
Summary Lecture 4

• Today: function calculation: roots, derivatives (ch 5, ch 9)
• Summary Lecture 4: Chapter 5, function calculation
– power series: range of convergence
• Continued fractions

– Different ranges of convergence;  usually very fast. Used for instance to calculate millions of decimals 
of pi.

• Acceleration via Euler transformation – forward differencing operator
– Resumming original series. Forward differencing operator used in many algorithms

• Clenshaw recurrence formalism
– Use the recurrence of an existing series to recalculate the sums
– Recurrence : stability may be problematic
– Can be tested

• Chebyshev: function approximation
– Polynomials with alternating zeros and minima/maxima
– All minima/maxima equal +/- 1
– Very close to minimax solution (best polynomial of given order to approach an arbitrary function
– Function approximation is exact at the roots of the highest-order polynomial
– Methods to give derivative and integral based on same coefficients.



H.J. Bulten,   Computational Methods 2013 2



Computational Methods 2017 3

Using Chebyshev

#include chebyshev.h
• Chebyshev object is created with: 

Chebyshev cheb(func,xlow,xhi,order)
• Calculate a function value a=func(x) using Chebyshev 

approximation to order order (order <= the order at 
creation):  
a = cheb.eval(x,order);
• Make a Chebyshev object to calculate the derivative:

 Chebyshev der = cheb.derivative(); 
• To calculate primitive:

Chebyshev integ = cheb.integral();



Computational Methods 2017 4

Numerical derivatives+roots

• Quadratic roots:
errors in roots of quadratic equation:

– Problem when a or c is small (compared to b)
• Analytically, you can get the roots in 2 ways:

02  cbxax



Computational Methods 2017 5

Quadratic roots

• errors in roots of quadratic equation:

– Problem when a or c is small (compared to b)

• Analytically, you can get the roots in 2 ways:

• Right procedure:

02  cbxax

acbb

c
x

a

acbb
x

4

2
2

4

2

2








Computational Methods 2017 6

Quadratic roots

•  errors in roots of quadratic equation:

– Problem when a or c is small (compared to b)

• Analytically, you can get the roots in 2 ways:

• Right procedure: 

02  cbxax

acbb

c
x

a

acbb
x

4

2
2

4

2

2




  

q

c
x

a

q
x

acbbbq





21

2

,

4)sgn(
2

1

Minimal uncertainty: calculate roots 
with the term close to 2b, not close to 
0



Computational Methods 2017 7

Cubic roots

Cubic roots 023  cbxaxx

,
33

)2(
cos2,

33

)2(
cos2

,
33

cos2,
Q

R
arccos

roots real 3     :

54

2792
,

9

3
:

32

13

32

32

a
Qx

a
Qx

a
Qx

QRif

caba
R

ba
Qdefine

















 Francois Viete, 1615!

Complex roots: procedure outlined in Ch. 5



Computational Methods 2017 8

Numerical derivatives

h

xfhxf
xf

h

xfhxf
Limxf
h

)()(
)(,

)()(
)(

0






Computational Methods 2017 9

Numerical derivatives

• correctly implemented? 
• round off error; truncation error

h

xfhxf
xf

h

xfhxf
Limxf
h

)()(
)(,

)()(
)(

0




)(
6

)(
2

)(
)()(

)(
6

)(
2

)()()(

2

32

xf
h

xf
h

xf
h

xfhxf

xf
h

xf
h

xfhxfhxf







Computational Methods 2017 10

Numerical derivatives

• correctly implemented? 
• round off error; truncation error

• x , h, and x+h are not exactly representable in doubles!
• better: temp=x+h; h = temp-x;
• both numbers are represented exactly! h is the bitwise exact 

difference between x and x+h 
• Take care, that the compiler does not optimize this step away! 

h

xfhxf
xf

h

xfhxf
Limxf
h

)()(
)(,

)()(
)(

0




)(
6

)(
2

)(
)()(

)(
6

)(
2

)()()(

2

32

xf
h

xf
h

xf
h

xfhxf

xf
h

xf
h

xfhxfhxf







Computational Methods 2017 11

Numerical derivatives

• Always declare h via x2=x+h, h=x2-x in order to get rid of 
roundoff error in h and (x+h) - x

• Roundoff and truncation errors in f’(x) :

– (func, precision in calculation f(x),  maybe ~ machine?)
– Optimal choice of h?

– For xcurv, one typically chooses 1 or x



Computational Methods 2017 12

Numerical derivatives

• so relative precision is in general AT BEST the 
square root of the machine accuracy: ~ 1e-4 
for float ~ 1e-8 for double precision.



Computational Methods 2017 13

Numerical derivatives

• Two function calls:
• f’(x)={f(x+h)-f(x-h)}/2h    : truncation error is h*h*f’’’
• optimal h is now h~(efunc*f/f’’’)1/3
• fractional error (eroundoff+ etrunc)/f’ = 
•          = {(efuncf)2/3 f’’’ 1/3}/f’ ~ efunc 2/3
• choose right h: correct power of emachine*typical scale x

 



Computational Methods 2017 14

Numerical derivatives

• Two function calls:
• f’(x)={f(x+h)-f(x-h)}/2h    : truncation error is h*h*f’’’
• optimal h is now h~(efunc*f/f’’’)1/3
• fractional error (eroundoff+ etrunc)/f’ = 
•          = {(efuncf)2/3 f’’’ 1/3}/f’ ~ efunc 2/3
• choose right h: correct power of emachine*typical scale x

 

Example : f ( x)=x 4/3at x=27

e funct=10−16 , f (27)=81, f ' (27)=4, f ' ' ' (27)=
−8

6661

h=(
81∗6661∗10−16

8
)=1.9∗10−4

f (x−h)− f (x+h)
2h

≈4±2.5∗10−11

e trunc=h
2 f ' '=5∗10−11



Computational Methods 2017 15

Numerical derivatives

• Higher precision?: Richardsons deferred approach to the limit: 
( Romberg for integration, Ridders method for differentiation : 
NR dfridr.  )
– assumes analyticity
– probe function  around x
– typically about 10 calculations of f; starting at large h and 

making h progressively smaller following Neville’s algorithm 
to find optimal answer

• Other alternatives: fitting (discrete values of f); function 
approximation (Chebyshev)



Computational Methods 2017 16

roots- solving equations

• Equations can be written as f(x)=0 
– multidimensional? 
– possibly no solutions
– possibly infinite amount of solutions
– much harder than singular case

• Singular equation: root finding f(x)=0
– root finding is tough. Analysis of problem is crucial in many cases, to get 

good starting point (proximity of the root)
– multiple/no roots (quadratic) ?
– poles? 
– close-by roots (sin 1/x) ?
– incredibly small area? e.g. pi*x*x*ln(|x-pi|)<0 for |x-pi|<1e-15

• one dimension: bracket root, hunt it down.

f⃗ ( x⃗)=0



Computational Methods 2017 17

roots

• a root is bracketed in in interval [a,b] if f(a)*f(b)<0.
• for continuous functions, at least 1 root is guaranteed 

then.
• try to bracket root: e.g. start with interval [x1,x2]  if 

f(x1)*f(x2)<0, you have bracketed the interval. Else, if |
f1|<|f2|, replace interval with e.g. [x1-1.6*(x2-x1),x2] or 
with [x1,x2+1.6*(x2-x1)] in the case that |f2|<|f1|

• If bracketed: bi-section is possible method:
– halve the interval by calculating f(midpoint).
– this cannot fail
– converges on root or pole, but slowly : 1 / 2n n  



Computational Methods 2017 18

Bisection and secant methods

• Bisection is said to converge linearly. If a method converges 
with                                         then it converges “super-linearly”.

• How small should the interval become?
– floating point representation: it may be that the function never 

evaluates to 0. 
– interval of ~ 1e-8 may be reasonable for x O(1), but not for x O(1e9).
– relative size region 1e-8*x : fine except close to x=0.

• Secant method/ False position method
– finds singular roots generally faster
– linear extrapolation between [x1,x2] to find 0-crossing
– calculate x[3] at that crossing point, discard x1 or x2.

1 ( ) 1m
n nc m   



Computational Methods 2017 19

Secant



Computational Methods 2017 20

False position



Computational Methods 2017 21

Secant and False position

• Secant method: typically it converges super-linear with m 
close to the golden ratio 1.618... :

• However, root does not remain bracketed. In some cases, a 
step may take it towards infinity.

• False position method: generally superlinear convergence with 
lower power.
– In some cases, these methods fail :

ϵn+1≈ϵn
1.618 ....



Computational Methods 2017 22

Secant and False position



Computational Methods 2017 23

van Wijngaarden, Dekker, Brent method

• Inverse quadratic interpolation used:
– take 3 values x1,x2,x3
– calculate y1,y2,y3.
– make a quadratic polynomial of x as a function of y:

– P and Q are given in ratio’s of y1,y2,y3,x1,x2,x3.
– correction should be small, x2 should be close to root.
– if Q is small or the correction large, the routine takes 

a bi-section step instead!



Computational Methods 2017 24

Newton-Rhapson

• when derivative is known, usually Newton-Rhapson method is 
superior.
– f(x+eps)~f(x)+eps f’(x) + O(eps2)
– f(x+delta)=0 -> step delta = - f(x)/f’(x).

• For well-behaved roots: convergence is quadratically. Near 
root, the number of significant digits DOUBLES per step

1

2
1

1
( ) ( ) '( ) ''( ) ...

2
'( ) '( ) ''( ) ...

/ '

''
/ '

2 '

i i

i i i

f x f x f x f x

f x f x f x

x x f f

f
f f

f

  

 

  





    

   
 

   



Computational Methods 2017 25

Newton-Rhapson



Computational Methods 2017 26

Newton Rhapson

• If derivative is not known, calculate it numerically ?
– 2 function calculations, so convergence is superlinear 

by square root of 2 at most.
– small steps: roundoff error dominates
– Secant method will be better in cases where Newton-

Rhapson would behave well, Brents method is 
superior also in cases where f’(x) close to zero

• Typically, Newton-Rhapson is used whenever possible, at 
least to polish up roots (as a last step).
– Provided that you can calculate the derivative as accurately as 

the function itself!



Computational Methods 2017 27

Roots, polynomial

• Polynomial roots can be quite hard to find.
• Roots may be real or complex.
• Polynomial may be deflated:
– P(x)=(x-r)Q(x)
– Q(x) lower order, easier to find next root
– algorithm will not zoom in on same root twice
– complex roots: either go to complex numbers or deflate 

quadratically:
– (x-(a+ib))(x-(a-ib)) = x*x-2ax+(a*a+b*b), deflate with x*x+cx+d
– routine poldiv, chapter 5.3 recalculates polynomial 

coefficients for quadratic deflation



Computational Methods 2017 28

Forward and backward deflation

• Forward deflation : start with highest coefficient (Chapter 5.3)
P(x)/(x-root)=Q(x) {+ remainder/(x-root)} :
{ 

rem=c[n];
c[n]=0;
for (i=n-1;i>0; i--) {
    temp=c[i];
    c[i]=rem;
    rem=temp+rem*root;
}

}
• Forward deflation is stable when starting with smallest root 

(absolute value).



Computational Methods 2017 29

backward deflation

• Alternatively, you can start from the lowest coefficients and 
work back towards the highest coefficients. This (backward 
deflation) is stable when you start with the roots with the 
highest absolute value.

• Deflation will generally cost precision, because the position 
of the roots is not absolutely known. Best approach is to find 
the roots with the deflated polynomial, and polish them by 
relocating them in the original, non-deflated, polynomial

• double root: take 1 root out and find next root on the once-
deflated polynomial. Double roots are hard to find, the 
function doesn’t change sign



Computational Methods 2017 30

Laguerre’s method

• general method for finding real and complex roots
• extremely stable.
• Motivation:



Computational Methods 2017 31

Laguerre’s method

• drastic assumption: trial root is located at distance a = x-x0, all 
other roots are located at an equal larger distance b= x-xi

• a may be complex
• next trial value: x-a.
• routine laguer in roots_poly.h 



Computational Methods 2017 32

Example root finding

c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12

-360360000 -29664000 127595600 -6162360 -11818240 892882 389596 -31705 -2208 401 -93 -2 1

The polynomial 


12

0i

i
i xc

has roots in the interval [-10,10]. Find all roots with 7 digits accuracy (error < 10-6).

Note: at x=10, the terms in the series reach 10¹². A delicate cancellation occurs.
Note: it is not obvious from the coefficients how many roots exist.
Note: roots may be close (double roots). Numerically tough.

One could try such a challenge with e.g. the Laguerre algorithm, with bisection, or with
Newton-Rhapson. 

In case of Newton-Rhapson one needs a procedure to find the next root: with too large
steps one skips roots and one can shoot off to infinity.
   

with coefficients 



Computational Methods 2017 33

Example, root finding

● The polynomial under consideration.



Computational Methods 2017 34

Example, root finding

The polynomial under 
consideration.

Calculated every x step 
0.01; typically the 
derivatives around the 
poles exceed 108, but 
for the roots around 3.5 
the derivatives are much 
smaller.

Hunting routines need 
to take care of that.



Computational Methods 2017 35

Example : Laguer routine

● Gives all roots correct to <1e-12 in this example

#include "nr3.h"

#include "roots_poly.h"

int main(){

VecComplex c(13),x(12);

c[0]=-360360000; c[1]=-29664000; c[2]=127595600; c[3]=-6162360;

c[4]=-11818240; c[5]=892882; c[6]=389596; c[7]=-31705; c[8]=-2208;

c[9]=401; c[10]=-93; c[11]=-2; c[12]=1;

zroots(c,x,true);

for(int i=0;i<12;i++){

if (fabs (x[i].imag()) < 1e-14) cout<<setprecision(12) << x[i].real()<<endl;

else cout << " complex root found: " << setprecision(12) << x[i] << endl;

}

return 0;

}



Computational Methods 2017 36

Example: with Newton-Rhapson

● When close to the root, Newton-Rhapson zooms in fast.
● To find the next root: hunting needed

– Make small steps in x.
– Check whether the function is bracketed (changes sign 

between steps)
– Start with a new Newton-Rhapson seed x around the next 

root.
– Code : newtonrhapson.cpp 

file:///home/henkjan/WINDOWS/CompMeth/CompMeth2014/Exercises/ROOTS/newtonrhapson.cpp
file:///home/henkjan/WINDOWS/CompMeth/CompMeth2014/Exercises/ROOTS/newtonrhapson.cpp


Computational Methods 2017 37

Example root finding: accurate to 1e-13

● Output: laguer
-8.5207972894
-6.4244289009
-5.58257569496
-4.22681202354
-1.74165738677
 complex root found: (1.5,8.23103881658)
 complex root found: (1.5,-8.23103881658)
3.4244289009
3.5207972894
3.58257569495
5.74165738677
9.22681202354

Newton:

-8.5207972894

-6.4244289009

-5.58257569496

-4.22681202354

-1.74165738677

3.4244289009

3.5207972894

3.58257569496

5.74165738677

9.22681202354


	Summary Lecture 4
	Slide 2
	Using Chebyshev
	Numerical derivatives+roots
	Quadratic roots
	Quadratic roots
	Cubic roots
	Numerical derivatives
	Numerical derivatives
	Slide 10
	numerical derivatives
	numerical derivatives
	numerical derivatives
	numerical derivatives
	numerical derivatives
	roots- minima and maxima
	roots
	Bisection and secant method
	Secant
	False position
	Secant and False position
	Secant and False position
	van Wijngaarden, Dekker, Brent method
	Newton-Rhapson
	Newton-Rhapson
	Newton Rhapson
	Roots, polynomial
	Forward and backward deflation
	backward deflation
	Laguerre’s method
	Laguerre’s method
	Exercise 4
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37

