

PHY3004: Nuclear and Particle Physics Marcel Merk, Jacco de Vries, ...

Elementary particles

Classification of particles

- Lepton: fundamental particle
- Hadron: consist of quarks
 - Meson: 1 quark + 1 antiquark $(\pi^+, B_s^0, ...)$
 - Baryon: 3 quarks $(p, n, \Lambda, ...)$
 - Anti-baryon: 3 anti-quarks
- Fermion: particle with half-integer spin.
 - Antisymmetric wave function: obeys Pauliexclusion principle and Pauli-Dirac statistics
 - All fundamental quarks and leptons are spin-½
 - Baryons (S=1/2, 3/2)
- Boson: particle with integer spin
 - Symmetric wave function: Bose-Einstein statistics
 - Mesons: (S=0, 1), Higgs (S=0)
 - Force carriers: γ , W, Z, g (S=1); graviton(S=2)

- Electromagnetism
- Weak Interaction
- Strong Interaction
- No Gravitation

Lecture 2 : Forces

			ZZ	
	Gravity	Weak (Electro	Electromagnetic weak)	Strong
Carried By	Graviton (not yet observed)	w + w - z 0	Photon	Gluon
Acts on	AII	Quarks and Leptons	Quarks and Charged Leptons and W W	Quarks and Gluons
Strength	0.000000000000000 00000000000000000 000000	0.0001	1	60

Attractive and Repulsive forces and the quantum exchange

There is no "action at a distance"

EM: photon

Weak: W, Z bosons

Strong: gluons

Gravitation: graviton(?)

Example of a quantum process

Feynman diagram

Note:

- Electron-positron annihilation
- Produce a "virtual" photon
- Photon produces a quark + antiquark
- Quark can radiate a gluon

This is a *graphic* representation of a *calculation* that represents a quantum event. We use it to *talk* about it.

Do *not* take it *literally* as what happens

Another example

- Kaon decay with weak interaction mediated by a W-boson
- Quark anti-quark produced by the strong interaction mediated by a gluon

Part 1 The Electromagnetic Interaction Quantum Electrodynamics (QED)

Quantum Electrodynamics (QED)

- "strength" of the "vertex coupling" is equal to the elementary charge e
- Note: this vertex can only be part of a process since energy and momentum cannot be conserved at the same time in a "2-to-1" process
 - This is an off-shell or virtual photon

A Real QED Process: Möller scattering

• "Coulomb" repulsion of colliding electrons

- Convention: the direction of an arrow w.r.t. time determines whether it is a colliding particle or antiparticle
 - Should leave out the charge to be unambiguous

A Real QED Process: Möller scattering

• "Coulomb" repulsion of colliding electrons

- Convention: the direction of an arrow w.r.t. time determines whether it is a colliding particle or antiparticle
 - Should leave out the charge to be unambiguous

A Real QED Process: Möller scattering

• "Coulomb" repulsion of colliding e⁺

- Convention: the direction of an arrow w.r.t. time determines whether it is a colliding particle or antiparticle
 - Should leave out the charge to be unambiguous
- Feynman diagrams are always drawn with particles
 - Anti-particles are represented with an arrow pointing against the direction of time.

A Real Process: Bhabha Scattering

- Scattering of electron and positron, two quantum processes ("Feynman diagrams") in one real process:
 - Spacelike "s-channel" exchange
 - e^- and e^+ annihilate into a photon, which converts back to a e^- and e^+ pair
 - Timelike "t-channel" exchange
 - e^- and e^+ scatter in each others EM field

A Real Process: Bhabha Scattering

- Scattering of electron and positron, two quantum processes ("Feynman diagrams") in one real process:
 - Spacelike "s-channel" exchange
 - e^- and e^+ annihilate into a photon, which converts back to a e^- and e^+ pair
 - Timelike "t-channel" exchange
 - e^- and e^+ scatter in each others EM field

Feynman Diagram

Calculation using Feynman rules:

$$\mathcal{M} = \frac{e^2}{q^2}$$

Fine structure constant:

$$\alpha = \frac{e^2}{4\pi}$$

Hence:
$$\mathcal{M} \propto \frac{\alpha}{q^2}$$

 q^2 is "virtuality" of the photon

- Strength of the interaction
 - Determined by the coupling constant *e*:

$$\alpha = \frac{e^2}{4\pi} = 1/137$$
 why???

Note: a photon should have $q^2 = 0$!

Scattering with photons

Real processes with external photon lines

Pair annihilation

Pair production

Compton scattering

Perturbation Theory

Feynman diagrams we use describe the lowest order "Perturbation Theory". Calculations with Feynman diagrams are never exact, always an approximation.

- We simply do not know how to do exact calculations in particle physics
- QED is extremely precise because many complicated diagrams have been calculated

Not all diagrams exist

 You can only use combinations of the fundamental QED vertex:

The background of Feynman Diagrams

More about scattering and Feynman diagrams in Lecture 4

- For an intuitive approach to Feynman diagrams, see wikipedia: https://en.wikipedia.org/wiki/Quantum_electrodynamics and references therein, or the booklet of Feynman:
 - "The strange theory of light and matter"

Part 2 The Weak Interaction

Historical: Fermi 4-point interaction

- Becquerel discovered radioactivity base on the weak force
 - $n \rightarrow p + e + \overline{\nu}$
- The original model for the weak interaction is from Fermi
 - For obvious reasons it is called the 4-point 'contact' interaction (1933).
 - The strength of the interaction was given by Fermi's constant $G_F = 10^{-5}$

$$n+\nu \rightarrow p+e$$

$$n \to p + e + \overline{\nu}$$

Quantum zoom-in on Fermi 4-point interaction

 Fermi 4-point interaction Very short range W exchange Fermi decay Effective Strength: $\frac{G_F}{\sqrt{2}}$ constant: $\frac{G_F}{\sqrt{2}}$ udd $G_F = Fermi Constant$

- Similar to electrodynamics the weak interaction has a propagator
 - W spin-1 boson
- At quark level it involves a $d \rightarrow u$ transition

The Weak Interaction

Feynman rules

- W-boson has electric charge
 - The process is called a *charged current*
- q^2 is the momentum transfer from the hadronic to leptonic vertex
 - Here due to mass difference $m_n m_p$
- Effect of propagator is only noticeable when $q^2 \sim M_W^2$
 - If q^2 is large: **resonance**
 - In that case weak force is strong
 - If q^2 is small: then effectively a 4-point Fermi coupling
 - Propagator $\sim 1/M_W^2$ weak force

•
$$G_F = \frac{g^2}{8M_W^2}$$
 ; $\alpha_W = \frac{g^2}{2\pi} = \frac{1}{30} > \alpha_{QED}$

- The weak coupling constant is large!
 - Interaction is weak due to large W mass

W and Z bosons

- Glashow, Salam, Weinberg (GSW model, 1968) predict three weak mediators
 - W^+ , W^- , Z bosons
- Discovery of the W and Z bosons at CERN, 1983, UA1 and UA2 experiments
 - Look at high energy proton-proton collisions
 - $M_W = 80 \; GeV/c^2$, $M_Z = 91 \; GeV/c^2$ as predicted by GSW model

Flavour changing charged currents: $u\bar{d}$

Flavour conserving neutral currents: $u\bar{u}$

Virtuality

• How can beta decay $n \to p + e + \bar{\nu}$ work, if the W has a mass of 80 GeV??

- Exchange if "virtual" particles, also called "off-shell": $E^2 \vec{p}^2 \neq m^2$
- Heisenberg:

$$E$$
 is undetermined as $\Delta E \Delta t \geq \hbar/2$ with $\Delta E = \sqrt{\vec{q}^2 + m^2}$
For small $q \rightarrow$ range force R
 $R \sim c \Delta t \approx \frac{\hbar}{2mc} \sim 1.2 \times 10^{-18} \, m$

• Notice the resonance behaviour for $q^2 \approx M_W^2$

Precision studies with Z bosons: "Electroweak Force"

• The LEP collider did many precision studies of the weak interaction with e^+e^- annihilation collisions at collision energy around 91 GeV/c^2 .

Similarity of Electromagnetic (γ) and Weak (Z) force

$$\xrightarrow{t}$$

• Weak neutral current:

Examples of processes: "neural currents"

• Electromagnetic: couples to electric charge

Weak "Neutral Currents": couples to weak charge

Z boson also couples to neutrinos: neutrinos have weak charge

Examples of processes that do not exist

• Electromagnetic:

Weak "Neutral Currents":

 γ and Z only couple to particles within one generation and only to quark or lepton pairs

Self coupling

- In electromagnetism a photon has no electric charge
- In the weak interaction the force carriers have charge themselves
 - The weak charge is called "weak isospin"
 - The following diagrams are possible

The W weak force: "charged currents"

- The *W*-boson carries electric charge
- The W connects the weak isospin (I_3) 'up' and 'down' type particles of a generation
 - W^+ and W^- do the opposite
- 2nd and 3rd generation muon and tau can decay because neutrino's are light!

- How does a kaon decay?
 - $K^- = s\overline{d}$
- The c-quark is heavier than the s quark:
 - $s \rightarrow c \ e \ \overline{\nu_e}$ is not possible

Generations

Does the W only couple between particles of one generation?

Leptons: yes

• Quarks: no!

Couplings between generations are possible for the W!

Kaon decays

• "Leptonic": $K^+ \rightarrow \mu^+ \nu_\mu$

• "Hadronic": $K^+ \rightarrow \pi^+ \pi^+ \pi^-$

The strange world of W-quark couplings

- All possible combinations of "up"-type to "down"-type quark couplings are possible
 - They are not all equally strong!

Flavour Changing Quark Interactions

$$V_{
m CKM} = \left(egin{array}{cc} V_{m{ud}} & & & \ & V_{m{cs}} & & \ & & V_{m{tb}} \end{array}
ight)$$

Flavour Changing Quark Interactions

$$V_{\rm CKM} = \left(\begin{array}{ccc} V_{ud} & V_{us} \\ V_{cd} & V_{cs} \\ & V_{tb} \end{array}\right)$$

Flavour Changing Quark Interactions

$$V_{\text{CKM}} = \begin{pmatrix} V_{ud} & V_{us} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{ts} & V_{tb} \end{pmatrix}$$

Flavour Changing Quark Interactions

$$V_{\text{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

Flavour Changing Quark Interactions – CP Violation

- Particles and antiparticles have complex conjugated coupling constants
 - This leads to CP violation
 - Matter dominated universe

$$V_{\text{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

Why a matrix notation?

Model:

Charged weak current does not couple to

$$\binom{u}{d}$$
 , $\binom{c}{s}$, $\binom{t}{b}$

• but instead to

$$\begin{pmatrix} u \\ d' \end{pmatrix}$$
 , $\begin{pmatrix} c \\ s' \end{pmatrix}$, $\begin{pmatrix} t \\ b' \end{pmatrix}$

Where

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

CKM matrix: Cabibbo, Kobayashi Maskawa

A story of eigenstates

- Mass eigenstates $|q\rangle$ are the eigenstate solutions of the free Hamiltonian
- Weak or flavour eigenstates $|q'\rangle$ are the eigenstate solutions of the weak interaction Hamiltonian.
 - They are unitary linear combination, or "rotation" of mass eigenstates.
- The the weak interaction can be written as:

Flavour eigenstates and Mass eigenstates

The CKM matrix V_{CKM} - 3 vs 2 Generations

• Wolfenstein parametrization: V_{CKM} =

$$\begin{pmatrix} 1 - \frac{1}{2}\lambda^{2} & \lambda & A\lambda^{3}(\rho - i\eta) \\ -\lambda & 1 - \frac{1}{2}\lambda^{2} & A\lambda^{2} \\ A\lambda^{3}(1 - \rho - i\eta) & -A\lambda^{2} & 1 \end{pmatrix}$$

$$V_{CKM}$$
: d s
 u $\begin{pmatrix} V_{ud} & V_{us} \\ V_{cd} & V_{cs} \end{pmatrix}$

$$\begin{pmatrix} 1 - \frac{1}{2} \lambda^2 & \lambda \\ -\lambda & 1 - \frac{1}{2} \lambda^2 \end{pmatrix}$$

→ No CP violation

• 3 generations is the minimal particle content to generate CP violation (In Standard Model).

The Flavour Puzzle

- Why 3?
- Why are the couplings what they are?
- Is there a relation with the masses of the quarks?

Flavour in the leptons!

- It turns out neutrino's have mass, too!
 - The mass is very tiny
- The generation mixing also occurs for neutrino's
 - Slightly different nomenclature:

• Leptons (PMNS):
$$\begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} U_{1e} & U_{1\mu} & U_{1\tau} \\ U_{2e} & U_{2\mu} & U_{c\tau} \\ U_{3e} & U_{3\mu} & U_{3\tau} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

- U_{PMNS} : Pontecorvo, Maki, Nakagawa, Sakata mixing matrix
- (Difficult) Question: why is lepton mixing not seen in decays?
 - It is only seen in neutrino oscillations

The Strong Interaction Quantum Chromodynamics (QCD)

Color singlets

- Quarks are "locked-up" in hadrons
 - Technical term: confinement
- Quarks carry color charge: r , g , b
- All physical objects are color neutral or color singlets: confinement!
 - Baryons: rgb or \overline{r} \overline{g} \overline{b}
 - Mesons: $r \overline{r}$ or bb or $g \overline{g}$
- The color force, transmitted by gluons, is very strong
 - Requires a lot of energy to separate a color charge from a color neutral object
 - Trying to do so will produce another color neutral object

Gluon color: $g \overline{b}$ There are 8 gluons + 1 colorless singlet

• Are quarks and gluons real or a bookkeeping devise?

Animation of a color neutral neutron:

Proton Substructure: discovery of "partons" or "quarks" (1968)

• Similarly to Rutherford scattering ("substructure of the nucleus") deep inelastic scattering of electrons on protons show the proton substructure

Discovery of the Gluon (1979)

- The gluon was discovered in e^+e^- collisions at DESY in Hamburg
 - "3-jet events"

Feynman diagram for

quark-quark interaction

• At LHC

3-Jet event at LEP - Delphi (1989 – 2000)

Yukawa's pion exchange vs gluon exchange

- Yukawa: Nuclear force is carried by massive gluon
- QCD: Strong force is mediated by massless gluon

Fundamental Vertices of the strong interaction

- QED: photon couples to charge
- Weak: W couples to isospin
- Strong gluon couples to color
 - 3 colors and anti-colors
 - Gluon carries charge itself!
 - 8 different gluons (9 1 symmetric)

Leptons carry no color: leptons do not feel strong (nuclear) interaction

Abelian and non-Abelian

- Photons have no electric charge:
 - Photons do not interact with each other ("Abelian" in group theory)
- Gluons carry color charge:
 - Gluons do interact with each other ("non-Abelian" in group theory)

Vacuum behaves like dielectric: by QED and even more so by QCD

Screening

- Charge screening effect:
 - Around a charge q(+) dipoles align
 - Halo of negative charge
 - Effective charge (at distance) reduced

Anti-screening and asymptotic freedom

- Anti-screening:
 - gluon self coupling loops have opposite effect
 - Crucial parameter:

$$a \equiv 2f - 11c$$

where: $f =$ number of flavours
 $c =$ number of colors

- In case a > 1 (QED) coupling increases for short distance:
- In case a < 1 (QCD) coupling decreases for short distance

- *Confinement*: at large distance:
 - $\alpha_s > \sim 1$ \iff $\omega \omega \omega \Longrightarrow$

- Asymptotic freedom: at short distance:
 - Coupling $\alpha_s \sim 0$ at very small distances
 - Quarks and gluons become "free"
 - → Quark gluon plasma

Running coupling constants and unification?

- Running couplings: 'beta'-function
- Higher energy means shorter distance
- Lines do not cross in one point

Running coupling constants and unification?

- Unification with SUSY?
- 10¹⁵ GeV
 - Grand Unified Theory
- 10¹⁹ GeV:
 - Planck scale → quantum gravity?

- 10¹⁵ GeV −> Grand Unified Theory?
- Planck scale (~10¹⁹ GeV) —> Gravity! —> Theory of Everything?

Standard Model of particles and forces

Standard Model of Elementary Particles

Summary Forces: Intermediate Vector Bosons

• SM: forces are transmitted by vector mesons, particles with spin-1:

- Electromagnetism:
 - Long range : photon γ , $M_{\gamma}=0$
 - Photon carries no E.M. charge
- Weak interaction:
 - Very short range: W and Z bosons, $M_W = 80 \; GeV$, $M_Z = 91 \; GeV$
 - Weak isospin charge. W and Z have I-charge.
- Strong interaction:
 - Very short range: gluon g , $M_g=0$
 - Gluons carry color → confinement → very short range
 - Pairs of quarks can transmit strong force: Yukawa's mesons
 - Short range
- Gravitation: transmitted by spin-2 particle?
 - Graviton
 - Long range: $M_g = 0$

Prepare(!): Relativistic and 4-vector notation

- Lorentz transformation along x^1 axis using $\beta = v/c$ and $\gamma = 1/\sqrt{1-\beta^2}$ is: $x^{0'} = \gamma(x^0-\beta x^1)$ $x^{1'} = \gamma(x^1-\beta x^0)$ $x^{2'} = x^2$
- Coordinate four-vector notation: $x^{\mu} = (x^0, x^1, x^2, x^3)$
 - Time: $x^0 = ct$, Space: $\vec{x} = (x^1, x^2, x^3)$

 $x^{3'} = x^3$

- General *Contravariant* vector $A^{\mu} = (A^0, \vec{A})$ transforms like x^{μ}
- Lorentz transformations leave the "length" invariant $A \cdot A = |A|^2 = A^{0^2} |\vec{A}|^2$ which can be regarded as the product of a *contra* variant vector with a *co* variant vector:
- $A_{\mu} = (A^0, -A)$ Metric tensor: $g_{\mu\nu} = g^{\mu\nu} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$
- Scalar product: $A \cdot B = A^{\mu}B_{\mu} = g_{\mu\nu}A^{\mu}B^{\nu}$, where a sum is always implicit over contravariant and covariant indices.
- The scalar product is always Lorentz invariant.

Exercise – 7: 4-Vector notation

- a) Start with the expression for a Lorentz transformation along the x^1 axis. Write down the *inverse* transformation (i.e. express (x^0, x^1) in $(x^{0'}, x^{1'})$)
- b) Use the chain rule to express the derivatives $\partial/\partial x^{0\prime}$ and $\partial/\partial x^{1\prime}$ in $\partial/\partial x^{0}$ and $\partial/\partial x^{1}$
- c) Use the result to show that $(\partial/\partial x^0, -\partial/\partial x^1)$ transforms in the same way as (x^0, x^1)
- d) In other words the derivative four-vectors transform inversely to the coordinate four-vectors:

$$\partial^{\mu} = \left(\frac{1}{c}\frac{\partial}{\partial t}, -\vec{\nabla}\right) \text{ and } \partial_{\mu} = \left(\frac{1}{c}\frac{\partial}{\partial t}, \vec{\nabla}\right)$$

Note the difference w.r.t. the minus sign!

Exercise -8: Kinematics: Z-boson production

- The Z-boson particle is a carrier of the weak force. It has a mass of 91.1 GeV. It can be produced experimentally by annihilation of an electron and a positron. The mass of an electron, as well as that of a positron, is 0.511 MeV.
 - a) Draw the Feynman interaction diagram for this process.
 - b) Assume that an electron and a positron are accelerated in opposite directions and collide head-on to produce a Z-boson in the lab frame. Calculate the minimal beam energy required for the electron and the positron in order to produce a Z-boson.
 - c) Assume that a beam of positron particles is shot on a target containing electrons. Calculate the beam energy required for the positron beam in order to produce Z-bosons.
 - d) This experiment was carried out in the 1990's. Which method do you think was used? Why?

"Quick" Exercises 9, 10, 11

9. [Griffiths exercise 2.2] "Crossing lightsabers"

- Draw the lowest-order Feynman diagram representing Delbruck scattering: $\gamma + \gamma \rightarrow \gamma + \gamma$
- This has no classical analogue. Explain why.

10. [Griffiths exercise 2.4]

 Determine the invariant mass of the virtual photon in each of the lowest-order Feynman diagrams for Bhabha scattering

11. [Griffiths exercise 2.7]

• Examine the processes in Griffiths exercise 2.7 and state which one is possible or impossible, and why / with which interaction.

Hint: draw the corresponding Feynman diagrams if needed.

Exercise – 12: Penguins

- One of the flagship analyses of the LHCb experiment is the decay $B_S^0 \to J/\psi \phi$. It is used for the analysis of CP violation.
 - Draw the lowest order (tree) Feynman diagram of the process. $(B_s^0 = (\bar{b}s), J/\psi = (c\bar{c}), \phi = (s\bar{s}))$. Hint: it consists of an 'internal' $W \to cs$ transition. Why would this diagram be called 'colour suppressed'?
 - I addition to the tree diagram, there is a famous 'loop' contribution, called a *penguin* diagram. Here, the b transforms into an s due to the emission and re-absorption of a W and a quark, while this quark radiates off a gluon that turns into a $c\bar{c}$. Draw this diagram. Try to twist and turn the diagram such that it may look as a penguin?
 - Ask for the funny story behind this name
 - Which flavour can this internal quark have? Which option has the largest probability?
 - The precision of LHCb is such that these penguin contributions are becoming a nuisance. Based in the vertices and CKM elements, can you guess how much weaker the penguin diagram is with respect to the tree?