(E, p)e'P*ED = y; (pt)e~Pux"
withi = 1,2,3,4

* Since we work with antiparticles, instead of negative energy particles
travelling backwards instead in time, antiparticle solutions are defined

u,(—E, _ﬁ)ei((—ﬁ)f—(—E)t) = v,(E,p)e {BE-ED = 1 (pH)ePux"
u,(—E, _ﬁ)ei((—ﬁ)f—(—ﬁ')t) = v, (E, ﬁ)e—i(ﬁf—Et) _ vl(p,u)eipﬂx”

* Where now the energy of the antiparticle solutions v; and v, is positive: E > 0

(px — ipy)/(E +m) p./(E +m)
¢ EXpIICIt vy = —p./(E +m) and v, = (px + ipy)/(E +m)
0 1
1 0

* Where E and p are now the energy and momentum of the antiparticle



Adjoint spinors

* Adjoint spinors
 Solutions of the Dirac equation are called spinors
e Current density and continuity equation require adjoints instead of complex conjugates

9, 9,
iyo% +1i z V"”a—;/; —my = » The minus sign in (—y*) disturbs the
k=123 Lorentz invariant form
owt oWt . .. .. . .
_ iyo _ Z ik(_yk) —myt =0 Restore by d_eflnmg adjoint spinor:
ot k=1,2,3 0x = 4,0
o of _ .0 . Kkt _ _k l/)—l/)]/
Yy =y 5 ¥ ==Y
1
* Dirac spinor: @ = & , adjoint Dirac spinor: ¥ = (1, Y5, Y3, Ps)
Y3
2

» Dirac equation: iy, —miy =0 ; adjoint Dirac equation: id,py* —myp =0



Dirac Current density and conserved current

* Apply a similar trick as before:
* Multiply adjoint Dirac eq from from right by 1 and multiply Dirac eq. from left by ¥

) (i0py* +myp) P =0 Define the 4-vec current:
Y iyt —myp) =0 j* =Pyt

+ _ _ Satisfies the continuity equation:
Y (uy*y) + (9u9r*) ¥ =0 > 9 =0

* Probability: Zero-th component of the curre4nt:
=Py =y = ) il
i=1

* This always gives a positive probability, which was the motivation of Dirac.



Dirac in summary

* Dirac was looking for an explanation for positive and negative energy
solutions by linearising Klein-Gordon equation
* He found that his solutions described spin-Y particles

* He predicted, based on symmetry, that for each particle there should exist an
antiparticle (the negative energy solution).

* We had relativistic fields:
* Spin-0: Klein-Gordon: e.g. pion particles
e Spin-1/2: Dirac : e.g. quarks and leptons
 How about forces? Spin=1



Griffiths §7.1-§7.3

Part 1
Wave Equations and Probability

1c) Spin-1



The Electromagnetic Field — including exercise 15

* Maxwell equations describe electric and magnetic fields induced by
charges and currents: (used Heavyside-Lorentz units: c = 1,€, = 1, o = 1)

1. Gauss’ law: V-E=p _ o
N From 1. and 4. derive continuity
2. No magnetic charges: V-B=0 7.7= _g_P
. t
, . . - o OB .
3. Faraday’s law of induction: VXE + — =0 > charge conservation
ot This was the motivation for
. ., > = JE 4 Maxwell to modify Ampere’s law
4. Modified Ampere’s law: VXB — 5 = J

e Define a Lorentz covariant 4-vector field A* = (V, /T) as follows:

04 =, .
3 VI with V = A° (then automatically 3. follows)

a) Show Maxwell equations can be summarized in covariant form:

B =VXxA (then automatically 2. follows)
EF =

- > -

5‘ﬂ0“AV — 6"8”/1“ — jv (Derive expressions for p and j and use: ﬁx(\?xﬁ) = —V24+ \7(\7 - A)



Gauge Invariance (including exercise 15)

b) Field A* is just introduced as a mathematical tool
* Choose any A* as long as E and B fields don’t change
oA
VoV =V+—
A = A = AR 4 9H) L, o, ot
A->A"=A4A-V2A
* Exercise: show this explicitly!

c) Choose the Lorentz gauge condition: 9,4 = 0
* Exercise: show that we can chose a gauge field such that this is possible

* Maxwell equation in Lorentz gauge becomes: d,0%A"Y = j¥ also: A” = j¥
* Very similar to Klein-Gordon equation d,0*¢ + m*¢ = 0
e But now mass of the photon = 0.
* Also now 4-equations = polarizations states of the photon field

* Photon field solutions: A*(x) = Ne*(p)e~Pvx’
* A gauge transformation implies: e* — ¢'#* = ¢! + ap*
* Different polarization vectors which differ by multiple of p# describe same photon



Exercise — 16 Antisymmetric tensor F*Y

* Maxwell’s equation d,0* A" — @Vd,A* = j¥ can be further shortened by
introducing the antlsymmetrlc tensor FHY = gtAY — gV AH*

/0 -E, -E, —EZ\
E., 0 —-B, B

E, B, 0 =B,
\E. -B, B, 0

* Show that Maxwell’s equations become: d,F* = jV¥

FHv —

e Hint: derive the expressions for charge (g = j°) and current (f = J ) separately.
Use the identity: \7><(|7></T) = V24 + \7(\7 - /T) Remember the definitions:

= (49, —4) ; 9,= (%,ﬁ) ; g =g, = diag(1,-1,-1,-1)



Griffiths chapter 10

Part 2
Gauge Theory

2a) Variational Calculus and Lagrangians



Lagrange Formalism classical

* Classical Mechanics: The Lagrangian leads to equations of motion
* L(q;,q;) =T —V where g; and ¢; are the generalized coordinates and velocities.
* The path of a particle is found from Hamilton’s principle of least action

S = dt L(q,q) =0 55 =0
t1

From this the Euler Lagrange equations follow and provide the equations of motion:

d /0L oL

— (—) = — See: https://en.wikipedia.org/wiki/Lagrangian_mechanics

dt aql Oql
* Example: Ball falls from heighty =h : q=y, g =dy/dt = v,

pot — T =mgq

_1_ .-
 Exin =5mqg

* Euler Lagrange: dL/dq = mg ; dL/dq = mq

°—(§;) aaqL gives mg=mg 2q=gt+vy 2 q= y——gt2+v0t+y0



Exercise — 17 : Lagrange Formalism classical

* Example of variational calculus and least action principle: what is the shortest path between two
points in space? W
e Distance of two close points:

2
y =, dx% +dy? = dez (1 + (%) ) =1—y"%dx withy' =dy/dx
* Total length from (xy, yy) to (xl,y%) ;
1 X1 X1
lzf dl =J 1+ y?dx =j f(y,y)dx
X0 X0 X0

* Task is to find a function y(x) for which [ is minimal
* |In general assume the path length is given by: I = f;;lf(y, y)dx
 Variational principle: shortest path is stationary: 61 = 0

a) Write §f(y,y) = f6y + 5y where 6y’ =6 (%) = %(Sy)

Show using partial mtegratlon that 61 = 0 leads to the Hamilton Lagrange equation of _ 491

oy “axay "
b) Here for the shortest path we have f(y') =1 = /1 +y'c.
Then df /0y = 0and af/dy’' =y'/J1+ y'?
i y! _ I - .
Show that the variational principle leads to a straight line path: - (\/Ty’z) = 0 or that y' is a constant:
dy/dx =a;y=ax+b




Lagrange Formalism in field theory

Griffiths §10.2

 Relativistic Field theory: fields replace the generalized coordinates

* Also time and space will be treated symmetric

* Replace L(qg, q) by a Lagrange density L((,b(x), (')c,b(x)) in terms of fields and

gradients such that L = [ d3xL(¢, d¢)

* Principle of least actions becomes:
S= fttlz d*x L (qb(x), 0¢(x)) and again S =0

t,, t, are endpoints of the path

e Euler Lagrange Equations of motion becomes:

0L 0L

%0~ "3 (3,6)




Exercise — 18: Lagrangians and wave equations

* Scalar Field (“pion”)

a) Show that the Euler-Lagrange equations for £ = %(aﬂqb)(aﬂqb) — m?¢?
results in the Klein-Gordon equation

* Dirac Field (Fermion)

b) Show that the Euler-Lagrange equations for £ = iy, 0*y — myy)
results in the Dirac equation

* Electromagnetic field (photon)

1 .
c) Show that L = — (0*AY — (?VA“)(GHAV - OVAM) — jHA,
results in Maxwell’s equations



The Gauge Principle: Interactions

* global gauge invariance: the phase of the wave function is not observable:

Changing the wave function P (x) — ¥’ (x) = e'*1(x) should not change
the Lagrangian for an electron

* Look at Dirac Lagrangian: iy, 0"y — myyp
e It should not change fory = ' and ¥ - ' = 'ty0 ;" = e*i%Y = OK.

* local gauge invariance: invariance under chaging phases in space and time
* An electron wave function can have a different phases at different places and times

c P() - YP'(x) = e@Dy((x) and P(x) = P'(x) = e *WyY(x)
* Check this for the Dirac Lagrangian

Problem in the term: d,3(x) — aﬂlp’@ = ela(x) (aﬂzp(x) + i@ua(x)tp(x))

* It seems that the Lagrangian will change, but this is not allowed!



Griffiths chapter 10

Part 2
Gauge Theory

2b) Local Gauge Invariance
i) QED



Exercise — 18: Covariant Derivative

* We insist that the Lagrangian does not change and invent a “covariant” derivative:
* Replace in iy, 0% — myyp the derivative by: 9# — D¥ = 9* + iqAH
* Require that the vector field A* transforms together with the particle wave

() = P’ (x) = e 1Dy (x)
1
AH(x) - A" (x) = A*(x) — aaua(x)
e =» Exercise: check that the Lagrangian now is invariant!

 What have we done?
* We insist the electron can have a local phase factor a(x) without changing the physics
* We then must at the same time introduce a photon, which couples to charge!
=» Gauge invariance implies interactions!

« Remember gauge transformations EM field: A* — A'* = A% + 92
* Ais coupled to the phase of the wave function of the electrons

* The same principle can also be used for weak and strong interactions: implement
other symmetries



Quantum Electrodynamics (QED)

* The free Dirac Lagrangian is: £ = iy, 0"y — myy
* Introducing electromagnetism implies: 9# - D# = o + igA*
* Resulting in: £ = iy, D*p — my)
L = iy, oY —mypyp — qipy, Aty
L = Leree = Lint with Lipt = _][J,AM and ],u = CIT,E]/MED

* Remember that the probability current was l/j)/ul/) such that we now have
a charge current: J, = qyy, ¥

* The system is described as free Lagrangian plus an interaction Lagrangian
of the form: “current X field” L, = —J,A*



Griffiths §10.4 - §10.5

Part 2
Gauge Theory

2b) Local Gauge Invariance
ii) Yang-Mills theories™ (Weak, Strong)

* Note: this is a more technical part: focus on the concept involved; the precise mathematics is less important for now



Yang Mills Theories

* QED is called a U(1) symmetry. It means that a 1-dimensional unitary
transformation (the phase factor) does not change the physics.

* The unitary symmetry couples to the charge quantum number

* Let us require that the weak interaction can not differentiate between an up
and a down quark

e L = ﬂ(iy“@u — m)u + cf(iy“@u — m)d where u and d are spinor waves

* Rewrite itas £ = P(iy* I 0, — 1 m)y with ) = (Z) and I = ((1) (1))

* We think of the “up” and “down” directions in weak isospin space



N SPACEV-RINEIEI =

* We require gauge invariance: (x) - '(x) = G(x)yP(x) with G(x) = exp( T-a(x ))
* T = T4, Ty, T3 are the Pauli Matrices

* This is now a rotation in isospin space generated by 2x2 Pauli matrices!

 Just like QED there is the problem that the Lagrangian does not automatically
stay invariant (just write it out), because: 9,1 (x) -» 9,9’ (x) = G(x)(9,¢) + (3,G)p

e To solve a corresponding covariant derivative must be introduced to keep the

Lagrangian invariant: 10, —» D, =10, +igB, [ = ((1) (1))

* g is the coupling constant that replaces charge q in QED and B,, is now e a new
vector force field that replaces A, of QED.
: : . 1., - 1 1 b by —ib
* The object B,, is now a 2x2 matrix: =_7. ) — 3 1 2)
JEEH B Bu=57 bu =T 2(b1+ib2 —b;
b, = (by, by, b3) are now three new gauge fields

 We need 3 instead of one, because there are three generators of 2x2 rotations
* We now get the desired behaviour if : D,(x) » D', ¢'(x) = G(x)(D,y)



Gauge transformation for B, field — (for experts)

* We get the desired behaviour if: D, (x) > D'’ (x) = G(x)(D, )

* The left side of this equation is: D'y’ (x) = (6M + igBL’l)l/J'
=G(0,¢) + (9,G6)y +ig B, (Gy)
While the right hand side is:  G(D,¥) = G(9,¥) + ig G B, ¢

» So the required transformation of the field is: igB,(GY) = igG(B,p) — (9,G)y

Multiply the equation by G™* on the right (and omitting ¥): Bj, = GB,G™! +é (0,6)G™1

Compare this to the case of electromagnetism where G,,,, = ei“(x)gives:
/ — J — 1
Al = GonAGas +§ (0,Gom)Gom = Ay — ~ 0

... Which is exactly what we had before.



Interpretation

* We try to describe an interaction with a symmetry between two states:
e “up” and “down” states with invariance under SU2 rotations

* To do this requires the existence of three force fields, related to the gauge field: ﬁu
 What are they?

* They must be three massless bosons, similar to the photon, that couple to “up” and “own”
states.

* Theyarethe W~,Z°% W™ bosons.
* How come they have a mass (unlike the photon? = Higgs mechanism

e Again the interaction Lagrangian will be of the form “current x field:” ];l_;“,
i g N
where the currentis now: J, = El/)y#np

u vV :
* The “up” and “down” states are Y = (d ) and Y = (e ) and we describe the weak
Interaction.

 How about the strong interaction?



The strong interaction

* The “charge” of the strong interaction is “colour”

* The wave function of a quark has three components:

Pr

« ¢ =| Yy | ; Require a symmetry generated by 3x3 rotations in 3-dim color space: SU(3)

Y

* There are 8 generator matrices A; and as a consequence there are 8 vector fields needed
to keep the Lagrangian invariant

* There exist 8 gluons, related to:

0 0 0 —i 0 1 0 0 0
A=11 0 Az=<i 0 0) /13=<O —1 O) Ay =0
0 0 0 0 O 0 0 O 1

(0 —i) 0 0 0 0 0 0 .
[ 0 0O 1 O 0O —i O V3

C OO oo
SO o O OO

0 O
L o)
0 -2



The Standard Model

* The Standard Model applies gauge invariance at the same time to
* Electromagnetism (U(1) symmetry transformations) = 1 photon
e Weak interaction (SU(2) symmetry transformations) = 3 weak bosons
 Strong interaction (SU(3) symmetry transformations) = 8 gluons

* The SM gauge group is SU(3) ® SU(2) ® U(1)

* For an exact symmetry the force particles should be massless for
* SU(3) is exact.
* SU(2) ® U(1) is an approximate (ie “broken”) symmetry.

* Itis broken in the Higgs mechanism such that there remains one massless boson and three massive
particles.



Standard Model
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