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Summary  lecture 3

• Integration
– Open formulas don’t use boundary point at end: 1 order lower 

precision in the stepsize h
– Higher-order precision is obtained via reweighing the 

gridpoints: Simpsons rule, Bode rule
– Romberg integration: use Euler-Maclaurin summation to 

cancel consecutive even orders in the power series expansion
• Stepsize is halved in each step for closed formulas
• Stepsize is tripled for open formulas – since the first point is ½ stepsize away 

from the boundary
– Error estimation: from difference in intermediate results
– Gaussian quadrature: use free choice of abscissa as well

• Enough grid points are needed in the region where the function peaks
– For strongly-peaked functions Romberg may be better

• Periodic functions: Use Fourier-techniques instead
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Summary

• Integration to infinity : coordinate 
transformation (e.g y=tan(x), x=arctan(y))

• “smooth” functions : 10-100 steps (Gaussian 
quadrature) should suffice

• Multiple dimensions:
– Try to reduce to lower dimensions
– Reasonable maximum around 6 dimensions (20-

point Gaussian quadrature – 30 million calculations)
– Monte-Carlo techniques
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Function calculation

• Chapter 5.
– Calculation of power series
– acceleration
– Continued fractions

• E.g. to calculate pi to a million decimals

– Recurrence
•  when you need to accelerate calculations involving 

series, study the book! I will only use the Chebyshev 
formalism in this course
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Power series
• analytic function: power series expansion

– update terms (such as fac)
– For the fastest code, do not use p(i)=c(i)*pow(x,i), or p(4)=c(4)*x*x*x*x.

– Instead, one can calculate sum and derivative at once: 
p=c[n];
dp = 0;
i=n;
while ( i>0) {

i=i-1;
dp =dp*x+p; 
p = p*x+c[i];

}

• convergence of power series (until first pole in complex plane) generally 
known.

• convergence can be slow (e.g.                                                                       ) 
• Numerically useless for x>10

sin (x)=∑
n=0

∞ (−1)n x2n+1

(2n+1)!
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Accelerating convergence

• geometric series: Aitkens delta2-process

• Sn = partial sum, up to term n
• S’n = new series, where partial sums are re-used and 

added with a different weight.
• also possible: n-1 and n+1 with n-p, n+p. 
• example: (½)n – correct result for S’1

S 'n=Sn+1−
(Sn+1−Sn)

2

Sn+1−2Sn+Sn−1
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Accelerating convergence

• Alternating series: Eulers transformation
– forward difference operator (widely used)

• Eulers transformation converges more rapidly.
• Also possible : Levin transformation (see book)
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Eulers transformation

• Eulers transformation:
– sometimes even OK for non-convergent series!
– typically used for asymptotic series
– Van Wijngaarden method: eulsum in NR2, series.h in NR3

•  numerical algorithm for Eulers transformation
• calculates itself whether to increase terms before Euler 

summation or update Euler terms
– Euler converges rapidly! Sometimes, convert series with 

only single-sign terms into alternating series just to use 
Eulers transformation afterwards
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Converting series:

• replace sum

• replaces sum over v by double sum, sum over w which itself 
contains a sum over v

• wr converges rapidly, since index grows so fast. 

• can only be used if random values of vr can be easily 
calculated.

• Eulers transform: special case of general power 
transformation:
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Euler Transformation

• Usual Euler transformation:

• Note, these series techniques are frequently 
used in Fourier analysis (later this course). Also 
for Chebyshev.

2 31
( ) 1 ...

1
g z z z z

z
     


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Clenshaws recurrence formula

• Make use of recurrence relations; e.g. 
Legendre polynomials, Bessel, etc.
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recurrence
• recurrence relations; e.g. Legendre polynomials, Bessel, etc.

– Stability!

–                                         : 2 solutions, fn and gn

– maybe fn wanted. gn can be exponentially stable, exp. damped, or exp. 
growing (e.g. Bessel, growing n)

– fn/gn -> 0  for n->inf  : fn is minimal solution

– gn dominant solution

– minimal solution is unique, dominant not 
– How to test?  

• start with 0 and 1 and 1 and 0 
•  evolve 20 terms and see difference.

• (stability is a property of the recurrence relation, not of the function)

1 1 0n n ny ay by   
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stability

• Alternatively, replace recurrence relation with linear 
one with constant coefficients
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recurrence

• how to proceed if recurrence is non-stable?
• start in other direction with arbitrary seeds. Solution is 

correct times a normalization constant. E.g in the case of 
Bessel functions:
– start with  large n (eg           ) for 10 significant digits. set 

– go down to J0, J1 and normalize, to the calculated value of 
J0(x).

– ( or alternatively e.g. with a normalization rule like    
1=J0+2J2+2J4+2J6+..+2Jn(x) )

100N

11, 0n nj j  
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Clenshaw´s recurrence formula

• Coefficients x functions that obey recurrence

solve for ck:
4 5 6 4

3 4 5 3

2 3 4 2

1 2 3 1

0 2 2 0

( ) ...

[ (4, ) (4, ) ] ( )

[ (3, ) (3, ) ] ( )

[ (2, ) (2, ) ] ( )

[ (1, ) (1, ) ] ( )
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f x
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 
 
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 
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  
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Clenshaw Recurrence

• Terms sum to zero up till y2 

• only surviving term:

• make one pass through yk’s

• apply above formula

• almost always stable, only not when Fk is small for large k and ck 
small for small k, when there is delicate cancellation: first terms in 
above eq. cancel each other: use upwards recurrence (see book). 
This can be detected: 

0 2 1 1 0 0( ) (1, ) ( ) ( ) ( )f x x F x y F x y F x c  
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Chebyshev Approximation

• Chebyshev polynomials:

• Tn has n zeros, at cos((k+1/2)/n)
• Tn has n+1 extrema, located at cos(k/n)
• All maxima equal +1, all minima –1

0
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                               Chebyshev Polynomials
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Chebyshev
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Chebyshev approximation

● We can make use of these nice orthogonality relations to make an 
approximation of an arbitrary function of x in the interval [-1,1] by 
calculating the coefficients cj at the N zero's xk of the N-th Chebyshev 
polynomial:

Then, the function is represented exactly at those N values of x and 
approximated at other x by 

c j=
2
N
∑
k=0

N−1

f (xk)T j (xk )

c j=
2
N
∑
k=0

N−1

f (cos(
π(k+1 /2)

N
))cos(

π j(k+1/2)
N

)

f (x )≈[∑
k=1

N−1

ck T k (x)]−
1
2

c0
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Chebyshev truncation
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Chebyshev approximation:

• calculate the Chebyshev coeff’s to order N ( N 
function calls); N2 cosines once.

• store these coefficients
• How to calculate f(x)?
• Clenshaw´s recurrence : 2m sums and multplications

1
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0 1 2 0

0

2 1...1

1
( )

2

m m

j j j j

d d

d xd d c for j M

f x d xd d c



 

 
    
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Chebyshev:

• Even function: all odd coeffs are zero
• better to use T2n(x)=Tn (2x2-1) from cos(2x)=2cos2x -1
• call chebev with the argument x replaced by 2x2-1
• Odd function : calculate f(x)/x; this will give accurate 

results close to x=0.
• alternatively, again use y= 2x2-1, but now (since c0 is 

not used) the last line of the code chebev needs to be 
changed:

• f(x)=x[(2y-1)d1-d2+c0]
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Chebyshev polynomials:
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Chebyshev example from book, 5.13
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Using Chebyshev

• NR version3:
– chebyshev.h
– Create Chebyshev struct:

Chebyshev cheb(func,xlow,xhi,order);
– Calculate a function value:

• cheb.eval(x,order);
– Create the structs to calculate a derivative or the primitive 

of the function:

• Chebyshev der = cheb.derivative();
• Chebyshev integ = cheb.integral()



Exercise 5: pdf of minimum ionizing particles

• Straggling losses of a minimum-ionizing particle may be approximated by a 
Landau distribution

• With N a normalization constant and Ep the most probable energy loss.
• Suppose we read out a scintillator with a photomultiplier and want to set a 

threshold on the signal. For this threshold, we want to calculate the 
fraction of minimum-ionized particles that will be missed, and the false 
alarm rate: the probability that noise exceeds the threshold in the absence 
of a particle. We want to distinguish also between the passage of 1 particle 
and of 2 or more particles.

• In order to calculate these probabilities we will use the Chebyshev 
formalism to store the pdf and cumulative pdf for signals from 1 and 2 
particles passing the scintillator





0

)(ln )sin()( dxxeNEpdf xEExx p 



H.J. Bulten,   Computational Methods 200729

Landau straggling

figure from
particle data group
pdg.web.cern.ch/pdg



Exercise 5

• Scintillator response:
– Noise, Gaussian distributed, x=signal strength in the detector. The 

pdf(x) follows the normal distribution, the cumulative pdf can be 
calculated from the error function:

– Signal (energy deposit): the pdf follows the Landau 
distribution from the previous slide, with Ep = 2.4.

– Detector response: Noise+signal, for the noise take sigma 
= 0.25.
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Exercise 5

● Make Chebyshev objects for the probability density function of the 
Landau distribution (needed for E from 0 to infinity: make a 
coordinate transformation), for the detector response A in case of a 
single particle passing the scintillator and for the case that 2 
minimum ionizing particles are passing (from A = -5 to infinity)

● The detector response is given by the sum of the noise and the 
signal(s)

● The cumulative pdfs are given by the integrals of the pdfs (make 
Chebyshev approximations for that too).

● In order to calculate the pdf for the sum of noise and signal, one 
needs to convolve:

pdf detresponse (A)=∫ pdf signal(A− x) pdf noise ( x)dx



Exercise 5

● In order to calculate the pdf for the detector in case 2 minimum-ionizing particles pass, one needs 
to convolve the Landau distribution with the pdf of the detector for 1 passing particle (the sum of 
noise and signal).

● Assume that 40 million measurements are made per second, and that one requires a false-alarm 
rate of less then 10 Hz. Determine the threshold for this case (i.e. the value that results in less than 
10 Hz noise triggers). Determine the false rejection rate for this threshold: the probability that a 
minimizing ionizing particle did not trigger the detector (sum of noise and signal fall below the 
threshold).

● Determine with an accuracy of 0.001 for which signal strength the pdfs of one and two minimum-
ionizing particles is the same (this somewhere between the maxima of the single and double-
particle distributions). For this value, determine the cpdfs. Give  the probability that a single particle 
gives a larger signal than this threshold and the probability that two simultaneously passing 
particles give a smaller signal than this threshold.

● From these pdfs, one can calculate likelihoods that no particle, one particle, or two particles were 
present. Usually one takes the logarithm of the pdfs of each hypothesis and compares them. From a 
set of measurements one can then determine what the relative likelihoods are. In this example, the 
distinguishing power is poor: it is difficult to separate single and double particle hits from a single 
measurement.
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