
Lecture 3

Integration (Quadrature)

2Computational Methods 2017

Summary Lecture 2

• Interpolation
– Higher-order: stiffer
– Schemes reproduce the function values on the grid points
– Only change interpolation scheme at a grid point!

• Continuous function value, discontinuous derivative

– Develop coefficients around the target value! – orders of magnitude
different in precision

– Continuous derivatives: spline
• Cubic spline: O(N) calculations. Higher-order: O(N^3)

– Rational : can take out poles!
• Pade approximant – used a lot in physics

– NR3 code:
• Polynomial interpolation, rational interpolation, and spline are in interp_1d.h.

• Interpolation in 2 dimensions: interp_2d.h

– nr3.h – Doub, VecDoub, etc

Pade approximation
● Pade.h : needs poly.h, ludcm.h, nr3.h. contains Ratfn pade(VecDoub_I &coef) : call pade with as argument a NR vector

(VecDoub coef), containing the coefficients of the power series approximation of the function you want to approximate.

● Return value: a Ratfn. This Ratfn is an object with a constructor Ratfn(VecDoub, VecDoub) that makes the interpolation
function. The () operator is overloaded. Calling Ratfn(Doub) returns the Pade approximation.

● Usage: VecDoub coef(N); // make vector with N coefs

● Ratfn rat=pade(coef); // make rat = Ratfn function

● Double x = 0.4; double y=rat(x); // calculate y = pade approximation for x=0.4.

Ratfn pade(VecDoub_I &cof)
{
 Int j,k,n=(cof.size()-1)/2;
 Doub sum;
 MatDoub q(n,n),qlu(n,n);
 VecDoub x(n),y(n),num(n+1),denom(n+1);
 for (j=0;j<n;j++) {
 y[j]=cof[n+j+1];
 for (k=0;k<n;k++) q[j][k]=cof[j-k+n];
 }
 LUdcmp lu(q);
 lu.solve(y,x);
 for (j=0;j<4;j++) lu.mprove(y,x);
 for (k=0;k<n;k++) {
 for (sum=cof[k+1],j=0;j<=k;j++) sum -= x[j]*cof[k-j];
 y[k]=sum;
 }
 num[0] = cof[0];
 denom[0] = 1.;
 for (j=0;j<n;j++) {
 num[j+1]=y[j];
 denom[j+1] = -x[j];
 }
 return Ratfn(num,denom);
}

struct Ratfn {
VecDoub cofs;
Int nn,dd;

Ratfn(VecDoub_I &num, VecDoub_I &den) : cofs(num.size()
+den.size()-1),

nn(num.size()), dd(den.size()) {
Int j;
for (j=0;j<nn;j++) cofs[j] = num[j]/den[0];
for (j=1;j<dd;j++) cofs[j+nn-1] = den[j]/den[0];

}

Ratfn(VecDoub_I &coffs, const Int n, const Int d) : cofs(coffs),
nn(n),

dd(d) {}

Doub operator() (Doub x) const {
Int j;
Doub sumn = 0., sumd = 0.;
for (j=nn-1;j>=0;j--) sumn = sumn*x + cofs[j];
for (j=nn+dd-2;j>=nn;j--) sumd = sumd*x + cofs[j];
return sumn/(1.0+x*sumd);

}

};

4Computational Methods 2017

Exercise 2, CIC filter
• Fast way to calculate powers of running averages

– In this example, if you would not use a loop it would take 10^12
operations to calculate 1 4-stage average (sums of sums, each sum
requiring 1024 additions)

• /home/henkjan/WINDOWS/CompMeth/CompMeth2017/EXERCISES/ex2/cic.cpp

• Output:
RMS of the input minus the signal : 3.06973 RMS of the CIC-filtered result : 0.0654396

file:///home/henkjan/WINDOWS/CompMeth/CompMeth2017/EXERCISES/ex2/cic.cpp

5Computational Methods 2017

Exercise 2, CIC filter

6Computational Methods 2017

Exercise 2, CIC filter
A zoom of the previous picture shows, that the CIC output after N ms has a
delay of 2 ms (since it is a weighted average of data in the last 4 ms).
This can be easily corrected for.

7Computational Methods 2017

Exercise 2, CIC filter

Residuals of the input minus the true signal.

The CIC filter performs 50 times better than the random input (sampling at 1ms
rate). CIC filters are often applied in electronics, signal processing and data
analysis.

8Computational Methods 2017

Integration of functions (Quadrature)

• intuitive expectation: integral is much harder to calculate than
differential

• basic task: calculate

• chapter 17,18: integration of differential equations.
– if possible, use this differential form when the function is

concentrated in sharp peaks or when the shape is strongly scale-
dependent. Also handy for functions of many variables.

• Also possible:
– Chebyshev integration (next lecture)
– Fourier integration – for periodic functions

I=∫
a

b

f (x)dx ⇔ I= y (b) with
dy
dx

=f (x) and y (a)=0

9Computational Methods 2017

Classical formulas
Functions at fixed stepsize h :
x i=x0+ih i=0, ... , n
f (x i)→ f i

10Computational Methods 2017

Trapezoidal Rule
• zeroth- order: function replaced by sum:

limit of h → 0 : many sums (lots of computing time) and many additions of small
numbers to the total → loss off accuracy

  ifhdxxforderZeroth)(:

11Computational Methods 2017

Trapezoidal Rule

  ifhdxxforderZeroth)(:

• zeroth- order: function replaced by sum

• First order: linear interpolation between xi and xi+1

  
2

)(: 1ii ff
hdxxforderFirst

12Computational Methods 2017

Trapezoidal rule, Simpsons rule

• The trapezoidal rule is correct for first-order polynomials. It
considers 2 points, ½(f0+f1), so it is called a two-point function:

• With more than 2 points, one can calculate an integral between
these points to higher order. The three-point formula is correct
to order 2 (and due to a cancellation, also to order 3): Simpsons
rule

• The four-point formula is also correct up to order three.

Trapezoidial rule: ∫
x0

x1

f (x)dx=h
1
2

[f 0+ f 1]+O (h3 f (2)) with f (n)(x)=
dn f (x)

dxn

Simpsons rule: ∫
x0

x2

f (x)dx=h
1
3

[f 0+4 f 1+ f 2]+O (h5 f (4))

13Computational Methods 2017

Classical formulas

The five-point formula is correct to fifth order (again due to a
cancellation) : Bode’s formula:

• factors: derive from writing down the equations with arbitrary
factors p,q,r,s,...; calculate the integral for the functions 1, x, x2,
x3, ... and solve the coupled equations. In that manner, all
polynomials up to that order are represented correctly

Bode's rule: ∫
x0

x4

f (x)dx=h
1
45

[14 f 0+64 f 1+24 f 2+64 f 3+14 f 4]+O (h7 f (6))

14Computational Methods 2017

Classical formulas

• f(x) = 1, x, x2 :
– Integrals with 3 points, 2 steps, running from 0 to 2 give: pf0+qf1+rf2

– p=1/3, q=4/3, r=1/3 (Simpsons rule)

– (happens to be correct to third order too)

∫
0

2

1dx= p+q+r=2

∫
0

2

xdx=q+2 r=2

∫
0

2

x ² dx=q+4 r=8/3

∫
0

2

x3 dx=q+8r=4

15Computational Methods 2017

Extended formulas (Closed)
• calculate N times for intervals 0-1, 1-2,...

• Example : 5 points calculation of sin(x) between
[0,pi] and ex and sqrt(x) between [0,4], with
trapezoidal, Simpson's, and Bode's rule:

∫
a=x0

b=xN −1

f (x)dx=h [12 f 0+ f 1+ f 2+...+ f N−2+
1
2

f N−1]+O (
(b−a)

3

N 2
f (2)) Trapezoidal

∫
x0

xN −1

f (x)dx=h [13 f 0+
4
3

f 1+
2
3

f 2+
4
3

f 3+ ...+
2
3

f N−3+
4
3

f N−2+
1
3

f N −1]+O (
1

N 4
f (4)) Simpson's

16Computational Methods 2017

Example, sin(x)

∫
a=x0

b=xN−1

f (x)dx=h [12 f 0+ f 1+ f 2+...+ f N−2+
1
2

f N−1]+O (
(b−a)

3

N 2
f (2)) Trapezoidal

∫
x0

xN−1

f (x)dx=h [13 f 0+
4
3

f 1+
2
3

f 2+
4
3

f 3+ ...+
2
3

f N−3+
4
3

f N−2+
1
3

f N −1]+O (
1

N 4
f (4)) Simpson's

Bode's rule: ∫
x0

x4

f (x)dx=h
1
45

[14 f 0+64 f 1+24 f 2+64 f 3+14 f 4]+O (h7 f (6))

sin (x): x i=i π/4 ; f 0=f 4=0, f 1= f 3=1 /2√2 , f 2=1

trapezoidal :∫
0

π

sin(x)dx=π
4

[0+1 /2√2+1+1 /2√2+0]+O (1 /N2
)=1.8961+O(1/N 2

)

Simpson :∫
0

π

sin (x)dx=π
12

[0+2√2+2+2√2+0]+O (1 /N4)=2.0046+O (1 /N 4)

Bode :∫
0

π

sin(x)dx=π
180

[0+32√2+24+32√2+0]+O (1 /N 4
)=1.9986+O(1 /N 6

)

17Computational Methods 2017

Example, ex

∫
a=x0

b=xN−1

f (x)dx=h [12 f 0+ f 1+ f 2+...+ f N−2+
1
2

f N−1]+O (
(b−a)

3

N 2
f (2)) Trapezoidal

∫
x0

xN−1

f (x)dx=h [13 f 0+
4
3

f 1+
2
3

f 2+
4
3

f 3+ ...+
2
3

f N−3+
4
3

f N−2+
1
3

f N −1]+O (
1

N 4
f (4)) Simpson's

Bode's rule: ∫
x0

x4

f (x)dx=h
1
45

[14 f 0+64 f 1+24 f 2+64 f 3+14 f 4]+O (h7 f (6))

e x : x i=i ; f i=e i

trapezoidal :∫
0

4

e x dx=[1 /2+e+e2
+e3

+e4
/2]=1.0819(e4

−1)

Simpson :∫
0

4

ex dx=
1
3

[1+4 e+2e2
+4 e3

+e4]+O (1 /N 4
)=1.0049(e4

−1)

Bode :∫
0

4

e x dx=
1
45

[14+64 e+24 e2
+64 e3

+14 e4]=1.0013(e4
−1)

18Computational Methods 2017

Example, sqrt(x)

∫
a=x0

b=xN−1

f (x)dx=h [12 f 0+ f 1+ f 2+...+ f N−2+
1
2

f N−1]+O (
(b−a)

3

N 2
f (2)) Trapezoidal

∫
x0

xN−1

f (x)dx=h [13 f 0+
4
3

f 1+
2
3

f 2+
4
3

f 3+ ...+
2
3

f N−3+
4
3

f N−2+
1
3

f N −1]+O (
1

N 4
f (4)) Simpson's

Bode's rule: ∫
x0

x4

f (x)dx=h
1
45

[14 f 0+64 f 1+24 f 2+64 f 3+14 f 4]+O (h7 f (6))

√ x : x i=i ; f i=√ i exact : 5
1
3

trapezoidal :∫
0

4

√ x dx=[0+1+√2+√3+1]=5.1463

Simpson :∫
0

4

√x dx=
1
3

[0+4+2√2+4 √3+2]=5.2522

Bode :∫
0

4

√ x dx=
1
45

[0+64+24√2+64 √3+28]=5.2621

19Computational Methods 2017

Extended formulas

• Precision is gained, just by weighing the function values differently!
– 1 order of precision obtained, just from relative weight of end point

(both for Simpson and for trapezoidal rule)
– The alternation of weights (4/3 – 2/3 -4/3) in the interior for Simpson’s

rule is nothing special; an extended formula with equal weight interior
points and the same order of precision can be obtained from using the
4-point function.

– The increase in precision is just due to the special treatment of end
points

20Computational Methods 2017

Extended formulas (open)

• When integrating from a pole, or towards infinity, one
cannot enclose the endpoint. One can use an open
formula to calculate towards the endpoint:

– Lowest order :

- higher orders:

∫
x0

x1

(f x)=1 /2h [f 0+ f 1]+O(h3 f (2))→=h f 1+O (h2 f ')

∫
x0

x1

(f x)→h[3/2 f 1−1/2 f 2]+O (h3 f (2)
)

∫
x0

x1

(f x)→h[23 /12 f 1−16 /12 f 2+5 /12 f 3]+O (h4 f (3)
)

21Computational Methods 2017

Extended formulas (open)

• construct them by using the closed formula for the interior
part and adding the extrapolated open step for the ends.
– end steps: done only once. Use 1 order lower extrapolation than

for interior steps.

• open formulas: 1 order lower precision (in stepsize) overall.

 Extended open Trapezoidal

∫
x0

xN−1

f (x)=h [32 f 1+ f 2+ f 3+ ...+ f N −3+
3
2

f N−2]+O (1/ N 2
)

 Extended open Simpsons

∫
x0

xN−1

f (x)=h [27
12

f 1+0+
13
12

f 3+
4
3

f 4+ ...+
4
3

f N −5+
13
12

f N −4+0+
27
12

f N−2]+O (1 /N4
)

22Computational Methods 2017

Elementary algorithms

• Starting point: extended trapezoidal rule

• one can add new points in between without losing the
previous work.

• error extrapolation is entirely even in powers of 1/N

23Computational Methods 2017

Euler-MacLaurin Summation formula

• The exact solution of an integral can be expanded in the Euler-
MacLaurin summation series.

• Only even terms in the stepsize enter.

• Coeffients given by the Bernouille numbers
– They grow large for large for large n

∫
x0

x N−1

f (x)dx=h [12 f 0+ f 1+...+ f N−2+
1
2

f N−1]−B2
h2

2 !
(f 'N−1−f '0)−...

−
B2k h2 k

(2 k)!
(f N−1

(2 k−1)−f 0
(2k−1))

Bernouille number B:
t

et
−1

=∑
n=0

n

Bn
tn

n!

24Computational Methods 2017

Romberg integration

• The leading error in the second step will be ¼ of the
previous step. It can be cancelled by:

• The next order error is fourth-order in 1/N.
• This procedure, applied once, is exactly equivalent

to Simpsons rule.
• Romberg integration: use k successive refinements to

eliminate errors up to O(1/N2k).
– Converges much more rapidly than trapezoid rule or

Simpsons rule.

2

4 1

3 3N NS S S 

25Computational Methods 2017

Improper integrals

• Improper:
– finite value, but cannot be calculated at boundary (e.g. sinx/x at 0)
– one of the limits is infinity
– integrable singularity (e.g. 1/sqrt(x) at 0)

• at boundary
• at known place in interval [a,b]
• at unknown place

• How to solve? we need an algorithm like the Romberg integration, but for
open formulas. Extended midpoint rule also only has even errors:

∫
x0

x N −1

f (x)dx=h [12 f 1/2+ f 3 /2+...+ f N−3 /2]−B2
h2

4
(f ' N−1−f '0)−...

−
B2k h2k

(2 k)!
(1−2−2k+1

) (f N−1
(2 k−1)

−f 0
(2k−1))+.....

 Second Euler-MacLaurin summation formula, using midpoints

26Computational Methods 2017

Open integration

Using the midpoints, one gets the same sum as the trapezoidal rule.
(see page 8).

• One cannot double the points however:

27Computational Methods 2017

Open integration

Using the midpoints, one gets the same sum as the trapezoidal rule.
(see page 8).

• One cannot double the points.
• But one could TRIPLE the points:

28Computational Methods 2017

Open integration

Using the midpoints, one gets the same sum as the trapezoidal rule.
(see page 8).

• One cannot double the points.
• But one could TRIPLE the points! (1/6, ½, 5/6, 7/6, 3/2, 11/6, 13/6,

5/2 ...

29Computational Methods 2017

Open integration

• It is not possible to double the number of points by adding
intermediate points, but you can triple them.

• the new sum is S=(9S3N-SN)/8.

• routine qromo does Romberg-like integration for open
intervals.

• infinite boundary → change of variables. E.g.

∫
a

b

f (x)dx⇔∫
a

b

f (1 /t)d (1 /t)=∫
1/b

1/a
f (1/ t)

t 2
dt

∫
−∞

∞

f (x)dx=∫
−π

2

π
2

f (arctan (ϕ))
1

1+ϕ2
dϕ

30Computational Methods 2017

Variable transformations
• Variable change needed, for integrable singularities at endpoints. Can be coded by

yourself, but NR version 3 has methods for it:

• Routine Midpoint that is used (in quadrature.h) with the Romberg integration can be
replaced for these coordinate changes with midinf and midexp, respectively

• Also implemented: TANH rule and double exponential rule – to get an integrand that
goes to zero rapidly at the end points (Derule in quadrature.h)

))((
2

cosh

1
)(

2

1

],[],,[)tanh()(
2

1
)(

2

1
)()(

2
axxb

abt
ab

dt

dx

tbaxtababxdt
dt

dx
tfdxxfI

b

a

d

c






  

∫
a

b

f (x)dx⇔∫
1/b

1 /a
1

t2 f (t)dt with t=1/ x and (ab>0) when lim
x→∞

f (x)<1 / x2

∫
a

∞

f (x)dx⇔∫
0

e−a

1
t

f (−log(t))dt with t=e−x when function decays exponentially

31Computational Methods 2017

Gaussian quadrature
• Freedom to choose coefficients (Romberg integration): leads to much

faster convergence.
• Freedom to choose abscissas: extra degree of freedom

– you can arrive at higher-order convergence faster, when integrand is
smooth (exponential convergence!)

– you can make the integral exact for a class of functions of
polynomials*weight function W

∫
a

b

W (x) f (x)dx≈∑
j=0

N

w j f (x j) Exact for f(x) polynomial

e.g. ∫
−1

1
e−cos

2
x

√(1−x2
)

dx

choose weight function W (x)= 1

√(1−x2
)

 (Gauss-Chebyshev)

32Computational Methods 2017

Gauss-Legendre

● Gauss-Legendre: legendre polynomials, W=1. 10-point example of
abscissa and weights

33Computational Methods 2017

Gaussian quadrature

• Fine for smooth functions
– For periodic functions, the order of the quadrature

should be higher than the number of roots, in
general

• sin(x) f(x) → Fourier techniques

– Needs a bit of experimentation to see how well a
quadrature scheme does.

34Computational Methods 2017

Multi-dimensional integrals

• number of function evaluations grows like the power of
the dimension (e.g. typically 30 for 1-dim, 30,000 for 3
dim)

• boundary may be complicated
• Try always to reduce it to lower dimension integrals.

– (e.g. spherical symmetry: polar coordinates)
• complicated boundary: resort to Monte Carlo techniques.

– Take care when function is strongly peaked.
• if boundary is simple, Gaussian quadratures may give a

relatively fast answer.

35Computational Methods 2017

Multidimensional integration

36Computational Methods 2017

Numerical Recipes v3 routines:

• Simpson rule, and trapezoid : functions returning a double.
Doub qsimp(T &func, const Doub a, const Doub b, const Doub eps=1.0e-10) in
quadrature.h

• T is template for the type the function &func returns. a and b are the
integration limits. eps is the relative target accuracy.

– func(x) should however take a Doub or double as input variable

– You may want to set JMAX higher.
• Romberg: quadrature.h, romberg.h
• Gaussian quadrature: calculate weights and abscissa with qgaus.h

– You can check for needed include files from the nr website (see first
lecture)

– You can check the value of an integral with Wolfram (see link on
www.nikhef.nl/~henkjan/ computational methods)

file:///home/henkjan/NR3/quadrature.h
http://www.nikhef.nl/~henkjan/

37Computational Methods 2017

struct Quadrature{ // in (quadrature.h)
Int n;
virtual Doub next() = 0;

};
template<class T> //(to make machine independent. T can be double T or float or int or real*8 etc)
struct Trapzd : Quadrature {

Doub a,b,s;
T &func;
Trapzd() {};
Trapzd(T &funcc, const Doub aa, const Doub bb) :

func(funcc), a(aa), b(bb) {n=0;}
Doub next() {

Doub x,tnm,sum,del;
Int it,j;
n++;
if (n == 1) {

return (s=0.5*(b-a)*(func(a)+func(b))); //trapezoid rule
} else {

for (it=1,j=1;j<n-1;j++) it <<= 1;
tnm=it;
del=(b-a)/tnm;
x=a+0.5*del;
for (sum=0.0,j=0;j<it;j++,x+=del) sum += func(x);
s=0.5*(s+(b-a)*sum/tnm);
return s;

}
}

};

Example Romberg

38Computational Methods 2017

Example Romberg
template<class T>
Doub qtrap(T &func, const Doub a, const Doub b, const Doub eps=1.0e-10) {

const Int JMAX=20;
Doub s,olds=0.0;
Trapzd<T> t(func,a,b);
for (Int j=0;j<JMAX;j++) {

s=t.next();
if (j > 5)

if (abs(s-olds) < eps*abs(olds) ||
(s == 0.0 && olds == 0.0)) return s;

olds=s;
}
throw("Too many steps in routine qtrap");

}
template<class T>
Doub qsimp(T &func, const Doub a, const Doub b, const Doub eps=1.0e-10) {

const Int JMAX=20;
Doub s,st,ost=0.0,os=0.0;
Trapzd<T> t(func,a,b);
for (Int j=0;j<JMAX;j++) {

st=t.next();
s=(4.0*st-ost)/3.0;
if (j > 5)

if (abs(s-os) < eps*abs(os) ||
(s == 0.0 && os == 0.0)) return s;

os=s;
ost=st;

}
throw("Too many steps in routine qsimp");

}

Trapezoid interpolation can be called
directly via
Result=qtrap(func,xlow,xhig, precision)

Simpson interpolation can be called
directly via
Result=qsimp(func,xlow,xhig, precision)

39Computational Methods 2017

Example Romberg
template <class T>
Doub qromb(T &func, Doub a, Doub b, const Doub eps=1.0e-14) {

const Int JMAX=30, JMAXP=JMAX+1, K=9;
VecDoub s(JMAX),h(JMAXP);
Poly_interp polint(h,s,K);
h[0]=1.0;
Trapzd<T> t(func,a,b);
for (Int j=1;j<=JMAX;j++) {

s[j-1]=t.next();
if (j >= K) {

Doub ss=polint.rawinterp(j-K,0.0);
if (abs(polint.dy) <= eps*abs(ss)) return ss;

}
h[j]=0.25*h[j-1];

}
throw("Too many steps in routine qromb");

}

Modified JMAX, K to be able
to make more steps. If not,
the routine throws already
after K=6 iterations.

Poly_interp: interp_1d
needed

Trapzd: quadrature needed

For qromo (open : also
Midpoint used, in
quadrature include file)

40Computational Methods 2017

Example Romberg
#include "nr3.h"
#include "interp_1d.h"
#include "quadrature.h"
#include "romberg.h"
#include <iostream>

using namespace std;

Doub f1(Doub x) {
if (fabs(x)>1e-30) return (sin(x)/x);
return 1;

}

Doub f2(Doub x) {
if (x<-1000) return 0;
if (x>1000) {

cerr << " overflow, exp(1000) asked), function is infinite " << endl;
return 1e200;

}
return exp(x);

}

int main() {
Doub a,b;
cout << "Give Boundaries " << endl;
cin >> a >> b;
cout << " Romberg sinx/x between " << a << " and " << b << " = " <<qromb(f1,a,b,1e-12) << endl;
cout << " Romberg e^x between " << a << " and " << b << " = " <<qromb(f2,a,b,1e-12) << endl;
return 0;

}

41Computational Methods 2017

Example Gaussian Quadrature

• Using weight W(x) = 1, Legendre polynomials
#include "nr3.h"
#include "gamma.h"
#include "gauss_wgts.h"
#include <iostream>

using namespace std;

Doub f1(Doub x) {
if (fabs(x)>1e-30) return (sin(x)/x);
return 1;

}

int main() {
Doub a,b;
VecDoub xval(100),weight(100);
cout << "Give Boundaries " << endl;
cin >> a >> b;
gauleg(a,b,xval,weight);
Doub integral=0;
for (int i=0;i<100;i++) integral+=f1(xval[i])*weight[i];
cout << " Gaussian quadrature sinx/x between " << a << " and " << b << " = " << integral << endl;
return 0;

}

42Computational Methods 2017

Valentine’s Exercise

● The graph shown is a heart-
shaped curve, parametrized as

the surface of this curve
equals 1.8

● A three-dimensional
extension is easily obtained in
cylindrical coordinates, by
equating positive x (t E [0,pi])
as radius. A function enclosed
in the interior of this surface
can be integrated.

● In exercise 4, the volume
integral over the heart shape
of the function rz is calculated.

x=1.6sin3
(t)

z=1.3 cos(t)−0.5cos (2 t)−0.2cos(3 t)−0.1cos (4 t)
0≤t≤2 π

/home/henkjan/WINDOWS/CompMeth/CompMeth2017/Exercises/Exercise4.pdf

file:///home/henkjan/WINDOWS/CompMeth/CompMeth2017/Exercises/Exercise4.pdf

	Slide 1
	Summary Last lecture
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Classical formulas
	Slide 10
	Slide 11
	Trapezoidal rule, Simpsons rule
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Extended formulas
	Extended formulas (open)
	Slide 21
	Elementary algorithms
	Euler-MacLaurin Summation formula
	Romberg integration
	Improper integrals
	Open integration
	Slide 27
	Slide 28
	Slide 29
	Variable transformations
	Gaussian quadrature
	Slide 32
	quadrature
	Multi-dimensional integrals
	Multidimensional integration
	Numerical Recipes 3 routines:
	Example Romberg
	Slide 38
	Slide 39
	Slide 40
	Example Gaussian Quadrature
	Slide 42
	Slide 43

