
Computational Methods

1

H.J. Bulten, Spring 2017

www.nikhef.nl/~henkjan

2

Lecture 1
H.J. Bulten henkjan@nikhef.nl

website: www.nikhef.nl/~henkjan , click on Computational Methods
● Aim course: practical understanding of numerical methods in (physics)

problems.

 Numerical calculations: large scale, not analytically solvable problems
 techniques: integration, Fourier analysis etc.
 are the results correct? Verify. Always try to validate your code.

• Contents course:
 Hands-on techniques in practice: book: Numerical Recipes,

 Press, Teukolsky, Vetterling and Flannery
 Version 1 available on web: www.nr.com
 covered material: see next slide
 techniques to perform numerical tasks, C++ (version 3)
 extra material : FORM?, fitting?, Schroedinger equation, Monte Carlo

• Examination: Completion of exercises. Mail the source code and a small (1
page) summary of your findings.

3

Course contents

 Introduction: numerical errors, machine representations,
(programming), CIC filter

 Interpolation and extrapolation, chapter 3
 Integration of functions, chapter4
 Evaluation of functions, chapter 5
 Roots, Minima and maxima, chapters 9 and 10
 Fourier methods, wavelet transforms chapters 12 and 13

 Systems of linear equations, chapter 2
 Eigensystems, chapter 11
 Schroedinger equation

 Integration of differential equations, chapter 17
 Boundary value problems, chapter 18
 Monte Carlo techniques (chapter 7)

4

Examination

• Exercises
 At least 1 exercise per week. The larger exercises will get a higher

weight in the final grade. Code and output must be mailed to
henkjan@nikhef.nl . I will discuss the exercises during the course
(except for the final one).

 Please, include your student number + institute in the first mail.
 Exercise 1 of today has weight factor 1 (lowest). It is meant to

verify that you can compile a simple piece of code, and to
familiarize you with the problem of stability of numerical algorithms.

 Exercise 2 has a weight factor of 2 points. It demonstrates the use
of integer arithmetic to cancel numerical errors.

 In the discussion of the exercises, I will use the routines from
edition 3 (nr3.h etc) which come with the book and can be found
on the web.

 A full copy of the numerical recipes include files is available from
www.nikhef.nl/~henkjan/CODE/allincludes.tar

 It is a file created with tar, to extract the files use :
tar -xf allincludes.tar

mailto:henkjan@nikhef.nl
http://www.nikhef.nl/~henkjan/CODE

5

Field of Computational Methods
 non-analytical problems (else solve analytically)
 computing uncertainties – controlling accuracy

• speed
• accuracy
• stability
• applicability
• maintainability
• elegance
• simplicity
• …......

Computational Methods

optimize algorithms

6

Verification

 Larger codes : verify
 Calculate a trivial example (known analytically)
 Vary input parameters

 e.g. Monte Carlo: try several runs with 100000 events
 Do the results match statistically?

 e.g. differential equations: change input parameters slightly
 Do the results change linearly? Chaotically?

 Compare a single case to e.g. Wolfram:
 e.g. your code contains a billion integrals. Calculate one explicitly and

compare to the calculation in Wolfram
 www.wolframalpha.com

 In case of discrepancies: use debugger.

http://www.wolframalpha.com/
http://www.wolframalpha.com/

7

 Uncertainty, integers

Computational error sources:
• integers: fixed point

 int, long, short, char
 signed/unsigned
 accurate:

• division – skip remainder
• underflows/overflows
• Banking

• Widely used: two's complement.
 e.g. for two-byte signed integers (shorts) - run from -32768 to +32767

• 0 = 0x0 = 0000000000000000

• 2^16-1 = 0x7fff = 0111111111111111

• -2^16 = 0x80 = 1000000000000000

• -1 = 0xffff = 1111111111111111

• Except for overflows (fixed multiples of 2^16) the differences are correct both
for unsigned and signed integers: -1 + 1 = 0xff + 0x01 0x(1)00 = 0), addition
and multiplication can be implemented with the same coprocessor steps for
positive, negative, and unsigned integer arithmetic.

8

 uncertainty

Computational error sources:
• floating point

 float, double, real*4,real*8, complex*16
 machine-dependent representation
 signbit,mantissa,exponent
 base usually 2, sometimes 16

• e.g. ½ = 0 1000000.. 1000..
• 3=0 1100000.. 10..010
• leading 1 may be omitted in some representations
• addition: left-shift mantissa, until exponents equal

– Loss of accuracy. Adding numbers with different exponents leads
to a loss of significant number of bits.

x=sm Be−E ; s= positive(s=0) ∨ negative(s=1)

m=mantissa (1010000=1 /2+0/4+1/8+0 /16. ... 0/2N)
B=base usually 2 sometimes 16
E= offset exponent

9

 floating point representation

smallest non-negative number – depends on exponent (and definition of
mantissa)

largest representable number: depends on exponent
• Overflows: e.g 500!, exp(5000), and underflows (exp(-5000)), must be

captured! (in your code. Do not rely on compiler)
 Mathematical functions from libraries expect input that can be

represented. Especially for complex arithmetic errors are easily
made:

● e.g. in calculating the norm of a complex number, the squares of the
real and imaginary parts may be added. If this is done incorrectly
{Norm(a+ib) = sqrt(a*a+b*b)} then the maximal allowable value for a
and b are ½ sqrt(max_float) instead of ½ (maxfloat). In your code, you
should always capture possible overflows.

c=a+ib

|c|=√a2
+b2

√a∗a+b∗b→(a2
+b2

<Maxfloat ; a ,b<√Maxfloat /2)

a√1+b /a b /a = b√1+a /b a /b→a ,b<Maxfloat /2

10

floating point errors

• round off errors:
 machine + compiler dependent
 typically precision 10-16 double, 10-7 float

• round-off always contributes to error
 Lucky ?

• Multiplication: add exponents, multiply mantissae : keeps machine
accuracy (the product of two floating point numbers has the same
number of significant bits as a single floating point number)

• Summation: makes mantissa equal. If the mantissa differs by n bits, the
precision of one of the two numbers is reduced by n bits.

– Extreme case: 1 + 10-18 = 1 (for typical 8-byte double precision
representation).

ϵ∼ϵmachine√(N)

11

Stability

• Stability: round off error may accumulate:
• e.g. golden section:

- example : phi has roundoff error. The zeroth term is exact (1) but the first term
is a little bit too small or too large

 error blows up exponentially (verify!)
 Exercise to see how this works.
 Exponentially increasing errors: Typical behavior encountered in e.g. Bessel

functions. Check your code for these types of numerical errors.

1 15 1
,

2
n n n

 a b
 φ = b/a = a/(a+b)

12

Exercise – stability of the golden mean

Exercise 1. Determination of stability of golden mean
approximation.

Powers of the golden mean, ϕ=
√5−1

2
 ,

can be calculated using the following recursion relation:

ϕ
n+2

=ϕ
n
−ϕ

n+1 .

However, this relation is numerically unstable.

Determine, by comparing the result of this recursive relation for higher powers of phi to
the direct calculation (obtained by n=enln), after how many terms the difference
between those two calculations is larger than 0.1% and after how many terms it is larger
than 50%. Give the values of n and n, calculated with the recursion relation and with the
direct method, both for single precision (4 bytes) and double precision (8 bytes).

The direct calculation (using pow(phi, n) or exp(n log(phi))) gives an error close to the
machine accuracy, which may be verified by dividing the result of the direct calculation n
times by the calculation of . The latter operation (n successive divisions or
multiplications) will result in a fractional error that is approximately equal to n times the
machine accuracy, since the relative error grows linearly in each step (Why?). This
accumulated error, although larger than the error in n random multiplications, is still
much smaller than the error obtained by the recursion relation.

Do you understand the results?

This exercise has the lowest weight of 1 point. Mail the source code and your answer to
henkjan@nikhef.nl before Thursday Feb 9, 0:00; the results will be discussed next
lecture.

13

Conversions, data types

● Sometimes it is necessary to manipulate bits, or to change
from floating point to integer and vice versa.

● Example:

#include <stdint.h>
#include <iostream>
#include <iomanip>
using namespace std;

int main() {
 uint32_t k=0x1020304; // assign an unsigned, 32 bits integer to hexagonal 0x1020304
 double l;
 l = (double) k; // convert the 32-bit integer to a 64 double with the same numerical value. The
converse is also possible (if l is small enough) : k = (uint32_t) l;
 uint64_t *m,n; // m points to 8 bytes, interpreted as 64-bits unsigned integer
 m = static_cast<uint64_t *>((void *)&l); // static cast from double* to integer* is not allowed.
 n= (0xff); //least significant byte =1111111, n=255;
 for (int i=0; i<8; i++) {

cout <<i<<"-th significant byte " << std::hex << (*m&n) << endl;
*m=(*m>>8); // right-shift 8 bits

 }
 return 1;
}

14

CIC filter

 Integer arithmetic: exact

 Nice for Cascaded Integrator Comb filters – CIC filters.

 The problem: digital sampling: each sample has noise.

 e.g. (expensive) fast ADC might sample with 1 MHz and have 20 bits resolution, lowest 2
bits noise. That means a resolution of about 4 ppm full scale per sample.

 Data needed at lower frequency, e.g 1 kHz. Then oversampling helps: for white noise,
each factor of 4 oversampling gives a factor of 2 better resolution. Oversampling with
1024 times will gain a factor of 32 better resolution, or 60 dB!

 Fast sampling: lots of data and fast computing needed to combine the data.

 Real-time front-end downsampling: fast and cheap algorithms needed.

 CIC filter: moving average over last M samples. If M is a power of 2, then you can just
add the last M samples and divide by right-shifting 2log(M) bits. So, a moving average can
be done by e.g. adding 1024 samples and then right-shifting the result 10 bits.

 It becomes more efficient if, for each sample i, you add the current sample i to the sum
and subtract sample i-M. Then, to calculate the averages over each sample, you only
have to do 1 addition and 1 subtraction (plus a right-shift to keep the normalization
correct) instead of M additions. However, you have to keep the last M samples in
memory, else you cannot subtract sample i-M

15

Homework Exercise: CIC filter

● CIC filter:

– Moving average (digital signal processing techniques)

– https://en.wikipedia.org/wiki/Cascaded_integrator–comb_filter

– Response moving average: the average value over the last M samples is taken. This
means, that noise with frequency components with frequencies (M, M/2, .. 1)/dt are
exactly cancelled, and arbitrary high frequencies >1/dt are averaged and downsampled.
e.g. a frequency that fits 17.3 times in M samples contributes only about 0.3/17.3 to the
downsampled signal.

– CIC filters can be cascaded, you can do e.g. 4 in a row. The first one sums the input, the
second works on the sum of the first, etc. This yields better high-frequency noise
subtraction than a single moving average filter.

y [M−1]=∑
0

M−1

x i

y [2 M−1]= ∑
M

2M−1

xi

y [2 M−1]= ∑
0

2M−1

xi− y [M−1]

Moving averages after M and 2M samples
(before dividing by M)

The moving average after NM samples can be
calculated by subtracting from the current the
result of (N-1)M samples

https://en.wikipedia.org/wiki/Cascaded_integrator%E2%80%93comb_filter

16

 CIC filter

● CIC filter:

– Integrator: addition of the new sample to the sum

– Comb: subtraction of sample i-M from the sum

– Next performance gain: you can do the subtraction (the Comb part) AFTER decimation.
This means : you just keep adding samples at high rate to the sum. Every M-th sample,
you subtract the previous sum obtained i-M samples ago. Normalization (dividing by M) is
done at the end.

17

CIC filter

● Response CIC filter: see e.g.
http://www.embedded.com/design/configurable-systems/4006446/Understanding-cascaded-integra
tor-comb

●

CIC filter, decimation with a
factor 8. At the original sampling
speed, the Nyquist frequency is
fs

in
/2. fs

out
 = fs

in
/8 shows the

response and the aliased,
down-sampled strength from
higher frequencies.

http://www.embedded.com/design/configurable-systems/4006446/Understanding-cascaded-integrator-comb
http://www.embedded.com/design/configurable-systems/4006446/Understanding-cascaded-integrator-comb

18

CIC filter

● A CIC filter can be efficiently implemented using integers. In this filter, the sums are
stored and only the decimated sums need to be subtracted. This will work correctly as
long as overflows of the integers are taken into account correctly.

● The integers must be large enough to store the sum of M samples, if M is the decimation
rate. If the maximum of the sample needs n bits (e.g. 18-bit adc value) and you decimate
with a factor of M (e.g 1024) then you need n+ N 2log(M) bits for the CIC filter, where N is
the amount of consecutive integrators. So if you do a 4th order CIC filter with a decimation
rate of 1024, then you need 40 extra bits for the integrator. Starting with 18-bits samples,
a signed 64-bit integer is large enough (but a double is NOT). Each stage also adds a
delay of ½ M. The output is the averaged value of the previous M samples, so it
represents the average over the interval of M samples. A Nth-order CIC filter will represent
the average of about the last NM samples, so the delay with respect to the input is about
NM/2.

● When you keep summing the input, the integers will overflow eventually. That is no
problem as long as it does not happen more often than once every M samples. When you
are close to the maximum value of the integer (2^63-1) and add 1, you get - 2^63.
Subtracting these 2 numbers gives 1 again.

● Using 64-bit integers one can implement a 4-stage CIC filter with 18-bit sample input and
decimation rate of 1024. The first stage is the sum of the inputs, the second the sum of
the first-stage result, etc.

19

Cascading combs and integrators

● 4-stage CIC filter: 4 integrators in series, followed by 4 combs:

+ +++
data

CIC0 =
sum data

CIC1 =
sum CIC0

CIC2 =
sum CIC1

- -

z-M

Result[N] =
 CIC3=
sum CIC2

Store Result, and
Delay M steps

Res2=result[N]-
result[N-M]

z-M

Store Res2,
delay M
samples

Res3=res2[N]
-res2[N-M]

-

z-M

Store Res3,
delay M
samples

z-M

-

Res4=res3[N]
-res3[N-M]

Store Res4
delay M
samples

Res5=res4[N]
-res4[N-M]

Cic filters: 4 integrators followed by 4 subtractions. Keep summing input, after N steps you have
result[N].
Store this result. Subtract the stored result[N-M] to get Res2[N] (you stored this result M steps
earlier in the calculation. You don't need to store or subtract results at integers that are not
multiples of M).
Store this result res2[N] (to be subtracted here after N+M steps).
Subtract result res2[N-M] to get Res3[N]. store this result.
Subtract result Res3[N-M] to get res4[N].
Subtract res4[N-M] to get finally Res5.

Put Res5 in a double, divide by M
4
 to normalize, and you have the output of 4 cascaded

Comb-integrator filters.

20

CIC filters, delay

● Each integrator stage of the CIC filter averages the preceding M samples (assuming the
standard setting delay=1M). Therefore, the average result at the output is delayed by M/2
samples (for instance, if your adc measures for 1 microsecond and gives a result at tn
(after n microseconds), then the CIC filter result at tn equals the sum of the last N
samples, so the integrated result from tn – M till tn. The central value of this interval occurs
at tn – M/2, which one could interpret as the correct time of the measurement.

● Thereby it is demonstrated that each stage in the CIC filter output introduces a delay of
M/2 samples. For a 4-staged CIC filter the delay of the averaged output with respect to
the input signal equals 2M samples.

21

CIC filter, exercise

● The CIC filter exercise is due next week monday. It is imperative that the CIC filter is
implemented with integer arithmetic; doing the sums in double precision would lead to
enormous errors already after 1 second, whereas in integer arithmetic the numerical error
is 0.

● The exercise can be found on the web (www.nikhef.nl/~henkjan/ click on Computational
Methods).

●

http://www.nikhef.nl/~henkjan/NUMREC/EXERCISES/Exercise2.pdf

http://www.nikhef.nl/~henkjan/
http://www.nikhef.nl/~henkjan/NUMREC/EXERCISES/Exercise2.pdf

	Slide 1
	Lecture 1
	Course contents
	Examination
	Numerical Techniques
	Slide 6
	Slide 7
	Slide 8
	floating precision
	floating point errors
	round off/truncation error
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

