
Lecture 6

Minimization
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Summary Lecture 5

• Function calculation
– Square roots :

– Derivatives: choose stepsize eps (f(x+eps)-f(x))/eps correctly
• Still looses half of significant digits!
• When you need many derivatives, it is better to use Chebyshev

– Roots 
• Bracket them
• Bisection – failsafe
• Secant/false position – more rapid convergence
• Newton-Rhapson – when derivative is known analytically. Polish up.
• Van Wijngaarden-Dekker-Brent – make quadratic interpolation with x-coordinates as 

function of the f(x) function values – interchange y and x
• Polynomial :  deflation (forward for small roots backwards for large roots), or use 

Laguerre
• Multiple dimensions: tough
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Minimization of functions

• Maximization: same as minimization of g(x)=-f(x)
• Choose between methods where f’(x) can be calculated or not

– (multi-dimensional case: all gradients of f(x) needed)
• search for global minimum can be tough

– e.g. traveling salesmen problem
• Analogy of bi-section method in root finding: Golden section 

search.
– bracket minimum
– (triplet of points x2<x1 and x2<x3)
– choose new midpoint
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Bracketing

• X,Y,Z bracket local minimum F

• if y3<y2<y1 : replace x2 to x>x3 (e.g. x=x3+1.681 *(x3-x1)) until new 
sets of points bracket minimum
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Golden section search
• Suppose minimum is bracketed, hunt it down.
• Where to choose next point?

– points a<b<c. Choose point x e.g. between b and c.
– if (f(b)<f(x), new sets of points is a<b<x
– if (f(b)>f(x), new set is b,x,c
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Minima

• Golden section: converges linearly, like bi-section. 
However, the interval is reduced not a factor of 2 
but a factor of 1.618.. per step. About 4 steps gives 
additional digit of accuracy.

• In NR3: struct Golden, from include file mins.h
• How well can you determine the minimum?

– f(x) ~ f(b)+1/2 f’’(x) (x-b)2

– f(x)-f(x-b) precision eps.
– |x-b| ~ sqrt(eps) 
– relative precision of minimum: about 10-7



 H.J. Bulten,  Computational Methods, 2016 7

Parabolic interpolation

• Brents method, analogous to root finding.
• make trial parabola through 3 bracketing points.
• jump to minimum of this parabola.
• only fails if points are on a line, you can safeguard 

against that by in such a case taking a golden section 
step instead.

• In NR3 : struct Brent in mins.h
Brent br; 
br.bracket(a,b,func);
double min=br.minimize(func);
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Derivatives

• Possibility: find the roots of the derivatives; they will equal local minima, 
maxima or bend points (x3).

• I prefer that, in case of a numerically exact calculation of the derivative. 
• Sometimes, you do not know the derivative as accurately as the function, 

(due to round-off errors or truncation errors, or when the function does 
not have a well-defined derivative).

• Method  Dbrent  in Numerical Recipes is very conservative:
– Keep minimum bracketed
– Derivative at midpoint b determines which interval will be intersected, 

a-b or b-c
– Value of derivative and second-best point are interpolated to zero by 

secant method to get next trial point
– If this point must be rejected: take bisection step instead
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Multiple dimensions

• Problem: how to bracket the minimum?
• Self-contained strategy without derivatives: Downhill Simplex 

method.
• Simplex: N dimensions, N+1 points plus interconnecting line 

segments, surfaces etc. (e.g. 2 dim triangle, 3 dim tetrahedron).
• If nondegenerate, you can take a point as the origin and the 

other N points define N direction vectors spanning the N-
dimensional space

• Starting simplex : e.g. take P0 and N points  Pi=P0+c*ei, where ei is 
the i-th unit vector.

• Downhill simplex method now takes a number of steps, reflecting 
the largest value through its opposing surface

• Followed by expansion steps and contraction steps.
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Downhill simplex method

• steps: reflection of 
the highest point, 
replace if new point 
is lower

• If a “valley floor” is 
reached: contract 
towards lowest 
point.

• Simplex method will 
zoom in to a local 
minimum
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Powell’s Method

• Black-box routine (linmin) minimizes a function along 1 
direction

• methods: differ in choice of next direction for next step. 
Simplest approach: minimize first along direction e1, then 
e2, etc.
– Linmin in NR3 : in mins_ndim.h

• Might fail: conjugate directions

linmin : Give input P⃗ , n⃗
minimize f (P⃗+λ n⃗)

new vector : P⃗ '=P⃗+λ n⃗
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Conjugate directions

• Taylor expansion around P. For the mininum, the first order derivatives 
(the gradient) disappears:

• Gradient along direction u changes as:

f ( x⃗)=f ( P⃗)+∑
i

df
dxi

xi+
1
2∑i , j

d2 f
dxidx j

xi x j+…

f ( x⃗)≈c−b⃗⋅x⃗+
1
2

x⃗T⋅A⋅⃗x

c=f ( P⃗), b=−∇ f ∣P , [A ]ij=
d2 f

dx idx j

∣P

∇ f =A⋅⃗x−b⃗
solve A⋅⃗x=b⃗

δ(∇ f )=A⋅(δ x⃗)
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Conjugate directions

• After minimization along u, choose new direction v.
• In order to retain the minimization along the direction u,

the vector v should be perpendicular to the gradient used in the previous 
step:

• If this condition holds for the vectors u and v, they are called conjugate. 
Powell's method to arrive at a conjugate base:

• start P0. for i=0..N-1, move Pi along direction ui for minimum. Call this point 
Pi+1

• for i=0..N-2, replace unit vector ui by ui+1

• un-1 = PN-P0

• move PN to minimum along uN-1, call this point P0.
• Repeating this procedure N times gives a conjugate base, that exactly 

minimizes a quadratic function.
• Different algorithms for choosing next direction v

0=u⃗⋅δ(∇ f )=u⃗⋅A⋅⃗v
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Using derivative information

• Instead of N2 line minimizations as in Powells method, 
when the gradients are known, you can try to do it in N 
steps.

• steepest downhill method: step in direction of local 
downhill gradient –grad(f(Pi)).

• not optimal: next step is necessarily perpendicular to 
previous step.

• method that steps not in direction of new gradient, but in 
directions conjugate to the previous directions, are called 
conjugate gradient methods. 
– NR::frprmn (Fletcher-Reeves-Polak-Ribiere 

minimization), struct Frprmn
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Steepest downhill method
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Simulated annealing

• e.g. traveling salesman problem: find the shortest route between n 
points, visiting each point only once. (exact solution: increases as 
exp(cN)).

• Objective function E describing the routes has many local minima
– Annealing in solid states: crystallization. Rearrangements possible via 

Prob(E)~exp(E/kT) with k Boltzmanns constant.
– Nature arrives at lowest energy state when cooling is slow. During this 

process, rearrangements of neighbouring atoms are possible. When you 
quench (rapidly cool), you obtain polycrystallline/amorphous states – 
higher energy.

• 1) starting configuration: order of N cities and their coordinates 
(xi,yi). The cost function E that is minimized is the total path length

• 2) rearrangements: 
– section is removed and replaced by same cities in opposite order
– section is removed and inserted between other, randomly chosen, path
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Example: shortest path 211 cities

• Find shortest  roundtrip 211 cities

– (422 equivalent paths, starting city arbitrary, direction arbitrary)

• Typical spread random start configuration?

18

Mean 1.74e6 km, 
RMS 56e3 km

Probability finding a 
path at <1e6 km by 
random trial: 
negligible.

Typical distance 
between 2cities about 
9000 km, 
Start temperature of a 
few 1000 km seems 
reasonable
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strategies
• Many strategies possible. E.g.

– 0: swap 2 cities in the path (1-2-3-4-5-6-7 → 1-6-3-4-5-2-7-
– 1: change order between 2 cities (1-2-3-4-5 → 1-4-3-2-5)
– 2: take out a stretch of cities and reinsert it (in normal or inverted order) 
– 3: do combinations of these

• Annealing:
– Make a random start configuration

– Choose a start temperature T (a distance that is used to compare the distances between the 
paths after taking steps as above).

– Draw random numbers to select which section of the path will be changed

CalculateE, the difference in total path length between the old and new configuration. If 
E < 0 , keep the new (shorter) path.

– If new path is longer, then draw random number x between 0 and 1.

● If exp(-E/T) < x then keep the longer path as the new sequence, else toss it and try a 
new step.



 H.J. Bulten,  Computational Methods, 2016 20

Annealing

● After a sufficient number of steps, reduce the temperature and 
repeat the procedure. Keep on reducing the temperature until it 
is much shorter than the average distance in 2 paths.

● Always store the shortest path; your end result is the shortest 
path you found, not the last path.

● Sometimes it is good to try a complete new start configuration
● At higher temperatures, large sections of the path can be 

updated. At low temperatures, the main changes will be in 
reordering of close-by cities.

● How many steps to take, and how to choose/update the 
temperature, is a matter of experimenting. The optimal strategy 
is not a priori known.
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Traveling Salesmen Problem

• Better optimizations 
possible (TSP codes)
– Write as a set of constraints: 

linear programming
• Cutting plane method

– Cities in Sweden
– Mininum distance of a city 

to the next is given by the 
distance to the nearest city

– For some short ranges you 
can construct optimal paths

– Millions of conditions to be 
satisfied simultaneously

– branch cutting

http://www.tsp.gatech.edu/sweden/index.ht
http://www.math.uwaterloo.ca/tsp/methods/opt/subtour.htm
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Linear programming
• Many large packages, used a lot in for instance econometrics. For n independent 

variables, minimize the function

• With conditions

• And satisfying m constraints

• If an independent variable follows a condition y<b, replace it with x=b-y.
• A vector satisfying the constraints is called a feasible vector. The function to be 

minimized is the objective function. The vector that minimizes it is called the optimal 
feasible vector.

• There may not be any feasible vector (incompatible constraints) or there may be no 
minimum (e.g. variable i-> inf)
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Linear programming

● Linear programming:

example with 2 variables. The volume 
containing feasible vectors is given by a 
2-dimensional area. Constraints form 
the boundaries of this surface(1-
dimensional lines). The problem is 
linear: the minimum will be located at 
the surface (gradients are constant)

● Start from origin, minimizing x2 for 0 x1 
leads to first feasible vector. Sliding 
down the boundary until the second 
constraint is hit leads to the optimal 
feasible vector, the solution.

● For higher dimensions, slide down the 
N-1 dimensional surface spanned by 
the boundary conditions

● Large matrices involved, specialized  
code necessary.



 H.J. Bulten,  Computational Methods, 2016 24

Linear programming

● Example: minimize

subject to:

Introduce slack variables to write <= inequalities in form of 
equalities:

Find start feasible vector: introduce another parameter to write 
the third equality as a <= condition.

ζ=−40 x1−60 x2

2 x1+x2≤70
x1+ x2≥40
x1+3 x2=90

2 x1+x2+x3=70
−x1−x2+x4=−40

x1+3 x2+x5=90
x1=x2=0, x3=70, x4=−40, x5=90
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Linear programming

● Problem: x4 is negative:  add auxiliary objective function

● In phase 1, we start with the base x1  =x2 =0 and minimize this 
auxiliary objective function, leading to x4 = 0.

● If phase 1 fails (not all x are >=0) it signifies that there is no 
feasible vector: the constraints are conflicting.

● Else: write in matrix form and slide down the surfaces until the 
optimal vector is found:

ζ '=−x4
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Example linear programming
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