
Lecture 1

1

Programming, Debugging, and Compiling

Basics of C, (fortran), C++

Compiling

Debugging

An example with trigonometric functions

2

programming basics: Fortran

• Syntax can be found on the web
 e.g http://h18009.www1.hp.com/fortran/docs/rm/dflrm.htm

• Nowadays free style format available (lines of 132 characters).
• Used to be 72 characters (punch cards)

 1st column : to indicate comment line
 2nd-5th: labels
 6th: continuation of previous line
 7-72: statements
 73-80: comment

• c example
• program p()
• real*8 a
• integer i
• do 10, i=1,100,3
• a=exp(i*.1d01)
• write(6,99) i,a
• 10 continue
• 99 format(i4,E12.2)
• end

3

Fortran

• Fortran passes variables by reference:
 subroutines change the value of passed parameters inside the main

program (or the subroutine that called it)

• Special care needed with common blocks
 it is advisable to specify the common block in an include file.
 e.g. routine 1

• implicit integer*4 [a-h]
• real*8 a(100)
• common/h/a,b,c,d

 routine 2
• float f
• dimension f(2,10,10)
• /common/h/f

 with such constructs one may overwrite ALL kinds of variables. If f(1,1,3) is
overwritten, some a will have an arbitrary value. Note, that not even the
dimension of the objects in memory are the same. Indeed, I know of
programs where someone put the string ‘STOP’ in a real*4 of an array of
another routine.

4

C

• The C programming language by Kernigham and Ritchie, ed. Prentice
Hall, New Jersey.

• (ANSI C)
• common compilers: visual studio on windows, gcc/g++ on unix.
• C passes all variables by value.

– This means that a copy of the variable is given to the function or
method that you call with it.

– If you update a parameter within a routine, it is NOT updated in the
caller routine

• C is more complex than fortran, using pointers and variables.
Frequently-made syntax mistakes:
 if (a=1)

• always true, a is set to 1.
 float *b, myvar; b=&myvar; free(b);

• Unallocates memory at float myvar as well. Memory may be overwritten.
• especially when variables themselves are pointers, things may go awry.

 int j=6; double a = j/17; // a = 0, not 6.0/17. write a=j/17.0 or a
=1.0/17*j or{a=j; a=a/17;} to get this correct.

5

C

• Frequently-made syntax mistakes, continued
 double a[100]; a[100]=1e7;

• array a runs from 0 to 99, a[100] is not defined
 syntax, e.g. a*b, a**ptrb, a/*ptrb

• last statement starts comment
 nested comments

• e.g. when you comment out an action that already has comments in it
• Comment runs from first opened /* to first */

 Order in which statements are executed

• Be careful with statements like

if (a++ <1 && a/=2) { ...

6

C++

• Bjarne Stroustrup, the C++ programming language
• On unix : g++ compiler
• On windows: visual studio
• C++ contains C

 C++ is written in C. C syntax is supported.
 pointers, references and objects

• Object-oriented
 method overloading: by use of the keyword const a simple function

working on variables (pointers/references/objects) may be defined
in 18 different ways.

 for most classes (certainly containing pointers) one should specify
the assignment constructor, copy constructor and destructor as
well.

 In Numerical Recipes: include “nr3.h” – structs containing the
methods. Like root, it is not very nicely written C++, it is rather an
extension of C. Examples will be discussed, I'll comment on the
include files where appropriate.

● Most importantly: numerical recipes does not use classes and the
include files are not enclosed with #ifndef….#endif

7

Example: testing the speed and precision of cos and sine routines

• Nowadays, often-used functions like cos, sin, atan,
exp, etc are very fast and robust. You can test that
by
 creating a program which implements different methods

for calculating these cosines and sines
 checking the precision by applying a formula, e.g.

 checking the time of execution with the time and gprof
commands

2 21 sin cos 0x x

8

methods for the cosine and sine

1) cos and sin functions, mathematical library

2) mycos1, mysin1:
 8-byte doubles. factor of power series is remembered and

updated. Summation ends when last term is smaller than 10^-18
times the acquired total sum.

 mycos1 is calculated between PI and –PI
 mysin1 is calculated between PI/2 and –PI/2

3) mycos2,mysin2:

 same as mycos1,mysin1 but for 4-byte floats

4) mycos3, mysin3

 power series: each term calculated separately with fac(i) and
pow(x,i).

 how much slower?
 Numrec.html

file:///home/henkjan/WINDOWS/CompMeth/CompMeth2017/Lectures/programming/Numrec.html

#ifndef myfunc_h
#define myfunc_h
/*
 mycos1 and mysin1: ordinary taylor expansions of sine and cosine.
 End the expansion when a term is smaller than 10e-18 of the
 accumulated series Note: pi is given in 21 decimals here
*/

#define PI 3.14159265358979323846

double mycos1(double x);
double mysin1(double x);
float mycos2(float x);
float mysin2(float x);
double fac(int i);
double mycos3(double x);
double mysin3(double x);
void powercount();
void multiply();
#endif

Standard compiler directives.

/* mycos1 and mysin1: ordinary taylor expansions of sine and cosine.
 End the expansion when a term is smaller than 10e-18 of the accumulated series
 Note: pi is given in 21 decimals in myfunc.h*/

#include "myfunc.h“
#include <stdio.h>
#include <math.h>
double mycos1(double x) {

int i = x/PI/2;
double sum=0;
double term=1;

 int fac=0;
x= x -2*PI*i;
if (x>PI) x -=2*PI;
if (x<-PI) x+=2*PI;

/* Now, x is between plus and minus PI. Obviously, one could make x smaller
than PI/4 by using cosine and sine identities */
 while (fabs(term) > fabs(sum)*1e-18) {

sum+= term;
term*= x/++fac;
term*= -x/++fac;

}
return sum+term;

}

/* mycos2 and mysin2 are duplicates from mycos1 and mysin1.
 * the difference is that they operate on floats instead of doubles.
 * in principle, one could use overloaded functions in C++ or use template arguments.
 * however, in that case a call like mycos(1.3) is ill-defined: depending on the
 * compiler it would resort into a 4-byte float or an 8-byte double */

float mycos2(float x) {
int i = x/2/PI;
float sum=0;
float term=1;

 int fac=0;
x= x -2*PI*i;
if (x>PI) x -=2*PI;
if (x<-PI) x+=2*PI;
while (fabs(term) > fabs(sum)*1e-18) {

sum+= term;
term*=x/++fac;
term*=-x/++fac;

}
return sum+term;

}

/* mycos3, mysin3 : now each term is calculated with pow(x,y). and a call to fac()*/
double fac(int i) {

double faculteit=1.0;
while (i>1) faculteit*=i--;
return faculteit;

}

double mycos3(double x) {
int i = (int) x/PI/2;
double sum=0;
double term=1;
x= x -2*PI*i;
if (x>PI) x -=2*PI;
if (x<-PI) x+=2*PI;

/* Now, x is between plus and minus PI. Obviously, one could gain even more
 by using cosine and sine identities. */

i=0;
while (fabs(term) > fabs(sum)*1e-18) {

i++;
sum+= term;
term=pow(x,2.0*i)/fac(2*i);
if (i%2) term=-term;

}
return sum+term;

}

void powercount() {
/* used to see the time needed by a call to pow() */

int i;
double x=0;
for (i=0; i<1000000; i++) {

x+=pow(2.3, i/32000.0);
}
fprintf(stdout,"powercount : %e\n",x);

}

void multiply() {
/* used to see the time needed by a call to multiplication, in comparison to pow() */

int i;
double x=1.0;
for (i=0; i<1000000; i++) {

x*=i/1000.0;
}
fprintf(stdout,"multip : %e\n",x);

}

Note: divide i by a floating-point number. i/32000 = 0 for i<32000

#include <math.h>
#include <stdio.h>
#include "myfunc.h“
int main() {
// sample program to verify the speed and precision of Taylor-series expansion of sine and cosine
// first, as a baseline, calculate the speed with the optimized standard library functions

int i,j;
double a,b;
double av[4] = {0,0,0,0}; // 4 times the average of sine**2 + cosine**2 -1;
double rms[4] = {0,0,0,0}; // and the RMS of them
int tot=0;
for (j=0; j<10; j++) for (i=0; i<100000; i++) {

tot++;
a = cos(i/5000.0);
b = sin(i/5000.0);
a = 1 - a*a -b*b;
av[0] +=a;
rms[0] += a*a;
a = mycos1(i/5000.0);
b = mysin1(i/5000.0);
...

av[1] +=a;
rms[1] += a*a;
a = mycos2((float) i/5000.0);
b = mysin2((float) i/5000.0);
a = 1 - a*a -b*b;
av[2] +=a;
rms[2] += a*a;
a = mycos3((double) i/5000.0);
b = mysin3((double) i/5000.0);
a = 1 - a*a -b*b;

 av[3] +=a;
rms[3] += a*a;

}
 ...

for (i=0; i<4; i++) {
if (tot>0) {

av[i]/=tot;
rms[i]/=tot;

}
rms[i] -= av[i]*av[i];
if (rms[i]<0) fprintf(stderr,

"Due to precision, negative RMS in routine %d\n",i);
else rms[i] = sqrt(rms[i]);
fprintf(stdout,"routine %d, average %e, rms %e\n",i,av[i],rms[i]);

}
powercount();
multiply();

}

17

Compiling

• when you have source files, you can make a binary
executable or a (shared) library by compiling.

• small programs: compile inline
• larger programs: use make files (man gmake),

eclipse, visual studio projects

• packages, version control: use e.g. cvs, git
• (LHCb: thousands of classes, tens of packages, hundreds

of versions, Gb codes: cmt management)

18

compiling under unix

the above programs can be obtained from my website. You
can compile them with e.g.

 gcc –pg –g –Iinclude –L/usr/local/lib –lm speed.c
myfunc.c

-pg : get ready for profiling
-g : produce debug information in the executable
-Iinclude: look for include files (.h) in the directory include
-L/usr/local/lib: look for libraries in the directory /usr/local/lib
-lm : link with the library libm.a or libm.so

19

running, timing
• in the shell, type

 time ./a.out

• this results in:
routine 0, average -2.501814e-21, rms 6.261338e-17
routine 1, average 4.098504e-17, rms 2.703191e-16
routine 2, average 8.092013e-10, rms 1.283643e-07
routine 3, average -8.139485e-19, rms 3.609235e-16
powercount : 5.304614e+13
real 0m40.151s

user0m40.126s

sys 0m0.005s

 the program took 40 seconds

 the amount of time, spent in each subroutine, can be monitored
by gprof.

20

Profiling: gprof output

Profiling can be done when you compile the program with the -pg flag. The
executable will run somewhat slower, since many system calls are done to
determine the time that each step took.

results: (obtained as output from shell command gprof a.out gmon.out)
Flat profile:

And 9 more pages...

Each sample counts as 0.01 seconds.

 % cumulative self self total

 time seconds seconds calls ms/call ms/call name

 43.76 9.74 9.74 234074860 0.00 0.00 fac(int)

 10.76 12.13 2.39 10000000 0.00 0.00 mycos1(double)

 8.69 14.06 1.93 10000000 0.00 0.00 mysin1(double)

 8.44 15.94 1.88 10000000 0.00 0.00 mycos3(double)

 8.37 17.81 1.86 10000000 0.00 0.00 mycos2(float)

 8.33 19.66 1.85 10000000 0.00 0.00 mysin3(double)

 6.89 21.19 1.53 10000000 0.00 0.00 mysin2(float)

 4.64 22.22 1.03 main

 0.23 22.27 0.05 1 50.09 50.09 powercount()

21

compiling, error messages

• In myfunc.c, I omitted one */ behind identities in the function mycos1.
(nested comments!) Error message is:

•/NumRec/speed.c:21: undefined reference to ‘mysin1’
• in myfunc.h, I omitted
• double mycos1(double x);

 error message: none
● When compiling in 2 steps, the source files into object files and the object files

into executable. g++ catches the error, but gcc does not

 The code is known but not linked correctly!
● When entering the debugger you see that the code is executed, only the

double that is returned is interpreted as a 4-byte integer in the main program

 Depends on version of compiler/operating system

• results: non-sensible:
routine 0, average 1.399112e19, rms 6.280965e17

routine 1, average 1.534856e+18, rms 1.376143e+18

routine 2, average 2.312455e10, rms 1.181418e07

routine 3, average 1.907645e18, rms 3.332287e16

22

Compiling errors

● Compiling errors can look quite overwhelming. If you cannot figure out
what is wrong, ask for help.

● Here is the error when one omits 2 brackets in a standard container
class for the iterator value returned by end() :

● /home/henkjan/git/tremornet.pilots/LoRaSimulations/MC/error.txt

file:///home/henkjan/git/tremornet.pilots/LoRaSimulations/MC/error.txt

23

debugging

• under unix, one can invoke gdb by typing gdb a.out
• the debug session, used to find this previous problem, is
given in screen shots on the next slides.

 man gdb for manual
 gdb comes without warranty; sometimes it has difficulties printing

out (complicated) objects and sometimes the objects are not
available on the stack.

• most important commands:
 break (sets a breakpoint. The program is executed until here
 run (start running)
 list, list 40-70 (list a piece of the source code)
 print (print sin(x)+3, print *a,a,&a, print a[100])
 cont – run until next breakpoint
 clear – remove current breakpoint
 step, next : execute the next command. step steps into a function,

next steps over it.

24

Debug session

25

Debug session

26

Debug session

27

Syntax problems, compiling and debugging

● The aim of the course is that

– you learn to select optimal algorithms

– you are capable of verifying the correctness of your code;

– You can estimate the size of the numerical errors introduced in your
code

● although it is necessary that you can program and debug, you can ask
for assistence when you are stuck. I don’t mind helping with debugging
your code or helping with syntax issues; in the end the goal is that you
can deliver a numerically sound working program. There will be typically
2 or 3 classes before the deadline of an exercise so there is opportunity
for this (provided that you start your exercises right after the lecture
during the practical part of the class)

	Slide 1
	programming basics: Fortran
	Fortran
	Slide 4
	C
	C++
	Slide 7
	methods for the cosine and sine
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Compiling
	compiling under unix
	running, timing
	gprof output
	compiling, error messages
	Slide 22
	debugging
	Slide 24
	Slide 25
	Slide 26
	Slide 27

