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Chapter 1

Electrostatics

1.1 History and basics

The word electricity is derived fromηλεκτρoν (elektron), the Greek word for amber. The refer-
ence to amber is not a coincidence: when an amber rod is rubbed with fur it attracts certain objects,
such as a piece of paper or a hair. This was documented first by Thales of Miletus (600 BC).

Amber is not unique in this sense. Many other materials, such as glass, rubber, PVC and Ebony
can be electrified by rubbing it with for example fur, silk or wool. Many experiments in the 17th and
18th century were conducted to study this phenomenon. This work led to the discovery of two kinds
of electricity (positive and negative charge) that attract, while electricity ofthe same kind repels. A
simple experiment with a glass rod and a plastic ball as illustrated in Fig. 1.1 showsthat like charges
repel. Another experiment, using an additional rubber rod and ball with opposite electrical charge

Figure 1.1:A glass rod is electrically charged by rubbing it with fur. The rod is then used to charge
a plastic ball. Now the two objects repel.

demonstrates that unlike charges attract, see Fig. 1.2. Well known is the glass rod that, rubbed with
a silk cloth, obtains a ’positive’ electrification. Famous is the Ebony rod that after being rubbed
with a cat’s skin is ’negative’ electrified.
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6 CHAPTER 1. ELECTROSTATICS

Figure 1.2:The rod and ball have opposite electrical charge. The two objects attract.

1.2 Electrical Force and Field

1.2.1 Coulomb’s law

Charles Augustin Coulomb (1736 - 1806) was a French physicist who studied the electrical forces
in a quantitative manner utilizing a torsion balance. Through this experimentation, Coulomb found
that the force between two (point) charges is given by:

~F =
1

4πε0

qQ
r2 r̂ (1.1)

wherer = |~r| represents the distance between the test chargeq and source chargeQ. The vector~r
connects the two charges. The direction of the force~F is given by ˆr = ~r

|~r| , the unit vector pointing
from Q to q, see also Fig.1.3. Equivalently, we can write for the Coulomb force:

~F =
1

4πε0

qQ
r2

~r
|~r| =

1
4πε0

qQ
r3 ~r (1.2)

Figure 1.3:The Coulomb force between a source chargeQ and a test chargeq.

The SI unit of electrical charge is the Coulomb, which can be abbreviated tothe unit C in equa-
tions. The factor 1

4πε0
is a constant term withε0 called the ’electrical permittivity’. The electrical

permittivity has the numerical value:

ε0 = 8.85419×10−12 C2

Nm2 (1.3)
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Often, Coulomb’s law is also written as

~F = K
qQ
r2 r̂ (1.4)

with K the electrical constant:

K = 8.98755×109Nm2

C2 (1.5)

Coulomb’s law is about the electrical force between two point charges. Ifwe have three, four
or whatever number of charges at different positions, the total force on a test charge becomes:

~F = ~F1 + ~F2 + ~F3 + ~F4 + ..... (1.6)

with ~Fi the electrical force by source chargeQi on our test charge given by equation 1.1. Using this
’superposition principle’ we can write this total force as:

~F = ∑
i=1,N

1
4πε0

qQi

|~r0−~ri|2
~r0−~ri

|~r0−~ri|
(1.7)

with the position of theN chargesQi denoted as~ri and the position of the test charge~r0. The
superposition principle is illustrated in Fig. 1.4. The vectors are defined with respect to some origin
O. Note that the expression for the electrical force is independent on the choice of originO.

Figure 1.4:The Coulomb force on a test chargeq on positionr0 resulting from four source charges
Q1,...,Q4. The connection vector,~r0−~r1 between chargeQ1 and the test chargeq is also indicated.
The vectors~r0 and~r1 are defined with respect to originO.

The physicist J.J. Thomson discovered in 1897 a new elementary particle: the electron. The
electron carries a negative electrical charge and is responsible for most electrical currents. R.A.
Millikan discovered in 1909 that all electrons carry a similar charge,−e, called the elementary
charge. In SI units its value is

e = 1.6002×10−19C (1.8)

We know now that in atoms negative charge is carried by electrons, while protons are positively
charged. When we go back to the old experiment, rubbing an ebony rod withfur or cat’s skin, the
electrons from the cat’s skin get transferred to the ebony rod. The cat’s skin now has a deficiency of
electrons and so is positively charged. On the other hand, the ebony rodhas an excess of electrons
and hence is negatively charged. So, in everyday life, positive electrification is due to the deficiency
of electrons and thus not by an excess of protons.
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Protons are not so elementary as electrons. Protons consists of quarksand gluons. The quarks
carry electrical charge of−1

3e and+2
3e. In nature, the quarks and gluons are confined in other

particles (like the proton). Scientific research in the field of ’particle physics’ has led to a new
’table of elements’, one with six quarks and six ’leptons’ which interact by the exchange of force
particles. The particle world is illustrated by the table in Fig. 1.5. All these particles exist in nature,

Figure 1.5:The elementary particles. The leptons from left to right are: electron-neutrino, muon-
neutrino, tau-neutrino, electron, muon, tauon. The quarks, in the same order, are: up, charm, top,
down, strange, bottom. From left to right, the mass of the particles is increasing. For example, an
up quark ’weighs’ a few MeV while a top quarks weighs 175GeV (for reference: a proton weighs
1 GeV ). This mass difference between the particles is an open question, but the so called Higgs
mechanism may be its origin.

but one to remember is that our everyday world is made off only three particles: up and down quarks
and electrons. Electrical charge in nature comes in discrete amounts: it is quantized, which has deep
implications. The net charge before an interaction is equal to the charge after an interaction.

Elementary particles like quarks and gluons are studied in particle collisions atparticle labo-
ratories like CERN (Geneva) and Fermilab (Chicago) using large accelerators. Presently at CERN
a new accelerator is being constructed, the Large Hadron Collider (LHC). The apparatus with a
circumference of 27 km accelerates protons clockwise and counter-clockwise to energies of 7 TeV.
At a few dedicated points, interaction points, the protons collide. The detectors to measure the
products (i.c. new particles) of these collisions are large, typically 20× 20× 20 m3. In the Nether-
lands, NIKHEF in Amsterdam, is the main institute where research in this field is being conducted.
NIKHEF contributes to ATLAS, a detector for the LHC, as shown in Fig. 1.6.Although ATLAS is
a multipurpose detector, the focus of the research program is on the Higgsparticle.

1.2.2 The electrical field

Let’s have a closer look to equation 1.7 and rewrite it:

~F = q

(

∑
i=1,N

1
4πε0

Qi

|~r0−~ri|2
~r0−~ri

|~r0−~ri|

)

(1.9)

The electrical field~E is defined by:
~F = q~E, (1.10)

with:
~E = ∑

i=1,N

1
4πε0

Qi

|~r0−~ri|2
~r0−~ri

|~r0−~ri|
. (1.11)
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Figure 1.6: An impression of the ATLAS detector which is being assembled. This detector is
44 m long! Particles that are produced by proton collisions are measured using several detection
techniques. NIKHEF contributes to the silicon tracking detectors and muon drift tube chambers.
See www.cern.ch for more information.

In different textbooks you will find different notations. A common notation is:

~E = ∑
i=1,N

1
4πε0

Qi

~ri
2 r̂i (1.12)

In this case the vector~ri is defined as~ri = ~r0−~ri. Be aware of this freedom of notation, which leads
to many un-necessary mistakes.

A way to physically interpret the above expression for the electrical field isthat a chargeq
senses an electrical field and consequently undergoes a force~F = q~E. We have introduced the field
as a relatively simple mathematical definition. However, the electrical field is a genuine physics
quantity! In electrostatic theory, the field is present in space and you can calculate it using for-
mula 1.11 when you know the (point) charge distribution. If the field is present in space, you may
wonder, where is it made off? That is a bit harder to answer and beyondthe scope of this course. In
particle physics, fields consist of ’force particles’ that are being exchanged when particles have an
interaction. The electrical field consist of (virtual) photons that are exchanged between electrical
charges.

Above, all equations are based on point charges. Since all charge are carried by individual
particles this seems not unreasonable. However, in the classical theory charges can be continuously
distributed. This is still reasonable when we describe physics at a scale much (much) larger than
the size of and distances (10−10m) between the particles. The classical theory describes nature in a
macroscopic matter. We will discuss some examples of continuous charge distributions.

Line charge

A line charge can be described by a charge densityλ (~rl) with has the unit C/m. The position
vector~rl is a coordinate defined with respect to some origin. To calculate the field in point P with
coordinate~rP, we integrate over the infinitesimal pieces of chargeλ (~rl)dl to find the electrical field:

~E(~rP) =
1

4πε0

∫

line

λ (~rl)

~r2 r̂dl (1.13)
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where~r is the connection vector between a piece of charge and the pointP with coordinate~rP, thus
~r =~rP −~rl. This is illustrated in Fig. 1.7.

Figure 1.7:Illustration of a line charge.

In fact, we can still interpret the integral as the sum over point charges as we used to do in
equation 1.11. A point charge is then just a piece of line chargedq = λ (~l)dl and so we obtain:

~E(~rP) =
1

4πε0

∫

charge

dq
~r2 r̂

=
1

4πε0

∫

charge

dq
|~rP −~rl|2

~rP −~rl

|~rP −~rl|

≈ ∑
pointcharges

1
4πε0

Qi

|~rP −~ri|2
~rP −~ri

|~rP −~ri|
(1.14)

Perhaps the interpretation of a continuous charge distribution as a collection of point charges helps
you to make the math less abstract.

Example of a line charge

As an example we will calculate the electrical field in a pointP with z = zP of a piece of wire with
lengthL centered on thex axis. The wire carries an uniform charge densityλ . The configuration is
shown in Fig. 1.8.

When we consider the contribution,d~E, of a piece of chargeλdx at positionx to the electrical
field in P we see that there are two components, anx andz component:

dEx =
1

4πε0

λdx

z2
P + x2

sin(α)

dEz =
1

4πε0

λdx

z2
P + x2

cos(α) (1.15)

Look at the symmetry of this problem. The components in thex direction cancel (Ex = 0) and thus
we only have to integrate thez contributions. So, we need to knowcos(α), which we can get from
the figure (convince yourself!):cos(α) = zP√

z2
P+x2

. Now we can integrate all contributions:

Ez =
∫

dEz

=
∫ +L/2

−L/2

1
4πε0

λdx

z2
P + x2

zP
√

z2
P + x2
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α

dx

dE

P

x

z

L/2−L/2

x

zp

Figure 1.8:A wire of lengthL with uniform charge distribution. Also indicated is the contribution
to the electrical field in pointP of a piece of linedx.

=
∫ +L/2

−L/2

1
4πε0

zPλdx

(z2
P + x2)

3
2

=
λ

4πε0

x

zP

√

z2
P + x2

|+L/2
−L/2

=
λ

4πε0

L

zP

√

z2
P +(L/2)2

(1.16)

Does the result make sense? Well, we know that the field of a point charge islinear with chargeQ
and drops quadratically with the distance. If we look from very large distance to the line charge,
zP >> L, so that all the charge on the line appears concentrated in a point, we find that

Ez =
1

4πε0

λL

z2
P

=
1

4πε0

Qtotal

z2
P

(1.17)

which is the field of a point chargeQtotal = λL, as expected.

Surface charge

An illustration of a surface charge is depicted in Fig. 1.9. A surface charge is described by a charge
densityσ(~rs) with has the unit C/m2. When~rs lies on the surface,σ(~rs) has some value that
represents the charge density. When~rs lies outside the surface,σ(~rs) = 0 C/m2. To calculate the
electrical field we integrate over the contribution of the infinitesimal pieces of chargedq = σ(~rs)do.
The electrical field in pointP is given by:

~E(~rP) =
1

4πε0

∫

sur f ace

σ(~rs)

~r2 r̂do (1.18)

Now~r is defined as the connection vector between point~rP and the location of some infinitesimal
piece of surface, thus~r =~rP −~rs .
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Figure 1.9:Illustration of a surface charge.

Like the integration over a line, the integration over a surface is a difficult task. Only in special
cases we can actually perform the integration. So, don’t worry for the moment if you do not see
how in general you could use the above expression. Finally we remark that we have been ’sloppy’
with our notation: a surface is two dimensional, thus one would expect a double integral with two
integration variables. Well, get used to it: in different textbooks you will findat least as many
different notations. Be prepared and just ’bluf’ through it.

Volume charge

Figure 1.10:Illustration of a volume charge.

An illustration of a volume charge is depicted in Fig. 1.10. The volume charge density ρ(~rv) is
the most general continuous charge density and has the unit C/m3. The contribution of the infinites-
imal pieces of chargedq = ρ(~rv)dv lead to the following expression:

~E(~rP) =
1

4πε0

∫

volume

ρ(~rv)

~r2 r̂dv (1.19)

Now~r is defined as the connection vector between point~rP and the location of some infinitesimal
piece of volumedv at position~rv. Applications of this expression come later. Note that we again
have been sloppy with the notation. A volume (in this report) has three dimensions and thus three
integration variables. For example when we integrate a functionf over a volume in Cartesian
coordinates:

∫

volume
f dv =

∫ ∞

x=−∞

∫ ∞

y=−∞

∫ ∞

z=−∞
f (x,y,z)dxdydz (1.20)
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and in spherical coordinates:

∫

volume
f dv =

∫ 2π

φ=0

∫ π

θ=0

∫ ∞

r=0
f (r,φ ,θ)r2sin(θ)dφdθdr (1.21)

If this is ’abracadabra’ to you, first work through a textbook on mathematics1.

1.2.3 Knowledge and Skills

The knowledge and skills you should have acquired during reading of theprevious can be summa-
rized as follows:

• Charge can be positive and negative. Electrons carry the elementary charge−e, with e =
1.6002×10−19 C. The total charge is conserved.

• The electrical or Coulomb force between two electrically charged objects is given by:

~F =
1

4πε0

qQ
r2 r̂ (1.22)

Make sure you understand the notation!

• The electrical field of a point chargeq is given by:

~E =
1

4πε0

q
r2 r̂ (1.23)

• The electrical field of a volume charge is:

~E(~rP) =
1

4πε0

∫

volume

ρ(~rv)

~r2 r̂dv (1.24)

You understand all the vectors in this notation and you can make a drawing that illustrates
this expression. You can also write down the formulas for the electrical fieldof a line charge
and a surface charge.

In addition, make the corresponding exercises of this section, which you can find in the Appendix.

1.3 Electrical flux and Gauss’ Law

1.3.1 Electrical field lines and electrical flux

Figure 1.11 graphically displays the electrical field corresponding to the electrical field of a point
charge. To make this drawing a grid was chosen and on each grid-point the electrical field is
represented by an arrow. The length of the arrow corresponds to the magnitude of the field and, as
can be seen in the figure, decreases quadratically as appropriate.

Traditionally, the electrical field is depicted by field lines as shown in Fig. 1.12.The density
of the lines represent the magnitude of the field. Note that such drawings are two dimensional

1Please, let the authors of this report know when integration using spherical coordinates are unknown to you at the
time of the lectures. Don’t hesitate! Additionally. in the slides that are discussed during the sessions, added as Appendix
you can find more explanation and many examples.
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Figure 1.11:The electrical field of a point charge depicted by vectors.

Figure 1.12:The electrical field of a point charge depicted by field lines.

projections and thus that the density of the lines drops with the circumferenceof a circle, 2πr. In
three dimensions the line-density drops with the surface of a sphere, 4πr2

Have another look to the field lines in Fig. 1.12 and imagine a spherical surface around a point
charge. The number of field lines through the surface is constant, thus independent on the size (or
better radius) of the sphere. You find an animation of this phenomena on the web-page.

The number of field lines can be expressed by the electrical flux:

Φ =
∫

sur f ace
~E ·d~o (1.25)

This the flux through a surface. The infinitesimal surface elementd~o is a vector with magnitudedo
and its direction perpendicular to the surface. We can write

~E ·d~o = ~E · n̂do = |~E|cos(φ)do (1.26)

with n̂ the normal on the surface2 andφ represents the angle between the electrical field and normal
direction of the surface.

Figure 1.13 shows three examples of the electrical flux through a surfacefor different angles
between the field and surface. With the electrical field being constant, the flux through each surface

2In textbooks several notations are used for the normal vector, a few common notations are: ˆn =~n =~en = ên.
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Figure 1.13:The electrical flux through a surfaceS for different angles between the field and sur-
face. The normal̂n is also indicated.

S in Fig. 1.13a-c is:

a :ΦS = |~E|cos(0)S = |~E|S
b :ΦS = |~E|cos(π/2)S = 0

c :ΦS = |~E|cos(φ)S (1.27)

1.3.2 Gauss’ Law

Gauss’ Law states that the electrical flux through a closed surface, independent of its shape, equals
the total charge enclosed by this surface multiplied by the factor1

ε0
. Thus:

Φ =
∮

closed−sur f ace
~E ·d~o = ∑

charges−enclosed

Qi

ε0
(1.28)

The circle in the integral symbol
∮

indicates that you have to integrate over a closed surface, with-
out skipping any parts. As in many textbook, we often use the normal symbol,

∫

, and mention
specifically whether the integral runs over a full or restricted domain.

The relation above allows us to calculate the electrical field inmany cases in an remarkable
elegant way. But first we will deduce, or better, verify the validity of Gauss’ Law for a simple case.
Therefore we consider a point charge,Q, and calculate the electrical flux through a spherical surface
with radiusR. This configuration is illustrated in Fig. 1.14. The flux is given by:

Φ =
∫

sur f ace
~E ·d~o =

∫

sur f ace
~E · n̂do (1.29)

wheren̂ is the normal vector on the surface. Now we use the argument that on sphere, both~E and
n̂ point in the radial direction, hence

Φ =
∫

sur f ace
|~E|cos(α~E,n̂)do =

∫

sur f ace
|~E|do (1.30)

The electrical field at the surface follows from equation 1.11,|~E| = Er(R) = 1
4πε0

Q
R2 . We find

Φ =
1

4πε0

Q
R2

∫

sur f ace
do

=
1

4πε0

Q
R24πR2

=
Q
ε0

(1.31)

independent of the location on the surface, in accordance with Gauss’ Law.
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Figure 1.14: Illustration of the electrical flux from a point chargeQ through a spherical surface
S. Everywhere, the electrical field points along the normal on the surface,i.c. the radial direction.
Some infinitesimal piece of surfacedo on the sphere is also indicated.

Intermezzo: a more mathematical approach

To evaluate (i.c. to get rid off) the dot-product~E ·d~o we used the argument that both vectors point
in the radial direction. Perhaps this step is hard to digest and you want to see what is behind it.
Well, let’s give it a try. If we had started using Cartesian coordinates we would have written:

Φ =
∫

sur f ace
~E ·d~o

=
∫

sur f ace
(Exx̂+Eyŷ+Ezẑ) · (nxx̂+nyŷ+nzẑ)do (1.32)

with n̂ = (nx,ny,nz) the normal vector on the spherical surface. The unit vectors in thex, y andz
direction are represented as ˆx, ŷ andẑ respectively. Another common notation for these unit vectors
areî, ĵ andk̂.

The expression in Cartesian coordinates is for our case just terrible because the physical sym-
metry of the original problem is obscured. Obviously we need to work in spherical coordinates.
Then, formally we obtain:

Φ =
∫

sur f ace
~E ·d~o

=
∫

sur f ace
(Eφ φ̂ +Eθ θ̂ +Er r̂) · (nφ φ̂ +nθ θ̂ +nr r̂)do

=
∫

sur f ace
(Eφ nφ φ̂ +Eθ nθ θ̂ +Ernr r̂)do (1.33)

With φ̂ , θ̂ andr̂ the unit direction vectors in theφ , θ andr direction respectively. It looks abstract, (it
is), but just try to see through the notation and realize that the vectors are written out in components.

We then use~E = (0φ̂ ,0θ̂ ,Er r̂) with Er = Q
4πε0r2 . In factEr is a function and depends in general

on~r or in this case for a point charge just onr. Hence, on the surfaceEr = Er(r = R). The normal



1.3. ELECTRICAL FLUX AND GAUSS’ LAW 17

vectorn̂ on the surface points in the radial direction and has the unit length: ˆn = (0,0, r̂). When we
substitute these expressions and reshuffle, we acquire:

Φ =
∫

sur f ace

1
4πε0

Q
R2 do

=
1

4πε0

Q
R2

∫ 2π

φ=0

∫ π

θ=0
R2sin(θ)dφdθ

=
1

4πε0

Q
R2 R2

∫ π

θ=0
(φ)|2π

0 sin(θ)dθ

=
1

4πε0

Q
R2 R22π(−cos(θ))|π0

=
1

4πε0

Q
R2 R24π

=
Q
ε0

(1.34)

Probably this intermezzo did not increase your confidence in Gauss’ Law. It showed however the
basic steps which many textbooks tend to skip. In the following we often skip such steps; they
contain too much mathematical detail and so distract from our physics case. What was the physics
case? Well, the symmetry in the behavior of the electrical field, namely the 1/r2 dependence, and
that of the size of the spherical surface growing withr2 leads to a cancellation.

1.3.3 Validity of Gauss’ Law

Figure 1.15:(a) Point charge Q in a closed surface. (b) Point charge Q outside a closed surface.

We checked Gauss’ Law for a spherical surface with a point charge located at its center. Fig-
ure 1.15a shows a weird shaped closed surface with a point charge somewhere in its volume. Also
for this shape Gauss’ Law is valid; it is the ’dot’ product which does the job. Put the point charge in
the origin. Its electrical field has only radial components. The dot-product with the normal vector
of the surface kills all non-radial contributions. In addition, the distance of the surface with respect
to the charge is irrelevant: the field drops with 1/r2 and the radial projection of the surface grows
with r2. Also, we could have put many point charge at different location within theclosed surface.
Obviously for each point charge individually the contribution to the flux is its charge (divided by
ε0), and the total flux is given by the sum of all charges (/ε0).
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Figure 1.15b shows a closed surface with a charge located outside its volume. Use the above
arguments to deduce (qualitatively) thatΦ = 0 in this case.

1.3.4 Applications of Gauss’s law

’Gauss’ Law is always valid, but not always useful’. What does this mean? Well, Gauss’ Law can
be applied in some cases to evaluate the electrical field in an elegant way. Below, we describe a few
of these configurations.

The line charge

Figure 1.16:A line charge (dark gray). A Gaussian cylinder (light gray) with heighth and radiusr
is also drawn.

Figure 1.16 shows an infinitely long and infinitely thin line charge with uniform charge density
λ . The optimal Gaussian surface is a cylinder. To obtain this insight, first deduce the shape of the
electrical field. It needs some practice to acquire a feeling for this, but wecan give some hints.

• Imagine the line is build from small point chargesdλ . Every point charge produces a elec-
trical field point in the radial (spherical-wise) direction. Consider a position somewhere near
the line. At this position you ’feel’ an equal amount of field lines from aboveas from be-
low. Hence, the field in thez direction cancels. Obviously there are no components in theφ
direction. There can only be a component pointing away from the line charge.

• Look at the symmetry of the line charge. Suppose there is a field component inthez direction.
Remember that the line is infinitely long and imagine that you mirror the configurationin the
rφ plane. This does not change the physical configuration, but the ’wouldbe’ z component
of the field has changed sign. There is only one possibility: there is noz component.

We conclude that the electrical field has only a radial (cylinder-wise) component. Therefore we try
a cylindrical Gaussian surface with arbitrary heighth and radiusr. The flux through the cylinder is
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given by the sum of the contributions of the curved body and the ends:

Φ =
∮

cylinder
~E ·d~o =

∫

ends
~E ·d~o+

∫

curved−body
~E ·d~o (1.35)

The normal vector on the ends of the cylinder point (only) in thez direction. Hence, the dot-product
filters out thez component of the electrical field, which is zero. So, we are left with the contribution
of the flux through the curved body of the cylinder. The normal vector is radial (cylinder-wise) and
thus filters out the one and only radial component of the electrical field, (Er(r)).We obtain:

Φ =
∫

curved−body
~E ·d~o =

∫

curved−body
Er(r)do =

∫ 2π

φ=0

∫ z=h

z=0
Er(r)dzrdφ (1.36)

The electrical field is independent on the integration variables and we may write:

Φ = Er(r)
∫ 2π

φ=0

∫ z=h

z=0
dzrdφ = Er(r)2πrh (1.37)

Now we apply Gauss’ Law:

Φ = Er(r)2πrh =
Qenclosed

ε0
=

λh
ε0

(1.38)

For the electrical field of a line charge we find that:

Ez = 0

Eφ = 0

Er(r) =
λ

2πε0r
(1.39)

If the line has a finite lengthL this method can not be applied. However, it then still provides a
good estimate of the field close to the wire, i.c.r << L. If you are not convinced, use the result of
the direct integration in Section 1.2.2 to show this. Also when the charge densityis not constant in
thez direction we can not simply apply Gauss’ law. When the line has a finite thicknesswith radius
ρ this method can still be applied as we will see later.

A flat surface charge

Figure 1.17 shows an, infinitely large and infinitely thin, surface charge withuniform charge density
σ . What are the components of the electrical field?

• Imagine the plate constituted of small point chargesdσ = σdo. Every point charge produces
an electrical field point in the radial (spherical-wise) direction. Considera position some-
where near the plate. At this position you ’feel’ an equal amount of field lines from above
as from below and from left as from right. Hence, the field in thex andz direction is zero.
There can only be a component perpendicular to the surface charge.

• We can also used arguments based on symmetry. Suppose there is a field component in thex
and/orz direction. Turn the configuration around itsy axis. The plate is infinitely large and
thus remains physically the same. The would be components would have changed direction,
while the physics is invariant.
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Figure 1.17:A flat surface charge (dark-gray). A Gaussian cubical surface isalso indicated.

• In addition, a shift of the plate in thex− z plane does not change the electrical configuration.
This implies that the electrical field does not depend onx or z and thus only depends ony.

We conclude that the electrical field has only a component in they direction, opposite for the region
±y. We try a cubical Gaussian surface (a pill-box) with ribs sizeda. The flux through the sides
with normal vector in thex andz direction is zero. We only need to calculate the flux through the
top-covers with normal vector in they direction. The normal vector in the−y region is opposite to
that in the+y region, but the electrical field direction also swaps. Hence,

Φ =
∫

top−covers
~E ·d~o = 2

∫

top−cover
Ey(y)do = 2a2Ey(y) (1.40)

Make sure you understand the steps above. From Gauss’ Law follows

Φ = 2Ey(y)a
2 =

Qenclosed

ε0
=

a2σ
ε0

(1.41)

And for the size of the electrical field we obtainEy = σ
2ε0

and thus

~E =
σ

2ε0
ŷ. (1.42)

Note that the field is constant, but point in the opposite direction for positive and negativey values
respectively.

In general, thus for non-uniform charge densities this method cannot beused, unless it is known
that the electrical field has only a ˆy component. Then, the result will look like~E(x,z) ∼ σ(x,z)ŷ.
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Figure 1.18:Illustration of a spherical surface charge densityσ with radiusR.

A spherical surface charge

We consider a spherical charged surface (or shell) with radiusR and surface charge densityσ as
illustrated in Fig 1.18.

What are the components of the electrical field? Suppose there are non-radial (spherical-wise)
components. Rotate the configuration around its center such that the non-radial components change
direction. Realize that the physical configuration is invariant allowing no non-radial components.
The same argument can be used to deduce that the radial component of thefield only depends onr.
Hence,~E = Er(r)r̂. We did not specify whether we discussed the field inside or outside the shell.
Well, it doesn’t matter. Both inside and outside the shell we can use the abovearguments.

For the electrical flux inside the shell follows:

Φ =
∫

spherical−sur f ace
~E ·d~o = Er(r)

∫

spherical−sur f ace
do = Er(r)4πr2 (1.43)

There is no enclosed charge, so we have:

Φ = Er(r)4πr2 = 0 (1.44)

There is only one possibility:E(r) = 0 inside the surface.
Outside the shell,r > R, we find the same expression for the flux. The enclosed charge is

Q =
∫

sur f ace σdo = σ4πR2. We obtain:

Φ = Er(r)4πr2 =
1
ε0

σ4πR2 (1.45)

For the electrical field follows

~E = Er(r)r̂ =
σR2

ε0r2 r̂ r > R (1.46)

In fact, the electrical field outside the shell is identical to that of a point charge in the center
with the same charge as present on the shell. This can be easily shown. We substituteσ = Q

4πR2 in
equation 1.46 and find:

~E =
Q

4πε0r2 r̂ (1.47)

which is the field of a point charge, as expected.

A massive spherical charge

Figure 1.19 shows a spherical volume charge densityρ. The volume has radiusR. Like in the
previous example, we have spherical symmetry. The electrical field has only a radial component
and depends only on the radial distance:~E = Er(r)r̂.
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Figure 1.19:A spherical volume with radiusR carrying a uniform charge densityρ (dark-gray).
Two Gaussian spherical surfaces are indicated. One inside and one outside the charge density.

The electrical flux outside the sphere,r > R, is given by:

Φ =
∫

spherical−sur f ace
~E ·d~o = Er(r)

∫

spherical−sur f ace
do = Er(r)4πr2 (1.48)

Outside the spherical charge the enclosed charge is
∫

volume ρdv = ρ 4
3πR3. For the electrical field we

find:

~E =
ρR3

3ε0r2 r̂ r > R (1.49)

Inside the spherical charge,r < R, we have in principal two contributions to the electrical field.
One contribution from the inner sphere (surrounded by the Gaussian surface) with radiusr and a
contribution of the shell betweenr andR. In the previous section we calculated that the electrical
field contribution inside a charged shell is zero. This implies that we only haveto account for the
contribution from the inner sphere. The Gaussian spherical surface encloses a chargeρ 4

3πr3. For
the electrical flux we find:

Er(r)4πr2 =
ρ
ε0

4
3

πr3 (1.50)

This leads to an electrical field of
~E =

ρr
3ε0

r̂ r < R (1.51)

Figure 1.20 shows the magnitude of the electrical field as function ofr. Starting from the center,
the field grows linearly withr till the surface of the spherical charge is reached. Then it drops with
1/r2, similar to the field of a point charge in the origin.

1.3.5 Knowledge and Skills

The knowledge and skills you should have acquired during reading of theprevious can be summa-
rized as follows:

• Gauss’ Law:
∫

closed−sur f ace
~E ·d~o = ∑

charge−enclosed

Qi

ε0
=

1
ε0

∫

volume
ρdv (1.52)
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Figure 1.20:The size of the electrical field of a spherical uniform charge density as function ofr.

which is always valid.

• In electrical configuration with a symmetry between the field and the charge distribution,
Gauss’ Law can be used to determine the electrical field.

• You can apply Gauss’ Law for a line, flat surface, and spherical charge. You know how to
use Cartesian, cylinder and spherical coordinates to perform surface and volume integrals.

In addition, make the corresponding exercises of this section, which you can find in the Appendix.

1.4 More on electrical field equations

Gauss’ Law is a so called field equation. It uses an (surface) integral and is therefore called an
integral equation. There exists also a differential form of this law, which we derive in this section.

However, Gauss’ Law does not specify all properties of the electricalfield. One more field
equation is required. The integral form of the second field equation is based on the loop integral of
the electrical field as we will see below.

1.4.1 Flux and divergence

The divergence of the electrical field is defined as

~∇ ·~E = (∂x,∂y,∂z) · (Ex,Ey,Ez) =
∂Ex

∂x
+

∂Ey

∂y
+

∂Ez

∂ z
(1.53)

We will introduce this quantity in a natural way and describe its link with Gauss’ Law.
Figure 1.21 shows a infinitesimally small box, which is placed in an unspecified electrical field

~E(x,y,z). We work in Cartesian coordinates and calculate the electrical flux through the box. The
flux

∫

cover
~E ·d~o through each of the covers a to f of the box is given by:

a : −Ex(x,y,z)dydz

b : Ex(x+dx,y,z)dydz

c : −Ey(x,y,z)dxdz

d : Ey(x,y+dy,z)dxdz

e : −Ez(x,y,z)dxdy

f : Ez(x,y,z+dz)dxdy (1.54)
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Figure 1.21:An infinitesimal box with volume=dxdydz in an electrical field~E(x,y,z). The covers
a to f are indicated. Also, the field vectors on cover a and b are shown.

whereEx(x,y,z) and so on are defined on the centre of the corresponding cover. Note the relative
minus sign for opposite covers which comes from the opposite direction of thenormal vectors on
these covers. Now we add all contributions to obtain the flux through the box:

∫

box
~E ·d~o = [Ex(x+dx,y,z)−Ex(x,y,z)]dydz

[Ey(x,y+dy,z)−Ey(x,y,z)]dxdz

[Ez(x,y,z+dz)−Ez(x,y,z)]dxdy (1.55)

Remember the rule of elementary calculus thatd f = f (x +dx)− f (x). The above equation can be
rewritten as:

∫

box
~E ·d~o = dExdydz+dEydxdz+dEzdxdy (1.56)

Now multiply the part withEx, Ey andEz with dx
dx , dy

dy and dz
dz respectively, which is (for physicists)

mathematically equivalent to multiplying with unity. We find

∫

box
~E ·d~o =

dEx

dx
dxdydz+

dEy

dy
dxdydz+

dEz

dz
dxdydz

=

[

dEx

dx
+

dEy

dy
+

dEz

dz

]

dxdydz

= ~∇ ·~E volumebox (1.57)

Hence, we derived a relation between the flux through infinitesimal box andthe divergence of the
electrical field. The relation is however valid for any volume. To see this, glue boxes together to
make you any volume as illustrated in Fig. 1.22. We obtain:

∫

sur f ace
~E ·d~o =

∫

volume
[~∇ ·~E]dv (1.58)

Although we derived this expression for the electric field, it is valid for anyvector field and was
first derived by Gauss. We will refer to this expression as Gauss’ Theorem.
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Figure 1.22:Any volume consists of a collection of infinitesimal boxes.

1.4.2 Gauss’ Law and Gauss’ Theorem

Gauss’ Law for the electrical flux:
∫

sur f ace
~E ·d~o =

1
ε0

Qenclosed =
1
ε0

∫

volume
ρdv (1.59)

can be combined with Gauss’ theorem:
∫

sur f ace
~E ·d~o =

∫

volume

~∇ ·~Edv (1.60)

This leads to the following expression:

∫

sur f ace
~E ·~o =

∫

volume

~∇ ·~Edv =
1
ε0

∫

volume
ρdv (1.61)

which implies
~∇ ·~E =

ρ
ε0

(1.62)

This relation is Gauss’ Law in differential form. It locally relates the chargedensity and the electri-
cal field.

1.4.3 Gauss’ Law for a charged sphere

Given the electrical field, we can ’simply’ determine the charge density usingGauss’ Law (in dif-
ferential form). We start with the known field of a uniformly charged sphere with densityρ. The
electrical field inside the sphere is:

~E =
ρr
3ε0

r̂ =
ρ

3ε0
~r r < R (1.63)

Now take the divergence.

~∇ ·~E =
ρ

3ε0

~∇ ·~r =
ρ

3ε0
(∂x,∂y,∂z) · (x,y,z) (1.64)

=
ρ

3ε0
(∂xx+∂yy+∂zz) =

ρ
3ε0

3 =
ρ
ε0

(1.65)
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Yes!
Outside the charge sphereρ = 0, the electrical field is~E = ρR3

3ε0r3~r. We calculate the divergence

of ~r
r3 :

~∇ · ~r
r3 = ~∇ · [ 1

(x2 + y2 + z2)
3
2

(x,y,z)]

= ~∇ · ( x

(x2 + y2 + z2)
3
2

,
y

(x2 + y2 + z2)
3
2

,
z

(x2 + y2 + z2)
3
2

)

=
∂
∂x

x

(x2 + y2 + z2)
3
2

+
∂
∂y

y

(x2 + y2 + z2)
3
2

+
∂
∂ z

z

(x2 + y2 + z2)
3
2

=

[

∂x
∂x

]

1

(x2 + y2 + z2)
3
2

+ x

[

∂
∂x

1

(x2 + y2 + z2)
3
2

]

+∂y....+∂z.....

= 1
1

(x2 + y2 + z2)
3
2

+ x

[

−3
2

2x
1

(x2 + y2 + z2)
5
2

]

+∂y....+∂z.....

=
3

(x2 + y2 + z2)
3
2

−3(x2 + y2 + z2)
1

(x2 + y2 + z2)
5
2

= 0 (1.66)

Not convinced? Try it yourself!

1.4.4 The loop integral of the electrical field

Figure 1.23:An illustration of a path integral in the electrical field of a point chargeq.

Another important characteristic of the electric field emerges when we consider the path integral
of the field of a point chargeq:

∫ b

a
~E ·d~l =

q
4πε0

∫ b

a

1
r2 r̂ ·d~l =

∫ b

a
Er r̂ ·d~l (1.67)

The electrical field is pointing purely radially. No matter what the exact path is followed froma
to b, the dot-product filters out the radial component (ˆr · d~l = dr). Thus we can replace the path
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integral by:
∫ rb

ra

Er ·dr =
q

4πε0

∫ rb

ra

1
r2 dr =

q
4πε0

−1
r
|rb
ra

=
q

4πε0
(

1
ra

− 1
rb

) (1.68)

For a closed pathra = rb we obtain:
∫

~E ·d~l = 0 (1.69)

Thus, independent of the path we followed, the integral of a closed path of the electric field is zero.
Using the superposition principle we can argue that this relation derived for a point charge is valid
for any charge density.

The expression
∫

~E · d~l = 0 is the second electrical field equation in integral form and has no
historical name. The differential form~∇×~E =~0 we will derive later.

1.4.5 Knowledge and Skills

The knowledge and skills you should have acquired during reading of theprevious can be summa-
rized as follows:

• You understand Gauss’ theorem and the relation between the electrical field an the charge
density:

∫

sur f ace
~E ·~o =

∫

volume

~∇ ·~Edv =
1
ε0

∫

volume
ρdv (1.70)

• You can apply the field equation:
~∇ ·~E =

ρ
ε0

(1.71)

which is Gauss’ Law in differential form.

• You can derive and use the loop integral of the electrical field:
∫

~E ·d~l = 0, (1.72)

independent of the path we followed.

In addition, make the corresponding exercises of this section, which you can find in the Appendix.

1.5 The electric potential

In this Section we will introduce the electric potential. It turns out that the electric potential is a
powerful quantity to calculate the electric field of complex charge configurations. However, within
the scope of this report we have to limit to more straightforward but elegant examples.

1.5.1 Work in a gravitational field

To refresh your memory we first consider work and potential energy in agravitational field. The
work,Wperson when you lift an object with massm from the ground to heighth is

Wperson =
∫ h

0
~F ·d~l (1.73)
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with the force,|~F| = mg, the mass times the gravitational constant. To lift the object we need to
apply a force~F = −~FG = mgl̂ and thus the the total amount of work needed is:

Wperson = mgh (1.74)

The potential energy of the object equalsU = Wperson = mgh. In the following Section we apply
this principle to the electrical field.

1.5.2 Potential energy in an electric field

Figure 1.24:A test chargeq in the field of a source chargeQ is brought in from infinity toP.

Consider a (test) chargeq in the electrical field of a point chargeQ at positionP, see also
Fig. 1.24. The electrical force on the test charge is~Felec = q~E. The (minimum) force you must exert
on q to move it opposite to the electrical field is -q~E. The potential energy of the configuration is
defined as the minimal work needed (for you) to bring the test chargeq from infinity to P.

UP = Wperson = −
∫ P

∞
q~E ·d~l (1.75)

It must be emphasized that the path followedd~l in principle has a radial and non radial compo-
nents (theφ̂ andθ̂ direction). However, as before we argue that the electrical field has only a radial
component and we can write:

UP = −q
∫ P

∞
~E ·d~l = −q

∫ P

∞
Er r̂ ·d~l = −q

∫ P=rP

∞
Erdr (1.76)

Now substitute the electrical field of a point charge and obtain:

UP =
−qQ
4πε0

∫ rP

∞

1
r2 dr =

qQ
4πε0

1
r
|rP
∞ =

qQ
4πε0

1
rP

(1.77)

A definition of the ’potential’V is the potential energy of a charge unit in the field of the source
chargeQ:

VP =
UP

q
=

Q
4πε0

1
rP

(1.78)

where the reference point or ’gauge-point’ is implicitly taken at infinity.
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To calculate the potential for a collection of charge, we simply extend equation1.78 and inte-
grate over all point charges in the collection:

VP =
∫

charge

dq
4πε0

1
r

(1.79)

and for a continuous charge densityρ we write:

VP =
∫

volume

ρ(r)
4πε0

1
r

d~r (1.80)

1.5.3 The definition of the electric potential

The most general definition of the potential is

VP = −
∫ P

gauge
~E ·d~l (1.81)

where the gauge-point can be chosen where-ever you want. You canverify yourself that for a point
charge and gauge-point at infinity you find back equation 1.78.

We have defined the potential starting the potential energy of a simple charge configuration.
Fine, the potential and the potential energy are related; that is useful to know. But, what about
the general definition of the potential? It depends in general on the free choice of a gauge-point.
How can such freedom be useful for describing physics? Indeed, the potential itself has no physical
interpretation. However, potential difference and as we will see soon, the gradient of the potential
are relevant physics quantities.

1.5.4 The potential and the electrical field

From the previous section we know how to calculate the potential from the electrical field. Is it
also possible to determine the electrical field given the potential. To find this relation, consider the
difference in potential between pointsA andB:

VAB = VB −VA =
∫ ∞

B
~E ·d~l −

∫ ∞

A
~E ·d~l = −

∫ B

A
~E ·d~l (1.82)

where we swapped the upper and lower boundary of the integral, so keep track of the ’plus and
minus’ signs! Note that the potential differenceVAB is uniquely defined, independent of the gauge-
point.

The potential is just a scalar function. Hence,

VB −VA =
∫ B

A
dV =

∫ B

A

∂V
∂x

dx+
∂V
∂y

dy+
∂V
∂ z

dz

=
∫ B

A

(

∂V
∂x

,
∂V
∂y

,
∂V
∂ z

)

· (dx,dy,dz) (1.83)

With the standard definition of the gradient:

~∇ =

(

∂
∂x

,
∂
∂y

,
∂
∂ z

)

(1.84)
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we find:

VB −VA =
∫ B

A

~∇V · (dx,dy,dz)

=
∫ B

A

~∇V ·d~l (1.85)

Combining Equations 1.82 and 1.85 leads to:

~E = −~∇V (1.86)

Thus the gradient ofV has a physical interpretation; it is the electrical field (with a minus sign).
This closes the circle. We can now determine the potential from the electric fieldand vice versa.

For completeness we express Gauss’ Law in terms of the electric potential. For that we need
the Laplacian operator,~∇2, defined by:

~∇2 =

(

∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂ z2

)

. (1.87)

Now we go back to Gauss’ Law and derive:

~∇ ·~E = ~∇ · (~∇V ) (1.88)

= ~∇2V =
ρ
ε0

which is usually called ’Poisson’s equation’. Let’s throw in one more definition. In the absence of
any charge, Poisson’s equation becomes:

~∇2V = 0 (1.89)

which is called Laplace’s equation.

The electrical potential and field of a point charge

We determined the potential for a point charge to be:

V =
Q

4πε0

1
r

(1.90)

Now we check whether the expression~E = −~∇V returns the correct electrical field. We start with:

~∇
1
r

= ~∇
1

√

x2 + y2 + z2

=
∂
∂x

1
√

x2 + y2 + z2
x̂+

∂
∂y

.....ŷ+
∂
∂ z

.....ẑ

= − x

(x2 + y2 + z2)
3
2

x̂− y

(x2 + y2 + z2)
3
2

ŷ− z

(x2 + y2 + z2)
3
2

ẑ

= − 1

(x2 + y2 + z2)
3
2

(x,y,z) = −~r
r3 = − r̂

r2 (1.91)
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and conclude that
~∇V =

Q
4πε0

~∇
1
r

= − Q
4πε0

1
r2 r̂ = −~E (1.92)

Most expressions in electrodynamics involve spherical symmetric function.For such a function,
f (r), you can quickly determine the gradient using the following relation.

~∇ f (r) =
d f
dr

r̂ (1.93)

The potential of a charged sphere

In Section 1.3.4 we determined the electrical field inside and outside a massive spherical charge
with radiusR and charge densityρ.

~E =
ρr
3ε0

r̂ r < R

~E =
ρR3

3ε0r2 r̂ r > R (1.94)

As an example we calculate the potential inside the spherical charge.

V (r) = −
∫ r

∞
~E ·d~l = −

∫ R

∞
~E ·d~l −

∫ r

R
~E ·d~l (1.95)

We substitute the expression for the electrical field and find:

V (r) = −
∫ R

∞

ρR3

3ε0r2 dr−
∫ r

R

ρr
3ε0

dr

=
ρR3

3ε0r
|R∞ − ρr2

6ε0
|rR

=
ρR3

3ε0R
− ρr2

6ε0
+

ρR2

6ε0

=
ρR2

2ε0
− ρr2

6ε0
(1.96)

At this point it may be not yet clear why the potential is relevant anyway. Don’t worry about that
now and make sure you understand the mathematics.

The potential of a circular charge

We introduced the potential and perhaps the idea came to your mind ’where dowe need that for’.
Well, to calculate the electrical field of complex charge configuration can be adifficult task, even
numerically3. Starting with a calculation of the potential and then calculate the electrical field is
often much easier.

We want to calculate the electrical field at a distanced of a circular charge with radiusR as
indicated in Fig. 1.25. the charge is positioned parallel to theXY plane, centered atz = d with

3there will be an exciting exercise in the second year course on ’Numerical Physics’
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Figure 1.25:A circular charge positioned parallel to theXY plane, centered atz = d with radiusR
carries a uniform charge densityλ . PointP, that coincides with the origin is also indicated.

uniform charge densityλ . To calculate the field at distanced, which is the origin in our case, we
first calculate the electrical potential using equation 1.79:

VP =
∫

circular−charge

dq
4πε0

1
r

(1.97)

with r =
√

R2 +d2 the distance to a piece of chargedq = λRdφ . Rather straightforward we obtain:

VP =
∫ 2π

0

λ
4πε0

R√
R2 +d2

dφ =
λ

2ε0

R√
R2 +d2

(1.98)

When we define the total chargeQ = 2πRλ , the above expression becomes:

VP =
Q

4πε0

1√
R2 +d2

(1.99)

We can now obtain the electrical field from the potential usingE = −~∇V . The general expres-
sion forV somewhere along thez axis is:

V (z) =
Q

4πε0

1
√

R2 +(z−d)2
(1.100)

For the electrical field follows:

~E = −∂V
∂x

x̂− ∂V
∂y

ŷ− ∂V
∂ z

ẑ

= 0x̂−0ŷ− Q
4πε0

∂
∂ z

1
√

R2 +(z−d)2
ẑ (1.101)

=
Q

4πε0

(z−d)

(R2 +(z−d)2)3/2
ẑ

Of course, this result can also be obtained from direct integration, but that requires a somewhat
more complicated integration. Just do it and check the result!
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The electrical field of a dipole

Another example where the electrical potential makes life easier is the calculation of the field of
an electrical dipole. Figure 1.26 shows a electrical dipole configuration, consisting of two opposite
point charges at a distance 2d. The potential in a pointP(r,θ) has a contribution from the positive

Figure 1.26:An electrical dipole consisting of two opposite point charges at distance 2d.

and negative point charge. Thus,

VP(r,θ) = V+ +V− =
q

4πε0

1
r+

+
−q

4πε0

1
r−

(1.102)

with r± the distance between the corresponding point charge and pointP. Whenr >> d we can
make the approximation:

r± = r∓dcos(θ) (1.103)

Verify this yourself. For the potential inP we obtain:

VP(r,θ) =
q

4πε0

(

1
r−dcos(θ)

− 1
r +dcos(θ)

)

(1.104)

We can simplify this expression, using a ’cunning’ trick. Multiply the nominatorsand denominators
with r + dcos(θ) andr−dcos(θ) respectively and realize that(r + dcos(θ))(r−dcos(θ)) = r2−
d2cos2(θ). Remember that we work in approximationr >> d and thusr2− d2cos2(θ) ≃ r2. The
leads to

VP(r,θ) =
q

4πε0

2dcos(θ)

r2

=
2qdcos(θ)

4πε0r2

≡ pcos(θ)

4πε0r2 =
~p · r̂

4πε0r2 =
~p ·~r

4πε0r3 (1.105)
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where~p = 2q~d. The quantity~p is called the dipole moment. Mathematical dipoles have distance
d → 0 andq → ∞, such thatp = 2qd remains constant.

Now we determine the electrical field by taking the gradient of the potential:

~EP = −~∇VP = −~∇
(

~p ·~r
4πε0r3

)

= − 1
4πε0

(

∂
∂x

xpx + ypy + zpz

r3 , ..........., ..........

)

= − 1
4πε0

(

px

r3 − 3x(xpx + ypy + zpz)

r5 , ..........., ..........

)

=
1

4πε0

−~p+3r̂(r̂ ·~p)

r3 (1.106)

The drop of the magnitude of the field withr3 is characteristic for a dipole field.

The potential of a line charge

Several examples convinced us starting with the electrical potential simplifies the calculation of the
electrical field. The following example shows that we have to be careful.

We calculate the electric potential of an infinitely long line charge in pointP by integrating over
all charge on the line ( see Equation 1.79):

VP =
∫

line

dq
4πε0r

(1.107)

We put the line on the z-axis and thusdq = λdz. Hence,

VP =
∫ +∞

−∞

λ

4πε0

√

r2
P + z2

dz (1.108)

=
λ

4πε0
ln(z+

√

1+ z2)|+∞
−∞ = undefined! (1.109)

How can this be? Well, remember our definition of the potential in equation 1.81 and also look
at equation 1.78. We have taken the gauge-point of the potential at infinity,which has been a
reasonable choice for charge configurations with a potential vanishing at infinity. However, the
potential of the infinitely long line charge doesn’t.

In this case we have to obtain the potential by integration of the electrical field.In Section 1.3.4
we calculated the electrical field at radial distancer of an infinitely long line charge:

~E(~r) =
λ

2πε0r
r̂ (1.110)

and thus

VP = −
∫ P

gauge
~E ·d~r = − λ

2πε0
ln(r)|Pgauge (1.111)

When we choose gauge-pointr = 1 we obtain:

VP = − λ
2πε0

ln(r) (1.112)
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But isn’t it bizarre that we can just choose a gauge? Perhaps it is, butremember that the potential is
not a physical quantity. The electrical field is a physical quantity and also the potential difference
in two points, which is even easily measurable, and these quantities remain independent of the
gauge-point.

1.5.5 The energy of a charge configuration

We have already discussed that the work needed to bring one point charge,q from infinity to a point
P in the field of another point charge equals:

U = W = −
∫ P

∞
q~E ·d~l =

∫ P

∞
q~∇V ·d~l = qVP (1.113)

Figure 1.27:Illustration of a collection of point charges.

Figure 1.27 shows a collection of point charges. To determine the energy of a charge collection
(of point charges) we have to calculate how much work is required to assemble such collection.
The first charge takes no force (there is no field yet) and thus physicallyno work is done. To place
the second charge, we requireW2 = q2V (r12) = q2

4πε0

q1
r12

, wherer12 represents the distance between
chargeq1 andq2. When we bring in the third charge we feel the field of the first an second charge,
thus:

W3 = q3V (r13)+q3V (r23) = q3

(

q1

4πε0r13
+

q2

4πε0r23

)

(1.114)

The total energy of our collection so-far is

W123 = W1 +W2 +W3 = 0+
q1q2

4πε0r12
+

q1q3

4πε0r13
+

q2q3

4πε0r23
(1.115)

For a collection ofN point charges we find:

WN =
1
2

N

∑
i=1

∑
j 6=i

qiq j

4πε0ri j
=

1
2

N

∑
i=1

qiV (ri) (1.116)

Note that all combinations ofqi andq j appear twice, which is accounted for by the factor1
2. Another

remark we have to make is that the self-energy to make the point charges is completely ignored in
the above expressions.
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1.5.6 The energy of continuous charge distribution

For a volume charge density we can generalize Equation 1.116 and obtain:

W =
1
2

∫

volume
ρV dv (1.117)

Consider the following question of a smart student. There appears a contribution from the charge
ρdv, sensing its own potential in infinitesimal volumedv. Such contribution from the self energy is
not present in equation 1.116. Wouldn’t this contribution lead to unphysical results? To check the
size of this contribution, we imagine that our continuous charge distribution consists of infinitesimal
charged spheres. We calculate the self energy of a uniformly charged sphere with (infinitesimal)
radiusR, due to its own potential (see equation 1.96):

Wsel f =
1
2

∫

sphere
ρVinsidedv =

1
2

∫ R

0
ρ(

ρR2

2ε0
− ρr2

6ε0
)4πr2dr

=
1
2

∫ R

0
(
4πρ2R2r2

2ε0
− 4πρ2r4

6ε0
)dr

=
1
2
(
4πρ2R5

6ε0
− 4πρ2R5

30ε0
)

=
4πρ2R5

15ε0
(1.118)

Remember that our sphere is infinitesimal (R → 0) and thus the contributionWsel f = 0. Hence,
equation 1.117 correctly represents the energy of a continuous chargedistribution.

1.5.7 The energy in the electrical field

Starting point is the energy of the continuous charge distribution.

W =
1
2

∫

volume
ρV dv (1.119)

Substitute Gauss’s law~∇ ·~E = ρ/ε0:

W =
ε0

2

∫

volume
(~∇ ·~E)V dv (1.120)

We can further simplify this expression. Therefore we first consider theexpression:

~∇ · (~EV ) =
∂ (ExV )

∂x
+ ...

= (
∂Ex

∂x
)V +(

∂V
∂x

)Ex + ......

= (~∇ ·~E)V +~E · (~∇V ) (1.121)

We return to the energy (equation 1.120) and use equation 1.121 to write:

W =
ε0

2

∫

volume

(

~∇ · (~EV )−~E · (~∇V )
)

dv

=
ε0

2

∫

volume

(

~∇ · (~EV )+~E ·~E
)

dv

=
ε0

2

∫

volume

(

~∇ · (~EV )
)

dv+
ε0

2

∫

volume

(

~E2
)

dv (1.122)
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Using Gauss’ Theorem 1.58, we obtain:

W =
ε0

2

∫

sur f ace

(

~EV
)

d~o+
ε0

2

∫

volume
~E2dv (1.123)

The integral of the surface equals zero. Why? Suppose we consider the field of a point charge. The
electrical field drops with 1/r2 and the potential with 1/r. We can write:

∫

sur f ace
d~o ·~EV ≈

∫

sur f ace
d~o ·1/r3 ≈

∫

sur f ace
dφdθsin(θ)1/r (1.124)

We should consider a surface enclosing all space, thusr → ∞ and thus
∫

sur f ace
dφdθsin(θ)1/r = 0 (1.125)

Finally, we obtain for the energy of the electrical field:

W =
ε0

2

∫

volume
~E2dv (1.126)

~E, V and Energy of a spherical surface charge

In Section 1.3.4 we calculated the electrical field of a charged spherical surface (or shell) with radius
R and charge densityσ . We found that outside the shell:

~E = Er r̂ =
σR2

ε0r2 r̂ r > R (1.127)

Inside the the sphere no charged is enclosed and thusEr = 0.
What is the potential as function ofr? We useV (r) = −∫ r

∞
~E ·d~l and write:

V (r) = −
∫ r

∞
dr

σR2

ε0r2 =
σR2

ε0r
r > R (1.128)

Now, calculate the potential inside the sphere (where the electrical field is zero):

V (r) = −
∫ R

∞
~E ·d~l −

∫ r

R
~E ·d~l = V (R)+0 =

σR
ε0

r < R (1.129)

You could always check the results for the potential by calculating the electrical field using~E =
−~∇V . The results for the electrical field are also shown in Fig 1.28, where you can see that inside
the surface the electrical field becomes zero, while the potential is constant,V (R).

Now we can calculate the energy of this configuration in two ways. We start with the expres-
sion for the energy based on the potential (equation 1.117). The volume charge densityρ is zero
everywhere, except on the spherical surface where it isσ . Hence,

W =
1
2

∫

volume
ρV dv → 1

2

∫

sur f ace
σV (R)do (1.130)

=
1
2

∫

sur f ace
σ

σR
ε0

do =
1
2

4πR2σ
σR
ε0

= 2π
σ2R3

ε0
(1.131)
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Figure 1.28:The electrical field and the potential of a spherical surface charge

The other expression for the energy with the electrical field in quadrature(equation 1.126) should
yield the same result. Let’s check that.

W =
ε0

2

∫

volume
~E2dv =

ε0

2

∫

r>R
~E2dv

=
ε0

2

∫

r>R
(
R2σ
r2ε0

)2dv =
4πε0

2

∫

r>R
dr(

R2σ
ε0

)2 1
r2

=
4πε0

2
(
R2σ
ε0

)2−1
r
|∞R = 2π

σ2R3

ε0
(1.132)

as expected.

1.5.8 Knowledge and Skills

The knowledge and skills you should have acquired during reading of theprevious can be summa-
rized as follows:

• You understand the definition (and the derivation) of the potential:

VP = −
∫ P

gauge
~E ·d~l (1.133)

For a point charge, the potential is given by:

VP =
UP

q
=

Q
4πε0

1
rP

(1.134)

• you can also calculate the electrical field given the potential, using~E = −~∇V .

• you understand how we derived the energy of a charge collection:

WN =
1
2

N

∑
i=1

∑
j 6=i

qiq j

4πε0ri j
=

1
2

N

∑
i=1

qiV (ri) (1.135)

• For a continuous charge density the energy is given by:

W =
1
2

∫

volume
ρV dv (1.136)
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or, alternatively:

W =
ε0

2

∫

volume
~E2dv (1.137)

which you can apply for a spherical charge density.

In addition, make the corresponding exercises of this section, which you can find in the Appendix.

1.6 Electrical fields in matter

So-far, we considered electrical fields in vacuum. Usually we started with some (symmetrical)
charge configuration and then we calculated the electrical field, its potentialor energy. What if we
place (electrically neutral) objects in the electrical field? What happens inside those objects and
what is the effect on the electrical field in and outside the object? In this Section we will discuss
these questions and more.

1.6.1 The Conductor

What is a conductor? For our purposes a conductor is an object that conducts electrical currents
because the negative charge carriers (electrons) can move freely inside the material. The number
of the free charge carriers is unlimited. Materials that approach these ideal properties are metals
like iron, copper and gold. If the conductor is electrically neutral, it contains an equal amount of
negative and positive charge. The positive charge is always bound and thus cannot move freely
through the material.

Given the above we can deduce what happens when a conductor is placed inside an electrical
field as illustrated in Fig. 1.29.

Figure 1.29:A conductor is placed in an extern electrical field.

• What is the electrical field inside a conductor? Suppose there is an electrical field in the con-
ductor. Then, the free electrons would be subjected to the electrical force and start moving.
Well, they may do for a short time when the field is just turned on, but we discuss only elec-
trostatic situations. There is only one stable solution to our question and that is that there is
no electrical field inside a conductor!

• How can the field be zero inside a conductor? Well, suppose the electrical field is just turned
on. Then some free electrons will be attracted by the electrical force and flow to the surface
of the conductor (they can not escape). This process goes on till the electrical field inside
the conductor has vanished, or better, the original field gets canceled bythe field of the free
charge sitting on the surface and the nett positive charge that keeps its original position4. In

4This is always possible in one, and only one, way based on the ’uniqueness theorem’. The derivation of this theorem
is beyond the scope of this course.
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general, the nett positive charge will appear on the opposite surface withrespect to the side
of the free negative charge.

• What is the charge density inside the conductor? We know now that the field inside the
conductor is zero. Hence,~∇ ·~E = ρ/ε0 = 0 The charge densityρ inside the conductor must
be zero. Thus, any nett negative or positive charge must sit on the surface(s) of the conductor.

• What about the electrical field on the surface? Suppose there is an electrical field along the
surface of the conductor. The free charge carriers will immediately ’respond’ and flow into
a configuration with no electrical charge along the surface. Hence, there are no electrical
field components along the surface of a conductor. Now suppose there iselectrical field
perpendicular to the surface. The charge sitting just on the surface will be attracted or repelled
by the field, but it cannot move inward or outward the conductor. This is a stable situation
and thus there can be an electrical field just outside an conductor perpendicular to its surface.

• Is there a potential in a conductor? No, there can’t be, becauseV (a)−V (b) =−∫ b
a

~E ·d~l = 0.
At any place inside or at the surface of a conductor the potential is constant.

# characteristic why
1 ~E = 0 inside a conductor otherwise charge starts moving.
2 ρ = 0 inside a conductor ~∇ ·~E = 0 = ρ/ε0.
3 charge sits on the surface where-else could it be?
4 V is constant inside a conductorV (a)−V (b) = −∫ b

a
~E ·d~l = 0.

5 Field lines leave the conductor otherwise the surface-charge starts
perpendicular. moving.

Table 1.1:The conductor rules.

Table 1.1 summarizes the electric characteristics of the conductor. So, we know now what
happens if we place a conductor inside an electrical field. Well, not really.The (original) field
outside the conductor also changes and we have not discussed that. Thisis a though problem to
solve without a general solution. When there is an obvious symmetry in the configuration we can
give the solution. It will take a lot of practice to adopt a ’feeling’ for theseconfigurations. Anyway,
the examples in the following paragraph help you to get started.

A conducting plate in a uniform electrical field.

We start with a given uniform electrical fieldEexternal in the horizontal (z) direction and then place
an infinitely large conducting plate as shown in Fig. 1.30a. After a few nanoseconds an electrostatic
configuration exists. What is the resulting electrical field?

Start by applying the rules of conductors (Table 1.1) to get the nett charge configuration. Then,
with the charge configuration we can calculate the electrical field everywhere using standard tech-
niques as we have been doing in the previous Sections.

So, we know that the nett charge will sit on the surface (rule 2 and 3). Wecan replace the plate
by the electrical configuration as shown in Fig. 1.30b. This situation is physically equivalent. Of
course we also need to know the amount of charge, or better, the chargedensityσ− andσ+. We
started with a neutral plate, so for sureσ = σ+ = −σ−. According to rule 1, the field inside the
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Figure 1.30:a) An infinitely large conducting plate is placed in an external electrical field inthez
direction. b) The physical equivalent charge configuration on the plate.

conductor shall be zero. Hence, in the region where the plate resided, the electrical fields from the
charge densities have to cancel the external field:

~Ein−plate =~0 = ~Eexternal +~E(−) +~E(+) (1.138)

We have already calculated the electrical field of a flat surface charge:E± = σ±
2ε0

, which we substitute
in the above expression:

~0 = ~Eexternal ẑ+
−σ
2ε0

ẑ− σ
2ε

ẑ (1.139)

from which follows:
σ = ε0|~Eexternal| (1.140)

Note that the (vector) contribution of the positive charge has acquired a minus sign, because it points
in the negativez direction, which is also illustrated in Fig. 1.31 (for the sake of the argument we
made the external field vector fit just inside the plate). Inspect the figure yourself and verify that the
field inside the plate gets canceled. Outside the plate the contributions of the positive and negative
charge density cancel and hence the field outside still equalsEexternal !

Finally, we remark that inducing two layers of opposite charge on a plate requires work. The
work is performed in the small timespan before reaching the equilibrium. The external field gets the
’energy bill’. From equation 1.126 we can seen that the energy difference comes form the volume
inside the plate where the original field has vanished. Thus, for a plate thathas a heighth and
thicknessd, the energy difference is:

U =
ε0

2

∫

volume−plate
~E2

externaldv =
ε0hd

2
~E2

external (1.141)

(of course we demandh >> d such that we can ignore edge effects.) You can verify yourself that
this equals the work needed to separate the positive an negative surfacecharge.

A grounded conducting plate

We can also consider a grounded plate. This means that the plate is connected to the earth. For
this purpose the earth should be seen as an unlimited source of charges. Thus the earth can pump
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Figure 1.31:The electrical field contributions inside the plate form the external field and charge
densitiesσ+ andσ− respectively.

electrons in or out the plate at no cost without acquiring any net charge itself. Furthermore, the
potential of the earth is usually defined to be zero and grounded objects are at the same potential.

Figure 1.32 shows a grounded plate (as you can see from the piece of wire that ends in the
special symbol for ground), together with its charge distribution.

The surface chargeσgrounded, needed to cancel the electrical field inside the plate, can be easily
calculated using similar steps as above:

σgrounded = −2ε0|~Eexternal| (1.142)

But why reaches the plate an equilibrium without any positive net (surface)charge as in the previous
example. Well, as mentioned above, to make a positive and negative layers ofcharge work is
performed, which requires a force. In the ’grounded’ case all the necessary electrons are provided
for free by the earth. Note that the field outside the plate has drastically changed. In fact, the field
becomes zero everywhere left from the negative surface charge and it doubles on the right side.
This also affects the energy in the field dramatically. Of course, the earth is not really an unlimited
source of electrons and we have to know all the details to calculate the completeenergy balance.
Hence, in practice this cannot be done. In the scope of this course, our’responsibility’ ends with
checking that all rules for conductors are satisfied. Check that yourself.

A spherical conducting shell with a point charge inside

We consider an electrically neutral conducting shell with an inner and outerradius ofRi andRo

respectively. We have put a positive point chargeq in its center as shown in Fig. 1.33. What is the
charge density in the shell and what is the electrical field everywhere in space?

It is amazing that we can answer this question given such little information for such a com-
plicated configuration. But we can, again just by using the rules for conductor (and all the stuff
we learned before). Rule nr. 1 tells us that in the meat of the shell (that is betweenRi andRo) the
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Figure 1.32:A grounded conducting plate is placed in an extern electrical field. Note the interna-
tional symbol for ’grounding’ indicated in the figure.

Figure 1.33:A positive point charge is positioned in a conducting shell with inner radiusRi and out
outer radiusRo.

electrical field of the point charge should cancel. This can (only) be achieved by induced charge
on the inner and outer surface. since we started with an electrically neutralobject, there must be
a similar amount of induced negative and positive surface charge,σi = −σo on the inner and outer
surface respectively.

The question is now how to calculate theσi = Qi

4πR2
i

(or equivalentlyσo). Well, we have calcu-

lated the electrical field of a spherical surface charge density before (see equation 1.46):

~E =
σR2

ε0r2 r̂ r > R (1.143)

=
Q

4πε0r2 r̂ r > R (1.144)

and~E = 0 inside the shell (betweenRi andRo). In the shell, we add the contributions of the point
charge, the negative charge density on the inner shell and the positive one on the outer shell, we
find inside the conductor:

~0 = ~Eq +~EQi +~EQo
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=
1

4πε0

(

q
r2 +

Qi

r2 +0

)

r̂ (1.145)

We conclude thatQi = −q (andQo = −Qi = q). Note that the charge densities on the inner
and outer surface, besides the sign, are also in magnitude not the same:σi = −q/(4πR2

i ) and
σo = q/(4πR2

o). Check yourself that all rules for conductors are fulfilled.
What are the consequences for the electrical field everywhere in space outside the conductor?

Well, the field is just the field of the point charge. We could say that the presence of the conductor
has not disturbed the outer field at all!

Finally we remark that we have been able to calculate the induced charge relatively easily
because off the large symmetry in this problem. Most notably is that all contributions to the field,
i.c.: that of the point charge, the surface charge atRi and the charge atRo all have radially pointing
contributions. For a weird shaped conductor in an external field you cantry, just for fun, to make a
sketch of the charge distribution on its surface.

Method of images

A powerful technique to calculate the electrical field in many situations is the ’method of images’
using a ’mirror charge’. This method relies on the fact (not derived here) that the electric potential
is uniquely definedinside some volume

with a given charge density inside the volume, and,

with given the potential at its boundary surface.

In such case we may change the original charge configuration outside thevolume by an alternative
configuration respecting the boundary conditions. Inside the volume the electrical potential of the
alternative configuration equals that of the original configuration. You may have to read the previous
sentence twice. Outside this volume, the potential of the original and alternative configuration
generally completely differ. In the following example we will see the strength ofthis method.

We consider a grounded plate and place a point chargeq at a distanced as illustrated in Fig. 1.34.
The point charge induces charge on the plate surface with an a priori unknown distribution. For this
example the plate is infinitely large and infinitely thin What is the electrical field everywhere? Well,
on the right side of the plate (z > 0) we have a volume with a given charge density (the point charge)
and we know the potential at the boundaries:V = 0 at the plate (z = 0) and at infinity.

Hence, it is allowed to use the technique of the mirror charge. We have to keep the point charge,
but can remove the plate if we can find a charge configuration that gives the same potentialV = 0
at the boundaryz = 0 andz = +∞. As the name of the technique suggests, put a mirror charge
(−q) at z = −d which leads to the configuration shown in Fig. 1.35. Are the boundary conditions
fulfilled? At z = 0 the contributions to the electric potential of the two charges cancel and at infinity
(by the way: only positivez is relevant in this case) the potential is also still zero. The resulting
configuration is an electrical dipole which we have seen before. Hence,we know the potential for
z > 0 now. But what about the potential in the regionz < 0. This is outside the our volume with
known boundary conditions. It is certainly wrong to use the potential for adipole in this region!

The trick is to go back to the original configuration and first determine the charge density on
the plate. Forz > 0 we know the potential is given by:

V (x,y,z) =
1

4πε0

(

q
√

x2 + y2 +(z−d)2
− q
√

x2 + y2 +(z+d)2

)

(1.146)
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Figure 1.34:A grounded conducting plate is placed in the field of a point chargeq. The point charge
is positioned atz = d and the right surface of the plate is located atz = 0.

The corresponding electrical field can be calculated using~E(x,y,z) = −~∇V (x,y,z). For the field at
z = 0 we find:

~E(x,y,0) =
Q

4πε0

(

2d

(x2 + y2 +(d)2)
3
2

)

ẑ (1.147)

as you can check yourself. Now we know the electrical field (forz > 0) which allows us to the
determine the charge density on the plate using the relationσ

2ε0
= ~E(z = 0) · ẑ (see equation 1.42).

Hence,

σ(x,y) =
q

4π

(

d

(x2 + y2)
3
2

)

, (1.148)

which together with the the point charge atz = d determines the physical situation, enabling us to
calculate the field everywhere.

We have discussed when and how you can use the method of images and we will conclude this
section by summarizing this method:

• Check the following. the potential should be known at the boundaries. Inside the boundaries,
the charge density should be known as well.

• Find an alternative charge configuration outside the boundaries that respects (together with
the charge density inside) the original boundary conditions.

• Calculate the potential of the alternative configuration.

• If required, you can calculate the original charge configuration using the potential (or electric
field).

There is no general concept that returns the alternative configurationand it probably became clear
to you that it needs some experience to find such configuration.
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Figure 1.35:An alternative charge configuration, existing of a electrical dipole.

1.6.2 Capacitors

We take two parallel plates of conducting material and charge the plates with opposite charge as
indicated in Fig. 1.36. The plates are separated by a distanced. We ignore the thickness of the
plates and assume that the plates have a large surfaceA with respect tod. We have calculated the

Figure 1.36:Two parallel plates of conducting material. The plate have opposite chargeQ and are
separated by a distanced. The contribution to the electrical field of each plate individual is also
indicated.

electrical field for an infinitely large flat surface charge already in Sec.1.3.4, which provides a good
approximation for the present configuration withA >> d. We have to add the contribution of the
two plates. In between the plates, we obtain:

~E =
+Q
2Aε0

ẑ− −Q
2Aε0

ẑ =
Q

Aε0
ẑ (1.149)

The electrical field is constant and points away from the positive chargedplate. The contribution
of the negative charge obtain an additional minus sign, because if it would be a positive charge the
field would point in the negativez direction. Make sure you understand this argument.

The potential difference between the plates is given by:

V = V+−V− = −
∫ +

−
~E ·dz = − 1

Aε0
Q
∫ 0

d
dz =

d
Aε0

Q (1.150)
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What we have shown now is that the potential difference between the conductors is proportional to
Q, which is generally valid for capacitors.

Is the behaviorV ∼ Q independent on the shape and size of the conductors? Yes. Suppose
you take two conductors of arbitrary shape and size as illustrated in Fig. 1.37. The electrical field is

Figure 1.37:A capacitor, consisting of two conductors with bizarre shapes.

proportional to the charge density in, or betteron, the conductors. The charge density is proportional
to Q. The potentialV is proportional toE and thus also toQ.

Capacitance

We have seen thatV ∼ Q. Now we introduce a constant of proportionality called capacitance,C,
such that

C =
Q
V

(1.151)

The capacitance depends completely on the geometry of the electrical configuration. For the con-
figuration with the two plates, we have shown thatC = Aε0

d . The largerA and the smallerd the
more charge can be stored in the configuration for the same potentialV . The unity of capacitance is
called Farad (=Coulomb/Volt), denoted by F. In practiceC, measured in Farad is numerically small.
For our plate configuration withd = 1 mm andA = 1 m,C = 9×10−11 F. In the newspapers a few
years ago, there was an item about a small capacitor withC = 1 F, but I haven’t figured out yet how
to make that. Let me know if you find the ’trick’ on the web.

The energy of a capacitor

We start with an uncharged capacitor and move electrons from one conductor to the other to charge
it up. The electrons ’sense’ the electrical force in this process. Hence, moving them requires energy.

The energy needed to bring some chargedq to the other conductor isdU = V (q)dq. With
V (q) the potential difference between the two conductors as function of the already moved charge
q. Since the capacitanceC is a purely geometrical quantity we can writeV (q) = q/C and thus
dU = qdq

C . The total energy of a charge capacitor is then given by:

U =
∫

dU =
∫ Q

0

qdq
C

=
1
2

q2

C
|Q0 =

1
2

Q2

C
=

1
2

CV 2 (1.152)

with Q andV the final charge and potential of the capacitor respectively.
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Examples of Capacitors

Cylindrical configuration

Figure 1.38:Two coaxial conductors. The inner and outer conductors have radiia andb respec-
tively. The conductors have opposite total chargeQ.

Figure 1.38 shows a cylindrical configuration, consisting of two coaxial conductors with length
L. The inner conductor has a radiusa. The outer radius isb and is much smaller than the length.
The conductors have opposite total chargeQ. What is the capacitance of this configuration?

• First, determine the electrical field in the space between the two conductors. We may assume
thatL >> b which implies that away from the edges the field is radial. The charge density on
the inner conductor isσi =

Q
2πaL . We calculate the flux through an imaginary small cylindrical

Gaussian surface and obtain:

Er2πrl =
σi2πal

ε0
(1.153)

Note that in between the conductors there is no contribution to the flux (and field) from the
outer conductor. The electrical field is~E = σia

ε0r r̂

• The potential difference between the two conductors is given by:

V = −
∫ a

b
~E ·dr̂ = −

∫ a

b

σia
ε0r

dr = −σia
ε0

ln(r)|ab =
σia
ε0

ln(b/a) (1.154)

• Now we know the potential and it is trivial to obtain the capacitance:

C =
Q
V

=
2πaLσiε0

σialn(b/a)
=

2πLε0

ln(b/a)
(1.155)

Like the plate-capacitor, the capacitance of this configuration increases when the distance between
the two conductors becomes smaller.

Spherical Capacitor

We now consider a capacitor consisting of a spherical surface (thus not a massive sphere, but a shell
with some thickness) of a conducting material with radiusb. In its center we placed a conducting
sphere with radiusa. The conductors carry opposite chargeQ. What is the capacitance of this
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Figure 1.39:A spherical capacitors. The inner conductor has radiusa and the outer one has radius
b. The conductors have opposite charge. Note that the outer conductor isa apherical surfacd (a
shell) an not a massive sphere.

configuration? To calculate the electrical field we use a spherical Gaussian surface with radiusr
such thata < r < b. For the electrical field we obtain:

~E =
σa2

ε0r2 r̂ (1.156)

Now we calculate the potential difference between the conductors:

V = −
∫ a

b
~E ·dr̂ = −

∫ a

b

σa2

ε0r2 dr =
σa2

ε0r
|ab =

σa2

ε0
(
1
a
− 1

b
) (1.157)

for the capacitance follows:

C =
Q
V

=
4πa2σε0

σa2(1/a−1/b)
= 4πε0

ab
b−a

(1.158)

Note that the capacitance is independent onV and/orQ and thus is indeed a purely geometrical
quantity.

1.6.3 Knowledge and Skills

The knowledge and skills you should have acquired during reading of theprevious can be summa-
rized as follows:

• You understand the properties of a conductor.

• When a conductor is placed in an electrical field you can identify the surface charge densities
and calculate the resulting electrical field.

• You understand the basics of the mirror charge technique

• You can explain what capacitors are and deduce the relation:

C =
Q
V

(1.159)

• You can calculate the the capacitance of a parallel plate capacitor.

• The energy of a capacitor is given by

U =
1
2

CV 2 (1.160)

In addition, make the corresponding exercises of this section, which you can find in the Appendix.
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1.7 Insulators

All matter that cannot be classified as a conductor we call an insulator. In insulators there are
no free electrons to cancel the electric field inside the ’bulk’. However, by polarization of the
molecules and atoms inside an insulator there is some cancellation of the field. When an atom
polarizes we can discriminate between a positive and negative side. For thisreason, insulators are
historically referred to as ’dielectrics’. The properties and behavior ofdielectrics in electrical fields
are discussed in this Section.

1.7.1 Polarization of atoms and molecules

What happens microscopically when we electrically polarize an atom? The classical picture of an
atom is a big positive nucleus surrounded by tiny electrons orbiting it. For our purpose, that is
electrostatics, we adapt this picture by taking the ’average’ of the atom over time. Yes, you need
some imagination, but this leads to an atom consisting of a small positive nucleus inthe center of a
uniform cloud of negative charge. Consider the illustration in Fig. 1.40. When we apply an external

Figure 1.40:A view of an electrostatic atom. It consists of a positive nucleus surrounded by a
uniform cloud of negative charge. The cloud has radius (R). Left: Unpolarized, the nucleus is
centered; Right: Polarized, the nucleus is shifted away from the center ofthe cloud. This results
effectively in a dipole.

electrical fieldE as is depicted in the right figure, the negative charge is attracted, while the positive
nucleus is repelled. Consequently, the nucleus is shifted by a distanced with respect to the center
of the cloud. We have assumed that the spherical shape of the cloud is conserved. The net effect is
that we produced an electrical dipole with moment~p = Q~d.

To good approximation the dipole moment is proportional to the external field:~p = Q~d =
α~E, with proportionally factorα , called the ’polarizability’. Table 1.2 lists some experimentally
obtained polarizabilities. As expected, the factorα grows with increasing chargeZ. For water vapor

Atom Z α (10−30 m3)
Helium 2 3
Neon 10 5
Argon 18 20
Water vapor - 500

Table 1.2:Several examples of the polarizability for some atoms and water vapor.

we observe thatα is relatively large. Such a-typical behavior points in the direction of a different
physical mechanism. Indeed, there is an additional effect in water vaporand other so called ’polar’
molecules. The electrons in water molecules are attracted by the positive oxygen nucleus, more
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than by the hydrogen nuclei. The result is that water (and other polar molecules) have a built in
electrical dipole moment. Figure 1.41 shows what happens when these molecules are placed in an
electrical field. The dipole moments of the water molecules are aligned by the external electrical

Figure 1.41:Left: Water molecules without electrical field. the electrical dipole moment of the
molecules is indicated. Right: Water molecules in an external electrical field. The dipole moment
of the molecules are aligned by the electrical force.

field which leads to the relatively large polarization factorα .
In this Section we have discussed two different microscopic effects leading to polarized mat-

ter. We have postulated a straightforward relation (~p = α~E) between a new phenomenon called
polarization in the external electrical field. In Electrostatics however, we do not care about this
microscopic behavior so much. We only want to describe the behavior of thefields, averaged over
all atoms, as we will see in the follow Section.

1.7.2 Macroscopic Polarization

What is the electrical field in a dielectric when put in a known external field? Forget for the mo-
ment the atoms and molecules in the dielectric and put on your ’abstract glasses’. In electrostatic
theory, dielectrics consist of infinitesimally small electrical dipoles. A dielectriccan be electrically
polarized by putting it in an external field~E0 as illustrated by Fig. 1.42.

Figure 1.42:A dielectric in an external electric field~E0. The microscopic dipoles polarize (polar-
ization~P). The resulting total field is given by the sum of the original external field and that of the
polarized dipoles.

Inspired by the microscopic view (see previous Section), the polarization per unit volume is
defined as the polarization~P which weassume proportional to the electrical field:

~P = ε0χe~E (1.161)

The factor of proportionalityχe is called the electrical susceptibility for historical reasons. We say
that the dielectric islinear when this equation is valid. In general it is valid for relatively small
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electrical fields. Note that the word linear in this context is not related to shape of the dielectric;
it describes an electrical property. In this expression, the electrical field ~E = ~Etotal, the total field,
which usually leads to confusion and/or mistakes! It is the sum of the external field and the, yet
unknown, field from the polarized dipoles (~Epol).

What is the field of the polarized dipoles? Well, the polarization leads to net charge separation.
When we can quantify this charge, that is, determine the charge configuration, we know how to cal-
culate the field using standard techniques. So, let’s try to find the charge density inside a dielectric
first.

Have another look at Fig. 1.42. Inside the the dielectric there is macroscopically no net charge.
The dipoles are aligned in chains of positive and negative charge and allthe ’+’ are canceled by ’−’.
However, this is not the case at ’the start and end of the chains’, at the boundary of the dielectric. At
the left side, all the chains start with ’−’, while at the right side all chains end with ’+’. There is a
net charge separation at the surface of the dielectric. Note that the charges themselves are localized
in contrast with the free charge in a conductor. For this reason, the net charge at the surfaces of a
dielectric is calledbound charge. The amount of bound charge is given by the polarization:

σbound = ~P · n̂ (1.162)

Let’s put in a small intermezzo. The above Equation 1.162 is sufficient for linear dielectrics;
there cannot be any bound charge inside the dielectric. However, more generally the relation be-
tween polarization and charge is given by:

ρbound = −~∇ ·~P. (1.163)

It says that there is bound charge inside an dielectric when the polarizationinside a dielectric is not
constant. In such case there is no (perfect) cancellation between positive and negative bound charge
inside the dielectric in contrast to a linear dielectric. At the surface of any dielectric this relation
transforms to Equation 1.162. In this reader, like in many textbooks, we further only consider linear
dielectrics, unless stated otherwise. This ends our small intermezzo.

In principle, we can now deal with a dielectric (with knownχe) placed in a known original
external fieldE0:

1 the (yet unknown) polarizationP determines the (bound) charge configuration (Equation 1.162),

2 the charge configuration determines the contributionEpol to the electrical field, enabling us
to calculateEtotal,

3 Etotal fixes the polarization (Equation 1.161).

To you, it all may look a bit circular, but in the following Sections we will discuss some examples.
There is one suggestion to consider: memorize the three Equations above (and their meaning)!

The electrical field in a flat dielectric

We consider a flat dielectric with a givenχe and we place it in a known uniform electrical field~E0 in
thez direction as shown in Fig. 1.43. The dipoles in the dielectric polarize, leading toa polarization
~P. The bound net charge on the surfaces of the dielectric is according to Equation 1.162:

σb = ~P · n̂ = ~P (1.164)
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Figure 1.43:A piece of dielectric in an external electric field~E0. The microscopic dipoles polarize
(polarization~P). The resulting bound charge at the surface is also indicated.

Now, forget about the dieletric and only use the equivalent configuration. Hence, besides~E0,
we have a configuration of two oppositely charged flat surfaces, whichleads to an electrical field:

~Epol =
−σpol

ε0
ẑ (1.165)

Here we simply used the formula of a plate capacitor, derived in Section 1.6.2 (but I am sure, you
could derive it yourself by now).

In the dielectric, the (total) electrical field is now:

~E = ~E0 +~Epol

= ~E0−σpol/ε0

= ~E0−~P/ε0 (1.166)

Using equation 1.161 we can write

~E = ~E0−χe~E =
1

(χe +1)
~E0 (1.167)

That’s it!
The susceptibilityχe for glass and plastic like are of order 10. For water the susceptibility is

about 80.

Plate capacitor with dielectric

Consider a plate capacitor with a dielectric in between its plates as illustrated in Fig.1.44. The plates
have surfaceA and are separated by a distanced. The dielectric has an electrical susceptibilityχe.
Given the free chargeQ f ree on the plates, what is the electrical field in the dielectric and what is the
capacitance of this capacitor?

That looks like a tough question, but in fact it isn’t. Just cut the problem inrelevant pieces and
you will see that you already can solve all pieces one by one.

Starting point, the first piece, is anempty capacitor. Thus the same configuration as already
discussed in Section 1.6.2. We repeat our results (you should be able to derive these results by
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Figure 1.44:A plate capacitor with dielectric in between the plates.

now):

~Eempty =
Q f ree

Aε0
ẑ =

σ f ree

ε0
ẑ

Vempty = −
∫ +

−
~Eempty ·dz =

d
Aε0

Q f ree

Cempty =
Q f ree

Vempty
=

ε0A
d

(1.168)

The second step is to place the dielectric between the plates. The field inside theempty capacitor
is relevant external field for the dielectric. In fact we have placed a dielectric in an external field
just like we have already seen in the previous Section and according to equation 1.167 the field
becomes:

~E =
1

(χe +1)
~Eempty =

1
(χe +1)

σ f ree

ε0
ẑ (1.169)

So-far, so good and we go to the next piece. We can calculate the potentialbetween the plates
by integration of the electrical field (just like we have done for empty capacitors):

V = −
∫ +

−
~E ·dz =

1
(χe +1)

d
Aε0

Q f ree =
1

(χe +1)
Vempty (1.170)

for the capacity follows:

C =
Q f ree

V
= (χe +1)

ε0A
d

= (χe +1)Cempty (1.171)

In textbooks the following definition is often used

(χe +1)ε0 = ε (1.172)

With this definition most expression related to dielectrics become similar as the expression in vac-
uum after substitutingε for ε0.

Note that the capacitance between the empty and ’filled’ capacitor is just the factor (χe + 1).
Thus, for plastic fillings the capacity grows with a factor of order ten.

1.7.3 The electrical Displacement

To describe electrical fields inside dielectrics, we had to thrown in severalnew ’electrostatic objects’
like the polarizationP and the bound charge,ρb. The question may arise: is Gauss’ Law valid inside
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a dielectric or should it be adapted? The answer is that Gauss’ Law is always valid, but we should
be careful. Consider Gauss’s Law once more:

ε0
~∇ ·~E = ρ (1.173)

Realize that~E in Gauss’ Law always is thetotal electrical field andρ is thetotal charge density:

ε0
~∇ ·~E = ρ f ree +ρb (1.174)

whereρ f ree is the charge induced on an conductor surface or the charge needed tocreate an external
electrical field. (Keep in mind that we often discussed examples where we put a dielectric in an
external field. Well, the external field comes not for free: it is the effectof free charge somewhere.)
Using Equation 1.163 we can write:

ε0
~∇ ·~E = ρ f ree −~∇ ·~P (1.175)

or equivalently,
~∇ · (ε0~E +~P) = ρ f ree (1.176)

Now define the dielectric displacement~D = ε0~E +~P. It is just a matter of definition, but~D has an
important feature:

~∇ ·~D = ρ f ree (1.177)

It is Gauss’ Law for ’field’~D that only depends on the presence of free charge. Also the integral
form of Gauss’ Law is valid:

∫

closed−sur f ace
~D ·d~o = ∑

f ree−charges−enclosed

Qi

ε0
(1.178)

Combining the formula’s in this Section you can derive that~D is also proportional to the (total) field
~E:

~D = ε~E +~P = ε~E + εχ~E = (χe +1)ε0~E = ε~E (1.179)

This mathematical approach completes the theory on electrical fields in matter.

1.7.4 Knowledge and Skills

The knowledge and skills you should have acquired during reading of theprevious can be summa-
rized as follows:

• You can explain how a dielectric is polarized in an electrical field, resulting in anet bound
charge at its surface.

• The relation between the polarization and the electrical field is

~P = ε0χe~E (1.180)

• With this relation you can calculate the electrical field in a parallel plate capacitorfilled with
a dielectric:

~E =
1

(χe +1)
~Eempty =

1
(χe +1)

σ f ree

ε0
ẑ (1.181)

You can also show that the capacitance is:

C = (χe +1)Cempty (1.182)

The capacitance of the filled capacitor is larger than that of the empty capacitor.

In addition, make the corresponding exercises of this section, which you can find in the Appendix.
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1.8 The icons of Electrostatics

Throughout the previous Sections we deduced, described, discussed and derived the aspects of
electrical fields in vacuum and matter. The resulting field equations are listed inTable 1.3. Never
forget that we started with Coulomb’s empirical Law, based on experiment and constructed the
theory on electrostatics around it.

Comment Integral Differential

Gauss
∫

sur f ace
~E ·d~o =

∫

volume
ρ
ε0

dv ~∇ ·~E = ρ
ε0

∫

closed−line
~E ·d~l = 0 ~∇×~E =~0

Table 1.3:The complete set of field equations for electrostatic theory.



Chapter 2

Magnetostatics

2.1 Basic concepts

Magnetostatics aims at the description of all phenomena that involve non-changing magnetic fields.
Qualitative knowledge about magnetostatics has been around for many centuries: it is possible to
use a magnet needle to make a compass without knowing how to quantify magneticprocesses. In
this section some basic concepts of magnetism are discussed.

In electrostatics you are familiar with the fact you have positive and negative charges. The
charges for magnetostatics always come in pairs. In a magnet one side is themagnetic-positive
side, while the other side is the magnetic-negative side. The magnetic-positiveside we like to call
the ’north-pole’ and the magnetic-negative side the ’south-pole’. Off course this naming is derived
from our own earth, which itself is a permanent magnet. Forces between magnets are such that a
north- and a south pole attract each other, while there is a repelling force between two poles of the
same kind.

Now you could decide to cut a magnet in half, just between the north- and thesouth pole, in
order to obtain a north-pole and a south-pole separately. The result of your experiment, however,
will be that you will have indeed two magnets, both with a north AND a south pole (see Fig. 2.1).
You can repeat this as many times as you like, but the only thing you will succeed in, is to get many
more small magnets. As far as we know no magnetic monopoles exist!

Also it is well known that compared to gravity the magnitude of the magnetic forceis huge. It
is very common for even small magnets to lift little (or sometimes big) pieces of iron, against the
gravitational force from the whole earth!

In addition there exists an intricate relation between electrical currents and magnetic field, which
will become clear further in these lecture notes. The unit of a magnetic field is called the Tesla, and
it can be described in terms of other units as:

[Tesla] = [N]/([A][m]) = [N][s]/([C][m]) = [kg]/([C][s]) (2.1)

with [A] = [C]/[s] an electrical current, and[N] the unit of force.

2.2 Lorentz force

2.2.1 Experimental basis and formulation

The Dutch physicist Hendrik Antoon Lorentz was the first to quantify the movement of an electri-
cally charged particle inside a constant magnetic field. Just as Coulomb’s lawthat describes forces

57
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Figure 2.1: Cutting a magnet in two pieces will only result in creating two magnets, each with
a magnetic north- and south pole. You can repeat cutting, but you will not create a magnetic
monopole.

in electrostatics, the law for the force caused by a magnetic field is based on experimental data:

1. The Lorentz force is proportional to the strength of the magnetic field;

2. The Lorentz force is proportional to the electric charge;

3. The Lorentz force is proportional to the velocity of the object it acts on;

4. The Lorentz force is proportional to the sine of the angle between the velocity vector and the
speed vector;

5. The Lorentz force is perpendicular to both the velocity direction and the direction of the
magnetic field;

This list of experimental data can be elegantly translated into the following mathematical statement,
that fully describes the force of a magnetic field~B on a moving object with chargeq and a velocity
~v:

~F = q~v×~B (2.2)

The× in equation 2.2 represents the ’cross-product’ between two vectors. Withour knowledge of
the cross product we can prove that the Lorentz force actually obeys the experimental data as listed
above. The magnitude of the Lorentz force is given by:

|~F| = q|~v×~B|
= q|~v||~B|sinθ (2.3)

with θ the angle between the magnetic field lines and the velocity vector. From the last equation it
can be seen that the first four experimental requirements on the Lorentz force have been fulfilled.
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2.2.2 The direction of the Lorentz force

When it comes to proving that the Lorentz force fulfills the last requirement things are slightly
more complicated, since we now have to calculate thedirectionof the force. Remember that for
electrostatics the electrical force was just proportional to the size and direction of the electrical field.
For the Lorentz force this is not the case, since we are dealing with a cross-product of two vectors.
Now we have too look into the detail of the cross-product: what is the direction of the result vector?
First we will work out mathematically what is the direction of the field. The crossproduct between
any two vectors~v = (vx,vy,vz) and~B = (Bx,By,Bz) can be calculated by evaluating the following
determinant (try this yourself and you will be a commander of cross-products!):

~v×~B =

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ
vx vy vz

Bx By Bz

∣

∣

∣

∣

∣

∣

= (vyBz − vzBy) x̂+(vzBx − vxBz) ŷ+(vxBy − vyBx) ẑ

=





vyBz − vzBy

vzBx − vxBz

vxBy − vyBx



 (2.4)

This general equation might not tell the full story of the direction of the Lorentz force directly, but
we can prove that the direction of the force is both perpendicular to the velocity vector and the
magnetic field vector. Two vectors are perpendicular if theirinner productequals zero (remember:
~A ·~B = |A||B|cosθ ), so we have to validate that:

~F ·~v = 0 (2.5)

We can explicitly calculate the inner product using equation 2.4 as follows:

~F ·~v = q(~v×~B) ·~v
= q(vyBz − vzBy) vx +

q(vzBx − vxBz) vy +q(vxBy − vyBx) vz

= qBx(vzvy − vyvz)+qBy(−vzvx + vzvy)+qBz(vyvx − vxvy)

= 0 (2.6)

Following similar tactics you can now prove yourself that the Lorentz force isalso perpendicular
to the magnetic field In fact you then have proved a general property of cross-products between
vectors~A and~B:

~A · (~A×~B) = 0 (2.7)
~B · (~A×~B) = 0 (2.8)

Note that the second statement follows directly from the first, because of another property of the
cross-product:

~A×~B = −~B×~A (2.9)

Prove this!
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2.2.3 A force without work

A very important consequence of the fact that the Lorentz force is perpendicular to the velocity
of an object, is that the Lorentz force does not do any work. To understand this a bit more in
detail we have to recall our definition of workW being done by a force. It has been defined as the
displacement in the direction of the force, or as an equation:

W =
∫

line
~F · ~dl (2.10)

This can be rewritten with a change of variables as:

W =
∫

line
~F ·~vdt (2.11)

The last equation is clearly zero due to equation 2.5. The consequence ofthis is that if a charged
particle moves through a magnetic field its energy does not change, since that requires work done.
So the only thing that does change is thedirectionof the velocity. This is really special to the Lorentz
force: all other forces you have thus far encountered, like the Coulombforce or gravitational force,
do actually work.

2.2.4 The right-hand-rule

Now it is time to get a clearer understanding of the direction of the Lorentz force by studying a
simple example. Let’s look at a configuration with a magnetic field~B = (0,0,B) pointing in the
ẑ direction and a particle with chargeq moving with velocity~v = (v,0,0) in the x̂ direction. The
equation now becomes much more explicit and clear:

~F = −qvBŷ (2.12)

You can verify that all requirements on the Lorentz force as mentioned before are still fulfilled
(sinπ

2 = 1!) and also you can see that the direction of the Lorentz force can be obtained without
calculation, by using the (in)-famous ’right hand rule’. Stretch out yourhand and make your thumb
point in the direction of~v. Point your other fingers in the direction of the magnetic field~B. The
cross-product~v×~B is now pointing out of the palm of your hand. Exercise this a couple of times
and you will never make any mistakes in pointing out the direction of cross-product. Be however
careful that a negative electric charge does flip the direction of the Lorentz force by 180◦.

2.2.5 Example: force on a wire

What happens if you place a wire of lengthL carrying a currentI, inside a homogeneous magnetic
field, B (see Fig. 2.2)? The direction of the force can be found using the right hand rule. The
electrons move in the opposite direction as the current, but they have a negative charge. So the
direction of the force is the direction of the cross product of~I and~B. The size of the force is
calculated by integrating:

|~F| =
∫

line
dq(~v×~B)

=
∫

line
λdl(~v×~B)

=
∫

line
dl(~I ×~B)

= LIB (2.13)
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Figure 2.2:A wire with lengthL is placed inside a homogeneous magnetic fieldB with field lines
pointing out of the paper.

We have used the fact that the line charge densityλ multiplied by the velocity of the electrons gives
the electrical currentI. So we now have an equation that tells us that the Lorentz force of a magnetic
field on a wire carrying a currentI is equal to:

d~F = dl(~I ×~B) (2.14)

2.2.6 Current loops & Magnetic dipoles

Now let us consider a square wire loop with sides of lengthL carrying a currentI, placed in a
homogeneous magnetic field~B (see Fig. 2.3). The forces on each of the sides of the loop can be

Figure 2.3:A square wire loop with sidesL and carrying a currentI is placed inside a homogeneous
magnetic fieldB.

calculated in the same way as shown in the previous paragraph:

~F = L(~I ×~B) (2.15)
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It can be seen that the net force on the wire loop is zero, since the forces on top and bottom of the
loop cancel each other, just as the forces on both of the sides. However, there is atorque on the
current loop! The torque,τ, exerted on for example the left side of the loop is just the size of the
Lorentz force times the ’arm’ the force. So:

τL = (LIB)
L
2

sinθ (2.16)

In he right side of the loop the Lorentz force points in the opposite direction,but the arm of the
force also points in the opposite direction. So the total torque becomes:

τ = L2IBsinθ (2.17)

Notice that the bottom and top sides of the current loop do not contribute to thetorque. The Lorentz
force is certainly pulling of the wire there as well, but it is trying to stretch the wire loop instead of
trying to rotate it (try to understand this yourself).

At this point it is instructive to rewrite equation2.17 as the following cross-product:

~τ = ~m×~B (2.18)

where~m is themagnetic dipole moment of the current loop. The direction of the magnetic dipole
moment is perpendicular to the plane spanned by the wire loop. Its size is just the current multiplied
by the surface area:

|~m| = L2I (2.19)

The torque exerted on the wire loop tries to rotate it such that it is perpendicular to the magnetic field
lines. In terms of a magnetic dipole moment we can make a more general statement: amagnetic
field tries to set magnetic dipoles parallel to the magnetic field lines.

2.3 Biot-Savart’s law

Now we have learned in the previous section how to calculate the force exerted by a magnetic field
on a moving charge, we have to know how to actually calculate a magnetic field. Magnetic fields
are caused by electric currents. An expression that relates the magnetic field,~BP, in a pointP to an
electric current,I, is called the law of Biot-Savart:

~BP =
µ0I
4π

∫

line

d~l × r̂
r2 (2.20)

The integration is done along the current path in the direction of the flow;d~l is an element of length
along the wire and ˆr is the direction vector from the location ofd~l and the pointP as is sketched in
Fig. 2.4. Try to verify by using the right-hand-rule that the magnetic field dueto the infinitesimal
wire element in Fig. 2.4 is pointing into the paper. When using Eq. 2.20 you should realize that
along your integration path bothd~l, r̂, andr may change, both in magnitude and direction! To
master this equation practice is mandatory.

The constantµ0 is called the magnetic permeability which is defined as:

µ0 ≡ 4π 10−7 N
A2 (2.21)
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Figure 2.4:Variables needed to calculate the magnetic field in a pointP due to an infinitesimal wire
element with lengthd~l at a distance~r.

A remarkable thing happens when the magnetic permeability is multiplied with the electrical per-
mittivity ε0. Remember thatε0 was defined as:

ε0 ≡
1

4π 10−7c2

C2

Nm2 (2.22)

The multiplication leads to:
1

ε0µ0
= c2 (2.23)

with c the speed of light. This amazing results indicates that there might be a special relationship
between electric and magnetic field. This relationship will be unveiled toward theend of this course.

2.3.1 A wire with a current

With Biot-Savart’s law we are now able to calculate the magnetic field for any current configura-
tions. So let us start with the calculation of the magnetic field of a relatively simple example: an
infinitely long wire carrying a currentI (see Fig. 2.5). We could start calculating like blind chickens
at this point, but we can also usesymmetryarguments to argue what the direction of the field must
be. The cylindrical symmetry of this example excludes the existence of a radial component to the
magnetic field. We can try to argue that this is impossible by making a ’gedanken’experiment: we
can rotate the infinitely long wire by 180◦ so the current is now pointing in the downward direction.
As can be seen in the law of Biot-Savart changing the sign of the current would result in flipping the
sign of the~B field. However, the rotation of the wire leaves the radial component of the magnetic
field pointing in the same direction as before. So there can exist no radial magnetic field in our
example. The component of the magnetic field pointingalongthe direction of the wire drops out
because the contribution coming from the current atz < 0 is canceled exactly by the contribution
from the current atz > 0 (try to prove and visualize this yourself).
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Figure 2.5:Wire carrying a currentI. The magnetic field is calculated at a pointP at a distancer
from the wire.

So the only component of the magnetic field that is not equal to zero is the component in
the azimuthal,φ , direction. Its size is calculated with Biot-Savart’s law 2.20, but we have to be
extremely careful how to fill in the variables in the equation. Let us considerthe magnetic field
caused by an infinitesimal line element~dz first (see Fig. 2.5): the magnitude of the magnetic field
in point P due to this line element is:

|d~BP| =
µ0I
4π

|d~z|sinα
r2 + z2 (2.24)

There are a couple of variables in this equation that at first might seem a bitstrange. First there is
the r2 + z2 term, while you would expect ar2 term if you look at the Biot-Savart law. But in fact
ther2 + z2 is correct since it is the distance between the line element~dz and the pointP. So ther in
Biot-Savart’s law is a very differentr than is used to indicate the radius in cylindrical coordinates.
The same is the case for ˆr which indicates the unit vector in the direction of the line element~dz and
the pointP, and thus also has nothing to do with the radius in cylindrical coordinates. You must
think very well before just using a formula! The sinα comes from the size of the cross product:

|~dz× r̂| = dzsinα (2.25)

whereα is the angle between~dz andr̂. It can be geometrically worked out to be:

sinα =
r√

r2 + z2
(2.26)

Now we can calculate the magnetic field adding the contributions from all line elements to the
magnetic field.

|~BP| =

∣

∣

∣

∣

∫

line
d~Bφ

∣

∣

∣

∣
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=
µ0I
4π

∫ +∞

−∞

dz
r2 + z2

r√
r2 + z2

=
µ0I
4π

z

r
√

r2 + z2

∣

∣

∣

∣

+∞

−∞

=
µ0I
2πr

(2.27)

The integral overz you do not have to be able to solve yourself. If you encounter such an inte-
gral at any point we will provide you with the answer. However you can verify the answer by
differentiating the one but last equation.

2.3.2 Two parallel wires

We can now consider a configuration with two parallel wires with lengthL at a distance~R12 each
carrying an electrical current,I1 andI2,respectively (see Fig. 2.6). We can calculate the magnetic
field at the position of the second wire, due to the current in the other wire using equation 2.27. The

Figure 2.6:Two wires with electric currents both generate a magnetic field. The magnetic fields
result in a Lorentz force on the wires.

equation for the Lorentz force on a wire (Eq. 2.13) tells us that:

|~F2| = L|(~I2×~B1)| (2.28)

=
µ0LI2I1
2πR12

(2.29)

The calculation of the size of the cross product is fairly easy since there are only 90◦ angles involved
in this example. I leave it up to you to show that the Lorentz force between the wires is attractive if
the currents point in the same direction.
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2.3.3 Knowledge and Skills

The knowledge and skills you should have acquired during reading of theprevious can be summa-
rized as follows:

• Magnets always have a north- and a south pole. Magnetic monopoles do not exist;

• The Lorentz force of a magnetic field on a moving charge is:

~FL = q~v×~B (2.30)

Make sure you can figure out both thesize and thedirection of the Lorentz force. For the
direction make sure that you are comfortable with the right-hand-rule;

• The Lorentz force on a straight wire segment is:

~F = L(~I ×~B) (2.31)

;

• The torque on a current loop is:
τ = ~m×~B (2.32)

where~m is the magnetic dipole moment;

• The law of Biot-Savart can be used to calculate magnetic fields that are caused by line cur-
rents:

~BP =
µ0I
4π

∫

line

d~l × r̂
r2 (2.33)

2.4 Intermezzo: Current densities

In the previous section we used currents all the time. Just as for electric charges it is often instructive
to talk about current densities instead of currents. We can speak ofline, surface, andvolumecurrent
densities (see Fig. 2.7). A line current is defined as the charge density per meter,λ , times the

Figure 2.7:Different types of current densities: a) shows a line current density,b) a surface current
density, and c) shows volume current density.

velocity of the charges:
~I = λ~v → [I] = C/s = A (Ampere) (2.34)
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The size of the current is just the magnitude of the vector~I. The corresponding Lorentz forces are
calculated as:

~FL =
∫

line
~I ×~Bdl = I

∫

line
~I ×~B (2.35)

For surface currents the situation is similar (see Fig. 2.7b):

~K ≡ d~I
dl⊥

→ [K] = A/m (2.36)

= σ~v (2.37)

To obtain a current one now has to multiply the surface current density,~K, with the length of the
surface. Or to be more precise one has to integrate the current density along a surface if the current
density is not a constant. The Lorentz force is now:

~F =
∫

surface
~K ×~Bdo (2.38)

Biot-Savart’s law can be used again to calculate the magnetic field resulting from a surface current
density:

~B =
µ0

4π

∫

surface

~K(~r′)× d̂
d2 do′ (2.39)

where the integration is over the surface carrying the current, and~d =~r−~r′.
Most frequent you will encounter volume currents,~J, which are defined as:

~J ≡ d~I
do⊥

→ [J] = A/m2 (2.40)

= ρ~v (2.41)

The differentiation with respect todo⊥ gives a vector pointing through a surface: the size of~J is the
current per unit area perpendicular to the flow. For example take a wire with radiusR and a current
I. If we now assume that the current density is homogeneous, we can obtainthe current density~J,
by simply dividingI by the surfaceπR2 of the wire. The direction of~J is along the direction of
current flow. The Lorentz force can be calculated through the volume integral:

~F =
∫

volume
~J×~BdV (2.42)

Try to prove this last equation yourself. Once more Biot-Savart’s law can be used to calculate the
magnetic field resulting from a volume current density:

~B =
µ0

4π

∫

volume

~J(~r′)× d̂
d2 dV ′ (2.43)

where the integration is over the volume carrying the current, and~d =~r−~r′.

2.5 Ampere’s law

We now know how to calculate magnetic fields in any configuration using the Biot-Savart law in
principle. We can have a closer look at the properties of magnetic fields to see if there are laws,
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like Gauss’s law for electrical fields, that can simplify our calculation of magnetic fields in certain
cases. Let us go back to the magnetic field of a wire carrying a current:

Bφ =
µ0I
2πr

,Br = Bz = 0 (2.44)

We can take a circular path around the wire, so that the line integral:
∫

line
~B ·d~l = µ0I (2.45)

where the
∫

represents an integral in a path around the wire. In fact the path does not have to be
a circle; any path around the wire will give exactly the same answer (can you prove this one? see
Griffiths section 5.3.1). We can generalize this law a bit further to obtain:

∫

line
~B ·d~l = µ0

∫

surface
~J ·d~o (2.46)

This equation is known as the law of Ampere: it states that the integral of the magnetic field along
a closed path is equal to the total current that is enclosed by the path. We have seen that it is true
for a thin wire carrying a current. It can be explicitly proven, using the Biot-Savart law and the
superposition principle, that it is true in general for any current densitycausing a magnetic field.
(see Griffiths section 5.3.2).

The law of Ampere is always true, but for calculation of magnetic fields it is useful only if there
is a high degree ofsymmetryin the configuration you want to solve. The reason for this is that in
that case the line integral

∫

~B~dl can become easy to solve. This is especially true if you know that
the magnetic field over your integration path is constant, since the magnetic field then drops out of
the integral, or in an equation:

∫

line
~B~dl → ~B

∫

line

~dl (2.47)

In the next sections we show a selection of examples where the magnetic fieldscan be calculated in
a fairly easy way, using the law of Ampere.

2.5.1 Thick wire with a current

In the previous section you have already seen how Ampere’s law can be used to calculate the
magnetic field outside a wire. Now let us consider a wire with a radiusR carrying a current~I
distributed homogeneously over the wire (see Fig. 2.8). The current density ~J in this case is just the
total current divided by the surface of a cross-section through the wire:

~J =
~I

πR2 (2.48)

From the symmetry of the problem we can conclude that the magnetic field only has a component
pointing in the azimuthal (φ ) direction, and that it only depends on the radiusr. Ampere’s law
inside the wire now reduces to:

∫

line
~B~dl = µ0

∫

surface
~J ~do (2.49)

B ·2πr =
µ0Ir2

R2 (2.50)
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Figure 2.8:A thick wire of radiusR carrying a currentI that is homogeneously distributed.

so that the magnetic field in theφ direction as a function ofr now becomes:

B(r < R) =
µ0Ir
πR2 (2.51)

Outside the wire you can show (see previous section) that the magnetic field isthe same as for an
infinitely thin wire. Off course if you do notsee the cylindrical symmetry in a problem like this
you can always use the law of Biot-Savart to calculate the magnetic field. The advantage is that
you are always right to use this law, the disadvantage is that you will have tocalculate much more
complicated integrals. Remember for example how much work it was to find the magnetic field of
a wire with the Biot-Savart law!

2.5.2 Plane with a homogeneous current density

As a next example of the Ampere’s law we calculate the magnetic field of an infiniteplane carrying
a current density~K (A/m) as shown in Fig. 2.9. The plane is lying in they − z plane and the
current is flowing in they direction. Since we know that magnetic fields to be perpendicular to the
currents causing them, the magnetic field cannot have a component in they direction. From a clever
symmetry argument we can also show that the component of the B-field perpendicular to the plane
must also be zero. Suppose there were a component of the magnetic field in the x direction. Then
rotate the whole (infinite!) plane 180◦ around thex axis. The current is now pointing in the opposite
direction, while thex component of the B-field is unaffected. This is a clear contradiction and thus
thex component of the magnetic field must be zero as well. We are only left with a magnetic field
parallel to the plane in thez direction.

Now we can use Ampere’s law to calculate the magnitude of the field, by constructing an imag-
inary rectangular path as shown in Fig. 2.9. Along this path we can again calculate the integral
∫

line
~Bd~l. The sides of the rectangle that are perpendicular to the plane do not contribute to the line
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Figure 2.9:An infinitely big plane with homogeneous current density~K.

integral since we just showed that the magnetic field does not have a component perpendicular to
the plane, so we are left with the two sides that are parallel to the plane. So:

∫

line
~Bd~l = 2aBz (2.52)

Ampere’s law tells us that this integral should be equal toµ0 times the enclosed current. So we can
now solve the~B field:

2aBz = µ0Ka (2.53)

⇓ (2.54)

Bz =
µ0K

2
(2.55)

So the field is homogeneous on either side of the plane. Only the sign of the magnetic field flips
(try to confirm the direction yourself by using the right-hand-rule).

2.5.3 The Solenoid

An even more complicated configuration that is made simple by Ampere’s law is the solenoid.
A solenoid is an infinitely long cylinder of radiusR over which a wire carrying a currentI is
wrapped around withN windings per meter (see Fig. 2.10). We can start-off with a couple of
symmetry arguments to reduce some of the components of the magnetic field to zero, just as we
did before for the infinite plane. First there can be no component in theφ direction, since it is
parallel to the current. Secondly, suppose there is a radial component tothe field. Then by rotating
the cylinder around thex axis over 180◦ the current is now going in the opposite direction and the
radial component of theB field is unaffected: contradiction! The radial component of the field can
only be zero, so we are left with only az component.

Let’s first calculate the fieldoutside the solenoid. We can take the line integral around a path
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Figure 2.10:A solenoid with radiusR and currentI running throughN windings per meter.

indicated by1 in Fig. 2.10. There is no enclosed current so Ampere’s law reduces to:
∫

line
~Bd~l = 0 (2.56)

We can safely assume that the magnetic field should go to zero when the far end of the integration
path goes to infinity. In that case we only get a contribution to the path integralfrom the line piece
at r = r. Since the total integral needs to be zero, this can only be true if the field itselfis zero. So
outside a solenoid the magnetic field is zero!

The field inside we can obtain by integrating the B-field along the path indicated by 2 in
Fig. 2.10. The only contribution to the integral is from the path inside the solenoid parallel to thez
axis. The enclosed current is simply:

Ienclosed= aIN (2.57)

Ampere’s law is now written as:
∫

line
~Bd~l = µ0

∫

surface
~Jd~o (2.58)

Bza = µ0aIN (2.59)

⇓ (2.60)

Bz = µ0IN (2.61)

A surprisingly simple answer for such a complicated configuration.

2.5.4 Knowledge and Skills

The knowledge and skills you should have acquired during reading of theprevious can be summa-
rized as follows:

• You should be familiar withline, surface andvolume currents;

• You should be able to calculate the Lorentz force on these different kindsof current densities;

• You should be able to write down and use Ampere’s law to calculate magnetic fields in situ-
ations with a high degree of symmetry.
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2.6 Field equations

In this section we will give an overview of the equations that give a full description of electro- and
magnetostatics. In order to do so there is one more bit of mathematics you need toknow.

2.6.1 Stokes’ theorem

The last bit of math you need to know before we can complete the theory of electro- and magnet-
icstatics is the theorem of Stokes. In electrostatics Gauss’s law (see section1.3) gave a relation
between surface integrals of the electrical field and a volume integral of a charge density. It turns
out that for the line integrations you encounter in magnetostatics a similar type ofrelation can be
found. For any vector field the integral around a surface is equal to thecurl of the vector field
integrated over the surface:

∫

line
~A ·d~l =

∫

surface
(~∇×~A)d~o (2.62)

We will not rigorously prove Stokes theorem, but we will try to give a more hand-waving argument
to make it acceptable to you. Assume you have a vector field~A(x, y, z) and you want to calculate
the path integral of the vector field around an infinitesimal small loop in the planez = 0 as shown
in Fig. 2.11. The line integral

∫

line
~Ad~l is then split up in four parts, with a contribution from each

Figure 2.11:Vector field integrated along a path enclosing an infinitesimal loop in thexy plane.

of the sides of the little square. For each of the sides we must think whatd~l should be, especially
paying attention to the plus and minus signs. Along path1 d~l = (dx, 0, 0), along path2 we move in
the positivey direction sod~l = (0, dy, 0). Paths3 and4 are in the−x and−y direction, respectively,
so they pick up a minus sign with respect to paths1 and2. So the line integration becomes:

∫

line
~Ad~l =

∫ x+dx

x
Ax(x

′,y)dx′ +
∫ y+dy

y
Ay(x,y

′)dy′− (2.63)
∫ x

x+dx
Ax(x

′,y+dy)dx′−
∫ y

y+dy
Ay(x

′,y+dy)dx′ (2.64)

Notice that I have left out thez index everywhere sincez = 0 anyhow. The first component can be
calculated explicitly:

∫ x+dx

x
Ax(x

′,y)dx′ =
1
2
(Ax(x,y)+Ax(x+dx,y))dx (2.65)
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If you do this to all four terms and then collect theAx andAy terms together (go ahead and try) you
will find that:

∫

line
~Ad~l = dxdy(

∂Ax

∂y
− ∂Ay

∂x
) (2.66)

= (~∇×~A)zdo (2.67)

= (~∇×~A) ·d~o (2.68)

For a non-infinitesimal path in thex − y plane we can write thesurface integral as the sum of
many infinitesimal surface integrals as shown in Fig. 2.12. Using the theorem we just derived

Figure 2.12:Many infinitesimal path integrations make up a big one. Notice how only the boundary
integration remains.

for infinitesimal path integrals, you can see from the figure each side of theinfinitesimal loop
borders to another infinitesimal loop that gives exactly an opposite contribution to the path integral,
except when the loop is at the border of your integration area. That is how the relation between a
total surface integration and the path integral around the surface comes about. In this context it is
instructive to think of the the curl of a vector as a littlewhirlpool around it: then it becomes easy
to see why Stokes theorem makes sense. You have to notice that we really didnot give any general
proof of the theorem. We restricted ourselves to integration in thexy plane, and certainly not any
surface. For a more rigorous proof please refer to any vector analysis textbook.

2.6.2 Stokes theorem: example

At this point it is worth to go through an example in which we can apply Stokes’ theorem. Suppose
we want to calculate the path integral over a circular path with radiusR and centerx = y = 0 for a
vector field~A that is parametrized as:

~A =
(−y,x,0)
√

x2 + y2
(2.69)

In Fig. 2.13a you see what the vector field looks like. So what about the lineintegral? The vector
field is just the unit vector in theφ direction so:

∫

line
~A ·d~l =

∫

circle
dl = 2πR (2.70)
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Figure 2.13:In Fig. a) you see a drawing of the vector field~A, in Fig. b) a drawing of~∇×~A.

According to Stokes theorem we could also calculate the curl of this vector field and then do the
integration over the surface spanned by the path. So first the curl of thevector field:

~∇×~A =

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ
∂x ∂y ∂z

Ax Ay Az

∣

∣

∣

∣

∣

∣

= ẑ(
∂
∂x

x
√

x2 + y2
+

∂
∂y

y
√

x2 + y2
) (2.71)

=
ẑ

√

x2 + y2
≡ ẑ

r
(2.72)

In Fig. 2.13b the curl of the vector field~A is drawn. Now let’s calculate the surface integral of~∇×~A.

∫

disk

~∇×~A =
∫ r=R

r=0

∫ φ=2π

φ=0

1
r

rdrdφ = 2πR (2.73)

Notice the factorr coming from the integration in cylindrical coordinates. The answer you geteither
way is exactly the same, though the work has been considerably more extensive when calculating
the surface integral.

2.6.3 The curl of~B

We can now use Stokes theorem to find an elegant differential formulation of the law of Ampere,
just as we could use Gauss law in electrostatics to go from Gauss’s law in integral form to Gauss’s
law in differential form. Recall Ampere’s law:

∫

line
~Bd~l = µ0

∫

surface
~J ·d~o (2.74)

Stokes theorem (equation 2.62) now tells us that the path integral on the left hand side of equa-
tion 2.74 can be written as the surface integral of the curl of~B. So equation 2.74 becomes:

∫

surface
(~∇×~B) ·d~o = µ0

∫

surface
~J ·d~o (2.75)

This can only be true for any~B if:
~∇×~B = µ0~J (2.76)
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Please realize that equation 2.76 isequivalent to Ampere’s law in integral form (equation 2.74);
there is really nothing new in this equation, except for the notation.

Now a little example. We have calculated the magnetic field for a thick wire with a current in
section 2.5.1 to be:







~B = µ0Ir
2πR2 φ̂ = µ0I

2πR2 (−y,x,0) r < R

~B = µ0I
2πr φ̂ r > R

(2.77)

We can explicitly calculate the curl of~B inside the wire:

~∇×~B =

∣

∣

∣

∣

∣

∣

x̂ ŷ ẑ
∂x ∂y ∂z

−y x 0

∣

∣

∣

∣

∣

∣

=
2µ0I
2πR2 ẑ = µ0~J (2.78)

Can you prove that outside the wire~∇×~B = 0?

2.6.4 The divergence of~B

We have an expression for the curl of the magnetic field. What about its divergence? For electrical
fields we had Gauss’s law in differential form which stated that~∇ · ~E = ρ/ε0. The divergence
of the ~E field at any point is equal to the charge density at that point. For the the divergence of
any magnetic field we could get a similar expression, by taking the divergence ofthe law of Biot-
Savart (equation 2.20), since Biot-Savart’s law is true for magnetic fields caused by any current
distribution. For such a proof see for example Griffiths chapter 5.3.2. However, we can actually
predict what~∇ ·~B should be by comparing it to the same expression for the electrical field. In the
equation for~∇ ·~E = ρ/ε0 you see that on the right hand side of the equation you find theelectric
charge density. Sincemagnetic charges do not seem to exist, we can guess that:

~∇ ·~B = 0 (2.79)

This should be true for any magnetic field and it is indeed the answer you findby following the
explicit proof in Griffiths. Let’s see if it is true for the magnetic field of our ’good old’ thick wire
(see above). Inside the wire we have:

~∇ ·~B = ~∇ · µ0Ir
2πR2 φ̂ (2.80)

=
µ0I

2πR2(−∂xy+∂yx) = 0 (2.81)

Outside the wire:

~∇ ·~B = ~∇ · µ0I
2πr

φ̂ (2.82)

=
µ0I
2π

(−∂x
y
r2 +∂y

x
r2) = 0 (2.83)

Notice here that we would run into serious problems if we would have chosento calculate~∇ ·~B for
a wire with zero thickness, due to the singularity in the~B field atr = 0.

Now remember that Gauss’s law for electrostatics could be either written in the differential form
as shown above or in integral form:

∫

surface
~Ed~o =

1
ε0

∫

volume
ρdV (2.84)
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Or in words: the integration of the~E field over a closed surface (i.e. flux) is equal to the total charge
enclosed. Since we know now that~∇ ·~B = 0, we can write for the magnetic flux through any surface
with help of the law of Gauss:

ΦB =
∫

surface
~Bd~o (2.85)

=
∫

volume

~∇ ·~BdV = 0 (2.86)

So the magnetic flux through any closed surface is equal to zero. This is another way of stating that
there exist no magnetic charges.

2.6.5 Summary: Field equations for~E and ~B fields

At this point we know all there is to know about electrostatics and magnetostatics. For any stationary
charge distribution we can in principle calculate the corresponding electric field and for any steady
current we can calculate the resulting magnetic field (though the calculations are not always easy).
In addition we know how a charged particle behaves in these fields, since we have the equation for
the Lorentz force on a charged particle:

~FL = q(~E +~v×~B) (2.87)

There are just four equations needed to calculate all electrical and magnetic fields. In integral form:

∫

surface
~E ·d~o =

1
ε0

∫

volume
ρdV (Gauss law) (2.88)

∫

line
~E ·d~l = 0 (2.89)

∫

surface
~B ·d~o = 0 (2.90)

∫

line
~B ·d~l = µ0

∫

surface
~J ·d~o (Ampere’s law) (2.91)

Using Stokes theorem and the divergence theorem - just mathematical trickery - these integral equa-
tions can be re-written as the following set of differential equations:

~∇ ·~E =
ρ
ε0

(2.92)

~∇×~E = 0 (2.93)
~∇ ·~B = 0 (2.94)

~∇×~B = µ0~J (2.95)

That is all there is to know about electro- and magneto- statics; nothing more nothing less.

2.6.6 Knowledge and Skills

The knowledge and skills you should have acquired during reading of theprevious can be summa-
rized as follows:

• You should be familiar with Stokes’ theorem relating line integrals to surface integrals
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• Ampere’s law in differential form:
~∇×~B = µ0~J (2.96)

• The divergence of the magnetic field is zero:

~∇ ·~B = 0 (2.97)

• You should know the four equations describing electrostatics and magnetostatics

2.7 Magnetic fields in matter

In this section we will try to explain what happens if matter is placed inside magnetic fields.

2.7.1 Paramagnetism: electron spin

Since every electron in matter has intrinsic spin it carries a little magnetic dipole moment with a
dipole moment:

m =
qeh
2me

(2.98)

You can imagine the electron as a spinning electric charge, or a current loop if you want (see
section 2.2.6). Without a magnetic field (see Fig. 2.14a) these dipoles are randomly oriented, but if
a magnetic field is applied the dipole moments - and thus the spin vectors - try to align themselves
with the magnetic field. As a result of the aligned dipole moments the magnetic field isenhanced:
enhancement of a magnetic field in matter due to an applied magnetic field we callparamagnetism.
It seems that since every material contains electrons paramagnetism shouldbe a universal effect

Figure 2.14:Alignment of electron spins in a magnetic field as a cause of para-magnetism.

for all substances. However the Pauli exclusion principle (quantum mechanics) does not allow
electrons in the same orbit to have their spins aligned. So as a rule of thumb onlysubstances with
an odd number of electrons exhibit paramagnetism due to spin alignment, while for substances
with even number of electrons the effect cancels out. Even when a substance is paramagnetic the
alignment of spins is usually (room temperatures) far from complete due to thermal fluctuations. A
last point to remember is that as soon as the external magnetic field disappears, the paramagnetic
effect disappears, and the dipole moments are randomly distributed once more.
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2.7.2 Paramagnetism: Electron orbit

Just as the electron has a magnetic moment, so does the orbiting electron around the nucleus. Again
a current loop! This effect only gives a minute contribution to the paramagnetism, since it turns out
to be much harder to ’turn’ an entire orbit than it is to turn a spin.

Figure 2.15:Alignment of electron orbits resulting in para-magnetism.

2.7.3 Diamagnetism

There is a second, more subtle, effect of a magnetic field on the orbit of anelectron, for which we
will have to look a bit deeper into the centripetal acceleration that holds an atom together. Without
a magnetic field the centripetal acceleration is caused by the Coulomb attractiveforce alone. So:

1
4πε0

e2

R2 = me
v2

R
(2.99)

Now suppose there is a magnetic field, that is perpendicular to the plane of orbit of the electron
and opposite to the direction of the magnetic moment of the atomic orbit (situation shown to the
right side of Fig. 2.16). In that case the centripetal force is sustained byboth the Coulomb and the

Figure 2.16:Changing velocity of the electrons in a magnetic field resulting in diamagnetism.
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Lorentz forces. Equation 2.99 now becomes:

1
4πε0

e2

R2 + ev′ = me
v′2

R
(2.100)

By subtraction of the above two equation, and assuming that the change in velocity is small, we get
for the change in velocity (see Griffiths section 6.1.3):

v− v′ ≈ eRB
2me

(2.101)

When a magnetic field is turned on the electron speeds up and thus the magnetic moment increases.
If the magnetic moment would have been in the opposite direction as shown to the left side in
Fig. 2.16, the velocity of the electron would decrease, and thus the magnetic moment would de-
crease.

In both cases there is a change in magnetic dipole moment that is opposite to the direction of
the applied magnetic field. This effect is called diamagnetism. All substances show diamagnetism,
but in general it is much weaker than paramagnetism, so in general it is only visible when param-
agnetism is absent. In general this was shown to be the case for materials witheven numbers of
electrons. Furthermore, the calculation as shown here does not alwaysgive a reliable result, it is
just made to make the argument clear. To get quantitative answers on diamagnetism a full quantum
mechanically correct calculation is required.

2.7.4 Magnetization and Bound Currents

In the previous section we saw the effects of magnetic field on matter on a microscopic scale. Now
we will give a macroscopic description of magnetic fields in matter. Let us firstconsider a cylinder
of para-magnetic material that is placed inside a magnetic field (see Fig. 2.17a). The magnetic field
- on average - aligns the magnetic dipoles in the material. So there is an averagedipole moment per
volume element, which is defined as

~M ≡ dipole moment
volume

(2.102)

We call ~M the magnetization of the material. If you remember that a magnetic dipole is in fact
nothing else than a little current loop you can have a look on top of the cylinder(see Fig.2.17b).
You see all the current loops lying side-by-side and effectively only a current is running over the
edge of our cylinder. So in case we have a uniformly magnetized object, it can be described as if
there was a current running over the edge of the object. The magnetizationof an object can thus be
interpreted as a surface current.

We can make the above argument more quantitative by considering an examplein which a slab
of para-magnetic material is placed in a magnetic field (see Fig. 2.18a). We canhave a look at the
dipole moment for each little block in the slab by multiplying the magnetization by the volumeof
the little block . This should be equal to the effective current going aroundthe block multiplied by
its area (remember that~m =~IArea). So:

d|~M|Area = IblockArea (2.103)

Now it can be clearly seen from the figure that neighboring blocks have sides carrying opposite cur-
rents, at least in case the magnetization is homogeneous. As a result there isan effective boundary
current which happens to be exactlyIblock. So:

Iboundary = Iblock = |~M|d (2.104)
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Figure 2.17:Effect of a magnetic field on a macroscopic object.

The surface current densityK is just the current per unit length:

K =
|~M|d

d
= |~M| (2.105)

Figure 2.18b shows the equivalent situation for our magnetized slab of material. In a more general
notation our current density can now be written as the cross-product ofthe magnetization vector
and the normal vector to the surface:

~Kmag = ~M× n̂ (2.106)

Finally if the magnetization is non-homogeneous there will also be an effectivevolume current
density (see Griffiths section 6.2), which is written as:

~Jmag = ∇× ~M (2.107)

The vectors~Kmag and~Jmag are what we call the bound surface and volume currents, respectively.
Please notice that these are some kind of effective currents, since no real charge is moved from one
place to another.

2.7.5 Linear materials

A material is called a linear material its magnetization is proportional to the magnetic field. In such
cases~M is written as:

~M =
χm

µ0(1+ χm)
~B (2.108)

whereχm is called the magnetic susceptibility, which is a measured quantity for each material.
Please note that~B is not just the external magnetic field, but the field including the modifications
due to the magnetization (tricky):

~B = ~Bmag +~B0 (2.109)
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Figure 2.18:Magnetization can effectively be described by bound current densities.

where~Bmag is the field due to the magnetization and~B0 is the externally supplied field.

Example: Infinite bar

Consider a long para-magnetic (linear material) cylinder inside an externally supplied magnetic
field ~B0 as in Fig. 2.17. The surface bound current is written as:

Kmag = ~M× n̂ (2.110)

The magnetic field due o the magnetization can be calculated with Ampere’s law assuming that the
cylinder is infinitely long (at this point you should be able to do the calculation yourself, so I don’t
do it):

~Bmag = µ0|~Kmag|ẑ (2.111)

Now we can use Eq. 2.108 to rewrite this equation in terms of its susceptibility as:

~Bmag = χm~B0 (2.112)

So we can see that the total magnetic field inside the cylinder is modified with a factor (1+ χm).

Example: Infinite bar with free current

We are now considering the infinite cylinder once more, but now we are generating the external
magnetic field with a wire running around the cylinder (also see section 2.5.3).Suppose we haven
windings per meter and a free currentI then the magnetic field due to the free current is:

~B0 = nIẑ = K f reeẑ (2.113)

Now suppose we fill the interior of the cylinder with a linear magnetic material with asusceptibility
χm, then we know from the previous example that:

~B = (1+ χm)~B0 = (1+ χm)nIẑ (2.114)

So by inserting some material inside a magnet we have a way of amplifying (para-magnetic) or
damping (dia-magnetic) the resulting field.
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2.7.6 Ferromagnetism

Finally we come to the special case of ferromagnetism. In ferro-magnetic materials electron spins
really love to align with each other. Whereas for the normal paramagnetic materials the alignment
was far from perfect, for a ferromagnetic material the alignment can be almost 100%. Usually
there are little areas - so called Weiss domains - in which the spins are aligned (see Fig. 2.19), and
usually the effect of these areas cancel out giving no noticeable external magnetic field. However,

Figure 2.19: In a ferro-magnetic material there are domains where spins spontaneouslyalign to
each other. These are the so called Weiss areas.

once an external magnetic field is applied all these domains can spontaneously align themselves to
the magnetic field. A small externally applied field can then result in a huge magnetic field from
the material. Another interesting property of ferromagnetism is what happens when the external
magnetic field is switched off. The alignment of spins might become less, but it does not disappear:
you have created a permanent magnet!

If for example our solenoid from the previous example is filled with a ferromagnetic material,
the resulting~B field may be 100 times larger than the externally applied field. The effect is highly
non-linear as illustrated in Fig. 2.20, which shows the magnetic field as a function of the externally
applied field. First the~B field grows rapidly as a function of the external field. Then at a certain

Figure 2.20:If the external magnetic field is removed from a ferro-magnetic material the magneti-
zation does not directly disappear. This non-linear behavior is called hysteresis.

point the dipole moments of all domains are aligned and there is no further increase in~B (satura-
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tion). If the external field is removed, there is still quite some magnetic field remaining due to the
ferromagnetism. Only once the external field is fully reversed, the~B field finally changes sign.

2.7.7 Knowledge and Skills

The knowledge and skills you should have acquired during reading of theprevious can be summa-
rized as follows:

• In para-magnetic material the magnetization is in the same direction as the externallyapplied
magnetic field;

• In dia-magnetic materials the magnetization is in the opposite direction as the externally
applied magnetic field;

• A magnetized object can be effectively described with bound surface current density~Kmag

and a volume current density~Jmag, with:

~Kmag = ~M× n̂ (2.115)

~Jmag = ~∇× ~M (2.116)

• Linear materials are materials for which the magnetization is proportional to the magnetic
field:

~M =
χm

µ0(1+ χm)
~B (2.117)

whereχm is the magnetic susceptibility of the material.
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Chapter 3

Electrodynamics

3.1 Introduction

In this part we discuss the electric charge configurations and currents that are not constant in time.
We start with a study of the effects of electromagnetic force acting on charge. This study allows
us to understand time dependent currents in electric circuits consisting of combinations of resistors,
capacitors and inductors. Our main quest is the time dependent behavior ofelectric and magnetic
fields, leading to an elegant description in terms of the Maxwell equations.

3.2 Current and force

3.2.1 Why does current flow?

Current flows because something is pushing the charge carriers (electrons). And that something is
an electric (or magnetic as we will see later) force. Let’s analyze that. Consider a piece of wire made
of copper with a current density~J as illustrated in Fig. 3.1. To make the electrons that constitute the

Figure 3.1:A piece of wire made of copper with a current density~J.

current a force~f is needed. The force~f is defined as a force per unit charge. For normal everyday
materials and current densities, the current is proportional to the force:

~J = σ~f (3.1)

with σ the conductivity1 depending on the material. Usually, in tables describing characteristics of
materials, one gives the reciprocal value of this quantity, called the resistivity ρ = 1/σ .

The above expression looks reasonable at first sight, but when you think of it you may get con-
fused about the following. When a force acts on the electrons in the wire, one would expect that the

1Historically the symbolσ is used for conductivity, while we (and others) also use it for a surfacecharge density. So,
don’t get confused.

85



86 CHAPTER 3. ELECTRODYNAMICS

electrons acquire more and more speed with time. Consequently, the currentwould increase with
time, which is not the case. Why not? Well, there appears to be a cancellation due to ’collisions’ of
the free electrons and the nuclei in the material. This effect, that manifests itself as a constant fric-
tion, is illustrated in Fig. 3.2. Right after the current starts an equilibrium between the accelerating
force~f and the de-accelarating friction sets in.

Figure 3.2:Top: The free electron undergoes a force~f . Since it is really free its speed increases
rapidly with time. Bottom: Another electron that also undergoes a force~f is constrained in a
material and collides with nuclei, such that it effectively senses a frictionalforce that cancels~f and
eventually obtains a constant velocity.

3.2.2 Ohm’s law

So far, we discussed the relation between force~f and the current density~J, without bothering about
the origin of it. The origin of the force~f for our purpose is an electric field caused by any device
that establishes a potential difference, such as a battery, a van der Graaff generator or a dynamo.
We know that in general the electric force is given by~F = q~E. The force~f was defined per unit
charge, thus we may write~f = ~E. Now we consider a piece of wire with cross sectionA and length
l. A potential differenceV over the wire leads trough a currentI as shown in Fig. 3.3. According to

Figure 3.3:A piece of wire with lengthl and cross sectionA. The potential differenceV over its
ends leads to a current~I.

Ohm’s law,V andI are related by:

V = IR (3.2)
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with R the resistance of the wire. This law is the subject of many physics lectures athigh school.
Can we derive this law? Yes, in fact its derivation is rather straightforward!

For a perfect conductor, the conductivityσ = ∞ and thus~E = ~J/σ = 0. For a real, everyday,
conductor the electric field inside may be zero for stationary charges, butcertainly not for the
situation when current flows, like in our case. In our piece of wire the electric field is given by:

|~E| = V
l

(3.3)

The current density in the wire can be written as:

|~J| = σ |~f | = σ |~E| = σ
V
l

(3.4)

For |~J| we writeI/A and obtain:

|~J| = I
A

= σ
V
l

(3.5)

and thus:

V =
Il

σA
≡ IR (3.6)

with R ≡ l
σA . Hence, when we double the lengthl of the wire the resistance becomes twice as

large. When we double the radius of the wire the resistance drops by a factor four. The conductivity
of copper is aboutσ = 6×107 (Ωm)−1. A copper wire of 1 meter length and a cross section of
0.75 mm2 has a resistance of aboutR = 0.02 Ω.

3.2.3 Electromotive force

Figure 3.4 shows an electric circuit with a current density~J. We know that a force~f drives the

Figure 3.4:An electric circuit with current density~J. The electric field and a battery (~fb) are also
indicated.

current through the wire. In the wire this force is an electric field, an electrostatic field. The field
through the wire is produced by the+ and− side of a battery. We know from electrostatic theory
that

∫

circuit
~E · d~l = 0, and thus

∫

wire
~E · d~l = −∫battery

~E · d~l. Hence, the electric field in the battery
points opposite to that in the wire. Anyway, you may ask now: if the field integrals cancel each
other there is no net force, so there can’t be a current. Well, we forgot the force,fb delivered by the
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battery itself, which is a chemical reaction that maintains the electric potential over the + and−
side. The total force that drives a current to a circuit is thus:

~f = ~fb +~E (3.7)

Note that~f is not constant in the circuit:fb is only present in the battery and~E in the wire is
different from~E in the battery.

The net effect of this force is the line integral over the circuit and is calledthe electromotive
force:

EMF =
∫

circuit

~f ·d~l =
∫

cicuit
(~fb +~E) ·d~l

=
∫

battery

~fb ·d~l +
∫

cicuit
~E ·d~l

=
∫

battery

~fb ·d~l (3.8)

In an ideal battery there is no friction or net force on the charges and thus:

EMF =
∫

battery

~fb ·d~l = −
∫

battery
~E ·d~l = Vb

(

=
∫

wire
~E ·d~l

)

(3.9)

Hence, the electromotive force is just the potential (difference),Vb, of the battery.

3.2.4 Induced EMF

Consider the experiment of a circuit pulled out of an magnetic field with a speed~v as illustrated
in Fig. 3.5. The movement of the circuit out of the magnetic field leads to anEMF. What is the

Figure 3.5:An electric circuit with a light bulb with resistanceR is pulled out of a magnetic field
~B. The vertical height of the circuit ish. The length of the part of the circuit that is in the magnetic
field is labeleds. The Lorentz force on the (imaginary) positive charge carriers is also indicated.

source of theEMF? It is the Lorentz force on the (moving) charges in the wire. In the figure
the Lorentz force on the (imaginary) positive charge carriers is indicated, because that defines the
direction of the current, while in reality the Lorentz force on the electrons is the relevant driving
force. The Lorentz force in the horizontal pieces of the circuit point downward, perpendicular to
the wire, as indicated. In the vertical piece of wire in the magnetic field the charge carriers that
constitute a current will be pushed in the direction as indicated in the figure. The force per unit
charge is~f =~v×~B. For theEMF follows:

EMF =
∫

circuit

~f ·d~l =
∫ h

0
|~f |dl =

∫ h

0
|~v×~B|dl = |~v||~B|h (3.10)
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Note that the horizontal pieces do not contribute to theEMF. TheEMF generated by the movement
of the wire is called inductance, resulting in a potential difference over the light bulb of sizeVind =
EMF.

For reasons that become clear in a moment we study the flux of the magnetic fieldthrough the
circuit. The magnetic flux is given by:

ΦB =
∫

sur f ace
~B ·d~o = Bhs (3.11)

wheres is the part of the circuit that lies in the magnetic field, which depends on the time when we
pull the circuit out of the field. The time derivative of the magnetic flux is given by:

dΦB

dt
=

d(Bhs)
dt

= Bh
ds
dt

= −Bhv = Vind (3.12)

Hence, we have found a relation between the EMF and the change of the magnetic flux:

EMF = −dΦB

dt
= −Vind (3.13)

This principle to create electromotive force is exploited by electric generators (dynamo’s).

3.2.5 Faraday’s law

Figure 3.6:An electric circuit with a light bulb with resistanceR is located in an magnetic field~B.
At time t = 0 the magnetic field is pulled to the left.

Figure 3.6 illustrates one of the experiments Faraday conducted in 1831. Inthis experiment an
electric circuit is first located in a magnetic field. Then, at timet = 0, the magnet is pulled away
with a speed~v. The height of the wire loop ish and vertical part of the wire that is in the area
of the magnetic field iss. An EMF leads to a current and the light bulb flashes, just like in the
’experiment’ when the circuit was pulled away described in the previous section.

We ask the same question now: what is the source of theEMF? Well, based on relativity princi-
ple, this is physics-wise exactly the same experiment as we did before. So, tocalculate theEMF we
transform this experiment to the previous experiment and conclude that theEMF originates from
the Lorentz force.

Good, but no cigar, because it is not the answer we are looking for! Think different and forget
about the relativity principle and analyze this experiment based on what weknow already about
electrostatic, magnetostatic and electrodynamics. We do not transform to the previous experiment:
physics-wise the results should be invariant anyway! In this experiment there is no moving charge,
so there is no Lorentz force as source of theEMF. We can write:

EMF =
∫

circuit

~f ·d~l =
∫

circuit
~E ·d~l 6= 0 (3.14)
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How can
∫

circuit
~E ·d~l 6= 0? Well, this is electrodynamics, not electrostatics! So, this time theEMF

is electric in nature. When we use Stokes Law, we obtain:

EMF =
∫

circuit
~E ·d~l

=
∫

sur f ace−circuit
(~∇×~E) ·d~o (3.15)

From the previous section we know that

EMF = −dΦB

dt
= − d

dt

∫

sur f ace−circuit
~B ·d~o

= −
∫

sur f ace−circuit

∂~B
∂ t

·d~o (3.16)

When we combine these results we find Faraday’s Law:

~∇×~E = −∂~B
∂ t

(3.17)

Hence, a changing magnetic field induces an electric field.
In the first experiment we calculated the Lorentz force and therefore knew the direction of the

current. In the second experiment it is already much harder to figure outwhat the direction of the
current will be. And, you could get really lost when you have to predictthe direction of the current
in case of a time dependent magnetic field! Fortunately, there is a handy trick todo this, called
Lenz’s Law. It states that the:

’ induced current attempts to compensate the change of magnetic flux’.
Hence, when the magnetic flux decreases (when the circuit is pulled out ofthe field) the induced

current generates a magnetic field in the original field direction (think of the circuit as a solenoid
with one winding). Use your right hand to deduce that the current flows counter clock wise in the
experiments we just discussed.

3.2.6 Knowledge and skills

The knowledge and skills you should have acquired during reading of theprevious can be summa-
rized as follows:

• You can derive Ohm’s LawV = IR from ~J = σ~f .

• You can calculate theEMF of an electric circuit.

• You understand the following relation:

EMF = Vinduced = −dΦB

dt
(3.18)

and that a changing magnetic field induces an electric field according to the relation:

~∇×~E = −∂~B
∂ t

(3.19)

• You know how to predict the induced current in an electric circuit using Lenz’s Law.
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3.3 Electromagnetic inductance and circuits

3.3.1 Self-inductance

Figure 3.7 depicts an illustration of a current loop and its magnetic field. From Biot-Savart’s Law

Figure 3.7:An illustration of a current loop and its magnetic field.

we know that whatever the exact shape of the current loop, its magnetic field is proportional to the
current: |~B| ∝ I. When we consider the magnetic flux through the loop, originating from its own
magnetic field we can write:

ΦB =
∫

loop
~B ·d~o ∝ I

≡ LI (3.20)

with L a factor of proportionality called self-inductance, with unit Henry, 1 H=1 Vs/A. The self-
inductance only depends on the geometry and size of the loop.

When the wire loop is placed in a magnetic field, it requires an electromotive force to change
its current:

EMF = Vloop = −dΦB

dt
= L

dI
dt

(3.21)

Self-inductance of a solenoid

Figure 3.8:A solenoid withN windings per meter, radiusR and lengthl.

Figure 3.8 shows a solenoid with radiusR, lengthl andN windings per meter. To determine the
self-inductance of this solenoid we calculate the flux through all windings from its own magnetic
field. Using Amp̀ere’s law we know the field in the solenoid:~B = µ0NIẑ. The magnetic flux though
a single winding is:

Φ1
B =

∫

winding−sur f ace
~B ·d~o (3.22)
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The field points in the direction of normal of the surface, so

Φ1
B =

∫

winding−sur f ace
|~B|do

=
∫ 2π

φ=0

∫ R

r=0
µ0NIrdrdφ

= µ0NIπR2 (3.23)

The number of windings of the solenoid isNl, which leads to a total flux through the solenoid of:

ΦB = NlΦ1
B = µ0N2IπR2l (3.24)

As predicted, this flux is proportional to the currentI. Hence, the self-inductance,L, of this solenoid
is:

L = ΦB/I = µ0N2lπR2 (3.25)

Self-inductance of a coaxial cable

Figure 3.9:A coaxial cable with inner radiusa and outer radiusb and lengthl. In the inner and
outer core, but in opposite direction, flows a currentI.

Figure 3.9 shows a coaxial cable with inner radiusa and outer radiusb and lengthl. A current
I flows though the inner core in one direction and runs in the opposite directionin the outer core.

Inside the cable in the regiona < r < b, there is a magnetic field in theφ direction. Using
Ampère’s Law we determine the magnitude of this field:

∫

loop
~B ·d~l =

∫ 2π

0
Bφ rdφ = Bφ 2πr = µ0I (3.26)

and thusBφ = (µ0I)/(2πr).
To calculate the magnetic flux in the coaxial cable we have to determine ’amount’ of magnetic

field that runs through the region betweena < r < b and lengthl:

ΦB =
∫ l

0
dl′
∫ b

a
dr

µ0I
2πr

= l
∫ b

a
dr

µ0I
2πr

= l
µ0I
2π

ln(b/a) (3.27)

And again, the flux is proportional toI and the self-inductance becomes:

L =
ΦB

I
= l

µ0

2π
ln(b/a) (3.28)
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3.3.2 Mutual inductance

Figure 3.10:Illustration of two infinitesimal loops (1 and 2) with currentI that ’sense’ each other’s
magnetic field, indicated by the arrows. The left and right drawing depict two different orientations
of the loops.

Consider two identical infinitesimal loops (we use square loops) as shown inFig. 3.10, both with
currentI = I1 = I2. For the flux through loop 2 from loop 1 we can writeΦ(1)

2 = MI1 = MI. With
M a factor of proportionality, called the mutual inductance. Physically the situation is completely
symmetric. Hence, for the flux through loop 1, we can writeΦ(2)

1 = MI2 = MI, with the same factor
M. If we change the orientation of the loops, the factorM changes accordingly, but the symmetry
Φ(2)

1 = Φ(1)
2 remains.

Is this relation also valid for macroscopic loops of any size and shape? We consider the in-
finitesimal loops again. Suppose we extend the second loop, 2a, with an additional infinitesimal
loop, 2b, (with the same current) as depicted in Fig. 3.11. The extended loop2=2a+2b now forms a
single loop again, but just twice as large as the original. We can write:

Φ(2)
1 = Φ(a+b)

1 = Φ(a)
1 +Φ(b)

1 = MaI +MbI = Ma+bI (3.29)

All the arguments before allow us to write for the individual contributions from a and b:

Φ(a)
1 = MaI = Φ(1)

a

Φ(b)
1 = MbI = Φ(1)

b

and thus:
Φ(1)

2 = Φ(1)
(a+b) = Φ(1)

a +Φ(1)
b = MaI +MbI = Ma+bI (3.30)

We could extend the loop 2 again by adding another additional infinitesimal loopand would find the
same relation again. In fact, we can make macroscopic loop of any size and shape of a collection of
infinitesimal loops and thus we can conclude that

Φ(2)
1 = MI2

Φ(1)
2 = MI1 (3.31)



94 CHAPTER 3. ELECTRODYNAMICS

Figure 3.11:Illustration of two loops (1 and 2) with currentI that ’sense’ each other’s magnetic
field, indicated by the arrows. The second loop consists of two infinitesimal loops, a and b.

whereM depends on the exact geometry of the configuration.
As an example we consider the configuration with a single current loopL, radiusRL, placed in

a long solenoidS with radiusRS and N windings per meter as illustrated in Fig. 3.12. A currentI

Figure 3.12:Illustration of a single loopL in a long solenoidS, both with currentI.

runs through the winding(s) ofL andS. What is the flux through the solenoidS from L. You could
calculate the dipole field ofL and determine the flux thatS sees by integration. Yes, you could,
but you should not. Instead, you should write down:Φ(S)

L = MI = Φ(L)
S . Thus, when you calculate

the flux throughL from S, Φ(S)
L , you also haveΦ(L)

S . The solenoid generates a magnetic field of
B = BS = µ0NI in the axial direction. The flux throughL is:

Φ(S)
L = BπR2

L = µ0πR2
LNI (3.32)

We can read off thatM = µ0πR2
LN and thus the flux through the solenoid from the single loop is

thus:

Φ(L)
S = MI = µ0πR2

LNI (3.33)
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3.3.3 Electric circuits

In the previous sections we discussed the relation between the current and theEMF for a resistor
and for an inductor. Another object is the capacitor which was introducedin the course on electro-
statics:VC = Q/C. Analogous to the self-inductanceL for an inductor, the capacitanceC depends
only on the geometry of the configuration. TheEMF to charge a capacitor equalsVC and a relation
with the current can be easily derived:

dVC

dt
=

1
C

dQ
dt

=
1
C

I (3.34)

Now we have three objects that we can combine to build electric circuits. Electriccircuits
that we consider consist of a battery that provides the potential difference V0 leading to current
through a closed circuit that consist of, or combinations of, resistor(s), capacitor(s) and inductor(s).
The voltage change going around the circuit in the direction of the currentflow should be zero
(Kirchoff’s Voltage Law). Note that we wrote voltagechange, we can have a voltage drop or a
voltage rise, implying that we should keep track of+ and− signs once again.

For our three objects the voltage always drops when we follow the current I in the positive
direction. Remember that when we cross a battery (in the direction of positivecurrent) the voltage
increases by the battery potentialV0. We summarize these properties in Table 3.1.

Object Potential change relation withI
ResistorR −VR VR = IR
InductorL −VL VL = L dI

dt
CapacitorC −VC

dVC
dt = 1

C I
BatteryV0 V0 no resistance

Table 3.1: The voltage change over possible elements in an electric circuit when we follow the
direction of the positive current.

Consider the electric circuit consisting of a battery with potentialV0, a self-inductanceL and a
resistorR, shown in Fig. 3.13. At timet = 0 the battery is just hooked on and the current through

Figure 3.13:An electric circuit with a battery, resistor and a self-inductance.

the circuit is zero:I(0) = 0. What is the current at any time? To solve this problem, we ’walk’
around starting just before the resistor and add all voltage changes: Weuse Table 3.1 and obtain:

−VR −VL +V0 = 0
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V0−VL = VR

V0−L
dI
dt

= I(t)R

dI
dt

= −R
L

I(t)+
V0

L
(3.35)

Physically we can interpret the last equation as the electromotive forceV0−L dI
dt of a battery and an

inductor that establishes the potentialVR = IR to drive a current through a resistor.
Mathematically, it is a first order differential equation with the structured f

dt = a f + b. The
general solution isf (t) = keat − b

a , with a, b andk constants. Returning to ourLR circuit, we write:

I(t) =
V0

R
(1− e−(R/L)t) (3.36)

Figure 3.14 shows the current as function of time. At time intervalsL/R, called the time constant,
the current increases with fractions 1−1/e.

Figure 3.14:The current of anLR circuit as function of time.

Another first order circuit is shown in Fig. 3.15, which consists of a resistor, a capacitor and a
battery. At timet = 0, the battery is just hooked on, the charge on the capacitorQC(0) = 0 (and

Figure 3.15:An electric circuit with a battery, resistor and a capacitor.

VC(0) = 0) and the currentI(0) = 0. What is the potential over the capacitor at any time? We ’walk’
around starting just before the resistor and add all voltage changes: Weuse Table 3.1 and obtain:

−VR −VC +V0 = 0

V0−VC = VR

V0−VC = I(t)R

V0−VC = RC
dVC

dt
(3.37)
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with solution:
VC(t) = V0(1− e−t/(RC)) (3.38)

The time constant of this circuit isRC as illustrated by Fig. 3.16.

Figure 3.16:The potential difference over a capacitor in anRC circuit as function of time.

3.3.4 Energy in electric circuits

Energy dissipation in a resistor

Consider the basic circuit of a battery and a resistor, shown in Fig. 3.17 below. Each second a charge

Figure 3.17:An electric circuit consisting of a batteryV0 and a resistorR.

Q = I is pumped through the resistor, which requires workW . Some chemical reaction in the battery
provides the necessary energy. The dissipated energy in the resistor istransformed into heat. Since
the voltage change over the resistor isV = V0, the energy needed to transport the charge equals
W = V Q. The energy per seconddW/dt, the power, dissipated by resistor isP = V Q/1s= V I with
unit Watt. Using Ohm’s Law we obtain the equivalent expressionsP = I2R andP = V 2/R.

Energy stored in a capacitor

In the course on electrostatics we have derived that the energy in a capacitor is given byW = 1
2CV 2.

In this section we study the energy stored in a capacitor in an electric circuit and obviously expect
to find the same result. Consider anRC circuit as discussed in section 3.3.3. From the calculation
in this section we conclude that the capacitor gets charged (with time constantRC). For the power
required to charge the capacitor we write:

P =
dWC

dt
= VC(t)I(t) =

QC

C
dQC

dt
(3.39)
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The total energy in a charged capacitor (QC = Q) is obtained by integration over time:

W =
∫ ∞

t=0

dW
dt

dt =
∫ ∞

t=0

QC

C
dQC

dt
dt

=
∫ ∞

t=0

QC

C
dQC

dt
dt

=
∫ Q

QC=0

QC

C
dQC =

1
2

Q2

C
=

1
2

CV 2 (3.40)

which is no surprise.
An alternative expression for the energy in the electric field, also derived in the Chapter on

electrostatics, is:

WC =
ε0

2

∫

volume
E2dv (3.41)

Let’s check this expression for a parallel plate capacitor. The distance between the plates isd and
the plates have a surface areaA, leading to a capacityC = ε0A

d . In the ideal case, the electric field
outside the plates is zero, while in between the plates the field is given by|~E|=V/d. For the energy
we find

WC =
ε0

2

∫

volume

V 2

d2 dv

=
ε0

2
V 2

d2 Ad =
ε0A
2d

V 2 =
1
2

CV 2 (3.42)

as expected.

Energy stored in a self-inductance

To determine the energy stored in a self-inductance we can follow the same strategy as above. For
the power required to reach a currentIL = I in a self-inductanceL we write:

P =
dWL

dt
= IL(t)Vinduced(t) = IL(t)L

dIL

dt
(3.43)

The total energy in the self-inductance is obtained by integration over time:

WL =
∫ ∞

t=0

dW
dt

dt =
∫ ∞

t=0
IL(t)L

dIL

dt
dt

=
∫ I

IL=0
IL(t)LdIL

=
1
2

LI2 (3.44)

This formula has the same structure as the expression for a capacitor. Is there also an alternative
expression for energy in a self-inductance in terms of the magnetic field? Well, we could just try:

WL =
1

2µ0

∫

volume
B2dv (3.45)
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Let’s check this expression for a solenoid. For a solenoidL = µ0lN2πR2 and thus (using equa-
tion 3.44)WL = µ0

2 lN2πR2I2. Now we use the trial equation 3.45:

WL =
1

2µ0

∫

volume
(µ0NI)2dv

=
1

2µ0
(µ0NI)2lπR2

=
µ0

2
lN2πR2I2 (3.46)

which leads to the same result! Equation 3.45 is indeed the correct expression for the energy of
the magnetic field. By the way, we can also use this expression for the energy to calculate the
self-inductance of an object:L = 2WL/I2.

3.3.5 Knowledge and skills

The knowledge and skills you should have acquired during reading of theprevious can be summa-
rized as follows:

• You understand the meaning of self-inductance and mutual inductance.

• You can calculate the self-inductance of the solenoid and a coaxial cable.

• You can calculate the time dependent current inRC andLR circuits.

• You can calculate the energy in a self-inductance and in the magnetic field.

3.4 Maxwell equations

In this section we complete the field equations and derive the existence of electromagnetic waves:
light! First we summarize the field equations, we encountered so far. Look at the structure of these

Comment Integral
Gauss

∫

sur f ace
~E ·d~o = Qenclosed/ε0 =

∫

volume
ρ
ε0

dv

No magnetic monopoles
∫

sur f ace
~B ·d~o = 0

Faraday
∫

loop
~E ·d~l = − dΦB

dt

Ampère
∫

loop
~B ·d~l = µ0Ienclosed =

∫

sur f ace
~J ·d~o

Differential

Gauss ~∇ ·~E = ρ/ε0

No magnetic monopoles~∇ ·~B = 0

Faraday ~∇×~E = − ∂~B
∂ t

Ampère ~∇×~B = µ0~J

Table 3.2:The (incomplete) field equations based on electrostatics, magnetostatics and Faraday’s
Law in integral and differential form.

equations in Table 3.2. There is an asymmetry between the electric and magnetic field, due to the
fact that there exist no magnetic monopoles. In addition, there is nowhere aterm ∂~E

∂ t . Did we miss
something? How can we find that term, called the Maxwell term?
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3.4.1 The Maxwell term from a gedanken experiment

At time t = 0 an empty capacitor is charged in a circuit as depicted in Fig. 3.18. Around the wire at

Figure 3.18:An electric circuit with a parallel plate capacitor. An Amperian loop is indicated.Also
indicated are two surfaces (a andb) that are enclosed by the Amperian loop. Surfacea has the
’usual’ shape of a disk. Surfaceb has the shape of a balloon and is stretched in between the plates
of the capacitor.

positiona a magnetic field is generated by the currentI such that Amp̀ere’s law is fulfilled:
∫

loopa
~B ·d~l = µ0I (3.47)

In this case, the loopa spans a surface, a disk, penetrated by the the wire, thus the enclosed current
is I.

Now we modify the surface a little bit and stretch it in between the capacitor plates, such that
it acquires the shape of a balloonb. In fact, no wire is pointing through the surface and the the
enclosed current is zero:

∫

loopb
~B ·d~l = 0 (3.48)

which suggests that the magnetic field has vanished in conflict with equation 3.47. Something must
be wrong with Amp̀ere’s law! How can we fix that? Well, the electric field between the plates of
the capacitors is|~E| = σ

ε0
= Q(t)

Aε0
. The time derivative is| ∂~E

∂ t | = 1
Aε0

dQ
dt = I

Aε0
. A changing electric

field is related to a current, which fixes Ampère’s Law:

∫

loop
~B ·d~l = µ0Ienclosed + µ0ε0

∫

sur f ace

∂~E
∂ t

·d~o (3.49)

and we conclude that a changing electric field induced a magnetic field!
This calculation may look not so scientific to you or perhaps it even looks like a hat-trick. Right,

but nevertheless the result correctly describes the original gedankenexperiment!
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3.4.2 The Maxwell term from a controlled charge explosion

Another example that yields the Maxwell term is a slowly exploding charge as illustrated in Fig. 3.19.
A large collection of charge at the origin slowly explodes. In the figure, animaginary sphere is also

Figure 3.19:A large amount of charge at the origin slowly ’explodes’. The charge that emerges
from the explosion traverses an imaginary sphere. On the surface of thissphere an infinitesimal
Amperian loop is also indicated

shown. The charge that emerges from the explosion uniformly traversesthe sphere. You could
compare this situation with a radioactive decay. However, in radioactive decays usually, besides
electrons, also photons and neutrinos are produced. Anyway, charge-wise, the explosion is compa-
rable to radioactive decays. When we start withN0 nuclei with chargeq and lifetimeτ, then the
number of nuclei at a given time isN(t) = N0e−t/τ and the total charge isQ(t) = qN(t). The electric
field of the charged nuclei is given by:

~E =
1

4πε0

qN0e−t/τ

r2 r̂ (3.50)

Each decay produces a chargeq which leads to a ’shower of charge’ that escapes: with correspond-
ing current:

I = −dQ(t)
dt

=
qN0

τ
e−t/τ (3.51)

For the current density through a spherical surface we find:

~J =
qN0

τ
e−t/τ

4πr2 r̂ (3.52)

wherer represents the radius of the surface.
Now we investigate the integral

∫

loop
~B(r) · d~l of the magnetic field over a small loop on the

surface of the sphere, also indicated in Fig. 3.19. The dot-product filters out the component of the
magnetic field along the surface of the sphere,B//. What is the magnitude of this component? Well,
look at the symmetry of the configuration. The can not be a component of themagnetic field along
the surface, and thus:

∫

loop
~B(r) ·d~l =

∫

loop
B//(r)dl = 0 (3.53)
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According to Amp̀ere’s law, this loop integral should be proportional with the enclosed current:
µ0Ienclosed = µ0~J ·d~o. Is the enclosed current zero as equation 3.53 demands? No, becausethere is
certainly charge showering through the surface enclosed by the loop. So, Amp̀ere’s Law fails again.
Let’s see whether the changing electric field completes the equation:

∫

loop
~B ·d~l = µ0Ienclosed + µ0ε0

∫

sur f ace

∂~E
∂ t

·d~o (3.54)

= µ0

∫

sur f ace
~J ·d~o+ µ0ε0

∫

sur f ace

∂~E
∂ t

·d~o

Now we substitute the expressions we derived for the current density (equation 3.52) and the electric
field (equation 3.50) and obtain:

∫

loop
~B ·d~l = µ0

∫

sur f ace
N0

Q
τ

e−t/τ

4πr2 do+ µ0ε0

∫

sur f ace

N0Q
4πε0r2

∂e−t/τ

∂ t
do

= µ0

∫

sur f ace
N0

Q
τ

e−t/τ

4πr2 do−µ0

∫

sur f ace
N0

Q
τ

e−t/τ

4πr2 do

= 0 (3.55)

So, the Maxwell termµ0ε0
∫

sur f ace
∂~E
∂ t ·d~o, saves the day again!

3.4.3 Continuity equation

In the previous section we used the fact that charge is conserved. A current through a (closed)
surface was the result of a changing charge in the enclosed volume:

Isur f ace = −dQvolume

dt
∫

sur f ace
~J ·d~o = − d

dt

∫

volume
ρdv

∫

sur f ace
~J ·d~o+

d
dt

∫

volume
ρdv = 0 (3.56)

Using Gauss’s rule we can write:
∫

volume

~∇ · ~Jdv+
∫

volume

dρ
dt

dv = 0 (3.57)

and thus:
~∇ · ~J +

dρ
dt

= 0 (3.58)

This expression is known as the continuity equation.
Is this consistent with our renewed Ampère’s Law? We start with:

∫

loop
~B ·d~l = µ0

∫

sur f ace
~J ·d~o+ µ0ε0

∫

sur f ace

∂~E
∂ t

·d~o (3.59)

and use Stokes Law to write:
∫

sur f ace

~∇×~B ·d~o = µ0

∫

sur f ace
~J ·d~o+ µ0ε0

∫

sur f ace

∂~E
∂ t

·d~o (3.60)
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Note that the surface is arbitrary, thus the integrands must be equal:

~∇×~B = µ0~J + µ0ε0
∂~E
∂ t

(3.61)

(which by the way is the renewed Ampère’s Law in differential form!) Now take the divergence of
this equation and realize that the divergence of a rotation is zero by construction:

~∇ · (~∇×~B) = 0 = µ0
~∇ · ~J + µ0ε0

~∇ · ∂~E
∂ t

(3.62)

or equivalently

~∇ · (~∇×~B) = 0 = µ0
~∇ · ~J + µ0

∂ρ
∂ t

(3.63)

from which we can read off the continuity equation. As a matter of fact we can conclude that
Ampère’s Law extended with Maxwell’s term leads to charge conservation.

3.4.4 The complete set of Maxwell equations

The time has come to write down the complete set of field equations which we derived during our
tour through electrostatics, magnetostatics and electrodynamics leading to Faraday’s Law and the
Maxwell term. The equations are know as the Maxwell Equations and are listed in table 3.3. The

Comment Integral
Gauss

∫

sur f ace
~E ·d~o = Qenclosed/ε0 =

∫

volume
ρ
ε0

dv

No magnetic monopoles
∫

sur f ace
~B ·d~o = 0

Faraday
∫

loop
~E ·d~l = − dΦB

dt

Ampère+Maxwell term
∫

loop
~B ·d~l = µ0Ienclosed + µ0ε0

∫

sur f ace
∂~E
∂ t ·d~o

Differential

Gauss ~∇ ·~E = ρ/ε0

No magnetic monopoles~∇ ·~B = 0
Faraday ~∇×~E = − ∂B

∂ t

Ampère+Maxwell term ~∇×~B = µ0~J + µ0ε0
∂~E
∂ t

Table 3.3:The complete set of field equations based on electrostatics, magnetostatics and electro-
dynamics, called the Maxwell Equations, in integral and differential form.

physical behavior of electric and magnetic field are described by these equations. In the following
section we use the Maxwell Equations to derive the existence of electromagnetic waves of which
light is a specific example.

3.4.5 Electromagnetic waves

The Maxwell equations, based on empirical studies, can now be used to further investigate the
physics of the electric and magnetic field. In this section we study the fields in free space, which
requires some mathematics, but the result will be worth it.
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In vacuum, away from electric charges and currents the Maxwell Equations (in differential
form) simplify to:

(a) ~∇ ·~E = 0

(b) ~∇×~E = −∂~B
∂ t

(c) ~∇ ·~B = 0

(d) ~∇×~B = µ0ε0
∂~E
∂ t

(3.64)

Now take the rotation of 3.64b and write:

~∇×~∇×~E = −~∇× ∂~B
∂ t

(3.65)

First, we concentrate on the left hand side. Using basic calculus we obtain:

~∇×~∇×~E = ~∇(~∇ ·~E)−~∇2~E (3.66)

Remember that we are in vacuum and use equation 3.64a to write:

~∇×~∇×~E = −~∇2~E (3.67)

Now, we proceed with the right hand side:

−~∇× ∂~B
∂ t

= −∂~∇×~B
∂ t

(3.68)

and use 3.64d to write:

−~∇× ∂~B
∂ t

= −µ0ε0
∂ 2~E
∂ t2 (3.69)

When the results are combined we obtain:

~∇2~E = µ0ε0
∂ 2~E
∂ t2 (3.70)

Starting with the rotation of 3.64d you find a similar relation for the magnetic field:

~∇2~B = µ0ε0
∂ 2~B
∂ t2 (3.71)

Fine, so what? Well, remember the theory of waves. The classical wave equation for a wave in
thez direction with speedv is:

∂ 2ψ
∂ t2 = v2 ∂ 2ψ

∂ z2 (3.72)

with typical solutionAcos(kz−ωt) whereω2 = k2v2. Hence, the equations 3.70 and 3.71 imply

the existence of electromagnetic waves with speedv =
√

1
µ0ε0

= c, the speed of light!
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Monochromatic waves in one dimension

In this section we study a typical solution of the electromagnetic wave equation.To simplify the
math, we assume:

• The electric and magnetic field only depend onz andt;

• We stay in the vacuum which is infinitely large.

This leads to the following wave equations:

∂ 2~E
∂ t2 = c2 ∂ 2~E

∂ z2

∂ 2~B
∂ t2 = c2 ∂ 2~B

∂ z2

with solutions of the form:

~E = ~E0cos(kz−ωt)
~B = ~B0cos(kz−ωt) (3.73)

with ω = kc. The constants ~E0 and~B0 can be determined by applying Maxwell Equations in
vacuum (again):

• ~∇ ·~E = 0 = −E0
z ksin(kz−ωt) implies thatE0

z = 0.

• ~∇ ·~B = 0 = −B0
z ksin(kz−ωt) implies thatB0

z = 0.

• ~∇×~B = 1
c2

∂~E
∂ t leads to:

+cB0
y = E0

x

−cB0
x = E0

y (3.74)

which can be written as:
~B0 =

1
c

ẑ×~E0 (3.75)

The equation~∇×~E = − ∂~B
∂ t implies the same and adds no information.

We summarize our findings by saying that the Maxwell Equations have solutions that can be
interpreted as electromagnetic waves with speedc, the speed of light. These waves are transverse:
the electric and magnetic fields have no components in the direction of propagation (Ez = Bz = 0).
In addition the fields are also mutual transverse and in phase. Figure 3.20 shows an illustration of
an electromagnetic wave.

3.4.6 Knowledge and skills

The knowledge and skills you should have acquired during reading of theprevious can be summa-
rized as follows:

• You understand the problem in Ampère’s Law.
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Figure 3.20:A schematic view of an electromagnetic wave.

• You can fix Amp̀ere’s Law.

• You can write down the Maxwell Equations.

• You can derive the continuity equation from these equations.

• From the Maxwell Equations in vacuum you can proof the existence of lightand its proper-
ties.


