
Lecture 7

Fourier Analysis



Summary Lecture 6

• Minima and maxima
– 1 dimension :

• Bracket minima : 3 values of f(x) : f(2) < f(1) and f(2)<f(3)
• Minimum can be hunted down: e.g. Golden Mean (linear 

convergence).
• Better: Brents method, parabolic interpolation



Summary Lecture 6
Multiple dimensions: 

Complicated. Simplex method to enclose a minimum in N dimensions. Can be 
hunted down.

Use of derivatives: often known with less precision than 
function itself! 

Multiple dimensions: linearization along all gradients. Powells method.

Strategies depend on order in which minimization is performed. Complicated 
schemes. NR: Fletcher-Rieves-Polak-Ribiere frprmn

Conjugate directions.
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Summary Lecture 6

• Traveling salesman – like 
problems

• Simulated annealing : changing 
configurations in a random 
manner to obtain optimal result

– needs an objective function (e.g. 
the total round-trip pathlength) 
to be minimized

– needs a way to change paths:
• E.g. swapping the order of 2 cities

– Local minima can only be 
avoided by accepting “up-hill” 
steps. (accept longer paths with 
probability exp(-dL/T), T a 
“temperature”, e.g. 50 km

– Schemes need experimenting.
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Fourier Analysis

• Many applications:
– switch to conjugate coordinates

• time – frequency (electronics)
• Classical/quantum mechanics -> coordinate – momentum space

– signal processing
• lock-in amplification
• filtering
• sounds : MP3, cd 44 kHz
• image processing.
• data reduction
• wavelets

• gravitational waves : Virgo/Ligo can detect up to 10
-27

 deformations 
in spacetime by measuring for a year.

– convolution of functions

• all thanks to fast Fourier transform (FFT)
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Fourier transformation

• Symmetries:
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Transformation Laws

• scaling:

• translation:

• Convolution:

• Correlation (lag)
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Fourier transformation

• Power in functions:

• power between f and (f+df): typically one uses the 
one-sided power,

• Note, in FFT algorithms typically df and dt are unknown and the 
normalization 1/N should be applied by the user.

• this gives a factor of two for real h(t): 
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Sampling, Nyquist frequency

• Often, h(t) is sampled in intervals delta:

• fc is the so-called Nyquist frequency. If a function is 
band-width limited to frequencies below the Nyquist 
frequency, then the sampled function hn is an EXACT 
representation of the original function (infinite 
information compression)

• If h(t) is NOT bandwidth-limited, the higher frequencies 
will be spuriously moved to lower frequencies.
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Sampling, aliasing
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aliasing
Sin(x+20x) sampled with 1000Hz and 10Hz.

At 10Hz, sin(x) and sin(x+20x) look identical
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Discrete Fourier transform
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• Go from discrete number of samples hn to the discrete 
Fourier transform Hn:

• Hn is periodic with period N; 

• one usually replaces negative frequencies with 
frequencies shifted up by the Nyquist frequency (n 
runs from 0 to N instead of –N/2 to +N/2).

• reverse Fourier transform:
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Fast Fourier Transform

• Normal Fourier transform: N numbers hn need to be 
transformed to N numbers Hn, for each number H you 
need N multiplications. Expected O(N2) matrix 
multiplications to transform vector h in vector H.

• This implies e.g. for a 1000x1000 pixel photo: 1012 
operations.

• FFT: O(NlogN) operations (Cooley-Tukey, 1960-s).
• already mentioned by Gauss, 1805.
• Danielson-Lanczos: Fourier transform of N steps can be 

written in terms of 2 Fourier transforms with N/2 steps 
each. One of even-numbered, one of odd-numbered 
points
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Split Fourier transform into 2 halves:

do this recursively:

Start with N=2k points (else zero-pad the remainder).
Fourier-transform of length 1: just a copy of the number 

(Feeoeoeooe = fn)
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Fast Fourier Transform

• Which number n corresponds to 
Feeoeoeoeoooeooee? 
– successive divisions of the data in an 

even and an odd part test for the lowest 
significant bit: the kth index is o if n%2k 
=1, e if it is 0.

– reverse the pattern of e and o
● set e=0, o=1

– then you have the index n in binary.



H.J. Bulten, Computational Methods 2016 16

FFT transform

• first step: reorder array by bit-reversing:

• second step: combine 2 adjacent points:
... ... ...xxx x xxx xe k xxx xo

k k kF F w F 
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FFT

• repeat this 
step 2log(N) 
times, until 
the final FFT 
is obtained.

• Input and 
output 
definitions 
(general 
feature of 
FFT libraries, 
such as 
FTTW3):
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FFT transforms

• Typically, complex number arithmetic is not implemented 
as efficient as real number arithmetic, and algorithms are 
fed with real arrays with 2N numbers instead of N complex 
numbers. If your function has a symmetry, one can reduce 
the time needed by the Fourier transform to fill the arrays 
differently. (E.g. the function is real: all imaginary terms are 
0 )

• Better: either do 2 FFT’s at once (e.g. with convolution, 
filtering. Pack one function in the real numbers, the second 
in the imaginary numbers. To separate the resulting 
transformed complex functions, use FN-n=Fn*, GN-n=-Gn*.

• Alternatively: split odd and even samples, put odd samples 
in imaginary, and do the last step of the FFT yourself. 
Numerical recipes provides an algorithm for that too
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multiple dimensions

• The numerical FFT can be obviously extended from one 
to more dimensions, e.g. h(k1,k2) <-> H(n1,n2) :

• lots of bookkeeping due to nested Fourier transforms; 
use a multi-dimensional FFT algorithm (NR::fourn).

• inverse transform: just normalize with the factor 1/
(N1N2...Nx) after the transformation, and specify with 
switch that the complex factors are e-ic instead of e+ic
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Two dimensions
image processing typically uses FFT techniques. The image pixels are presented 
as 2-dimensional functions. One could for instance “brighten” the whole picture 
by changing the value of H(0,0) and transforming back. One can sharpen the 
picture by deconvolution, or run it through a filter that filters out high or low 
frequency components.
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Convolution

• r*s=s*r
• often, r and s are different, s signal (continuous data 

stream), r response (e.g. smearing, low-pass filter, ...r
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Convolution
Typically, the signal s(t0) is not transferred exactly as a 
delta function r=delta(t-t0), but smeared by a function r(t-
t0).

Discrete case: s and r are sampled in steps Delta:
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Convolution

• Hence, r0 copies the input into the output, r1 tells you 
which fraction of the input is smeared towards the next 
bin, r-1 = RN-1 gives you how much is put into the 
previous bin, etc.

• discrete convolution:
• if r is non-zero only in

finite range M, it is called

a finite-impulse response 

(FIR)
• discrete convolution theorem: if signal periodic with 

period N and FIR has length M<=N, then
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Convolution

• usually, FIR has much shorter length M. Treat this 
by inserting zeros.

• The index runs from 0 to N-1, just as before: s(-
N/2)=s(N/2), s(-1)=s(N-1).

• The signal may not be periodic. Then, the result at 
s(0) is influenced by the measurement at s(N-1). 
Here, zero padding helps too. Insert after the last 
non-zero measurement at least M zero’s (M is 
duration of FIR), then the results at s(0) are not 
influenced any more. discard the results for the 
last M values of s, the padded zero’s. (They are 
determined by the measurements at s(0)...s(M-
1)).
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Convolution

• left: discrete convolution of non-periodic signal 
s. The regions at the end are spoiled.

• right: zero-padded result.
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Convolution

• procedure: 
– data, with zero padding, consists of pairs sj, rj, j=0,...,N-1

– discrete convolution is given by taking the Fourier 
transform of r and s, multiplying them term by term, 
then take the inverse Fourier transform. The result is 
(r*s)

• deconvolution: take transform of measured data 
and of response function. divide the transform of 
the measured data by the transform of the 
response function, and you obtain the 
deconvolved signal!

• if Rn = 0, this implies that the knowledge of the 
frequency component Sn is completely lost, so a 
reconstruction is not possible.
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Correlation

• in correlation, the data sets are typically 
similar in shape. E.g. you search for a 
predefined signal, such as a gravitational wave 
signal in a binary collapse, in a data stream 
(matched filtering).

• Corr(g,h)(t)=Corr(h,g)(-t)
• discrete:

• zero padding is done as in the convolution 
method.
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Optimal filtering

• Noise removal: signal u is modified by a response r and a 
noise contribution.
– true signal u, convolved with response r gives signal s, with noise n 

added gives measurement c: c=(u*r)+n

• Z(f) is optimal filter when U-tilde is as close as possible to true function 
U: 

                                                     is minimized

 

s (t)=∫ r (z )u (t−z ) dz⇔S ( f )=R( f )U ( f )

c (t )=s (t )=n(t )

U ( f )≈Ũ ( f )=
C ( f )Z ( f )

R ( f )

∫∣U² ( f )−Ũ² ( f )∣df
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Optimal filtering

• signal and noise are uncorrelated, so their cross-
product is zero:

• The integrand is minimized if the derivative to Z(f) 
is zero.This leads to the optimal filter Z :

• Noise needs to be estimated; this is usually 
possible.

∫∣U²( f )−Ũ² ( f )∣df =∫∣
[ S ( f )+N ( f )]Z ( f )

R( f )
−
S ( f )
R ( f )

∣²

=∫∣R( f )∣−2
{∣S ( f )∣²∣1−Z ( f )∣²+∣N ( f )∣²∣Z ( f )∣² }df

Z ( f )=
∣S ( f )∣²

∣S ( f )∣²+∣N ( f )∣²
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• Noise : either measured in absence signal, or 
extrapolated under signal region.

Optimal filtering

n



H.J. Bulten, Computational Methods 2016 31

Example deconvolution

• To show how the algorithms works I made an example, 
creating a 512x512 pixel plot. The code creates files with 
3 columns, x,y, and brightness. I plotted it by making 2D 
histograms in root.

• The original picture is smeared with a Gaussian 
distribution with different RMS in both directions, by 
making a smearing function in coordinate space, Fourier-
transforming it and multiplying with the Fourier-
transformed picture. This would in coordinate space 
constitute to 1012 operations (about 10 hours), but with 
the FFT it is limited to 107 operations (fraction of a 
second)

• The result is deconvolved as well.
• The code produces files orig, smeared, and deconv
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Original plot
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Smeared plot

Note, that the Fourier-
transform does not 
apply the normalization 
factor 1/N or 1/sqrt(N).
This is typical for FFT 
libraries. The distance 
dt and df are not known, 
so it is up to the user to 
normalize.
In order to have the 
sums of (s(t)² and S(f)²) 
the same, one could 
divide S

n
 by 1/N.

Verify the normalization 
of your FFTs yourself. 
(Apply it twice, make 
sure you get the original 
dataset back, and that 
the summed powers 
equal in time and 
frequency domain
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Smeared plot, detail
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Deconvolved plot.
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Deconvolved plot, detail
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Exercise 6

● Exercise 6 will be about optimal filtering with the 
use of the Fourier transform.

● I will give more background on that next lecture; 
aspects like power spectral density and statistical 
details need another lecture.
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