Exercise-1: Which mental picture do you make of an atom?

Classic picture of the atom

- Does something "move"?
- How empty is it?
- How does an electron "exist"?
 - ➔ Consider QM interpretations

Exercise-1: Which mental picture do you make of an atom?

Classic picture of the atom

- Does something "move"?
- How empty is it?
- How does an electron "exist"?

Exercise-2 : The Yukawa Potential

- The electric force is transmitted by a photon with m = 0. The wave equation for a static electric field caused by pointlike charge e is: $\nabla^2 V(r) = 0$ (Laplace equation)
 - a) Show that the Coulomb potential $V(r) = -e^2 \frac{1}{r}$ fulfills this equation.
 - Note that the potential is *spherical symmetric,* ie. use spherical coordinates.
- The nuclear force is transmitted by a pi-meson with $m = m_{\pi}$. The wave equation for a static nuclear field caused by a pointlike color charge g is: $\nabla^2 U(r) = m^2 U(r)$ (Klein-Gordon equation)
 - b) Show that the Yukawa potential $U(r) = -g^2 \frac{e^{-r/R}}{r}$ fulfills this equation for a certain value of R, the **range** of the force. What is the relation between R and m_{π} ?
 - Again note that the potential is *spherical symmetric*.
 - This value is between the electron and proton mass, hence the particle was called a pi-meson or pion.
 - c) Calculate the range of the force from Heisenberg's uncertainty relation, using $R = c\Delta t$ and $\Delta E \Delta t \leq \frac{\hbar}{2}$ and $\Delta E = mc^2$.
 - d) The weak force is mediated by W(80 GeV) and Z (91 GeV) bosons. What is the estimated range of the weak force?

Exercise-3: How does Radiocarbon dating work?

Percentages show the fraction of the total carbon reservoir of each type. Numbers after slash show ratio of ¹⁴C to ¹²C as fraction of atmospheric ratio.

- a) Calculate the energy released if 1 gram of U-235 splits into La-148 + Br-87.
- b) Calculate the energy released in the fusion process of 0.5 grams of heavy water (D2O) with 0.5 grams of superheavy water (T2O), creating He-4 and a neutron. You may neglect the binding energies of the molecules.
- c) Compare the energies released per gram of fuel calculated above. Which would you prefer?

Exercise–5: Natural Units

- In particle physics we make often use of natural units
 - Very confusing at first but very convenient when you are used to it ("sloppy") Set $c = 2.998 \times 10^8 \ m/s \equiv 1$ and $\hbar = 1.055 \times 10^{-34} \ Js \equiv 1$ (Just leave them out and put them back at very end of any calculation)
 - Consequence: there is only one basic unit for length, time, mass and energy: *GeV*
- Exercise: derive the numbers on the conversion table on the next page

Natural Units: conversion table

quantity	symbol in natural units	equivalent symbol in ordinary units
space	x	$x/\hbar c$
time	t	t/\hbar
mass	m	mc^2
momentum	p	pc
energy	E	E
positron charge	e	$e\sqrt{\hbar c/\epsilon_0}$

Conversion of basic quantities between natural and ordinary units.

quantity	conversion factor	natural unit	normal unit
mass	$1 \text{ kg} = 5.61 \times 10^{26} \text{ GeV}$	GeV	GeV/c^2
length	$1 \text{ m} = 5.07 \times 10^{15} \text{GeV}^{-1}$	${\rm GeV}^{-1}$	$\hbar c/{ m GeV}$
time	$1 \text{ s} = 1.52 \times 10^{24} \text{GeV}^{-1}$	${\rm GeV}^{-1}$	$\hbar/{ m GeV}$

Conversion factors from natural units to ordinary units.

Exercise-6 : the quark model; wave function of hadrons

- a) Quarks are fermions with spin 1/2. Show that the spin of a meson (2 quarks) can be either a triplet of spin 1 or a singlet of spin 0.
 - Hint: use the "Clebsch-Gordon" coefficients in adding quantum numbers. In group theory this is often represented as the product of two doublets leads to the sum of a triplet and a singlet: 2 ⊗ 2 = 3 ⊕ 1 or, in terms of quantum numbers: 1/2⊗1/2 = 1⊕0.
- b) Show that for baryon spin states we can write: $1/2 \otimes 1/2 \otimes 1/2 = 3/2 \oplus 1/2 \oplus 1/2 \oplus 1/2$ or equivalently $2 \otimes 2 \otimes 2 = 4 \oplus 2 \oplus 2$
- c) Let us restrict ourselves to two quark flavours: *u* and *d*. We introduce a new quantum number, called *isospin* in complete analogy with spin, and we refer to the *u*-quark as the isospin +1/2 component and the *d*-quark to the isospin -1/2 component (or *u*= isospin "up" and *d*=isospin "down").
 - What are the possible isospin values for the resulting baryon?
- d) Optional for die-hards! The Δ ++ particle is in the lowest angular momentum state (L = 0) and has spin $J_3 = 3/2$ and isospin $I_3 = 3/2$. The overall wavefunction $(L \Rightarrow$ space-part, $S \Rightarrow$ spin-part, $I \Rightarrow$ isospin-part) must be anti-symmetric under exchange of any of the quarks. The symmetry of the space, spin and isospin part has a consequence for the required symmetry of the Color part of the wave function.
 - Write down the color part of the wave-function taking into account that the particle is color neutral.