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1 History and basics

The word electricity is derived from nlexTpov (elektron), the Greek word
for amber. The reference to amber is not a coincidence: when an amber rod
is rubbed with fur it attracts certain objects, such as a piece of paper or a
hair. This was documented first by Thales of Miletus (600 BC).

Amber is not unique in this sense. Many other materials, such as glass,
rubber, PVC and Ebony can be electrified by rubbing it with for example
fur, silk or wool. Many experiments in the 17'h and 18'h century were
conducted to study this phenomenon. This work led to the discovery of
two kinds of electricity (positive and negative charge) that attract, while
electricity of the same kind repels. A simple experiment with a glass rod and
a plastic ball as illustrated in Fig. 1 shows that like charges repel. Another
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Figure 1: A glass rod is electrically charged by rubbing it with fur. The rod
is then used to charge a plastic ball. Now the two objects repel.

experiment, using an additional rubber rod and ball with opposite electrical
charge demonstrates that unlike charges attract, see Fig. 2. Well known is
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Figure 2: The rod and ball have opposite electrical charge. The two objects
attract.

the glass rod that, rubbed with a silk cloth, obtains a "positive’ electrification.
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Famous is the Ebony rod that after being rubbed with a cat’s skin is 'negative’
electrified.

2 Electrical Force and Field

2.1 Coulomb’s law

Charles Augustin Coulomb (1736 - 1806) was a French physicist who studied
the electrical forces in a quantitative manner utilizing a torsion balance.
Through this experimentation, Coulomb found that the force between two
(point) charges is given by:

- 1 qQ

F=—H— 1

47eq r2 (1)

where r = |F] represents the distance between the test charge ¢ and source
charge Q. The Vector 7 connects the two charges. The direction of the force
Fis given by 7 = %, the unit vector pointing from @ to ¢, see also Fig.3.
Equivalently, we can erte for the Coulomb force:

1 qQ 7 1 4@

fo L@ _ 14Q )
dreq 12 |7 4dmwey 13 @)

Figure 3: The Coulomb force between a source charge () and a test charge
q.

The SI unit of electrical charge is the Coulomb, which can be abbreviated
to the unit C in equations. The factor ﬁ is a constant term with ¢y called
the ’electrical permittivity’. The electrical permittivity has the numerical

value:
2

C
= 8.85419 x 10712
€o X Nm2

(3)



Often, Coulomb’s law is also written as
F=K=—7+ (4)

with K the electrical constant:

Nm?

- 5)

Coulomb’s law is about the electrical force between two point charges. If
we have three, four or whatever number of charges at different positions, the
total force on a test charge becomes:

K = 8.98755 x 10°

F=F+FE+F+F+.. (6)

with F; the electrical force by source charge (); on our test charge given by
equation 1. Using this ’superposition principle’ we can write this total force
as:

Foy L d T (7
o Ameo [75 — 73[? |75 — 7

with the position of the N charges (); denoted as 7; and the position of

the test charge r5. The superposition principle is illustrated in Fig. 4. The

vectors are defined with respect to some origin O. Note that the expression

for the electrical force is independent on the choice of origin O.

Figure 4: The Coulomb force on a test charge q on position ry resulting from
four source charges QQ1,..., Q4. The connection vector, 7y — 71 between charge
(21 and the test charge q is also indicated. The vectors 7y and 71 are defined
with respect to origin O.

The physicist J.J. Thomson discovered in 1897 a new elementary particle:
the electron. The electron carries a negative electrical charge and is respon-
sible for most electrical currents. R.A. Millikan discovered in 1909 that all



electrons carry a similar charge, —e, called the elementary charge. In SI units
its value is
e =1.6002 x 10" °C (8)

We know now that in atoms negative charge is carried by electrons, while
protons are positively charged. When we go back to the old experiment,
rubbing an ebony rod with fur or cat’s skin, the electrons from the cat’s
skin get transferred to the ebony rod. The cat’s skin now has a deficiency
of electrons and so is positively charged. On the other hand, the ebony rod
has an excess of electrons and hence is negatively charged. So, in everyday
life, positive electrification is due to the deficiency of electrons and thus not
by an excess of protons.

Protons are not so elementary as electrons. Protons consists of quarks and
gluons. The quarks carry electrical charge of —%e and +§e. In nature, the
quarks and gluons are confined in other particles (like the proton). Scientific
research in the field of ’particle physics’ has led to a new ’table of elements’,
one with six quarks and six ’leptons’ which interact by the exchange of force
particles. The particle world is illustrated by the table in Fig. 5. All these
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Figure 5: The elementary particles. The leptons from left to right are:
electron-neutrino, muon-neutrino, tau-neutrino, electron, muon, tauon. The
quarks, in the same order, are: up, charm, top, down, strange, bottom. From
left to right, the mass of the particles is increasing. For example, an up quark
"weighs’ a few MeV while a top quarks weighs 175 GeV (for reference: a pro-
ton weighs 1 GeV'). This mass difference between the particles is an open
question, but the so called Higgs mechanism may be its origin.

particles exist in nature, but one to remember is that our everyday world is
made off only three particle: up and down quarks and electrons. Electrical
charge in nature comes in discrete amounts: it is quantized, which has deep
implications. The net charge before an interaction is equal to the charge
after an interaction.



Elementary particles like quarks and gluons are studied in particle colli-
sions at particle laboratories like CERN (Geneva) and Fermilab (Chicago)
using large accelerators. Presently at CERN a new accellarator is being
constructed, the Large Hadron Collider (LHC). The apparatus with a cir-
cumference of 27 km accellerates protons clockwise and counter-clockwise to
energies of 7 TeV. At a few dedicated points, interaction points, the pro-
tons collide. The detectors to measure the products (i.c. new particles) of
these collisions are large, typically 20 x 20 x 20 m3. In the Netherlands,
NIKHEF in Amsterdam, is the main institute where research in this field is
being conducted. NIKHEF contributes to ATLAS, a detector for the LHC,
as shown in Fig. 6. Although ATLAS is a multipurpose detector, the focus
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Figure 6: An impression of the ATLAS detector which is being assembled.
This detector is 44 m long! Particles that are produced by proton collisions
are measured using several detection techniques. NIKHEF contributes to the
silicon tracking detectors and muon drift tube chambers. See www.cern.ch
for more information.

of the research program is on the Higgs particle.

2.2 The electrical field

Let’s have a closer look to equation 7 and rewrite it:

ﬁ=q(z ! thj:“”?) 9)

iy Ameo |16 — 13|? |rg — 7|

The electrical field E is defined by:
F =qE, (10)
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with:

= 1 Qi ro —Ti
E= _wi 07T 11
i:;’N dmey |To — 713|270 — 75 (11)

In different textbooks you will find different notations. A common notation

is:
— 1 7 A
E-y % (12)

i=tv Ameo T

In this case the vector 1j is defined as 1; = 7y — 7;. Be aware of this freedom
of notation, which leads to many un-necessary mistakes.

A way to physcially interpret the above expression for the electrical field
is that a charge ¢ senses an electrical field and consequently undergoes a force
F = qE We have introduced the field as a relatively simple mathematical
definition. However, the electrical field is a genuine physics quantity! In
electrostatic theory, the field is present in space and you can calculate it
using formula 11 when you know the (point) charge distribution. If the field
is present in space, you may wonder, where is it made off? That is a bit
harder to answer and beyond the scope of this course. In particle physics,
fields consist of ’force particles’ that are being exchanged when particles
have an interaction. The electrical field consist of (virtual) photons that are
exchanged between electrical charges.

Above, all equations are based on point charges. Since all charge are
carried by individual particles this seems not unreasonable. However, in
the classical theory charges can be continuously distributed. This is still
reasonable when we describe physics at a scale much (much) larger than the
size of and distances (107'°m) between the particles. The classical theory
describes nature in a macroscopic matter. We will discuss some examples of
continuous charge distributions.

2.2.1 Line charge

A line charge can be described by a charge density A(77) with has the unit
C/m. The position vector 7 is a coordinate defined with respect to some
origin. To calculate the field in point P with coordinate 7p, we integrate
over the infinitesimal pieces of charge A(7})dl to find the electrical field:

—

Bip) = — | AT 5 (13)

47eg 72

where 7 is the connection vector between a piece of charge and the point P
with coordinate 7p, thus 77 = 7p — 7. This is illustrated in Fig. 7.



Figure 7: Illustration of a line charge.

In fact, we can still interpret the integral as the sum over point charges
as we used to do in equation 11. A point charge is then just a piece of line

-

charge dg = A\(l)dl and so we obtain:

Lo 1 dq .
E(TP) - 471'60 ~/charge 'f’qr
1 dg  Tp—T
a m/charge ‘T}_ﬁ|2‘FP_ﬁ|
1 Qi TP —T;

Q

A (14)
pointcharges dmeo |TP - Ti|2 |7'P - Ti|

Perhaps the interpretation of a continuous charge distribution as a collection
of point charges helps you to make the math less abstract.

2.2.2 Example of a line charge

As an example we will calculate the electrical field in a point P with z = zp
of a piece of wire with length L centered on the z axis. The wire carries an
uniform charge density A\. The configuration is shown in Fig. 8.

When we consider the contribution, dE , of a piece of charge \dx at posi-
tion z to the electrical field in P we see that there are two components, an
x and z component:

1 Az
E, = — 2% 4
oL A€ 235 + a2 sin(a)
1 A
dE, = 723003(@) (15)

Aey 23 + a2

Look at the symmetry of this problem. The components in the x direction
cancel (E; = 0) and thus we only have to integrate the z contributions.
So, we need to know cos(a), which we can get from the figure (convince



Figure 8: A wire of length L with uniform charge distribution. Also indicated
is the contribution to the electrical field in point P of a piece of line dz.

yourself!): cos(a) = % Now we can integrate all contributions:
ZP €T

E, = / dE,
~ /+L/2 1 Mz zp

—L/)2 4meq 2% + 12 [22 + 22

. /+L/2 1 zpAdx

—L/2 4me (z%; + mQ)%

_ A x +L/2
A€o op [2% + a2
A L

= (16)

ATeo 1p\ /22 + (L)2)?

Does the result make sense? Well, we know that the field of a point charge
is linear with charge () and drops quadratically with the distance. If we look
from very large distance to the line charge, zp >> L, so that all the charge
on the line appears concentrated in a point, we find that

_ L& _ LQtotal
dmeg 2% 4mey 2%

E,

(17)
which is the field of a point charge Qe = AL, as expected.

2.2.3 Surface charge

An illustration of a surface charge is depicted in Fig. 9. A surface charge
is described by a charge density o(7;) with has the unit C/m?. When 7,
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Figure 9: Illustration of a surface charge.

lies on the surface, o(7;) has some value that represents the charge density.
When 7, lies outside the surface, o(7;) = 0 C/m?. To calculate the electrical
field we integrate over the contribution of the infinitesimal pieces of charge
dq = o(7s)do. The electrical field in point P is given by:

—

o 1 o(7s) .

E(TP) - FG() /surface ’I‘Trdo (18)
Now 7 is defined as the connection vector between point 7 and the location
of some infinitesimal piece of surface, thus 7= 7p — 7 .

Like the integration over a line, the integration over a surface is a difficult
task. Only in special cases we can actually perform the integration. So, don’t
worry for the moment if you do not see how in general you could use the above
expression. Finally we remark that we have been ’sloppy’ with our notation:
a surface is two dimensional, thus one would expect a double integral with
two integration variables. Well, get used to it: in different textbooks you
will find at least as many different notations. Be prepared and just ’bluf’
through it.

2.2.4 Volume charge

An illustration of a volume charge is depicted in Fig. 10. The volume charge
density p(7,) is the most general continuous charge density and has the unit
C/m3. The contribution of the infinitesimal pieces of charge dg = p(7,)dv
lead to the following expression:

. 1 7,
B(fp) = / . p(f; ) tdv (19)

4dmeq T

Now 7 is defined as the connection vector between point 7p and the loca-
tion of some infinitesimal piece of volume dv at position 7,. Applications of
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Figure 10: Illustration of a volume charge.

this expression come later. Note that we again have been sloppy with the
notation. A volume (in this report) has three dimensions and thus three inte-
gration variables. For example when we inegrate a function f over a volume
in cartesian coordinates:

/ l fdv = / / / f(z,y, z)dzdydz (20)
votume IT=—00 JY=—00 J 2=—00
and in spherical coordinates:
2w ™ o8]
/ Fdv = / / / £(r, 6, 0)dododr (21)
volume ¢$=0 JO=0 Jr=0

If this is "abacadabra’ to you, first work through a textbook on mathematics!.

2.3 Knowledge and Skills

The knowledge and skills you should have acquired during reading of the
previous can be summarized as follows:

e Charge can be positive and negative. Electrons carry the elementary
charge —e, with e = 1.6002 x 10! C. The total charge is conserved.

e The electrical or Coulomb force between two electrically charged ob-
jects is given by:

F=—>="¢ (22)

Make sure you understand the notation!

! Please, let the authors of this report know when integration using spherical coordinates
are unknown to you at the time of the lectures. Don’t hesitate! Additionally. in the slides,
added as Appendix you can find more explanation and many examples.
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e The electrical field of a point charge ¢ is given by:

EFE=——=7 23
47T€0T27“ (23)

e The electrical field of a volume charge is:

= 1 p(ﬁ,) o
B(7p) = — / d 24
(TP) 47'('60 volume 7?2 rev ( )

You understand all the vectors in this notation and you can make a
drawing that illustrates this expression. You can also write down the
formulas for the electrical field of a line charge and a surface charge.

In addition, make the corresponding exercises of this section, which you can
find in Appendix A.

3 Electrical flux and Gauss’ Law

3.1 Electrical field lines and electrical flux

Figure 11 graphically displays the electrical field corresponding to the elec-
trical field of a point charge. To make this drawing a grid was chosen and
on each grid-point the electrical field is represented by an arrow. The length
of the arrow corresponds to the magnitude of the field and, as can be seen
in the figure, decreases quadratically as appropriate.
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Figure 11: The electrical field of a point charge depicted by vectors.

Traditionally, the electrical field is depicted by field lines as shown in
Fig. 12. The density of the lines represent the magnitude of the field. Note
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Figure 12: The electrical field of a point charge depicted by field lines.

that such drawings are two dimensional projections and thus that the density
of the lines drops with the circumference of a circle, 27r. In three dimensions
the line-density drops with the surface of a sphere, 47r?

Have another look to the field lines in Fig. 12 and imagine a spherical
surface around a point charge. The number of field lines through the surface
is constant, thus independent on the size (or better radius) of the sphere.
You find an animation of this phenomena on the web-page.

The number of field lines can be expressed by the electrical flux:

P = E - do (25)

sur face
This the flux through a surface. The infinitesimal surface element do is a
vector with magnitude do and its direction perpendicular to the surface. We

can write . . .
E-dd=FE -ndo= |E|cos(¢)do (26)

with 7 the normal on the surface? and ¢ represents the angle between the
electrical field and normal direction of the surface.

Figure 13 shows three examples of the electrical flux through a surface
for different angles between the field and surface. With the electrical field
being constant, the flux through each surface S in Fig. 13a-c is:

a:dy = |E|cos(0)S =|E|S
b:®s = |E|cos(m/2)S =0
c:ds = |E|cos(¢)S (27)

2In textbooks several notations are used for the normal vector, a few common notations
are: i =1 = &, = &,.
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Figure 13: The electrical flux through a surface S for different angles between
the field and surface. The normal n is also indicated.

3.2 (Gauss’ Law

Gauss’ Law states that the electrical flux through a closed surface, indepen-
dent of its shape, equals the total charge enclosed by this surface multiplied
by the factor % Thus:

& = / E.do=
closed—sur face

This relation allows us to calculate the electrical field in many cases in an
remarkable elegant way.

But first we will deduce, or better, verify the validity of Gauss’ Law for
a simple case. Therefore we consider a point charge, (), and calculate the
electrical flux through a spherical surface with radius R. This configuration
is illustrated in Fig. 14. The flux is given by:

Q

charges—enclosed €0

(28)

o = E-dJ:/ B -Ado (29)
sur face

sur face

where 7 is the normal vector on the surface. Now we use the argument that
both E and 7n point in the radial direction, hence

o = |Ecos(a; ,)do = / | B|do (30)

sur face sur face

The electrical field at the surface follows from equation 11, |E| = E,(R) =

4”160 = (independent of the location on the surface). We find
1
> = —— d
47T€() R? sur face 0
1 Q
= i
dmeq R? m
Q
= = 31
Y 61

in accordance with Gauss’ Law.
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Figure 14: Illustration of the electrical flux from a point charge () through
a spherical surface S. Some infinitesimal piece of surface do on the sphere is
also indicated.

3.2.1 Intermezzo: a more mathematical approach

To evaluate (i.c. to get rid off) the dot-product E - d& we used the argument
that both vectors point in the radial direction. Perhaps this step is hard to
digest and you want to see what is behind it. Well, let’s give it a try. If we
had started using Cartesian coordinates we would have written:

N
sur face

= / B B B2) - (naf 4y +mad)do (32)

with n the normal vector on the spherical surface. The unit vectors in the
z, y and z direction are represented as Z, y and Z respectively. Another
common notation for these unit vectors are %, j and k.

The expression in cartesian coordinates is for our case just terrible because
the physical symmetry of the original problem is obscured. Obviously we
need to work in spherical coordinates. Then, formally we obtain:

o = [ Fdg
sur face

= / / (E¢¢Z + Egé + Erf) . (TL¢(ZA5 + ’I"Lgé + anA)dO

= / (E¢n¢<$ + Epngh + E.n,7)do (33)
sur face
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With (;AS, 6 and 7 the unit direction vectors in the ¢, 0 and r direction respec-
tively. It looks abstract, (it is), but just try to see through the notation and
realize that the vectors are written out in components.

We then use E = (OQAﬁ, 06, E,7) with E, = #. In fact E, is a function
and depends on 7 or in this case for a point charge just on r. Hence, on the
surface E, = E,(r = R). The normal vector 7 on the surface points in the
radial direction and has the unit length: 7 = (0,0,7). When we substitute
these expressions and reshuffle, we acquire:

1 Q
o = | 4
sur face 47T€0 R? 0

= L@ T pin)deds
 dweg R2? Jy=0 Jo=o
1 Q [~
= —— R? 27 in(60)do
dmeq R? Jo=0 (9)lo"sin(9)

= ~ R2r(— 7f
p— RQR 7(—cos(0))|5
1 Q
— = Ry
4meg RQR m
- @ (34)

€o

Probably this intermezzo did not increase your confidence in Gauss’ Law.
It showed however the basic steps which many textbooks tend to skip. In
the following we often skip such steps; they contain too much mathematical
detail and so distract from our physics case. What was the physics case?
Well, the symmetry in the behavior of the electrical field, namely the 1/r?
dependence, and that of the size of the spherical surface growing with 72
leads to a cancellation.

3.3 Validity of Gauss’ Law

We checked Gauss’ Law for a spherical surface with a point charge located
at its center. Figure 15a shows a weird shaped closed surface with a point
charge somewhere in its volume. Also for this shape Gauss’ Law is valid; it
is the ’dot’ product which does the job. Put the point charge in the origin.
Its electrical field has only radial components. The dot-product with the
normal vector of the surface kills all non-radial contributions. In addition,
the distance of the surface with respect to the charge is irrelevant: the field
drops with 1/r? and the radial projection of the surface grows with r2. Also,
we could have put many point charge at different location within the closed
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Figure 15: (a) Point charge Q in a closed surface. (b) Point charge Q outside
a closed surface.

surface. Obviously for each point charge individually the contribution to the
flux is its charge (divided by €j), and the total flux is given by the sum of all
charges (/€g)-

Figure 15b shows a closed surface with a charge located outside its volume.
Use the above arguments to deduce (qualitatively) that ® = 0 in this case.

3.4 Applications of Gauss’s law

"Gauss’ Law is always valid, but not always useful’. What does this mean?
Well, Gauss’ Law can be applied in some cases to evaluate the electrical field
in an elegant way. Below, we describe a few of these configurations.

3.4.1 The line charge

Figure 16 shows an infinitely long and infinitely thin line charge with uniform
charge density A. The optimal Gaussian surface is a cylinder. To obtain this
insight, first deduce the shape of the electrical field. It needs some practice
to acquire a feeling for this, but we can give some hints.

e Imagine the line is build from small point charges d\. Every point
charge produces a electrical field point in the radial (spherical-wise)
direction. Consider a position somewhere near the line. At this position
you ’feel’ an equal amount of field lines from above as from below.
Hence, the field in the z direction cancels. Obviously there are no
components in the ¢ direction. There can only be a component pointing
away from the line charge.

18



Figure 16: A line charge (dark gray). A Gaussian cylinder (light gray) with
height h and radius r is also drawn.

e Look at the symmetry of the line charge. Suppose there is a field
component in the z direction. Remember that the line is infinitely
long and imagine that you mirror the configuration in the r¢ plane.
This does not change the physical configuration, but the 'would be’ z
component of the field has changed sign. There is only one possibility:
there is no z component.

We conclude that the electrical field has only a radial (cylinder-wise) compo-
nent. Therefore we try a cylindrical Gaussian surface with arbitrary height
h and radius r. The flux through the cylinder is given by the sum of the
contributions of the curved body and the ends:

®— E-dﬁz/ E-dé+ B-dé (35)
cylinder ends curved—body

The normal vector on the ends of the cylinder point (only) in the z direction.

Hence, the dot-product filters out the z component of the electrical field,

which is zero. So, we are left with the contribution of the flux through the

curved body of the cylinder. The normal vector is radial (cylinder-wise) and

thus filters out the one and only radial component of the electrical field,
(E-(r)).We obtain:

N 2 z=h
o= E-di= / E,(r)do = / / E,(r)dzrdé (36)
curved—body »=0 J2=0

curved—body
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The electrical field is independent on the integration variables and we may
write:

27 z=h
o= FE.(r) ) / dzrd¢ = E,.(r)2nrh (37)
=0 J2=0
Now we apply Gauss’ Law:
ENncLose )\h
® = E,(r)2nrh = Qenclosed _ M (38)
€0 €0
For the electrical field of a line charge we find that:
E, =0
l?¢ = O
A
E,. = 39
(r) 2megr (39)

If the line has a finite length L this method can not be applied. How-
ever, it then still provides a good estimate of the field close to the wire, i.c.
r << L. If you are not convinced, use the result of the direct integration in
Section 2.2.2 to show this. Also when the charge density is not constant in
the z direction we can shake it. When the line has a finite thickness of radius
p this method can still be applied as we will see later.

3.4.2 A flat surface charge

Figure 17 shows an, infinitely large and infinitely thin, surface charge with
uniform charge density 0. What are the components of the electrical field?

e Imagine the plate constituted of small point charges do = odo. Every
point charge produces an electrical field point in the radial (spherical-
wise) direction. Consider a position somewhere near the plate. At this
position you 'feel’ an equal amount of field lines from above as from
below and from left as from right. Hence, the field in the x and 2
direction is zero. There can only be a component perpendicular to the
surface charge.

e We can also used arguments based on symmetry. Suppose there is
a field component in the z and/or z direction. Turn the configura-
tion around its y axis. The plate is infinitely large and thus remains
physically the same. The would be components would have changed
direction, while the physics is invariant.
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¥

Figure 17: A flat surface charge (dark-gray). A Gaussian cubical surface is
also indicated.

e In addition, a shift of the plate in the x — z plane does not change the
electrical configuration. This implies that the electrical field does not
depend on z or z and thus can only be dependent on .

We conclude that the electrical field has only a component in the y direction,
opposite for the region +y. We try a cubical Gaussian surface (a pill-box)
with ribs sized a. The flux through the sides with normal vector in the z and
z direction is zero. We only need to calculate the flux through the top-covers
with normal vector in the y direction. The normal vector in the —y region
is opposite to that in the +y region, but the electrical field direction also
swaps. Hence,

P = E-do=2 E,(y)do = 2a*E,(y) (40)
top—covers top—cover

Make sure you understand the steps above. From Gauss’ Law follows

Qenclosed G'QJ
¢ =2E,(y)a® = o @ (41)

And for the size of the electrical field we obtain E, = 3. and thus E= 3.
Note that the field is constant, but opposite for positive and negative y values
respectively.
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3.4.3 A spherical surface charge

YA

Figure 18: Illustration of a spherical surface charge density o with radius R.

We consider a spherical charged surface (or shell) with radius R and
surface charge density o as illustrated in Fig 18.

What are the components of the electrical field? Suppose there are non-
radial (spherical-wise) components. Rotate the configuration around its cen-
ter such that the non-radial components change direction. Realize that the
physical configuration is invariant which allows no non-radial components.
The same argument can be used to deduce that the radial component of the
field only depend on r. Hence, E = E,(r)7. We did not specify whether we
discussed the field inside or outside the shell. Well, it doesn’t matter. Both
inside and outside the shell we can use the above arguments.

For the electrical flux inside the shell follows:

o= E-dé = E,(r) / do = E,(r)dmr®  (42)

spherical—sur face spherical—sur face

There is no enclosed charge, so we have:
® = E,(r)dnr? =0 (43)

There is only one possibility: E(r) = 0 inside the surface.
Outside the shell, » > R, we find the same expression for the flux. The
enclosed charge is @ = [, jqcc 7do = odw R?. We obtain:

1
® = E,(r)dnr® == aosz? (44)

For the electrical field follows
2

- . oR*
E=E.(r)r= 6077° r>R (45)

In fact, the electrical field outside the shell is identical to that of a point
charge that carries the same charge as present on the shell. This can be
easily shown. We substitute o = —%; in equation 45 and find:

4T R2
B=_9 ;
4dmegr?

(46)

which is the field of a point charge, as expected.
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3.4.4 A massive spherical charge

b 8
—
—
/

i
Y

Figure 19: A spherical volume with radius R carrying a uniform charge
density p (dark-gray). Two Gaussian spherical surfaces are indicated. One
inside and one outside the charge density.

Figure 19 shows a spherical volume charge density p. The volume has
radius R. Like in the previous example, we have spherical symmetry. The
electrical field has only a radial component and depends only on the radial
distance: E = E,(r)?.

The electrical flux outside the sphere, r > R, is given by:

P = E-dﬁzErr/ do = E,(r)dnr® (47

spherical—sur face ( ) spherical—sur face ( ) m ( )
Outside the spherical charge the enclosed charge is [,yj,me pdv = p3mR?. For
the electrical field we find:

pR?

E=
3607’2

P r>R (48)

Inside the spherical charge, r < R, we have in principal two contributions
to the electrical field. One contribution from the inner sphere (surrounded
by the Gaussian surface) with radius r and a contribution of the shell be-
tween r and R. In the previous section we calculated that the electrical field
contribution inside a charged shell is zero. This implies that we only have to
account for the contribution from the inner sphere. The Gaussian spherical
surface encloses a charge ,0%71'7“3. For the electrical flux we find:

4
E,(r)4nr® = p§7rr3 (49)
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This leads to an electrical field of

Py <R (50)
€o

E

Figure 20 shows a graph of size of the electrical field as function of r. Starting

FE r<R: E=£"
N e 3s,
r2R: E:ﬂ
380r2
R

Figure 20: The size of the electrical field of a spherical uniform charge density
as function of r.

form the center, the field grows linearly with r till the surface of the spherical
charge is reached. Then it drops with 1/r%, similar to the field of a point
charge in the origin.

3.5 Knowledge and Skills

The knowledge and skills you should have acquired during reading of the
previous can be summarized as follows:

e (Gauss’ Law:

/ Bdo= y (@_1 pdv (51
closed—sur face

charge—enclosed €o €p Jvolume
which is always valid.

e In electrical configuration with a symmetry between the field and the

charge distribution, Gauss’ Law can be used to determine the electrical
field.

e You can apply Gauss’ Law for a line, flat surface, and spherical charge.
You know how to use Cartesian, cylinder and spherical coordinates to
perform surface and volume integrals.

In addition, make the corresponding exercises of this section, which you can
find in Appendix A.
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4 The divergence of the electrical field

The divergence of the electrical field is defined as

0E, 0E, OE,

6 . E—" f— (am,ay,az) . (E;(;)EyaEz) = a./E + ay + 82

(52)

In this Section we will introduce this quantity in a natural way and de-
scribe its link with Gauss’ Law.

4.1 Flux and divergence

Etxy.z)|B) Elx+dxyz)

Figure 21: An infinitesimal box with volume= dxdydz in an electrical field
E. The covers a to f are indicated. Also, the field vectors on cover a and b
are shown.

Figure 21 shows a infinitesimally small box, which is placed in an electrical
field E. We work in Cartesian coordinates and calculate the electrical flux
through the box. The flux [,,,., E -do through each of the covers a to f of
the box is given by:

—E.(x,y, z)dydz

E,(z +dz,y, z)dydz

—Ey(z,y, z)dzdz

E,(z,y+ dy, z)dzdz

—FE,(z,y, z)dzdy

E,(z,y,z+ dz)dzdy (53)

- © & o T o

Note the relative minus sign for opposite covers which comes from the oppo-
site direction of the normal vectors on these covers. Now we add all contri-
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butions to obtain the flux through the box:

E.dé= [Ex(x + dz,y,2) — Ex(x,y, 2)|dydz
box
[Ey(xa Yy + dya Z) - Ey(xa Y, Z)]d.TdZ
[E.(2,y, 2+ dz) — E,(z,y, 2)|dvdy (54)

Remember the rule of elementary calculus that df = f(z + dz) — f(z). The
above equation can be rewritten as:

E - dé = dE,dydz + dE,dzdz + dE,dzdy (55)

box

Now multiply the part with E,, F, and E, with Z—z, Z—z and Z—z respectively,

which is mathematically equivalent to multiplying with unity. We find

/ E-do = dudydz + 2 dudydz + = dudydz
box

dx dy dz
de, dE, dE,
= l iz + dy + P drdydz

= V- E volumepoy (56)

Hence, we derived a relation between the flux through infinitesimal box and
the divergence of the electrical field. The relation is however valid for any vol-
ume. To see this, glue boxes together to make you any volume as illustrated
in Fig. 22. We obtain:

Figure 22: Any volume consists of a collection of infinitesimal boxes.

/f E-da:/ IV - E]dv (57)
sur face volume

Although we derived this expression for the electric field, it is valid for any
vector field and was first derived by Gauss. We will refer to this expression
as Gauss Theorem.
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4.2 Gauss’ Law and Gauss’ Theorem

Gauss’ Law for the electrical flux:

-, 1 1
/ E-do= _Qenclosed - pd?) (58)
sur face €

0 €0 Jvolume

can be combined with Gauss theorem:

/sur face

This leads to the following expression:

=

G = / V- Edv (59)
volume

. . . 1
/ E-6:/ V- Bdv=— pdv (60)
sur face volume

€o Jvolume
which implies
V- E=L (61)
€o
This relation is Gauss’ Law in differential form. It locally related the charge
density and the electrica field.

4.3 Gauss’ Law for a charged sphere

Given the electrical field, we can ’simply’ determine the charge density using
Gauss’ Law (in differential form). We start with the known field of a uni-
formly charged sphere with density p. The electrical field inside the sphere
is:

o P P
EF=_—r=_— <R 62
360 360r r ( )
Now take the divergence.
V-E = 2V.7=2",0,0,) (zy,2) (63)
360 360 Ty 7o
p p p
= —(0yz+ 0, 0,2) =—3=— 64
36() ( T vy + Z) 360 €0 ( )
Yes! ,
Outside the charge sphere p = 0, the electrical field is £ = 3’5;3 7. We
calculate the divergence of T”—;:
- T > 1
V.—- = V. x,Y, 2
. e (R
_ 9. x Y z

(@2 +y2 +22)7 (22 + y2 + 22)3
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Not convinced? Try it yourself!

4.4 The loop integral of the electrical field

Figure 23: An illustration of a path integral in the electrical field of a point
charge q.

Another important characteristic of the electric field emerges when we
consider the path integral of the field a point charge q:

"Boar=-1 ["liar 66
/a ' _471'6()(17'_27.. (66)

The electrical field is pointing purely radially. No matter what the exact
path is followed from a to b, the dot-product filters out the radial component
(7 - dl = dr). Thus we can replace the path integral by:

b q 1 g —1 q ,1 1
E.-dr=— —dr=—"——|t = = (— — — 67
/ra r dmeg Jro T2 r dmeg T " 4dmeg (ra rb) (67)
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For a closed path r, = r, we obtain:
/ E-dl'=0 (68)

Thus, independent of the path we followed, the integral of a closed path of
the electric field is zero. Using the superposition principle we can argue that
this relation derived for a point charge is valid for any charge density.

The expression [ E-dl = 0 is the second electrical field equation in integral
form and has no historical name. The differential form V x E = § we will
derive later.

4.5 Knowledge and Skills

The knowledge and skills you should have acquired during reading of the
previous can be summarized as follows:

e You understand Gauss theorem and the relation between the electrical
field an the charge density:

— — — ]_
/ E-6’=/ V-Edv=— pdv (69)
sur face volume

€0 Jvolume

e You can apply the differential field equation:

v E="L (70)
€o

which is Gauss’ Law in differential form.

e You can derive and use the loop integral of the electrical field:
/ B-di'=0, (71)

independent of the path we followed.

In addition, make the corresponding exercises of this section, which you can
find in Appendix A.

5 The electric potential

In this Section we will introduce the electric potential. It turns out that
the electric potential is a powerful quantity to calculate the electric field of
complex charge configurations. However, within the scope of this report we
have to limit to more straightforward but elegant examples.
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5.1 Work in a gravitational field

To refresh your memory we first consider work and potential energy in a
gravitational field. The work, We,sor, When you lift an object with mass m
from the ground to height h is

h -
W=/0F-dl (72)

with the force, |ﬁ | = mg, the mass times the gravitational constant. To lift
the object we need to apply a force F' = —F5; = mg and tus the the total
amount of work needed is:

Wperson - mgh (73)

The potential energy of the object equals U = Wpyerson = mgh. In the
following Section we will apply this principle to the electrical field.

5.2 Potential energy in an electric field

Figure 24: A test charge q in the field of a source charge () is brought in
from infinity to P.

Consider a (test) charge ¢ in the electrical field of a point charge @ at
position P, see also Fig. 24. The electrical force on the test charge is ﬁelec =
qE . The (minimum) force you must exert on ¢ to move it opposite to the
electrical field is —qE . The potential energy of the configuration is defined as
the minimal work needed (for you) to bring the test charge ¢ from infinity
to P.

P — —
Up = Wperson = _/ qE ~dl (74)
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We substitute the electrical field of a point charge and obtain:

—qQ (" l/f-’. di = Q1 = Q@ 1
dmeg Joo T3 deg ' AmeyTp

Up:—q/rpﬁ-dF: (75)

A definition of the ’'potential’ V' is the potential energy of a charge unit in
the field of the source charge ():

Up QR 1
Vp=—= — 76
P q dmeg Tp (76)
where the reference point or ’gauge-point’ is implicitly taken in infinity.
The most general definition of the potential is
P — —
Vo= — / E-d (77)
gauge

where the gauge-point can be chosen where-ever you want. You can verify
yourself that for a point charge and gauge-point at infinity you find back
equation 76.

We have defined the potential starting the potential energy of a simple
charge configuration. Fine, the potential an the potential energy are related;
that is useful to know. But, what about the general definition of the poten-
tial? It depends in general on the free choice of a gauge-point. How can such
freedom be useful for describing physics? Indeed, the potential itself has no
physical interpretation. However, potential difference and the gradient of the
potential are relevant physics quantities.

5.3 The potential and the electrical field

From the previous section we know how to calculate the potential from the
electrical field. Is is also possible to determine the electrical field given the
potential. To find this relation, consider the difference in potential between
points A and B:

x4 — S SR — A—A —
VABZVB_VA:/ E-dl—/ E-dl:—/ E-di (78)
B A B

where we swapped the upper and lower boundary of the integral, so keep
track of the 'plus and minus’ signs! Note that the potential difference V4p is
uniquely defined, independent of the gauge-point.

The potential is just a scalar function. Hence,

B B oV oV oV
VB—VA—/A v = [ G+ Gody+ e
BV OV OV
= /A <a—ma 8—y’ a) '(da?adyadz) (79)
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With the standard definition of the gradient:
= 0 0 0
= (2m ) (80)

B
Vo—Va = /A VV - (dx,dy, dz)

we find:

B — —
- / VV - d (81)
A
Combining Equations 78 and 81 we obtain:
E=-VV (82)
Thus the gradient of V has a physical interpretation; it is the electrical field
(with a minus sign). This closes the circle. We can now determine the
potential from the electric field and vice versa.

5.3.1 The electrical potential and field of a point charge
We determined the potential for a point charge to be:

Q 1
= — 83
dmeg r (83)
Now we check whether the expression E = —VV returns the correct electrical
field. We start with:
=1 - 1
V- = V——7——
r VT2 +y? + 22
AR N Ny
- ax x2 + y2 + Z2 8y ----- az -----
x . Y N < 3
= - 3l — zY — 3%
(22 +y2 +2%)2 (22 +y? + 22)> (22 + y% + 22)2
1 T 7
= - =——=—— 84
(% +y* + 22)7 @92 =—5="0 (84)
and conclude that
= Q =1 Q Q 1. =
VV = V- =-— =— —r=—-F 85
dmey T 47eg 4Teg 2" (85)

Most expressions in electrodynamics involve spherical symmetric func-
tion. For such a function, f(r), you can quickly determine the gradient using
the following relation.

- _df -

Vi) =12 (56)
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5.3.2 The potential of a charged sphere

In Section 3.4.4 we determined the electrical field inside and outside a massive
spherical charge with radius R and charge density p.

E = ﬁr r<R
360
— pR3 R
E =
360r2r r>R (87)

As an example we calculate the potential inside the spherical charge.
ro_ o R _, o r o o
Wﬂz—/lﬂﬂ:—/lﬂﬂ—/Ewﬂ (88)
[e%e) e} R

We substitute the expression for the electrical field and find:

vy = [ [

3607‘2 R 3€
pR> p  pr?

ﬂm_ﬂ1£5

3€0R 660 660

_ PR

N 260 660 (89)

At this point it may be not yet clear why the potential is relevant anyway.
Don’t worry about that now and make sure you understand the mathematics.

5.3.3 The eletrical field of a dipole

We introduced the potential and perhaps the idea came to your mind 'where
do we need that for’. Well, to calculate the electrical field of complex charge
configuration can be a difficult task, even numerically. Starting with a cal-
culation of the potential and then calculate the electrical field is often much
easier.

We will illustrate this approach by calculating the field of an electrical
dipole. Figure 25 shows a electrical dipole configuration, consisting of two
opposite point charges at a distance 2d. The potential in a point P(r,#) has
a contribution from the positive and negative point charge. Thus,

Admegry  Amegr_

1 —q 1
Ve(r,0) =V, +V.= L =y 1 ° (90)
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Figure 25: An electrical dipole consisting of two opposite point charge at
distance 2d.

with 1 the distance between the corresponding point charge and point P.
When r >> d we can make the approximation:

ry =1 F dcos(0) (91)

Verify this yourself. For the potential in P we obtain:

vel0) = 1 (4 L) (92)

Ameg \ 7 — dcos(0)  r + dcos(6)

We can simplify this expression, using a ’cunning’ trick. Multiply the nomi-
nators and denominators with r + dcos(f) and r — dcos(f) respectively and
realize that (r + dcos(0))(r — dcos(#)) = r? — d?cos? (). Remember that we
work in approximation 7 >> d and thus r? — d?cos?(0) ~ r?. The leads to

q 2dcos(0)
dmey T2
2qdcos(6)
dmegr?
pcos(@)  p-7 _ p-T
Amegr?  Amegr?  Ameyr3

VP(T, 0) =

(93)
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where p = 2ch The quantity p'is called the dipole moment. Mathematical
dipoles have distance d — 0 and ¢ — oo, such that p = 2¢d remains constant.

Now we determine the electrical field by taking the gradient of the po-
tential:

B = _vvpz_ﬁ( b7 )

degr3
47'('60 83: 7"3 g ereenenaas g arsnenanas

1 (ps  3x(zps +ypy + 2p2)
Trel e e

3 5
1 —p'+37(7 - p)
47eg r3

The drop of the magnitude of the field with 7® is characteristic for a dipole
field.

5.4 The energy of a charge configuration

We have already discussed that the work needed to bring one point charge,
g from infinity to a point P in the field of another point charge equals:

P . P .
U:W=—/ qE-dl:/ GV - dl = gV (95)

o0 o

C?.?‘%z;q‘. *
4
q .\.

qs

Figure 26: Illustration of a collection of point charges.

Figure 26 shows a collection of point charges. To determine the energy
of a charge collection (of point charges) we have to calculate how much
work is required to assemble such collection. The first charge takes no force
(there is no field yet) and thus physically no work is done. To place the

second charge, we require Wy = g2V (112) = 4;1;0 T%, where r1o represents the

35



distance between charge ¢; and ¢. When we bring in the third charge we
feel the field of the first an second charge, thus:

W3 = q3V(ri3) +q3V(r23) = g3 ( N + & ) (96)

471'607"13 47'('607'23

The total energy of our collection so-far is

Wios =W +Wo+W3 =0+ 9192 + 9143 n g2q3
dmegria  Amegrizs 4Amegros

(97)

For a collection of NV point charges we find:
N

D) D L R AU (58)

o1 71 ATmeoti i=1

Note that all combinations of ¢; and g; appear twice, which is accounted for
by the factor % Another remark we have to make is that the self-energy to
make the point charges is completely ignored in the above expressions.

5.5 The energy of continuous charge distribution

For a volume charge density we can generalize Equation 98 and obtain:

1
W = 3 / pVdv (99)
volume

Consider the following question of a smart student. There appears a contri-
bution from the charge pdv, sensing its own potential in infinitesimal volume
dv. Such contribution from the self energy is not present in equation 98.
Wouldn’t this contribution lead to unphysical results? To check the size of
this contribution, we imagine that our continuous charge distribution consists
of infinitesimal charged spheres. We calculate the self energy of a uniformly
charged sphere with (infinitesimal) radius R, due to its own potential (see
equation 89):

1 1 (B pR?  pr?
Wse = 3 V:insz' ed :_/ — — —)4 2d
i 2 spherep de®V 2 Jo p( 260 660) mrar
_ 1/R(47T,02R27“2 B 47rp2r4)dr
2 Jo 2¢ 6eg
_ 1(47rp2R5 47rp2R5)
20 6 30¢o
A7 p? RS
_ 100
1560 ( )

Remember that our sphere is infinitesimal (R — 0) and thus the contribution
Wierr = 0. Hence, equation 99 correctly represents the energy of a continuous
charge distribution.

36



5.6 The energy in the electrical field

Starting point is the energy of the continuous charge distribution.

1
W= / pVdv (101)
volume
Substitute Gauss’s law V - E = p/eg:

W= %0 (V- E)Wdv (102)
volume
We can further simplify this expression. Therefore we first consider the
expression:
. O(E.V)
V-(EV) =
(EV) 5w T
oF oV
= VW 4+ (——
( ox VI ox

= (V-E)W+E-(VV) (103)

VEgz + ...

We return to the energy (equation 102) and use equation 103 to write:

wo= 2 (V- (EV)~ E-(VV)) dv

2 Jvolume

- O (S B+ BB

2 Juolume

= 2 (V- (EV))do+ 2

2 Jvolume

(E?) dv (104)

volume

Using Gauss’ Theorem 57, we obtain:

W= (EV) do+ %0 E2dv (105)

2 sur face volume

The integral of the surface equals zero. Why? Suppose we consider the field
of a point charge. The electrical field drops with 1/r% and the potential with
1/r. We can write:

/S BBV [ dgyr s / o, d00sin(O)1/r (106)
We should consider a surface enclosing all space, thus » — oo and thus
/S o, A60sin(0)1/r = 0 (107)
Finally, we obtain for the energy of the electrical field:

W="22 E2dv (108)

2 Jvolume
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5.6.1 E,V and Energy of a spherical surface charge

In Section 3.4.3 we calculated the electrical field of a charged spherical surface
(or shell) with radius R and charge density 0. We found that outside the

shell:
2

R
E = ET—U—T r>R (109)
607'

Inside the the sphere no charged is enclosed and thus E, = 0. .
What is the potential as function of 7?7 We use V(r) = — [7 E - dl and
write: R R
/ aZ =7 SR (110)
€T €T
Now, calculate the potential inside the sphere (where the electrical field is
Z€r0):
R, o L o oR
V(r):—/ E-dl—/E-dl:V(R)+0=— r<R  (111)
[e'e} R €
You could always check the results for the potential by calculating the electri-
cal field using E = —VV. The results for the electrical field are also shown in
Fig 27, where you can see that inside the surface the electrical field becomes
zero, while the potential is constant, V(R).

V-E

R

Figure 27: The electrical field and the potential of a spherical surface charge

Now we can calculate the energy of this configuration in two ways. We
start with the expression for the energy based on the potential (equation 99).
The volume charge density p is zero everywhere, except on the spherical
surface where it is 0. Hence,

1 1
W = —/ pVdv — 5 oV (R)do (112)
volume sur face
1 R 1 R 2R3
= - 07 do = ~4rR20 " = 272 (113)
2 surface € 2 €o €o

38



The other expression for the energy with the electrical field in quadrature
(equation 108) should yield the same result. Let’s check that.

W = © E’dezﬁ—o E%dv
2 Jvolume 2 Jr>R
— R_%)de _ dme dr(R_Zafl
2 Jr>R 7‘260 2 r>R €0 r2
4reg  R*0 5 —1 o’R?
— _|® =9 114
5l = (114)

as expected.

5.7 Knowledge and Skills

The knowledge and skills you should have acquired during reading of the
previous can be summarized as follows:

e You understand the definition (and the derivation) of the potential:

P — —
Vp = —/ E-di (115)
gauge
For a point charge, the potential is given by:
Up Q 1
Vp=—= — 116
r q dmeg Tp (116)

e you can also calculate the electrical field given the potential, using
E=-VV.

e you understand how we derived the energy of a charge collection:

1Y qiq; 1Y
TS 3 P S BT
=1

i=1 j£i 47T€0Tij 2 P
e For a continuous charge density the energy is given by:

1
W = i/l pVdv (118)

or, alternatively:
w="2 E2dv (119)

2 Jwolume
which you can apply for a spherical charge density.
In addition, make the corresponding exercises of this section, which you can
find in Appendix A.
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6 Electrical fields in matter

So-far, we considered electrical fields in vacuum. Usually we started with
some (symmetrical) charge configuration and then we calculated the electrical
field, its potential or energy. What if we place (electrically neutral) objects
in the electrical field? What happens inside those objects and what is the
effect on the electrical field in and outside the object? In this Section we will
discuss these questions and more.

6.1 The Conductor

What is a conductor? For our purposes a conductor is an object that conducts
electrical currents because the negative charge carriers (electrons) can move
freely inside the material. The number of the free charge carriers is unlimited.
Materials that approach these ideal properties are metals like iron, copper
and gold. If the conductor is electrically neutral, it contains an equal amount
of negative and positive charge. The positive charge is always bound and thus
cannot move freely through the material.

Given the above we can deduce what happens when a conductor is placed
inside an electrical field as illustrated in Fig. 28.

e o \L
;- E, .\ g Extern
E N - <—M/L' veld

Figure 28: A conductor is placed in an extern electrical field.

e What is the electrical field inside a conductor? Suppose there is an
electrical field in the conductor. Then, the free electrons would be
subjected to the electrical force and start moving. Well, they may
do for a short time when the field is just turned on, but we discuss
only electrostatic situations. There is only one stable solution to our
question and that is that there is no electrical field inside a conductor!

e How can the field be zero inside a conductor? Well, suppose the elec-
trical field is just turned on. Then some free electrons will be attracted
by the electrical force and flow to the surface of the conductor (they
can not escape). This process goes on till the electrical field inside the
conductor has vanished, or better, the original field gets canceled by
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the field of the free charge sitting on the surface and the nett positive
charge that keeps its original position 3. In general, the nett positive
charge will appear on the opposite surface with respect to the side of
the free negative charge.

e What is the charge density inside the conductor? We know now that
the field inside the conductor is zero. Hence, V - E = p/€oc = 0 The
charge density p inside the conductor must be zero. Thus, any nett
negative or positive charge must sit on the surface(s) of the conductor.

e What about the electrical field on the surface? Suppose there is an
electrical field along the surface of the conductor. The free charge car-
riers will immediately ’respond’ and flow into a configuration with no
electrical charge along the surface. suppose there is electrical field per-
pendicular to the surface. The charge sitting just on the surface will
be attracted or repelled by the field but it cannot move inward or out-
ward the conductor. So, the electrical field just outside the conductor
is perpendicular to its surface.

e [s there a potential in or over a conductor? No, there can’t be, because
V(a) =V (b) = — J°E-dl' =0. At any place inside or at the surface of
a conductor the potential is constant.

We seem to know now what happens if we place a conductor inside an
electrical field. Well, not really. The (original) field outside the conductor
also changes and we have not discussed that. This is a though problem to
solve. When there is an obvious symmetry in the configuration we can give
the solution.

6.1.1 A conducting plate in a uniform electrical field.

We start with a uniform electrical field in the z direction and then place an
infinitely large conducting plate as shown in Fig. 29. After a few nanoseconds
an electrostatic configuration exists. Inside the plate the field is zero and we
know that the nett charge will sit on the surface. We can replace the plate
by the electrical configuration as shown in Fig. 30. Thus we have only one
unknown charge density 0 = 0, = —o_. We know all the techniques to
solve this problem. In the area between the surface charges the electrical
field should disappear:

Etotal = 6 = Eezternal2 + E‘(—)é - E(+)2 (120)

3This is always possible in one, and only one, way based on the *uniqueness theorem’.
The derivation of this theorem is beyond the scope of this course.
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Figure 29: An infinitely large conducting plate is placed in an external elec-
trical field in the z direction.

Note that the contribution of the positive charge acquires a minus sign, be-
cause it points in the negative z direction! We have already calculated the
electrical field of a flat surface charge: E. = %, which we substitute in the

above expression:
= = ~ —0 . g .
0= Eewternalz + Z— R (121)
260 26

which leads to a charge density:
0= €0|Eemternal| (122)

Return to the original configuration with the plate and check yourself that
all conditions for a conductor in an electrical field are fulfilled. Outside the
plate the contribution to the electrical field of the positive and negative net
charge cancels such that the original field outside the plate has not changed.

6.1.2 A grounded conducting plate

We can also consider a grounded plate. This means that the plate is con-
nected to the earth. For this purpose the earth should be seen as an un-
limited source of charges. Thus the earth can pump electrons in or out the
plate at no cost without acquiring any net charge itself. Figure 31 shows a
grounded plate, together with the charge distribution. Note that no positive
net charge is induced. All the necessary electrons are provided by the earth.
Check yourself that all boundary condition in and on the conducting plate
are satisfied. Note that the field outside the plate has changed.
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Figure 30: The electrical charge configuration induced on the conducting
plate when placed in an extern electrical field as indicated. The '+’ and -’
sign represent flat surface densities o, and o_ respectively.

6.1.3 A spherical conducting shell with a point charge inside

We consider a conducting shell with an inner and outer radius of R; and R,
respectively. We have put a positive point charge ¢ in its center as shown in
Fig. 32. What is the charge density in the shell and what is the electrical
field everywhere in space? To cancel the electrical field at R; of the point
charge we need negative charge on the inner surface,;. If net negative charge
is induced on the inner surface there must be a similar amount of positive
charge,(Q, = —Q); on the outer surface at R,. Due to the symmetry of this
configuration the induced charge will be distributed uniformly over the inner
and outer surface. The question is now how to calculate the @Q; (or @,). Well,
we have calculated the electrical field of a spherical charge density before (see
equationd5):

oR?

Q .
= 124
47T€0T2r r>R (124)

and E = 0 inside the shell. Inside the conductor the field should cancel.
Hence, when we add the contribution of the point charge, the negative charge
density on the inner shell and the positive one on the outer shell, we find:

0 = E,+Eq +Eq,
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Figure 31: A grounded conducting plate is placed in an extern electrical field.
Note the international symbol for ’grounding’ indicated in the figure.

1 q Qi ) .
= —+ —4+0 125
dreq ( + 2 + r ( )

We conclude that Q; = —¢ (and @, = —Q; = ¢). Note that the charge den-
sities on the inner and outer surface, besides the sign, are also in magnitude
not the same: o; = —q/(4nR?) and o, = q/ (4T R?).

What are the consequences for the electrical field everywhere in space
outside the conductor? Well, the field is just the field of the point charge.
We could say that the presence of the conductor has not disturbed the field
at all!

Yo/
+_ .~ £
___"-._"-..
+

+

+

+0

Figure 32: A positive point charge is positioned in a conducting shell with
inner radius R; and out outer radius R,.



6.1.4 Method of images

A powerful technique to calculate the electrical field in many situations is
the 'method of images’ using a ’mirror charge’. For example we consider
a grounded plate and place a point charge ¢ at a distance d as illustrated
in Fig. 33. The point charge induces charge on the plate surface with an
a priori unknown distribution. For this example the plate is infinitely large
and infinitely thin

Figure 33: A grounded conducting plate is placed in the field of a point
charge q.

The technique of the mirror charge is based on the fact that we may
change the charge configuration, as long as we respect the boundary condi-
tions. The electrical field of the changed configuration is the same as the
original configuration, between the boundaries. Outside the boundaries the
fields are incompatible. Suppose we want to calculate the electrical field be-
tween the plate and the point charge ¢. What are the boundary conditions?
Well we have a point charge and we know that in the (infinitely thin) plate the
electrical field should be zero. Additionally, the electrical field is perpendic-
ular on the surface of the plate. What is an alternative charge distribution
that respects these boundary conditions? Figure 34 shows the alternative
configuration, existing of a negative charge 'mirrored’ in the plate. Check
that the boundary conditions are fulfilled. The resulting configuration is the
an electrical dipole (on the z axis). The charge density on the plate can be

—

determined using Gauss’ Law: Z = E(ontheplate) - . We need to know the
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Figure 34: An alternative charge configuration, existing of a electrical dipole.

electrical field. Therefore we start with the potential:

V(z,y,2) ! ( ¢ ¢ ) (126)

 Ame VB2 + (2 —d)? 22+ 92+ (2 +d)?

To electrical field is given by:

) . L Q 2d )
E(xﬁy: 0) - —VV(a:,y,O) - 47'('60 ((.’132 N y2 T 22)%> < (127)

Now we know the electrical field and thus the charge density. In principle we
can go back tot the original configuration and calculate the electrical field
everywhere in space.

6.2 Capacitors

We take two parallel plates of conducting material and charge the plates
with opposite charge as indicated in Fig. 35. The plates are separated by a
distance d. We ignore the thickness of the plates and assume that the plate
have a large surface A with respect to d. We have calculated the electrical
field for an infinitely large flat surface charge already in Sec. 3.4.2, which
provides a good approximation for the present configuration with A >> d.

We can write:
Q,_ -Q._0Q,
2A6o 2A€0 AGO

E = (128)

z =
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Figure 35: Two parallel plates of conducting material. The plate have op-
posite charge () and are separated by a distance d. The contribution to the
electrical field of each plate individual is also indicated.

The electrical field is constant and points away from the positive charged
plate. The contribution of the negative charge obtain an additional minus
sign, because if it would be a positive charge the field would point in the
negative z direction. Make sure you understand this argument.

The potential difference between the plates is given by:

What we have shown now, i.c. the potential difference between the conduc-
tors is proportional to @), is generally valid for capacitors.

Is the behavior V ~ () independent on the shape and size of the con-
ductors? Yes. Suppose you take two conductors of arbitrary shape and size
as illustrated in Fig. 36. The electrical field is proportional to the charge

Figure 36: A capacitor, consisting of two conductors with bizarre shapes.

density in, or better on, the conductors. The charge density is proportional
to (. V is proportional to £ and thus also to ).
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6.2.1 Capacitance

We have seen that V' ~ (). Now we introduce a a constant of proportionality
called capacitance, C, such that
c=9
v
The capacitance depends completely on the geometry of the electrical con-
figuration. For the configuration with the two plates, we have shown that
C = %. The larger A and the smaller d the more charge can be stored in
the configuration for the same potential V. The unity of capacitance is called
Farad (=Coulomb/Volt), denoted by F. In practice C, measured in Farad is
numerically small. For our plate configuration with d =1 mm and A =1 m,
C =9x 10 F. In the newspapers a few years ago, there was an item about
a small capacitor with C' =1 F, but I haven’t figured out yet how to make
that. Let me know if you find the ’trick’ on the web.

(130)

6.2.2 The energy of a capacitor

We start with an uncharged capacitor and move electrons from one conductor
to the other to charge it up. The electrons 'sense’ the electrical force in this
process. Hence, moving them requires energy.

The energy needed to bring some charge dq to the other conductor is
dU = V(q)dq. With V (¢) the potential difference between the two conductors
as function of the already moved charge ¢. Since the capacitance C'is a purely
geometrical quantity we can write V(¢q) = ¢/C and thus dU = 2%. The total
energy of a charge capacitor is then given by:

17, 1Q° 1
U= /dU /qdq @ {;?:5% SCV? (131)

with @) and V the final charge and potential of the capacitor respectively.

6.2.3 Examples of Capacitors
6.2.4 Cylindrical configuration

Figure 37 shows a cylindrical configuration, consisting of two coaxial conduc-
tors with length L. The inner conductor has a radius a. The outer radius is
b and is much smaller than the length. The conductors have opposite total
charge (). What is the capacitance of this configuration?

e First, determine the electrical field in the space between the two con-
ductors. We may assume that L >> b which implies that away from
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Figure 37: Two coaxial conductors. The inner and outer conductors have
radii a and b respectively. The conductors have opposite total charge ().

the edges the field is radial. The charge density on the inner conduc-

tor is 0; = QWSL. We calculate the flux through an imaginary small

cylindrical Gaussian surface and obtain:

2mal
E.2nrl = giema

- (132)

Note that in between the conductors there is no contribution to the flux
(and field) from the outer conductor. The electrical field is £/ = Z7

e The potential difference between the two conductors is given by:

a _, L a@ __@ a_%
V:—/b E-dr = /b dr = In(r)ly = —In(b/a) (133)

€T €0 €p

e Now we know the potential and it becomes a 'piece of cake’ to obtain
the capacitance:
Q 2waLo;e 27 Leg

¢= V- oialn(b/a) - In(b/a) (134)

Like the plate-capacitor, the capacitance of this configuration increases when
the distance between the two conductors becomes smaller.

6.2.5 Spherical Capacitor

We now consider a capacitor consisting of two spherical surface of a conduct-
ing material with radius b. In its center we placed a conducting sphere with
radius a. The conductors carry opposite charge ). What is the capacitance
of this configuration? To calculate the electrical field we use a spherical
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Figure 38: A spherical capacitors. The inner conductor has radius a and the
outer one has radius b. The conductors have opposite charge.

Gaussian surface with radius r such that ¢ < r < b. For the electrical field

we obtain: ,
oa

E=—"—7 (135)

€or?

Now we calculate the potential difference between the conductors:

a a gq? oa? oa® 1 1
V:—/E-dA:—/ —dr=—-1|=—(--—- 136
b " b €T r eor €0 (a b) (136)
for the capacitance follows:
Q dra’oe ab
V oa®(1/a—1/b) A" (137)

Note that the capacitance is independent on V' and/or @) and thus is indeed
a purely geometrical quantity.

6.3 Knowledge and Skills

The knowledge and skills you should have acquired during reading of the
previous can be summarized as follows:

e You understand the properties of a conductor.

e When a conductor is placed in an electrical field you can identify the
surface charge densities and calculate the resulting electrical field.

e You understand the basics of the mirror charge technique

e You can explain what capacitors are and deduce the relation:

_Q
C=3 (138)
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e You can calculate the the capacitance of a parallel plate capacitor.

e The energy of a capacitor is given by
1
U= 5CV2 (139)

In addition, make the corresponding exercises of this section, which you can
find in Appendix A.

7 Insulators

All matter that cannot be classified as a conductor we call an insulator.
In insulators there are no free electrons to cancel the electric field inside
the 'bulk’. However, by polarization of the molecules and atoms inside an
insulator there is some cancellation of the field. When an atom polarizes
we can discriminate between a positive and negative side. For this reason,
insulators are historically referred to as ’dielectrics’. The properties and
behavior of dielectrics in electrical fields is discussed in this Section.

7.1 Polarization of atoms and molecules

What happens microscopically when we electrically polarize an atom? The
classical picture of an atom is a big positive nucleus surrounded by tiny
electrons orbiting it. For our purpose, that is electrostatics, we adapt this
picture by taking the ’average’ of the atom over time. Yes, you need some
imagination, but this leads to an atom consisting of a small positive nucleus
in the center of a uniform cloud of negative charge. Consider the illustration
in Fig. 39. When we apply an electrical field as is depicted in the right

E=0 -Q E#0
elektronenwolk bolsymmetrisch
uniforme bol (R) = dipoolmoment

Figure 39: A view of an electrostatic atom. It consists of a positive nucleus
surrounded by a uniform cloud of negative charge. The cloud has radius (R).
Left: Unpolarized, the nucleus is centered; Right: Polarized, the nucleus is
shifted away from the center of the cloud. This results effectively in a dipole.

figure, the negative charge is attracted, while the positive nucleus is repelled.
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Consequently, the nucleus is shifted by a distance d with respect from the
center of the cloud. We have assumed that the spherical shape of the cloud
is conserved. The net effect is that we produced an electrical dipole with
7= Qd L

The external field results in a polarization p' = QQd = aF, with proportion-
ally factor a, called the 'polarizability’. Table 1 lists some experimentally
obtained polarizabilities. As expected, the factor a grows with increasing

Atom Z | a (107% m?)
Helium 2 3
Neon 10 )
Argon 18 20
Water vapor | - 500

Table 1: Several examples of the polarizability for some atoms and water
vapor.

charge Z. For water vapor we observe that « is relatively large. Such a-
typical behavior points in the direction of a different physical mechanism.
Indeed, there is an additional effect in water vapor and other so called 'po-
lar’ molecules. The electrons in water molecules are attracted by the positive
oxygen nucleus, more than by the hydrogen nuclei. The result is that water
(and other polar molecules) have a built in electrical dipole moment. Fig-
ure 40 shows what happens when these molecules are placed in an electrical
field. The dipole moments of the water molecules are aligned by the external

,ﬁ
~ y
tp < O </ : ‘ oy
Hoﬁ FE R . E HOH ON
> A > t
E=0 ‘\‘e Q 3113 . Hy oy
= E =0 o
v\

Figure 40: Left: Water molecules without electrical field. the electrical dipole
moment of the molecules is indicated. Right: Water molecules in an exter-
nal electrical field. The dipole moment of the molecules are aligned by the
electrical force.

electrical field which leads to the relatively large factor «.
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7.2 Macroscopic Polarization

What is the electrical field in a dielectric when put in a known external
field? Forget for the moment the atoms and molecules in the dielectric and
put on your ’abstract glasses’. In electrostatic theory, dielectrics consist
of infinitesimally small electrical dipoles. A dielectric can be electrically
polarized by putting it in an external field EO as illustrated by Fig. 41.
The polarization per unit volume is defined as the polarization P which is

L] ]

Efo!a/:Eo +Epcu'

Figure 41: A dielectric in an external electric field Ey. The microscopic
dipoles polarize (polarization P). The resulting total field is given by the
sum of the original external field and that of the polarized dipoles.

proportional to the electrical field:
P= eoer (140)
The factor of proportionality x. is called the electrical suscept1b1hty for his-
torical reasons. In this expression, the electrical field E = Etoml, the total
field. It is the sum of the external field and the, yet unknown, field from the
polarized dipoles (Epol).

So, what is the field of the polarized dipoles? Well, the polarization leads
to net charge separation. When we can quantify this charge, we know how
to calculate the field!

Have another look at Fig. 41. Inside the the dielectric there is macro-
scopically no net charge. The dipoles are aligned in chains of positive and
negative charge, but all the '+’ are canceled by '—’. This is not the case
at ’'the start and end of the chains’ at the boundary of the dielectric. At
the left side, all the chains start with ’—’, while at the right side all chains
end with ’4’. There is a net charge separation at the surface of the dielec-
tric. Note that the charges themselves are localized in contrast with the free
charge in a conductor. For this reason, the net charge at the surfaces of a
dielectric is called bound charge. The amount of bound charge is given by
the polarization: .

Obound — P-n (141)
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In principle, we can now deal with any electrical field configuration in a
dielectric. In the following Sections we will discuss some examples.

7.2.1 The electrical field in a flat dielectric

We consider a flat dielectric with a given y. and we place it in a known
uniform electrical field Fy as shown in Fig. 42. The dipoles in the dielectric
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Figure 42: A piece of dielectric in an external electric field Ey. The micro-
scopic dipoles polarize (polarization P). The resulting bound charge at the
surface is also indicated.

polarize, leading to a polarization P. The bound net charge on the surfaces
of the dielectric is g, = P.-a=P. Hence, we have a configuration of two
oppositely charged flat surfaces, which leads to an induced field: Epol = 7;’;"”.
Here we simply used the formula of a plate capacitor, derived in Section 6.2
(but I am sure, you could derive it yourself by now). In the dielectric, the

electrical field is now:

E_j = E_jO +Epol

- EO - O-pol/GO

= Ey— Ple (142)
Using equation 140 we can write
Fefy—yB=— F (143)
— 0 Xe - (Xe + 1) 0

The susceptibility x. for glass and plastic like are of order 10. For water the
susceptibility is about 80.

o4



7.2.2 Plate capacitor with dielectric

Consider a plate capacitor with a dielectric in between its plates as illustrated
in Fig. 43. The plates have surface A and are separated by a distance d. The

Figure 43: A plate capacitor with dielectric in between the plates.

dielectric has an electrical susceptibility x.. Given the free charge Qfree
on the plates, what is the electrical field in the dielectric and what is the
capacitance of this capacitor?

Starting point is an empty capacitor. Thus the same configuration as
already discussed in Section 6.2. We repeat our results:

Eempty = Ci{:eé = Jgeeé
+ 5 d
V:zmpty = - /_ Eempty ~dz = A—eonree
Q €A
Cempty = Vfrete = 07 (144)
empty

Now we place the dielectric. The electrical field between the plates (in the
dielectric) changes. According to equation 143 it becomes:

1 - 1 O free ,

E = 7Eem = 7N
(Xe + 1) o (Xe + 1) €o

(145)

With this electrical field we can calculate the potential between the plates:

1 d 1

+ 5
= - E- = ——— 7 Qfree = ——=Vem 146
v /— P e D) A T () (146)
for the capacity follows:
Q ree € A
C= {/ = (Xe + 1)07 = (Xe + 1)Cempty (147)
In textbooks the following definition is often used
(Xe +1)eg =€ (148)
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With this definition most expression related to dielectrics become similar as
the expression in vacuum after substituting e for €.

Note that the capacitance between the empty and ’filled’ capacitor is just
the factor (x. + 1). Thus, for a plastic fillings the capacity grows with a
factor of order ten.

7.3 Knowledge and Skills

The knowledge and skills you should have acquired during reading of the
previous can be summarized as follows:

e You can explain how a dielectric is polarized in an electrical field, re-
sulting in a net bound charge at its surface.

e The relation between the polarization and the electrical field is

—

P = ¢yx.E (149)

e With this relation you can calculate the electrical field in a parallel
plate capacitor filled with a dielectric:

1 s 1 o
freeé

E=——FEoppty = ——— 150
et D™ " et D)« (150)

You can also show that the capacitance is:
C = (Xe + 1)Cempty (151)

The capacitance of the filled capacitor is larger than that of the empty
capacitor.

In addition, make the corresponding exercises of this section, which you can
find in Appendix A.
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