
Lecture 2

Interpolation
Padé Approximants

2Computational Methods 2017

Summary lecture 1

 introduction
 Numerical errors from representation doubles

 Finite mantissa introduces round-off error
 machine dependent

 Machine accuracy, about 16 digits for double, 7 for float
 Round-off errors
 Truncation errors :

 A real function has to be approached with a finite number of terms (e.g. Taylor
expansion). Ignoring higher-order terms introduces truncation error

 Minimize with optimal routines
 Stability : exercise 1
 Test for stability when applicable

 Always try to verify the validity of your code

3Computational Methods 2017

Exercise 1: golden mean

• Example lecture 1. Numerical stability

• Naive expectation for error: consecutive powers of phi are of the
same order (0.6), so the addition is correct to machine accuracy
(least significant bit). Each sum would give a relative error of about
10-16 (10-7) for double (float)

1210 ,,1

:relation recurrence viaalsobut

),lnexp(

61.0
2

15

 





nnn

n n







4Computational Methods 2017

Precision of calculation: golden mean

• Close inspection however demonstrates that the error grows exponentially, due
to the recurrence relation:

Relative error grows a factor ~ -2.6 per step!

ϕdouble=ϕexact+ϵm (ϵm≈10−16)

ϕdouble
2

=1−ϕdouble≈ϕexact
2

−ϵm

ϕdouble
3 =ϕdouble−ϕdouble

2 ≈ϕexact
2 +2ϵm

ϕdouble
n =ϕdouble

n−2 −ϕdouble
n−1 ≈ϕexact

n −(−1)n ϵmFn

Fn=F n−2+Fn−1 (Fibonacci series ,1,1,2,3,5,8,13,.)

Fn≈
Fn−1

ϕexact
⇒

ϕdouble
n −ϕexact

n

ϕexact
n

≈ϵm(−1)nϕexact
−2n

5Computational Methods 2017

Test for floats/doubles
• code on web

– Exceeds 0.1% (50 %) after 13 (19) powers of phi for floats
– Exceeds 0.1% (50 %) after 33 (40) powers of phi for doubles
– Loss of accuracy : 2 digits every 5 steps!

Note, that the
relative accuracy
remains at machine
precision if one
would have
calculated phi from
the Fibonacci series
as

1 /ϕ

n
=1 /ϕ

n−1
+1/ϕ

n−2

(1/ϕ)n ≈ 1.61(1 /ϕ)n−1

ϵn ≈ 1.61ϵn−1
ϵn

ϕn ≈ ϵmachine

6Computational Methods 2017

NR chapter 3: Interpolation

• Interpolation of functions
• fixed number of points known

– from measurements
– from calculations. e.g continuous-wave Faddeev equation, lattice QCD, ….., takes too much

time to calculate per variable value
• calculate points in between

– error?
• interpolation : in between grid points
• extrapolation -> outside range: dangerous
• However: Padé formalism - analyticity
• interpolation:

– polynomials
– trigonometric -> Fourier analysis (later in course)
– rational functions (Pade)
– polynomial functions (e.g. Legendre polynomials, Chebyshev polynomials, …)

7Computational Methods 2017

interpolation

– very weak pole
– mocks all interpolation schemes close to pole

ln

2

x
x







8Computational Methods 2017

interpolation

– very weak pole
– mocks all interpolation schemes close to pole

ln

2

x
x







9Computational Methods 2017

interpolation

– very weak pole (<0 for x = pi +/- 3e-9)
– mocks all interpolation schemes close to pole
– Although such a function may go to minus infinity, it can be that there is not any rational

number, representable by a double precision variable, that is even negative! If the function
values are measured at grid points too far from the pole, an interpolation scheme would
not tend to fit the pole correctly

• function approximation:
– approximate a function by an easier calculable function
– calculated points of your own choosing! - this freedom in choice of abcissa helps a lot in

obtaining accuracy.
– e.g. Chebyshev function approximation (later this course).

• fitting: functional form is known.
– no part of the course. may be addressed later when time permits
– Result deviates from function values at grid points.

ln

2

x
x







10Computational Methods 2017

interpolation
• interpolation:

– use tabulated points around x-value of interest
– Example: quadratic interpolation (3-points function). Choose 3 points

11Computational Methods 2017

interpolation

• interpolation:
– use tabulated points around x-value of interest

12Computational Methods 2017

interpolation
• interpolation:

– use tabulated points around x-value of interest
– Example: quadratic interpolation (3-points function). Choose 3 points

13Computational Methods 2017

interpolation
• interpolation:

– use tabulated points around x-value of interest
– Example: quadratic interpolation (3-points function). Choose 3 points

14Computational Methods 2017

interpolation
• use tabulated points around x-value of interest

• Choose points. Must be consistent! Choosing different points leads to different interpolation, therefore one can only
switch choice at a grid point!

• E.g with 3 points, always take two points at lower x and one at higher, or always 1 at lower x and 2 at higher

15Computational Methods 2017

interpolation

• interpolation:
– use tabulated points around x-value of interest
– interpolated function shifts at tabulated point!

• Use always same convention for the points to use, change gridpoints in scheme only at x=xgrid!

– Continuous function, discontinuous derivatives
– spline- has smooth derivatives, stiffer function.
– cubic spline often used (spline)

• higher-order better?

16Computational Methods 2017

Interpolation

17Computational Methods 2017

 interpolation
• higher order interpolation: fine for smooth functions
• worse for rapidly-changing derivatives (especially polynomial)
• most simple case: polynomial interpolation
• An n-point interpolation uses n grid points. Linear interpolation: 2-point function
• Lagrange polynomials:

– goes by construction through n points
– solved with Neville’s algorithm
– gives error estimate (struct Poly_interp in nr3)

32
1

1 2 1 3 1

3 11 1
2

2 1 2 3 2 1 1

() ...

...

N

N

N N
N

N N N N

x x x xx x
P x y

x x x x x x

x x x x x xx x x x
y y

x x x x x x x x x x




  
  

     
    

18Computational Methods 2017

Neville’s algorithm

• zeroth order :
• P1 = y1, P2= y2, ... Pn = yn

• higher orders: P12, P123, P1234 Polynomials through 12,123,1234
• higher orders recursively obtained:

• e.g.

• keep track of difference between Pi..i+m and the lower order. This gives error estimate.

.. 1... ... 1 1.. ,

.. ... 1 1... .. 1 ,

() /()()

() /()()
i m i m i m i i m i m i m i m

i m i m i i i m i m i m i m

P P x x x x P P C

P P x x x x P P D
    

   

     
     

)(

)()(

21

2112
12 xx

yxxyxx
P




)/(})(){(...1)1...(... miimiiimiimimii xxPxxPxxP  

19Computational Methods 2017

Neville’s algorithm

Di,m+1 = (xi+m+1-x)(Ci+1,m - Di,m)/(xi- xi+m+1)

Ci,m+1 = (xi -x)(Ci+1,m-Di,m)/(xi - xi+m+1)
– error estimate: last difference added. Very useful to have.
– differences with previous order remembered – recursive formula. Each

additional order increases computation time with a linear amount.
• higher-order interpolation can be easily recursively updated
• Note: Poly_interp develops polynomial around the requested x-value

– Coefficients are minimized for the requested x!
– Coefficients are re-calculated for each value of x.

20Computational Methods 2017

interpolation

• Schemes that do not develop coefficients around the
interpolated point will lack in accuracy. Consider:

• Therefore: use well-tested library algorithms for interpolation (except for linear
interpolation, that is easy to code yourself)

)1000~(10))8.99(....(10:

)8.99(
10

)(

)(10~:

)(

)8.99(

5101015

10
10

0

15

10























xxAccuracy

x
i

xf

yfAccuracy

yyf

xy

ii

i

21Computational Methods 2017

Numerical Recipes routines

• Include “nr3.h”
– Doub, VecDoub, nrerror, etc.
– Using namespace std, iostream, etc

In source code:
VecDoub xx(n); creates a vector of doubles
xx can be used as a C array, e.g. xx[i]=xx[i-1]+3;
VecDoub is not a std::<vector>, but the method .size() is supported.

• Include interp_1d.h
– 1-dimensional interpolation, used in the other interpolation routines.
– Hunting for grid points to use. Assigning the error estimate, and the interpolated value.

Implements methods for Polynomial interpolation, rational interpolation, cubic splines
usage e.g:
VecDoub xx(100),yy(100); ….. fill xx and yy with the abscissa and function values…..
Poly_interp pol(xx,yy,n); -> creates a Poly_interp object named pol, using the vectors xx and yy. Will perform n-point

polynomial interpolation. For n=2: linear interpolation.
For n=4 : 3rd order polynolmial (c0 + c1*x + c2*x²+c3*x³)
double r=17.3; double y=pol.interp(r); double err=pol.dy;

Returns interpolated result for r=17.3 in y, and error estimate in err.

http://www.nikhef.nl/~henkjan/NUMREC/include.zip

http://www.nikhef.nl/~henkjan/NUMREC/include.zip

22Computational Methods 2017

Open the include file with an editor or C++
struct Base_interp
{

Int n, mm, jsav, cor, dj;
const Doub *xx, *yy;
Base_interp(VecDoub_I &x, const Doub *y, Int m)

: n(x.size()), mm(m), jsav(0), cor(0), xx(&x[0]), yy(y) {
dj = MIN(1,(int)pow((Doub)n,0.25));

}

Doub interp(Doub x) {
Int jlo = cor ? hunt(x) : locate(x);
return rawinterp(jlo,x);

}

Int locate(const Doub x);
Int hunt(const Doub x);

Doub virtual rawinterp(Int jlo, Doub x) = 0;

};

Example include file, how it works

struct Poly_interp : Base_interp
{

Doub dy;
Poly_interp(VecDoub_I &xv, VecDoub_I &yv, Int m)

: Base_interp(xv,&yv[0],m), dy(0.) {}
Doub rawinterp(Int jl, Doub x);

};

Constructor

Base class with general methods, and the
data

Function call to get interpolated
result

Virtual function, must be implemented in derived
class

Xv,yv: vectors of grid points (x,y).
m: m-point function. Linear interpolation: m=2

/home/henkjan/NR3/interp_1d.h

file:///home/henkjan/NR3/interp_1d.h

23Computational Methods 2017

Rational interpolation
• -poles
• (complex plane – ruins convergence)
• rational functions will stay good, as long as there are enough powers in denominator
• Pade approximation, chapter 5.12
• R(x) = P(x)/Q(x):

– by definition Q0 = 1
– n-th order goes through n+1 points: mu+nu+1=n
– Bulirsch and Stoer : Neville-type algorithm

• diagonal: mu (+1) = nu, as many powers in P(x) as in Q(x)
• also gives error estimate by comparison with previous order

– In NR version 3: Rat_interp and BaryRat_interp

24Computational Methods 2017

Padé extrapolation

• A Padé approximant is the rational function that has a power series expansion that
agrees to a given power series to the highest known order M+N (with M=N or
M+1=N)

• very useful if you can calculate a function and several orders of the derivative.
• Widely used in literature (e.g. > 1000 hep articles have Pade in the abstract/title)

R (x)=
∑
k=0

M

ak x
k

1+∑
k=1

N

bk x
k

, f (x)=∑
k=0

∞

ck x
k

R (0)=f (0) and [dk

dxk
R (x)]

x=0

= [d
k

dxk
f (x)]

x=0

(k=0. ...M+N)

25Computational Methods 2017

Pade Approximation, example

• Deep-inelastic scattering: structure functions are
determined and interpreted in terms of quark/gluon
contents in the nucleon. (Spin and momentum of the
nucleon)

•

26Computational Methods 2017

Pade Approximation, example

• Deep-inelastic scattering: structure functions
are determined and interpreted in terms of
quark/gluon contents in the nucleon. (Spin and
momentum of the nucleon)

• more sea-quarks resolved at higher
momentum transfer.

• structure functions can be evolved from one
value of x,Q2 to another Q2 via DGLAP, third
order QCD calculations. Pade extrapolation is
used.

• DGLAP evolutions, Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi
https://de.wikipedia.org/wiki/DGLAP-Gleichun
gen

•

• Also: see e.g http://www.mdpi.com/2075-4434/4/1/4 for
an example in cosmological expansion.

Guido Altarelli (2009), Scholarpedia, 4(1):7124

https://de.wikipedia.org/wiki/DGLAP-Gleichungen
https://de.wikipedia.org/wiki/DGLAP-Gleichungen
http://www.mdpi.com/2075-4434/4/1/4

27Computational Methods 2017

Pade approximation, ch. 5.12

Pade approximation
● Pade.h : needs poly.h, ludcm.h, nr3.h. contains Ratfn pade(VecDoub_I &coef) : call pade with as argument

a NR vector (VecDoub coef), containing the coefficients of the power series approximation of the function
you want to approximate.

● Return value: a Ratfn. This Ratfn is an object with a constructor Ratfn(VecDoub, VecDoub) that generates
the interpolation function. The () operator is overloaded. Calling Ratfn(Doub) returns the Pade approximation.

● Usage: VecDoub coef(N); // make vector with N coefs

● Ratfn rat=pade(coef); // make rat = Ratfn function

● Double x = 0.4; double y=rat(x); // calculate y = pade approximation for x=0.4.

Ratfn pade(VecDoub_I &cof)
{
 Int j,k,n=(cof.size()-1)/2;
 Doub sum;
 MatDoub q(n,n),qlu(n,n);
 VecDoub x(n),y(n),num(n+1),denom(n+1);
 for (j=0;j<n;j++) {
 y[j]=cof[n+j+1];
 for (k=0;k<n;k++) q[j][k]=cof[j-k+n];
 }
 LUdcmp lu(q);
 lu.solve(y,x);
 for (j=0;j<4;j++) lu.mprove(y,x);
 for (k=0;k<n;k++) {
 for (sum=cof[k+1],j=0;j<=k;j++) sum -= x[j]*cof[k-j];
 y[k]=sum;
 }
 num[0] = cof[0];
 denom[0] = 1.;
 for (j=0;j<n;j++) {
 num[j+1]=y[j];
 denom[j+1] = -x[j];
 }
 return Ratfn(num,denom);
}

struct Ratfn {
VecDoub cofs;
Int nn,dd;

Ratfn(VecDoub_I &num, VecDoub_I &den) : cofs(num.size()
+den.size()-1),

nn(num.size()), dd(den.size()) {
Int j;
for (j=0;j<nn;j++) cofs[j] = num[j]/den[0];
for (j=1;j<dd;j++) cofs[j+nn-1] = den[j]/den[0];

}

Ratfn(VecDoub_I &coffs, const Int n, const Int d) : cofs(coffs), nn(n),
dd(d) {}

Doub operator() (Doub x) const {
Int j;
Doub sumn = 0., sumd = 0.;
for (j=nn-1;j>=0;j--) sumn = sumn*x + cofs[j];
for (j=nn+dd-2;j>=nn;j--) sumd = sumd*x + cofs[j];
return sumn/(1.0+x*sumd);

}

};

29Computational Methods 2017

Spline
linear interpolation:

zero second derivative, discontinuous first on grid points
Cubic spline: continuous on second derivative, smooth on first
How to proceed?: add 3rd-order polynomial, such that y’’ linearly varies from y’’i to y’’i +1.

Polynomial constructed to be zero at grid points

1

1 1

1

() /()

() /()

j j

j j j

j j j

y Ay By

A x x x x

B x x x x



 



 

  

  

y=A y j+B y j+1+C y j
' '+D y j+1

' '

C=
1
6

(A3−A)(x j+1−x j)
2

D=
1
6

(B3−B)(x j+1−x j)
2

30Computational Methods 2017

Spline
• This yields for the 2nd

 derivative:

• second derivative linearly changes between xj and xj+1

• However: y’’ not known.
• Require that first derivative y’ is continuous across boundary

– use this to get y’’

• equate y’j from j-1,j and j,j+1
• this yields for j=1 .. N-2 :

dy
dx

=
y j+1− y j

x j+1−x j

+
(3B2−1) y j+1

' ' −(3 A2−1) y j
' '

6
(x j+1−x j)

d2 y

dx2
=A y j

' '+B y j+1
' '

(x j−x j−1) y j−1
' ' /6+(x j+1−x j−1) y j

' ' /3+(x j+1−x j) y j+1
' ' /6 =

=
y j+1− y j

x j+1−x j

−
y j− y j−1

x j−x j−1

31Computational Methods 2017

Spline

• N-2 equations, N unknowns
• set y’’0 and y’’N-1 zero (linear extrapolation outside boundaries)

– this is called natural cubic spline
• or set either y’’(0) and y”(N-1) to values to give a specified value of y’(0) and/or

y’(N-1)
• cubic spline: tri-diagonal set of equations. Each y’’ is coupled to its two neighbors.
• O(N) calculations to solve the N equations.

– for general schemes one would expect O(N3) calculations
• NR ed. 1,2; spline: call only once. Store parameters. Splint routine gives

interpolated values. NR ed. 3: Spline_interp.
• spline typically available in operating system (e.g. linux)

32Computational Methods 2017

Interpolation in multiple dimensions

• much harder to obtain good interpolation
• linear interpolation in two directions often done.
• bi-cubic splines is an alternative. Smooth derivatives
• take out factors that you know! E.g. if a function f(a,b) has a factor exp(a),

divide it out.
• If derivatives can be calculated, higher accuracy may be obtained (also for

bi-cubic spline).

33Computational Methods 2017

interpolation in 2 dimensions

34Computational Methods 2017

Exercise 3

Exercise 3. Due Friday, Feb. 15, 2017 (12:00). weight 2 points.

Assume, that the values of the function
f (x)=ln (|x+π|)

are known for the values of

x=−20+0.25 i ,

with 81 integers i from 0 to 80. Interpolate these function values for all
values of

x=−10+0.01 j ,

from x=-10 to x=+10, using the natural cubic spline, a (N-1)-
order polynomial (i.e. a N-point interpolation function), and the power series and Pade
approximant for N coefficients.

For this, assume that at x=0 the first N-1 derivatives of f(x) are known. The power

series can be written as
ln (π)−∑

i=1

N−1
1

i (−π)i
xi

for values of

x>−π

(Check). For

x<−π ,
one can replace the x in the power series by

x ´=−2π−x
or alternatively

create a new power series, that takes into account that the absolute value of
x+πequals -(

x+π

) for
x<−π ,

which is more work (you need 2 functions and 2 Pade
approximants in that case). The coefficients of the power series can be used to calculate
the function value at all values of x and also to calculate the Pade approximant at all
values of x.

Determine the average deviation from the true function result to the interpolated result,
give the RMS value of the deviations of the interpolated results for each of these
interpolation schemes (i.e. calculate

√∑ j
(interp−calc) ²/ 2001

) for the 2001 values of

x for the 2 interpolation schemes, the power series, and the Pade approximation. Do this
for N=4,7,10,13 and 16 (so interpolation and approximation with 4,7,10,13 and 16
coefficients).

Note, that the power series and Pade approximants extrapolate results over the full range
in x, while the interpolated results need 81 function determinations and interpolate
between grid points around the value of x. Therefore, it is surprising how accurate the
Pade approximation turns out to be.

http://www.nikhef.nl/NUMREC/Exercise3.pdf

	Slide 1
	Summary lecture 1
	Precision of calculation: golden mean
	Slide 4
	Test for floats/doubles
	NR chapter 3: Interpolation
	interpolation
	Slide 8
	interpolation
	interpolation
	interpolation
	interpolation
	interpolation
	interpolation
	interpolation
	Interpolation
	interpolation
	Nevilles algorithm
	Neville’s algorithm
	interpolation
	Numerical Recipes routines
	Example include file, how it works
	Rational interpolation
	Pade extrapolation
	Pade Approximation, example
	Pade Approximation, example
	Pade approximation, ch. 5.12
	Slide 28
	Spline
	spline
	Spline
	Interpolation in multiple dimensions
	interpolation in 2 dimensions
	Slide 34

