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The mirror on my wall

Casts an image dark and small
But I'm not sure at all

It’s my reflection

P.Simon
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Introduction

In these lectures we will introduce the subject of CP violation. This subject is often
referred to with the more general term “Flavour Physics” since all the interesting stuff
concerning CP violation happens in the weak (charged current) interaction when one
quark-flavour changes into another quark-flavour, ¢ — W¢', even between different fami-
lies!

The charged current interactions ¢ — W¢' form a central element in the Standard Model.
Out of the 18 free parameters in the Standard Model, no less than four are related to the
coupling constants of the interaction ¢ — W¢'. In addition, we will see that the origin of
these coupling constants is closely related (through the Yukawa couplings) to the masses
of the fermions, which form another nine free parameters of the Standard Model. Both the
masses of the fermions and the coupling strength of the charged-current quark-couplings
form an intruiging, hierarchial, pattern for which some underlying mechanism must exist...

The CP operation changes particles into anti-particles, and changes the coupling constant
of ¢ — W¢' into its complex conjugate. It turns out that not all processes are invariant
under the CP operation and we will show how these complex numbers are determined.
In fact, the observation of CP violation allows us to make a convention-free definition
of matter, with respect to anti-matter ! Maybe not surprising, CP violation is indeed
one of the requirements needed to create a universe that is dominated by matter (or by
anti-matter for that matter...).

Although CP violation was first discovered in the K-system in 1964, in recent years most
experimental and theoretical developments in the field of flavour physics occur in the
B-system and as a result the term “B-physics” is intimately related to flavour physics.
The study of B-mesons and their decays is not only interesting for the above mentioned
reasons. Many observables in B-physics are dominated by higher order diagrams, and
therefore these measurements are extremely sensitive to extra contributions from new,
virtual, heavy particles, such as the supersymmetric partners of the Standard Model
particles.

IThis could be of importance in a telephone call with aliens, before the first hand-shake. If they ask to
meet you, first ask them what the charge of the lepton is to which the neutral kaon preferentially decays.
If that is equal to the charge of the orbiting leptons in atoms, you are in business and can savely fix the
term...



2 Table of contents

Very interesting topics such as baryogenesis, sphalerons, the strong CP problem, or neu-
trino oscillations unfortunately fall beyond the scope of these lectures. These lectures will
focus on “normal” CP violation (also known as the Kobayashi Maskawa mechanism, for
which these gentlemen were awarded the Nobel Prize in 2008), and its direct connection
to the Standard Model, see Fig. 1.

The lectures are organized as follows. We start with the Standard Model Lagrangian and
see where the flavour (and even family) changing interactions originate. This leads to the
famous CKM-matrix which is discussed in chapter 2. We continue with the description of
neutral mesons and their decays in chapter 3. This will be of importance for the discussion
of measurements of some important B-decays in chapter 4. The historically important
but less instructive K-system is discussed in chapter 5. We conclude with a discussion on
experimental aspects and the present status of knowledge of CP violation in the Standard
Model.

Most facts in these notes are taken from two excellent books on the topic, Bigi €& Sanda [1]

and Branco & Da Silva [2].
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Figure 1: “Nature’s grand tapestry”. [1]



Chapter 1

CP Violation in the Standard Model

1.1 Parity transformation

The parity operator, P, inverts all space coordinates used in the description of a physical
process. Consider for instance a scalar wavefunction ¢ (x,y, z,t). Performing the parity
operation on this wavefunction will transform it to ¢(—x, —y, —z,t), or

Piﬁ(% Y, =, t) = ¢(—37a -Y, =%, t)

The parity transformation can be viewed as a mirroring with respect to a plane, (for
instance z — —z) followed by a rotation around an axis perpendicular to the plane (the
z-axis). As angular momentum is conserved, physics will be invariant under the rotation
and so the parity operation tests for invariance to mirroring w.r.t. a plane of arbitrary
orientation. Parity conservation or P-symmetry implies that any physical process will
proceed identically when viewed in mirror image. This sounds rather natural. After all
we would not expect a dice for instance to produce a different distribution of numbers if
one swaps the position of the one and the six on the dice.

Up until 1956 the general feeling was that all physical processes would conserve parity. In
this year, however, a number of experiments were performed which showed that at least
for processes involving the weak interaction this was not the case. For both experiments
which will be discussed the properties of the transformation of spin by the parity operation
played a crucial role, so let us consider how spin transforms.

Spin like angular momentum transforms as the cross product of a space vector and a
momentum vector.

—

L X P

pPr = -7

Pp = —p

and so L

PL=1L
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In other words the parity operation leaves the direction of the spin unchanged. If one can
thus find a process which produces an asymmetric distribution with respect to the spin
direction one proves that P-symmetry is not conserved. Another way of looking at it is
by considering helicity which is the projection of the spin of a particle onto its direction

of motion,

0_-)I1§

h:

N —

As helicity changes sign under parity transformation (p’ — —p) finding a process which
produces a particle with a prefered helicity also proves that P-symmetry is violated.

1.1.1 The Wu-experiment: “°Co decay

The experiment performed by Wu [3] in 1956 took a ®°Co source and placed it in a
magnetic field. The %°C'o nucleus has spin 5 and becomes polarised along the magnetic
field lines. The experimental aparatus is shown in Fig. 1.1a. The experimental method
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Figure 1.1: (a) The experimental configuration of the Wu experiment. The Nal coun-
ters monitor the state of polarisation by measuring the anisotropy of successive v emis-
sitons produced through the polarisation technique. The anthracene crystal measures the
B-electrons. (b) The result of the Wu experiment. The top plot shows the rate as a
function of time for the two Nal counters, the center shows the degree of polarisation
determined from the anisotropy. The lowest plot shows the measured 3 counting rates for
positive and negative magnetic field directions.
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Figure 1.2: The possible transitions of ®°Co with spin 5 to °Ni with spin 4. The open
arrows denote the spin. Closed arrows denote the momentum vector. (a) The transition
which is forbidden in nature. (b) The allowed transition. The antineutrino is always
righthanded.

was then to measure the rate of (-electrons from the decay:
80Co =S Ni+e + 7

in a small counter placed at small angles with respect to the field lines. By inverting the
magnetic field direction and thus the polarisation of the cobalt nucleus, a difference in
counting rate could be detected, as shown in Fig. 1.1b. Several control counters were also
read out so that the degree of polarisation and the absolute counting rate of the source
could be callibrated. The rate asymmetry shown in Fig. 1.1b was convincing evidence for
the violation of P-symmetry or parity.

It could be explained by the following argument: The transition from *°Co(spin 5) to
% Ni(spin 4) as shown in Fig. 1.2a apparently does not occur, but the transition shown
in Fig. 1.2b does. As the electron was known from other experiments to appear in nature
in both helicity states (£1/2), the only remaining conclusion was that the anti-neutrino
occured only in one single helicity state, namely +1/2.

1.1.2 Parity violation

A more elegant experiment was performed a few weeks later by Lederman [4] which
allowed the observation of parity violation in charged pion decay. The experimental setup
is shown in Fig. 1.3a. Charged pions of 85 MeV are created in pp collisions and separated



6 Chapter 1 CP Violation in the Standard Model

.85 MEV ¥
PION'BEAM

CARBON ABSORBER —
TC STOP PIONS \ 1

. |

GATE-INITIATING
COUNTERS (4"x4")

COUNTS RELATIVE TO ZERO APPLIED FIELD

Iz
%/ / W

|
TCARBON TARGET

o, =
Xoaa U MAGNETIC SHIELD
8% gy

AMPERES - PRECESSION FIELD CURRENT

Figure 1.3: (a) The experimental setup of the Lederman experiment. (b) The resulting
rate variation as a function of the applied magnetic field.

magnetically according to their charge. They are then allowed to decay according to

T — ,u+ + v,

The remaining pions are absorbed. The penetrating muons are stopped in a carbon target
which is placed in a magnetic field, perpendicular to their line of flight. The muons will
start to precess in the magnetic field and after a while decay. The precession frequency
is given by

_ b (L.1)

with B the magnetic field, e the charge of the muon, m,, its mass and g the gyromagnetic
ratio of the muon which for a spin 1/2 particle is approximately 2.

Wi, =
2my,

A counter placed at fixed angle w.r.t. the original flight direction is gated open with a
fixed delay after the entry of the muon into the carbon target. This counter detects the
positrons from the decay

,u+ —et +u.+ Uy

The experiment was repeated for several different settings of the magnetic field and thus
different precession frequency. The resulting rate is shown in Fig. 1.3b. A clear oscillation
is seen showing that the muons are produced with non-zero polarisation in the pion decay.
So also in pion decay parity is not conserved. Again the assumption of a single helicity
for the neutrino can explain the result. As an aside the curves also show an asymmetry
in the height of the oscillation caused by the violation of parity in the muon decay.
Furthermore the wavelength of the oscillation allowed for the first time the measurement
of the gyromagnetic moment of the muon, thus confirming the spin 1/2 nature of the
muon.

Let us now take a closer look at the m decay. Fig. 1.4 shows the effect of the parity
operation on the decay of a 7+, which yields an unphysical result. If we now perform



1.1 Parity transformation 7

A A A
+£l Wfﬁ qli
o P .o C.xe
Yo ML M
Y Y Y

W

Figure 1.4: The physical ™+ decay is transformed via the parity operation to an unphysical
decay, the charge conjugation operation transforms this to a physically allowed situation
for m= decay. The solid arrows denote momentum vectors, the open arrows the spin.

=

a second operation, that of charge conjugation, C, the final result is again a physically
acceptable result. That this is correct could be verified by the Lederman experiment
by the use of 7~ mesons. So the combined application of the parity operation together
with the operation of charge conjugation (or more precisely particle-antiparticle exchange)
seems at least to provide a symmetry of nature.

1.1.3 CPT

Sofar we have come across two basic symmetries P and C which both are violated maxi-
mally in the weak interaction. The neutrino has only one helicity state. A third symmetry
which many find an appealing symmetry is that of time reversal, T. Certainly there is a
very strong reason for requiring the combination of all three to be a symmetry of nature
as it has been proven that any Lorentz invariant local field theory must have the combined
CPT symmetry. This is such a basic requirement that it is hard to imagine any theory
in particle physics which does not conform to this symmetry. One of the consequences of
the CPT symmetry is that particle states i.e. mass eigenstates which are the solution of

Hy—map =0 (1.2)

will have an equivalent antiparticle mass eigenstate with the same mass eigenvalue. The
easiest way of conserving the CPT invariance would clearly have been the invariance of
physics to all three symmetries separately. As we have seen P-symmetry and C-symmetry
are both violated but CP seems for the time being a valid symmetry. The notion of time-
reversal invariance is thus closely coupled to that of CP invariance. If CP-invariance is
true then T invariance is also true, if CP symmetry is violated then so must timereversal
invariance be.

The discrete transformations parity (P), charge conjugation (C) and time reversal (T)
will be discussed in more detail in the following sections.
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1.2 C, P and T: Discrete symmetries in Maxwell’s
equations

Consider first how the electric and magnetic fields, currents and charges behave under P,
C and T transformation. Under P transformation positions of charges will be exchanged
and so the electric field will change sign. Currents will flow in opposite direction so they
also will change sign. The magnetic field is proportional to j x 7 and so will conserve its
sign:

E@zt) 5 —E(-#1)

Bzt & B(-it)

2,5 P -2 =
v & v

Under T transformation the charges and positions will remain unchanged, whereas the
currents will flow in opposite direction, so we get:

—

(#t) 5 E(@ 1)
3(7,t) & —B(# 1)
i@t 5Ho—j@ -t

0 T 0

PR H P —

ot ot

and using similar arguments, we get for the C transformation:

E@t) S —E@
Bzt S —B@@b
j@y S i@
p(E ) S —p(@,1)

Finally under the combined CPT transformation the charges and currents change sign
and electric and magnetic field retain their sign. These properties can be summarised in
terms of the scalar potential ¢ and vector potential A:

A@@ 1) 5 —A(=2,t), A1) 5 -A@ —1), A@t)S-A@1).
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1.3 C, P and T: Discrete symmetries in QED

In this section we will derive expressions for the P, C and T operators. By definition the
transformed states ©p(Z,t), ¥o(Z,t) and r (¥, t) are constructed such that they satisfy
the same equation of motions for free fields as 1 (Z,t). In the derivation of expressions
for the P, C and T operators we start from the (correct) assumption that electromagnetic
interactions are P, C and T symmetric. In other words, the Dirac equation should also
hold for the P, C and T transformed fields. Eventually we will see what CP invariance
implies for the weak interactions.

Let us consider the Dirac equation of a particle with charge e in an electro-magnetic field

0
(i'y“% —eA, — m) Y(Z,t) =0, (1.3)

I

where (%, t) is a four component spinor and the matrices v* are given by:

7—(_02- 0)f01"2—1,3, 7_(0 _ﬂ),\mth.

(01N, 5, (0 =i\ 5 (1 0\ L, (10
"_(10’“_2'0"’_0—1’1_01'

We now write out Eq. (1.3) as

0 .0
o, Y = i Az _ =
(7 [lat ep(Z, t)] v [laxi eAi(Z, t)] m) W(Z,t) =0 (1.4)
The Dirac equation after parity transformation becomes:
0 , 0
0 y_ . . t . 1 -
(2 [igg = cot-20] =o' iz 2
Now, 1(—Z,t) is not a solution of the Dirac equation, due to the additional -sign in front

of ;. Multiplying the Dirac equation (after parity transformation) from the left by ~°,
we obtain the Dirac equation again:

+eAy(—1, t)} . m) (~Z,t) =0 (1.5)

0 .0
7P (70 {za —ep(—17, t)] + 9" {iaxi —eA;(—7, t)] - m) (=2, t) =0
and then transport the 4" through the equation using the anti-commutation rules 4%+ =
—~iy0 for i = 1,2, 3 we get:

(70 [i% — ed(—7, t)] — [iai — eAi(—T, t)} - m) (=, t) =0 (1.6)

We now see that the spinor 7°4(—7,t) obeys the (original) Dirac equation. We come
to the conclusion that the original Dirac equation is obeyed by the simultaneous parity
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transformation in Lorentz space (¥ — —) and the transformation in Dirac space of the
spinor with ~+°:

D(E,1) T pp(Z, 1) = Y U(~F, ) = PY(—7,1)

Of course also €% (—Z, t), with ¢ an arbitrary real phase, would provide a valid solution.

We will now take a look at the charge conjugation and investigate the interaction of a
particle of opposite charge with an electro-magnetic field. Starting again from Eq. (1.3)
and exchanging e — —e we find that the charge conjugate wave-function ¢ (Z,t) must
satisfy:

(70 [i% + ed(7T, t)] — 9t [iaii + e (7, t)} — m) Yo (Z,t) =0 (1.7)

For our particular representation of the 7 matrices we have the following properties:
A = A Al = 4l a2 = A2 and 43 = A3, Then taking the complex conjugate of
Eq. (1.3) one obtains

0 0 0
A = 1. - 2. N
( vy {Zat + ep(Z, t)} + {Z—le + eA; (7, t)] v |:Z—8.T2 + eAy(Z, t)]

++? {z’a%g + eAs(7, t)} — m) V(7 t) = 0(1.8)

Now multiplying from the left with 42 and transporting it through the equation we get:

0 [0
0 S g A ) N — 2005 (7 e
(2 [igg +eot0] = |1+ eatan] -m) Por@n =0 a9
comparing this result with Eq. (1.7) we can readily identify
¢C(f> t) = 72w*(f7 t)

Again we can use the arbitrary phase which we now take to be i, causing the combination
iv? to be real:

Vo (T, t) = iy v* (T, 1).

Rewriting this expression using @T = (Y10 T = AT (Y1) T = 4%)* yields the widely used
expression for ¢¢(Z,t):

(T, 1) - Ve t) = iV (T, 1) = ivy'0 (T,1) = O (1)

Similarly, using C' = i7?7°, we find C = —C~! and ¥(%,t) — —T (z, )01

Finally we take a look at time reversal. We now again start from the complex conjugate
equation and now multiply by v'7* we then get

77Z)(fv t) i) ¢T(f7 t) = i7173¢*(f7 _t> = T¢*(f7 _t>

where we again use the arbitrary phase to give the factor i.
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For the CP operation we have:

CPY(&,t) = ie"y*y ) (=, 1)
and for CPT ‘

OPT¢(£7 t) = ez¢75¢(_f7 _t>

using v° = i7%y1y2y3. Check out the fact that the CP operation transforms an electron
into a positron with opposite momentum and opposite helicity.

In summary, we get the following properties of the transformed wave-functions:

Field p C
Scalar field o(z,t)  o(—=2,t) o (Z,t)
Dirac spinor R I T B e L )
E(f’ t) E(_f’ t)ﬁ)/o _wT(f’ t)c_l
Axial vector field A, (Z,t) —A*(—Z,t) Al(Z,1)

Table 1.1: C and P transforms of fields. Note that p = 0,1,2,3 and that A* = — A, and
A = A,.

Because of Lorentz invariance, spinors typically occur in so-called bilinear forms in the
Lagrangian. For example, the bilinear 17,1, transforms under C' as follows (using
PC = —CyT and A1y = 409#) [5]:

Drvbs = —pTCT 19,00y = W7y TPy = —(yman)” = —Pamuthr.

The minus-sign at the second step arises from interchanging the (anti-commuting) fermion
fields, and the transpose at the last step can be omitted because the entity is a ’one-by-one
matrix’.

For completenss the transformation properties of the bi-linear forms are listed below.

Bilinear | P C T CP CPT
scalar (N V192 Vyth V192 Yyt Vyth
pseudo scalar  ¥y759%2 | -UsP2 aysthr Usthe | Yy stn Yysts
vector Vivbe | Y e Ut e | i s
axial vector Py sthe | -1 52 e st Y ste | Y st -Yauystn
tensor %UW% %0’”’% -%UW% -%CTW% -%U“V@Dl wQJuuwl

Table 1.2: C, P transforms of bilinears



12 Chapter 1 CP Violation in the Standard Model

1.4 CP violation and the Standard Model Lagrangian

1.4.1 Yukawa couplings and the Origin of Quark Mixing

Let us now have a close look at the Standard Model Lagrangian to see where CP violation
originates. The full Standard Model Lagrangian consists of three parts:

ACSM = Ekinetic + ‘CHiggs + ['Yukawa-

The kinetic term describes the dynamics of the spinor fields v
Ekinetic - Z&(auryu)ﬂ)?

where 1) = ¥T7° and the spinor fields 1 are the three fermion generations, each consisting
of the following five representations:

QL.(3,2,+1/6), uh.(3,1,42/3), d%.(3,1,—1/3), L1.(1,2,—1/2), (L(1,1,-1)

This notation [6] means that Q1 (3,2, +1/6) is a SU(3)¢ triplet, left-handed SU(2), dou-
blet, with hypercharge Y = 1/6. The superscript I implies that the fermion fields are
expressed in the interaction basis. The subscript ¢ stands for the three generations. Ex-
plicitly, @%,(3,2,+1/6) is a shorthand notation for:

r I ,1 I ,1 ,,1 I I I I 41 41
I [ U Uy U [ U Uy Wy Cgs Crs Cp tg,tr,tb
QL’L(3’27+1/6) ( dl dl di )Z ( dI dI d£ )7(81 SI S£ ) ) ( bI bI bi .

g? ro g? 9 g? ro g7 ro

The interaction terms are obtained by imposing gauge invariance by replacing the partial
derivative by the covariant derivate

Ekinetic = /“E(Duﬂyu)w (110)
with the covariant derivative defined as
DF = 0" +ig,GY L, + igW/'o, + ig' B'Y,

with L, the Gell-Mann matrices and o}, the Pauli matrices. G#, W/} and B* are the
eight gluon fields, the three weak interaction bosons and the single hypercharge boson,
respectively.

We can now write out the charged current interaction between the (left-handed!) quarks:

— 1
Ekinetic,weak(QL) = ZQiﬂu (@u + 59W50b) Qiz

, I

= i(u d)jpy, (0" + 59Wlﬁab) ( d )
iL

= iu—z‘IL'Vua“Uz‘IL + iClz_‘IL'Vua“de - LEVMW_“de - iEV#WﬂLUZIL + ..

V2 V2
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using W = 5 (W — ill,) and W= = (W, +iWs).

Next, the W and Z bosons aquire their mass through the mechanism of spontaneous
symmetry breaking. For this, the Higgs scalar field and her potential is added to the
Lagrangian:

Litiggs = (Dud)' (D) — p*¢'d — A(¢'9) (1.11)
with ¢ an isospin doublet
ot
¢($) = ( ¢O ) :

The coupling of the Higgs to the gauge fields follows from the covariant derivative in the
kinetic term. However, the interactions between the Higgs and the fermions, the so-called
Yukawa couplings, have to be added by hand:

_‘CYukawa = Y;]E ¢ ij + h.c.
YAQL, ¢ diy + QT ¢ upy + VILL, ¢ 1 + hec. (1.12)

with
—0

bmins = (5 ).

The matrices YZ?, Y;j and Yl are arbitrary complex matrices that operate in flavour space,
giving rise to couphngs between different families, or quark mixing, and thus to the field
of flavour physics. It is interesting to note how intimately flavour physics is related to the
mass of the fermions, see Section 2.4. Since this is the crucial part of flavour physics, we

spell out the term YZ‘;Q—L 10} dfzj explicitly:

o —— (¢t
Y;?Qiz ¢ dﬁ%j = Y;?(u d)fL ( b dﬁ%j =

- - +
vl al (%) vawar( %) v ar( %)
- + -
vle o (G ) vale ok (G0 ) vl (G ) || ok
Yai(t b)! » Yao(t b)t » Yas(t b)! >
31( )L d)o 32( )L ¢O 33( )L d)o
After spontaneous symmetry breaking,
o ¢+ ) sym.breaking L ( 0 )
¢(x) ( ¢O — \/§ U+h($) 5
the following mass terms for the fermion fields arise:
—Lgrarks = YAQL. ¢ b + YQL, ¢ uk; + hec.
= Yddl, — dI + Yl 2 uf; + h.c. + interaction terms

3 V2

— ijdiidf + M“uLluRJ + h.c. + interaction terms



14 Chapter 1 CP Violation in the Standard Model

The interaction terms of the fermion fields to the Higgs field, ggh(z), are omitted.

To obtain proper mass terms, the matrices M4 and M* should be diagonalized. We do
this with unitary matrices V¢ as follows:

M, = VLV

MY, = VMV
Using the requirement that the matrices V' are unitary (V;V# = 1) the Lagrangian can
now be expressed as follows:

—Lgrarks = dl MR db +ul, MYk + b+
= db, VIWVEMEVEIVE db + ul, VIVEMEVEIVE uhy + hee + .

= dpi (M) diag drj + Ui (M})diag urj + h.c. + ...
where the matrices V' are absorbed in the quark states, resulting in the following quark
mass eigenstates:

dy gl
dri = (Vi)igdy; dri = (V§)ijdg;
= (V)4 I = (V)4 I
Uri L z]uL] UR; R Z]uRj
Note that we can thus express the quark states as interaction eigenstates d’, u! or as
quark mass eigenstates d, wu.

If we now express the Lagrangian in terms of the quark mass eigenstates d, u instead of
the weak interaction eigenstates d!, u!, the price to pay is that the quark mixing between
families (i.e. the off-diagonal elements) appears in the charged current interaction:

9 1 —u gl g I
‘Ckinetic,cc(QL) = \/EUZILVMW “diL + \/édiILﬂyMW—huuiL + ..
g uysd — g 5 ()
= ﬁuiL(VL VLT)Z]P)/,U'W MdiL + ﬁdlL(VgVLT)Z]Fy,U'W+HuZL + ...

The unitary 3x3 matrix

Verm = (VLUVLdT)ij (1.13)
is the Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix [7].

By convention, the interaction eigenstates and the mass eigenstates are chosen to be equal
for the up-type quarks, whereas the down-type quarks are chosen to be rotated, going
from the interaction basis to the mass basis:

UZI = Uj
dl = Vogwmd,
or explicitly:
dI Vud vus vub d
st = Ve Vs Va s (1.14)

b Vie Vis Vi b
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The connection between the charged current couplings and the quark masses will be
discussed further in Section 2.4.

From the definition of Vog s, see Eq. (1.13), follows that the transition from a down type
quark to an up-type quark is described by V,4, whereas the transition from an up type
quark to a down-type quark is described by V';:

U d U d
Vaud C Via C Via C Viud C
d U d U
W= w+ w+ W=

Figure 1.5: The definition of Vi; and V5. Note that if the arrow of time points from left
to right, that the two right diagrams represent the situation for anti-quarks.

1.4.2 CP violation

CP violation shows up in the complex Yukawa couplings. We examine once more the
Yukawa part of the Lagrangian:

_‘CYukawa = Y;]E ¢ ij + h.c.
= Yij¥rLi ¢ ¥rj + Yivm ¢ Yrs
The CP operation transforms the spinor fields as follows:
CP(Li ¢ ¥rj) = Urj 0 bus
S50, Lyykawa Temains unchanged under the CP operation if Y;; = Y

Similarly, if we look at the charged current coupling in the basis of quark mass eigenstates,

Liineticee(Qr) = iuiLViﬂuWWdiL + ﬁﬁvimwwum (1.15)

V2 V2

and the CP-transformed expression,

ok (Qr) = id—iLVz‘j%WWUiL + Iz

kinetic,cc \/5 \/iuiL

then we can conclude that the Lagrangian is unchanged if V;; = V7.

Vi W dy, (1.16)

The complex nature of the CKM matrix is the origin of CP violation in the Standard
Model. In the following chapter the properties of the CKM mixing matrix will be examined
in detail.
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Chapter 2

The Cabibbo-Kobayashi-Maskawa
Matrix

In the previous chapter we saw how the introduction of Yukawa couplings (i.e. the terms
where the Higgs couples to the fermions) led to off-diagonal elements in the 3 x 3 matrix be-
tween the different families. By diagonalizing the 3 x 3 Yukawa matrix, these off-diagonal
elements appear in the charged current coupling, in the Cabibbo-Kobayashi-Maskawa-
matrix. The CKM-mechanism is the origin of CP violation, and earned Kobayashi and
Maskawa the Nobel price in 2008, “for the discovery of the origin of the broken symmetry
which predicts the existence of at least three families of quarks in nature”.

2.1 Unitarity Triangle(s)

In this section we will discuss the properties of the unitary ! CKM matrix Vo, We
start by counting the number of free parameters for the CKM-matrix.

1) A general n x n complex matrix has n? complex elements, and thus 2n? real param-
eters.

2) Unitarity (VV = 1) implies n? constraints:

— n unitary conditions (unity of the diagonal elements);

— n? — n orthogonality relations (vanishing off-diagonal elements).

3) The phases of the quarks can be rotated freely: ur; — e ur,; and dr; — ewgdLj.
Since the overall phase is irrelevant, 2n — 1 relative quark phases can be removed.

'Remember from quantum mechanics the evolution of a wave function, [4(t)) = U(t)|(0)). The
unitarity condition implies conservation of probability: (v(t)[1(t)) = ((0)|[UTU[%(0)) = (10(0)[(0)),
provided UTU =1

17
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Summarizing, the CKM-matrix describing the flavour couplings of n generations of up
and down type quarks has 2n? —n? — (2n — 1) = (n — 1)? free parameters. Subsequently,
we can divide these free parameters into Euler angles and phases:

4) A general n x n orthogonal matrix can be constructed from %n(n — 1) angles de-
scribing the rotations among the n dimensions.

5) The remaining free parameters are the phases: (n—1)2—3n(n—1) = 1(n—1)(n—2).

For the Standard Model with three generations we find three Euler angles and one complex
phase.

At this point we make a short historical excursion. Before the third family was known,
Cabibbo suggested in 1963 the mixing between d and s quarks, by introducing the Cabibbo
mixing angle f-. This is the only free parameter for a 2x2 unitary matrix, and the
mixing matrix is a pure real matrix. To allow for CP violation the mixing matrix has
to contain complex elements, satisfying Vi; # V.. This requires at least three families.
CP violation was first measured in 1964 by Cronin and Fitch (discussed in more detail
in Section 5.3). Subsequently, Kobayashi and Maskawa suggested in 1973 the possibility
that the existence of a third family could explain the CP violation within the Standard
Model. This happened at the time that not even the second family was completed! The 4"
quark, the charm quark was only discovered a year later, in 1974, in the form of the J/v
resonance. The bottom and the top quark were discovered in 1977 and 1994 respectively.
In 2008 Kobayashi and Maskawa were awarded the Nobel prize for the discovery of the
origin of the broken symmetry which predicts the existence of at least three families of
quarks in nature.

Let us now look at the consequences of the unitarity condition for the CKM-matrix:

Vud Vus Vub Jd cti tﬁl 1 00
VIV =vVi= [ Vi Voo Vi | [V VE Ve | ={ 010 (2.1)
Viae Vis Vi w Vo Vi 001
This leads to the following three unitary relations:
Vudvu*d + Vusvu*s + VubVJb 1
‘/Cd ctl + ‘/CS‘/CZ + ‘/Cb cz 1
VidVia + VesVie + Va Vi 1 (2.2)

These relations express the so-called weak universality,

because it shows that the squared

sum of the coupling strengths of the u-quark to the d, s and b-quarks is equal to the
overall charged coupling of the c-quark (and the t-quark). In addition, we see that this
sum adds up to 1, meaning that “there is no probability remaning” to couple to a 4
down-type quark. Obviously, this relation deserves continuous experimental scrutiny.
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Figure 2.1: One of the siz unitarity triangles. VigVy, = |ViaVii e, Vi Vi = |Vi Vi | e
and Vi Vi, = [V Vi €.

The remaining relations are known as the orthogonality conditions:
VuaVog + VusVes + VVy, = 0

VadVig + VausVis + VaViy =

VeaViug + VesVis + VaVip, =

VeaVig + Ves Vi + VoV, =

ViaVaa + VisVis + VoV =

VidVea + VisVig +VaVy = 0 (2.3)

Three of the six equations are simply the complex conjugate version. An additional three

interesting equations arise from the unitarity relation VIV = 1:

wdVus + VegVes + VigVis

VaaVub + VeaVer + VgV

VisVua + Ve Vea + VigVia

ViV + ViV + ViV

wVud + Vg Vea + Vi Via - =

wVus + Vg Ves + VigVis =

o O O O

0
0
0
0
0
0 (2.4)

Equations (2.3-2.4) give relations in which the complex phase is present. As these are
sums of three complex numbers that must yield zero they can be viewed as a triangle in
the complex plane, see for example Fig. 2.1.

In the literature there are many different parameterizations of the CKM matrix. A con-
venient representation uses the Euler angles 0;; with 4, j denoting the family labels. With
the notation ¢;; = cost;; and s;; = sin0;; the following parameterization was introduced
by Chau and Keung, and has been adopted by the Particle Data Group:

C12 S12 0 C13 0 8136_2613 1 0 0
Verm = —5S12 ci2 0 0 1 0 0 co3  s23 =
0 0 1 —81362613 0 C13 0 —S8923 Co3
C12C13 $12C13 Sige” 01
i i
—512C23 — C12523513€"°%  C1aCa3 — S12523513€"13 $23C13 (2.5)
1613

10
512893 — €12C23513€ —C12823 — $12C23513€"°%  Ca3C13



20 Chapter 2 The Cabibbo-Kobayashi-Maskawa Matrix

The phase can be made to appear in many elements, and is chosen here to appear in the
matrix describing the relation between the 1°¢ and 3" family.

2.2 Size of matrix elements

We will now briefly discuss the experimental evidence for the size of the matrix elements
of the CKM-matrix.

|Vaal: This matrix element is determined from comparing nuclear S-decay rates or neutron
decay rates to the u-decay rate, see Fig. 2.2. In the calculations there are some
theoretical uncertainties due to binding energy corrections in nuclei. The best value
obtained by averaging many experiments is:

|Via| = 0.97425 4 0.00022

Ve Ve
W= ¢ W ©
Vud 1
d - u a o
n p
d d
u u

Figure 2.2: Diagrams important for determining V,q.

|V.s|: By analysing semi-leptonic K-decays, shown in Fig. 2.3, a value is obtained of

|Vus| = 0.2253 4 0.0008

Ve 7,
% < wW- ¢
Vus 1
\ 4 M* VH
K7 @ S u % 71_0

Figure 2.3: Diagrams important for determining V.
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|Veal: Is originally obtained by the analysis of neutrino and anti-neutrino induced charm-
particle production of the valence d-quark in a neutron (or proton) (see Fig. 2.4).
Averaged with measurements on semileptonic charm decays, yields

V.a| = 0.225 + 0.008

Figure 2.4: Diagrams important for determining V.q.

|Ves|: Is the matrix element relevant for the dominant decay modes of the charm quark.
Here an analogous analysis is performed for D-decays as was done for K-decays

for V5. (see Fig. 2.5). The major uncertainty is due to the form-factor of the
D-meson. The final result is

V.| = 0.986 + 0.016

Ve T
et e
- W+ . W
DO@ & S %K‘ me Yu
u u

Figure 2.5: Diagrams important for determining V.

|V.s|: Is determined from the decay B — D*I*v; (see Fig. 2.6). A large amount of data is

available on these decays both from LEP and from lower energy ete™ accelerators
giving an average result of

V| = 0.0411 4 0.0013
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Ve —

et _

. Wt W~
Vi 1

- 1%
BO % b c %D*_ H :

d d

Figure 2.6: Diagrams tmportant for determining V.

|Vs|: Is determined from the semi-leptonic decay B — wlty;, similar to the determination
Of |‘/cb‘
|Vis| = 0.00413 4+ 0.00049

|Via| and |Vi|: These elements cannot be measured from tree-level top-quark decays, and so these
elements are probed through loop diagrams such as the box-diagram, as will be
discussed in detail in Section 3.5. Using lattice calculations to take long-distance
effects into account, and assuming |Vy| = 1, yields:

|V;a| = 0.0084 & 0.0006
V;s| = 0.0400 =+ 0.0027

|Vis] - CDF, DO, ATLAS and CMS measured the ratio of branching ratios Br(t — Wb)/Br(t —
Wq), yielding the following 95% confidence level limit:

V| = 1.021 + 0.032

Taking all the information above, a global fit with Standard Model constraints leads to
the following result for the absolute values of the elements:

0.97427 0.22536 0.00355 0.00014 0.00061 0.00015
Vexn = | 0.22522 0.97343 0.0414 £+ [ 0.00061 0.00015 0.0012 (2.6)
0.00886 0.0405 0.99914 0.00032 0.0011  0.00005

The strength of the charged current couplings seem to exhibit a hierarchy. This pattern
motivated Wolfenstein [8] to parametrize the CKM-matrix in powers of the parameter

A & sin bty ~ /74 which is described in the next section.
S

I XN
|VCKM‘ ~ A 1 )\2
AN 1
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2.3 Wolfenstein parameterization

Comparing the expressions (2.5) and (2.6) we see that typically the sinf;; are small
numbers and that sin 65 > sinfy3 > sin 3. This leads to a very popular approrimate
parameterization of the CKM matrix proposed by Wolfenstein.

sin ‘912 = A (27)
sin 923 = 14)\2 (28)
sin B3 = AN3(p — in) (2.9)
where A, p and 7 are numbers of order unity. The CKM matrix then becomes O(\3):
1— 12 A AN3(p —in)
Voxkm = —A 1— 32 AN? + 0V (2.10)
AN(1 —p—in) —AN? 1

The higher order terms in the Wolfenstein parametrization are of particular importance

for the B,s-system, as we will see in chapter 4, because the phase in |V, is only apparent
at O(\):

8
SV = | $AN(1=2(p+in)  —iN(144A4%) 0 +OMN)  (2.11)
SAN(p+in) SAM(1 =2(p+in)) —1A2M

Let us now return to the six orthogonality relations that give rise to the six unitarity
triangles. Only two out of the six equations have terms with equal powers in \.

VuaVigy + VeV + ViV =0
O 00 o) (2.12)

VidVg + VisVis + VaVy, =0
0N 0N OO (2.13)

These two triangles are relevant for B-decays. The other four equations contain terms
with different powers of A and hence give rise to “squashed” triangles.

The relation shown in Eq. 2.12 is known as the unitarity triangle. By dividing the
three sides by |V.4Ve| and subsequently rotating the whole triangle (i.e. rephasing all
sides, without affecting the relative phases), yields the famous unitarity triangle shown
in Fig. 2.7. One side now has unit length and points along the real axis. The apex of the
triangle is located by definition at (p,7) %

VuaVip
VeaVy,

p+in =

2Qccasionally the generalized parameters 7 and 7 are defined in the literature as the approximation
p=p(l— X% and 7 = (1 — $2%) [9].
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Im * * o Im V. Vio+ Vo Ve + V. Vo =0
Vuqub+ \éd \{:b + thth —O us’ ub ts ‘cb tsVtb
= 0
(Pv"]) *
s Vv,V Vusuh MY BT ———— 1 Re
V.V td ¥ tb " *
ud”ub YRV Vs Vi VisVip
Vil cd ‘cb —
cd ‘cb \{:s \{:b

0| 1 Re

Figure 2.7: (a) “The” wunitarity triangle. Shown in the complex plane is the relation
L+ ViaVis /VeaVi + VudVii /VeaViy = 0. (b) The analogous unitarity triangle for the B2-
system, with the d-quark replaced by the s-quark, 1+ ViV /Ves Vi + VsV [ Ves Vi = 0.

The parameters p, and 77 can be expressed in terms of the Wolfenstein parameters p and
n as follows:

5= p(1 — %)\2) FOM)  F=n(l— %v) + OO (2.14)

The angles in “the” unitarity triangle are defined as follows:

ViaVig VeaVy VaudVy VisVi
a = arg {—7‘;’3 ti] 0 = arg {——VZ Ci’} v = arg {—7‘/2 ib} Bs = arg [——Vt ti}
ud Vb td Vb cdVeh csVeb

(2.15)
Note that these definitions are convention independent: any phase added to a specific
quark cancels out in either the product or the ratio of the CKM-elements. Equivalently,
the CKM triangles can be rotated and scaled in the complex plane, without affecting the
internal angles of the triangles.

In the Wolfenstein parametrization a phase convention is used such that the elements
Vid, Vap and Vis have an imaginary component (to order O(\*)), and V.4V is real and
negative, see Fig. 2.8.

E Im Im Im

*
Vuqub
T T . agVg
* * agVv =y
YA KX YAA f g /\ B
A/J‘// ——
B Re Re . VCSVC*
agVy VisVip

*
VidVin

Figure 2.8: The angles 3, v and (35 using the phase convention as given by the Wolfenstein
parameterization. (a) 3 (b) v (c) Bs.
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The expressions for the angles now become:

Br mtarg(VedVy) —arg(ViaVy) = m+m —arg(Vig) = —arg(Vig)
v~ m+arg(VudVy,) —arg(VeaVy) = m —arg(Vip) — 7 = —arg(Vis)
Bs = 7w+ arg(VisVy) —arg(VesVy) =+ arg(Vis) — 0 =arg(Vis) + 7

Alternatively, the Wolfenstein phase convention in the CKM-matrix elements can be
shown as:

1271 | Vs V| e "
VCKM,Wolfenstein - _|‘/cd| . “/cs‘ . |‘/cb| + O()‘S) (216)
[Viale™  —[Vigle® [V

As mentioned earlier, CP violation requires Vj; # V7, which is satisfied if the triangle
has a finite surface in the complex plane. In fact, it turns out that the surface of all six

unitarity triangles have equal surface area.

This quantity denoted as J, also known as the Jarlskog invariant, can be derived in a
simple way from the CKM matrix. Remove one column and one row from the CKM
matrix and take the product of the diagonal elements with the complex conjugate of the
non-diagonal elements. The imaginary part of the product is then equal to J. In total
there will be nine possible expressions for J which all give the same result:

J =SV Ve Vi5 Vi) = S(Vae Vs Vs V) = - (2.17)
In the Wolfenstein parameterization the quantity J becomes
J = A?X%) =2 x area (2.18)
In the parameterization of Eq. (2.5) it is
J = 0120%3023812813823 sin d;3 (2.19)

From this form it is clear why this quantity occurs in all CP violation effects. It is zero if
any one of the mixing angles is zero. This would reduce the CKM matrix essentially to
a 2 x 2 matrix and allow the removal of the phase. Also if the complex phase would be
zero no CP violation is possible. As a final comment the quantity J is just equal to the
twice the surface area of the unitarity triangle.
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2.4 Discussion

The strong hierarchy in the size of the matrix elements of the quark mixing matrix is
intriguing and its origin is not understood. To paraphrase Ikaros Bigi [10]: “ It has to
contain a message from nature - albeit in a highly encoded form.”

We have seen that the origin of the quark mixing matrix lies in the Yukawa couplings
between the Higgs field and the quark fields. At the same time, these Yukawa couplings
are responsible for the generation of the quark masses, which becomes obvious after
diagonalizing the matrix that describes the Yukawa couplings. Also the values of the quark
masses show a striking hierarchy, which makes the thought of an underlying connection
between the quark masses and the charged current quark couplings fascinating.

Y ukawa Couplings

N
a N
Couplings M asses
d s b
U . . L] U [ d L]
?2?
c [ | . m <« » C m S| =m

t-l. t. b\ H

Figure 2.9: Both the charged current quark couplings and the quark masses originate from
the Yukawa couplings and both the couplings and the masses show an intriguing hierarchy.
Does this suggest an underlying connection between them?

We have now set the framework for the incorporation of CP violation in the Standard
Model. The question remains of course whether all manifestations of CP violation can be
explained. Of course theoretically we can always incorporate new ideas such as supersym-
metry or an increase in the number of families to explain any deviations. Experimentally
it is now important to verify the Standard Model description. When looking at the uni-
tarity triangle we can see that the length of the sides of the triangle can be extracted
from measurable quantities. It is now necessary to investigate whether the angles of the
triangle can be measured in an independent way. Disagreement between the angles and
the lengths of the side would necessarily signal New Physics. At present many experi-
ments are either running or have been proposed which will be able to give answers to the
questions to a greater or lesser extent. In chapter 4 we will proceed to discuss the channels
which are considered to be the prime candidates for further investigation of CP violation.
Before that, we will introduce the concept of neutral meson oscillations, or mixing, which
plays a crucial role in many of the CP-measurements.
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2.4.1 The Lepton Sector

We only focussed on the quark couplings, and we will continue to do so in the rest of
these notes. Nevertheless it is both enlightening and intriguing to cast some light on the
lepton sector.

The discovery of neutrino oscillations [11] implies that neutrinos have non-zero mass, and
as a result a similar diagonalization of the Yukawa matrix can be done, compared to
the quarks (see Section 1.4.1). The lepton counterpart of the CKM-matrix is called the
PMNS-matrix, after Maki, Nakagawa, Sakata and Pontecorvo [12].

The first observation is that the leptons are commonly referred to as the flavour eigen-
states, in contrast to the mass eigenstates that we use for the quarks. For example, we
typically picture the W to couple purely to a (e, v.) pair, whereas the coupling of the W
to the quarks we picture as the coupling to a (u, [d, s, b]) pair, ie. a mixture of d, s and b
quarks. The lepton-equivalent of the down-type mass eigenstates are vy, v, and vs.

The second, inspiring, observation is that the magnitude of the elements of the MNSP-
matrix show a completely different hierarchy:

Uy U Ues 0.85 0.53 0
UMNSP = Uul ng ng =~ —0.37 0.60 0.71
U Un Ugs —0.37 0.60 —-0.71

Interesting numerology appears if we square the matrix elements, revealing the following
approximate composition (known as ’tri-bimaximal mixing’ [13]):

2 19
2 A
Uunsel"~ | 5 5 5 |,
1 1
6 3 2
or alternatively:
2 1
Umnsp & _\/I 2 010 0 3 5 | = _\/g \/g _\/g
s s 0 01 1 1

This comparison should make clear that the hierarchy in the CKM matrix, nor the fact
that the matrix is symmetric, is by any means “logical”, or “natural”?!

To date, no experiment has reached the sensitivity to measure complex phases on the
MNSP matrix elements, which would indicate CP violation in the lepton sector 3.

3The situation is slightly more complex if the neutrino’s are of Majorana nature, ie. if the neutrinos
are their own anti-particles. The smallness of the neutrino masses is typically explained with the see-saw
mechanism, which at the same time predicts a heavy right-handed sterile neutrino at the grand-unification
scale.
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Chapter 3

Neutral Meson Decays

3.1 Neutral Meson Oscillations

The phenomenon of neutral meson oscillations is important for various reasons. Firstly, in
many measurements of CKM-parameters, the oscillations play a crucial role in providing
a second transition amplitude from the initial state to a given final state. This second
amplitude is needed to determine the relative phase difference between two amplitudes,
as described in chapter 4. Secondly, the observation of two K particles with largely
varying lifetimes and the resulting discovery of CP violation is of historical importance,
see chapter 5, and is described in terms of a superposition of |K)-states and its quantum-
mechanical evolution.

The formalism described in this section is valid for all weakly decaying neutral mesons:
K° D° B° and BY?. We will outline the framework in terms of a generical meson P°,
which can be substituted at will by K°, D° B° or B?. Although we will see that the
difference in mass (and thus available phase space for the final state) and coupling strength
(CKM-elements) results in dramatically different phenomenology.

3.2 The mass and decay matrix

The states | P°) and | P°) which are eigenstates of the strong and electromagnetic interac-
tions with common mass my and opposite flavour content. Let us consider an arbitrary
superposition of the P’ and P° states, which has time-dependent coefficients a(t) and
b(t) respectively:

b(t) = a(t)|P?) + b(t)|P°)

We can write ¢(¢) in the subspace of P° and P° as follows
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The effective Hamiltonian that governs the time evolution is a sum of the strong, electro-
magnetic and weak Hamiltonians.

H = Hst+Hem+Hwk

The wavefunction 1 must then obey

o
/Lg = Hw

The Hamiltonian can then, in the (P° P°) basis, be written as 2 x 2 complex matrix:

H=M-—=T
2
where both M and I' are Hermitian matrices. M will provide a “mass” term and due to
the —¢, I will provide the exponential decay. Note that due to the ¢, H is not hermitian
reflected in the property that the probability to observe either P? or P° is not conserved,
but goes down with time:

d wrioy [ 1 0 a(t
= (la@F + b)) = = (a(t)b(1)") ( 0 T ) ( bEt)) )
If the weak part of the Hamiltonian did not exist the P system would be stable and so H

would reduce to
H— M = ( m po 0 )
0 m po

where mpo = (P°|Hy + Hepn|P°) and mpo = (P°|Hy + He,p,|P°) and the off-diagonal
elements are 0 through flavour conservation. With the weak interaction responsible for
the decay we get:

: i My — 4T 0
N Hy= (M- = 2 ,
Yot y=I 2 Y ( 0 Moy — 5T )

If we now allow for the transitions P° — PP, the off-diagonal elements are introduced:

O i My — 4Ty My — 4T,
— =HYp=(M—- =Ty = 2 2
"ot = 2 o ( Moy — 5091 Mag — 519 v

The off-diagonal elements consist of two parts, M;, and %Flg, which describe different
ways of the P® — P° transition. M, quantifies the short-distance contribution from
the (calculable) box diagram as will be discussed in Section 3.5. I'12 is a measure of the
contribution from the virtual, intermediate, decays to a state f, see Fig. 3.1.

If we now assume that CPT is valid then it follows that My, = Masy, My = M7, and
11 = Dyg, I'yy = I'}, meaning that mass and total decay width of particle and antiparticle
are identical.

O i M — il My — LTy,
iy = Hv=01=5Dy < My —irs, M-—ir )Y (3:1)
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via off-shell states,
weak box—diagram

/- M, ™~
po |30
\ __ir12'/

2

via on-shell states,
P%s f — PO

Figure 3.1: The neutral meson oscillation consists of two contributions, namely through
off-shell states and on-shell states.

In general there can be a relative phase between I'j5 and My [14]:

@) (3.2)

=arg| —
¢ g( T,

which is the relative phase difference between the on-shell (or dispersive) and off-shell (or
absorbative) transition. This leads to the relations

Al' = 2|I'j5| cos ¢. (3.4)

If T is conserved then it follows that I'},/T'1o = M, /Mjs so that by introducing a free
phase we can make I';5 and M5 real.

Under these assumptions we can now find the eigenvalues and eigenvectors of the Hamil-
tonian. These will describe the masses and decay widths and the PY P° superpositions,
that describe the physical particles.

3.3 Eigenvalues and -vectors of Mass-decay Matrix

Given the Schrodinger equation (3.1) we find the eigenvalues of the mass-decay matrix,
by solving the determinantal equation [15]:

‘M—%F‘—)\ Mlgféflg —0
2 =3l M—35I'=A

Using the shorthand notation F' = \/(M12 — iT19)(Mf, — £I'%,) we find the eigenvalues
A =M — %F + F'. Splitting the real and imaginary part by defining A_ = m; + %Fl and
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AL =mo + %Fg, we obtain:
ml+%r1 - M—?RF—%(F—Q%F)
mg—i—%f‘g - M+§RF—%(F+2%F)
These expressions invite the use of the following notation:

Am = my—m; =2RF
Al = Fl—F2:4%F

If we express the eigenstates P, and P, as:

[P1) = plP?) —qlP")
|P,) = p|P°) +q|P°)

we find p and ¢ by solving

(e, ") (1))
My, — %FTZ M — %F q q
yielding:
q_ My — %Ffz
p My — %Flz
The state |P;) is the mass eigenstate with mass m; and lifetime I';. Similarly we obtain

the mass my and lifetime I'y for state |P). The sign of ¢/p determines whether |P;) or
| P,) is heavier. The choice of a positive value of Am gives:

¢_ (M=l %FT? (3.5)
p Mis — T2

Note that we have chosen the sign here, such that Am > 0, but that does not imply
anything for the sign of AI': experiment has to judge whether Al is positive or negative,
relative to the sign of Am.

We can also relate ¢/p to the mixing phase as introduced in Eq.(3.2) [14]:

|F12| .

AT lq|
sing = —+tangp =21 — — |. 3.6
0= F 0 =21 ) (36)

(This will turn out to be the size of a possible CP asymmetry for flavour-specific final
states, afs.)
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3.4 Time evolution

We define the two mass eigenstates of the neutral mesons as !:

|Py) = plP°) +q|P°)
|PL) = p|P°%) —q|P° (3.7)

where the subscripts 1 and 2 are replaced by H and L, indicating the heavy and light
mass eigenstate, respectively. We can then decompose the P? and P states as

P = %HPHMPLM
) = 2iq[|PH>—|PL>1 (3.8)

The states |Py) and |Pp) are mass eigenstates and from the Schrodinger equation (with
diagonal Hamiltonian) the usual time dependent wave functions are obtained:

|Py(t)) = e ™mut=alut| py(0))
|P(t)) = e ™metmalit|pp(0)) (3.9)

By combining Egs. (3.9), (3.8) and (3.7) we get:

1 . .
POy = 5 {er AT Py (0) 4 oA Py (0)) )
1 . _ ) _
= o eGP + gl )+ eI PY) — gl P}
— % <6*imHt*%FHt + e*imLtférLt) ’P0> + Zi <e*imHt*%FHt _ e*imLtférLt) ’P0>
p
q _
= 001+ (1) g1 (3.10)
where we define the functions
g () = % <e—imHt—%FHt 4 e—imLt—%FLt> _ le—th <e—i%Amt—%FHt 4 e+i%Amt—§FLt>
g_() = 1 <efimHtf%FHt _ efimLtf%FLt) _ le”'Mt <67i%Amt7%FHt _ €+i%Amt7%FLt>
B 2 2

!There are some subtleties concerning the sign (or phase) convention. Let us assume CP symmetry,
lg/p| = 1. We can choose q/p = +1 and CP|P°) = £|P°). Once the sign of ¢/p is fixed, see Eq.(3.5),
experiment decides if Py is the state that is (more) even or odd, which fixes CP|P°) = £|P). In principle
this can be different for K°, B® and B%. We choose the sign convention Amg > 0 and CP|K°) = —|K?)
such that CP|Kr) = —|Kr) (or AT'x =T'g —I't, > 0) according to experiment. This leads to the sign
convention in Eq.(3.7), and implies Amyx = mj, —mg. Also in the B-system the heavier mass eigenstate
By is (more) CP odd, and the CP-even state in the Bg-system can decay to the final state DI D, and
has therefore a slightly shorter lifetime.
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where M = (my + my)/2 and Am = my — my. Likewise, we get for the time evolution
of the state |P°):

PO(1)) = g_(1) (Z) PY) + g, (8)|P°) (3.11)

If we start from a pure sample of |P%) particles (e.g. produced by the strong interaction)
then we can calculate the probability of measuring the state |PY) at time ¢:

2
P

(PP = |g-(1)° .

with
ge(F = = (&7t 4 eTat 4 o Te(emilmt | rimty)

(e’FHt +e Tt £ 97 eog Amt)

N ST N

—I't

= 5 (cosh %AFt =+ cos Amt) (3.12)

where I' = (I', + ') /2 and A" = I'y — I';,. Here we see that I fulfills the natural role of
decay constant, I' = 1/, justifying the choice of 3 in the hamiltonian in Eq. (3.1). The

sign of Am is by definition positive, but the sign of AI" has to be determined experimen-
tally.
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3.5 The Amplitude of the Box diagram

The short distance contribution to the P° « P transitions of neutral meson oscillations
is described by Am and can be represented by a Feynman diagram known as the box
diagram, and can be calculated in perturbation theory.

In this section we will calculate the value of Am by studying this so-called box diagram.
We will investigate the process of K° «» K9 using the CKM matrix. To describe mixing
between a K° which has strangeness S = 1 and a K° which has S = —1 we must introduce
an amplitude which creates a AS = 2 transition. This must necessarily be a second order
weak interaction. The transition necessary for mixing is shown in Fig. 3.2. The calculation
of the box diagram is quite complicated but we will illustrate some of the features in the
calculation of the K? — K mass difference.

The mass difference is given by
Am = s —myo = (KI|HIKD) — (K3 H|KY) (3.13)

As we saw in the previous section, the mass eigenstates can be expressed as a linear
combination of the flavour eigenstates. The amplitude (K°|H|K®) can now be calculated
via the box diagram of Fig. 3.2. As an example we use the Feynman rules to derive an
expression for the amplitude where both the intermediate quarks are u quarks:

_Zgw

4
Mupw = 1 VJSVu VJSVu
<2¢§ ) (VisViaVeisVaa)

/ Ak [(—ig* — KM mE\ [ —ig®f — kOkP /m3,

(2m)* k? —mi, k? —mi,

_ + My _ + My,

[us%(l - 75)52_77%2%(1 - VS)Ud] {vsva(l - 75)52_77%2%(1 —7")vq

Here we readily recognise the weak coupling constant to the fourth power, the CKM matrix
elements for the vertices, the W propagator terms, the quark and anti-quark spinors and
the factors for the intermediate fermion lines.

*
Vus,cs,ts Vud,cd,td

KO W W, =

d u,c,t S

VUd70d7td Vu*s,cs,ts Vud,cd,td V'szs,cs,ts

Figure 3.2: Box diagrams responsible for K° — K° mixing.
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Taking the sum of all amplitudes with all possible intermediate quark lines we get an
amplitude which is proportional to (assuming k? < m%,).

* * * 2
M x / d'k k“k;,,( VisVud | VeVea | ViV ) (3.14)

2 _ 2 2 _ 2 2 _ 2
k2 —m?2  kE*—m?  k*—m;

Which with the aid of the equation V,; Vg + ViVeq + ViVia = 0 we can rewrite as

1 1 1 1 2
4 * *
Moc/dkkuk,, (VcsVCd [l{;Q—mg_kQ—mQ} ViV {kQ—mf _kQ—mgj)

u

This then finally leads to an answer that has three terms [16], one term depending on
m?/m#;,, one term depending on m?/m#, and and a term which has a complicated depen-
dence on both m?/m?, and m?/m%,. The magnitude of the so-called Inami-Lim factor
these three terms is listed in Table 3.1, together with the size of the CKM-elements
involved in the box diagram.

This calculation only takes into account the quark level transitions and so the full calcu-
lation must take into account the transition from K° — d5 and gluonic corrections and
colour factors. Because |ViqVis| << |VeaVes| the charm contribution in the loop dominates,
and the final answer becomes:

2,2
GEmiy

Amp = gWQ NocpBr fim [So(mi/m%,v)\Vchcs\Q (3.15)

where G is the Fermi coupling constant, ngep is the QCD correction (= 0.85), B and f#
is the “bag-factor” and the decay constant, respectively, which describe the effect of the
transition from bound to free quarks and V;; are the CKM matrix elements.

In the B-system we have |ViqViy| ~ |VeaVep|, but because m; >> m, now the top contri-
bution in the loop dominates. By replacing the internal charm quark with the top quark,
and replacing the strange flavour by the bottom quark we find for the B-system:

GEmiy,
Amp = 7&2 nocpBe fems So(m?/m%a/)“/tdvtbﬂ (3.16)
Internal || Inami-Lim CKM factor
quarks || factor KO | Bo | B?
c,c 3.5107% A2 (2.71072) | A2X® (7.4107°) | A2X* (1.41079)
et 301073 | A2X1—p—in|  (8.8107%) | A2XS|L—p—in| (7.3107%) | A2X\* (1.5 1079)
tt || 25 ASNOL — p— 2 (1.11077) | A2XS|1—p—in|? (7.2107%) | A2X* (1.5 1079)

Table 3.1: The magnitude of the three terms contributing to the box diagram, expressed sep-
arately for the Inami-Lim factors (depending on m?/myy, ) and for the CKM elements [17].
Clearly, the charm-quark contribution dominates in the K-system, where the CKM-factor
compensates for the small Inami-Lim factor. In the B-systems the top-quark contribution
dominates.
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Figure 3.3: If one starts with a pure P°-meson beam the probability to observe a P° or a

P°-meson at time t is shown, Prob(t) = e;n (cosh LAt = cos Amt).

At this point we can see how the neutral mesons KV, D°, BY and B? in reality oscillate and
what the differences are. As mentioned earlier, the oscillations consist of two components,
M5 and %F 12. As a general rule, all possible quark exchanges contribute to My, but only
actual final states contribute to I'12 [15]. The short-distance, off-shell contribution from
M5 depends on the size of the CKM-elements at the corners of the box-diagram, and on
the mass of the particles in the box. In the case of D’-mixing, the mass of the heaviest
down-type quark in the box, m; is not large enough to compensate the suppression of
the CKM-elements |V,;Vp|. As a result, the light quarks dominate the short-range DO-
mixing and proceeds proportional to ~ |[VsVis|?m? ~ Mm% As a consequence, the
mixing parameters are expected to be small, and the D-mesons decay before they have
the chance to oscillate.

The oscillation probability of D-mesons is clearly suppressed compared to B°-mixing,
see Fig. 3.3, which is proportional to ~ |[V;,Vi4|*m? ~ Xm?. B%-mixing on the other
hand, is more pronounced, see Fig. 3.3d), due to the magnitude of Vis: ~ |V Vis|?m? ~
A'm?. Finally, K%oscillation is dominated by the (light) charm quark in the loop, ~
|VeaVes|?m? ~ X\?*m?. However, the kaons profit from the fact that their lifetime is much
higher compared to the B-mesons. Note that the sum of the B® and B distributions in
Fig. 3.3 give a perfect exponential decay, because the mass eigenstates By and By, happen
to have equal lifetimes, AI' = 0. In contrast, the sum of the K° and K° distributions
results in the sum of two exponential distributions, corresponding to the K¢ and K with
short and long lifetime, respectively.
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Often the dimensionless variables = and y are used to express the mixing behaviour,
expressing the oscillation rate relative to the lifetime:

_ Am =

TTT Y=51

The oscillation parameters of the various neutral mesons are summarized in Table 3.2.

T=1/T Am x y
K-system | 0.26 x 1079 s* 5.29 ns™t | 0477 | -1
D-system | 0.41 x 10712 s | 0.0024 ps~! | 0.0097 | 0.0078
B-system | 1.53 x 10712 s 0.507 ps~t | 0.78 | 0.0015 2
B,-system | 1.47 x 10712 s 17.77 ps~t | 26.1 | 0.06 2

Table 3.2: Oscillation parameters of the various neutral mesons.

!Note that the average lifetime I' is not a very meaningful quantity in the K-system due to the large
difference between the lifetimes of the two mass-eigenstates K, and K.

2These numbers are theoretical values, rather than experimental measurements. The transition
T(B? — DyD, — BY) is the largest contribution and proceeds proportional to |Ve|2. ATl go < AT o
because the transitions T'(B° — (DD), (r), (D) — B°) are all Cabibbo suppressed. '
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3.6 Meson Decays

In this section we extend the formalism of neutral meson oscillations, and include the
subsequent decay of the meson to a final state f. We consider the following four decay
amplitudes

(f)= (/TP
(f)= (FITIP)

A(f)= (flTIp?y A
A(f)= (flTIP?) A

and define the complex parameter Ay (not be confused with the Wolfenstein parame-
ter A 1):

&

- 1

gSEES
N
h

fT’
The general expression for the time dependent decay rates, T'po_;(t) = [(f|T|P°(t))|?,
give us the probability that the state P° at t = 0 decays to the final state f at time ¢,
and can now be constructed as follows, using Eqs. (3.10) and (3.11):

Ppo_p(t) = |As (lg+@OF + A*lg- (01 + 2R[Arg7 (£)g-(1)])
Cpang(t) = A7 |71 (I9-OF + \rPlos (OF + 2R g9 ()9 (1))
Coog(®) = 1A | (9-(F + \rPlos (0 + 20000 (09" (1))
Ppo_p(t) = [Af"  (lg+@OF + A" lg- (01 + 2R[A g3 ()g- (1)) (3.18)
with
lg(t)* = %Ft (cosh %Aft + cos Amt)
gr(t)g-(t) = eTt (sinh %AFt + isin Amt)
gr(t)g* (t) = %Ft (sinh %AFt —isin Amt) (3.19)

The terms proportional |A|* are associated with decays that occurred without oscillation,
whereas the terms proportional to |A|*(q/p)? or |A|*(p/q)? are associated with decays
following a net oscillation. The third terms, proportional to Rg*g, are associated to the
interference between the two cases.

Combining Eqgs. (3.18) and (3.19) results in the following expressions for the decay rates
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for neutral mesons, also known as the master equations:

6—Ft

Tpos(t) = [A;) -

1 1
14+ |A¢[?) cosh =ATt 4+ 2R\ s sinh = ATt + (1 — [\ /|?) cos Amit — 23\ sin Amt
f 9 f 9 f f

2 _
eFt

L (3.20)

P
Lpo_y(t) = |Af|2§

1 1
1+ [\¢?) cosh = ATt + 2R\ sinh = ATt — (1 — | X +|?) cos Amt + 23\, sin Amit
f 9 f 9 f f

The sinh- and sin-terms are associated to the interference between the decays with and
without oscillation. Commonly, the master equations are expressed as:

Cpo_p(t) = |A;? (1+ |)\f|2)eTFt (cosh %Aft + Dy sinh %Al“t + Cfcos Amt — Sy sin Amt)
p|’ e 1t 1 1
Tpo_p(t) = |Aff p (1+ |)\f|2)7 (cosh éAFt + Dy sinh éAFt — Cfcos Amt + Sy sin Amt)
(3.21)
with 2RN 1— a2 23,
TTIE YTTENE YT TR 522

For a given final state f we therefore only have to find the expression for As to fully
describe the decay of the (oscillating) mesons. Examples of some final states will be
presented in chapter 4.

3.7 Classification of CP Violating Effects

The following classification between the various types of CP violation can be made [6].

1) CP violation in decay. This type of CP violation occurs when the decay rate of
a B to a final state f differs from the decay rate of an anti-B to the CP-conjugated
final state f:

PP = f)#T(P° = f)
This is obviously satisfied (see Eq. (3.18)) when

'—f' £, (3.23)

An example of CP violation in decay for neutral mesons is decay B® — K+tnx=. A
sizeable CP-asymmetry has been observed

FBO K+n— —I'po -
— B K +
™ ™ <0

Ay =
Ipogtn + T g0 g—rt
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In charged mesons there is no mixing, so this is the only type of CP violation that
can occur in charged meson decays.

CP violation in mixing. This implies that the oscillation from meson to anti-
meson is different from the oscillation from anti-meson to meson:

Prob(P? — P") # Prob(P? — PY)

Experimentally this is searched for in the semi-leptonic decay of both the B° and
the B°, coherently produced through ¥ — B°B°. The b-quark inside the B%-meson
decays weakly to a positively charged lepton, and vice versa. So, an event with two
leptons with equal charge in the final state means that one of the two B-mesons
oscillated. So, the asymmetry in the number of two positive and two negative leptons
allows us to compare the oscillation rates.

Amﬁ:Au+—AL_:IMM2—MﬁW
N+_|_+N__ ‘p/Q|2+|q/p‘2
This type is violated if
q
2l £1. 3.24
i o

In the B°- and B?-system this is not the case, so |q/p| ~ 1 both within the exper-
imental accuracy and theoretical expectation, but we will see that this type of CP
violation is active in the K-system, see chapter 5 2.

CP violation in interference between a decay with and without mixing,
sometimes referred to as CP violation involving oscillations. This form of CP viola-
tion is measured in decays to a final state that is common for the B® and B°-meson.
An interesting category are CP-eigenstates, f = f (an example of a non-CP eigen-
state are the final states DF KT in the BY-system). CP is violated if the following
condition is satisfied:

L(P°p?) — f)(t) # D(Ppo) — f)(t)

A direct consequence of f = f is that there will be two amplitudes that contribute
to the transition amplitude from the initial state |B") to a final state f, namely
A(B® — f) and A(B® — B — f). If we consider the case that |¢/p| = 1, the
following expression is obtained, using Eqgs. (3.21):

o FPO(t)Hf - Fp()(t)%f . QCf cos Amt — QSf sin Amt

Acp(t) = =
cr(t) Lpoy—y +F150(t)_,f 2 cosh %AFt+2Df sinh %Aft

(3.25)

2Normally expressed in terms of e, for historical reasons: p = (1 + €)//2(1+e?), ¢ = (1 —
€)/v/2(1+ |e|?) and thus ¢/p = (1 — €)/(1 + €). The parameters p and ¢ are normalized such that
pI? + laf* = 1.
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This simplifies considerably if the transition is dominated by only one amplitude, i.e.
assuming that |As| = |Af| (or |A\f| = 1), so that Dy = RAs, Cp =0 and Sy = S\

—Q )\ sin Amt
Acp(t) = 3.26
cp(?) cosh %Al“t + R\ sinh %AFt ( )

We conclude that CP violation can even occur when both |¢/p| = 1 and [A(f)| =
|A¢|, namely when the following condition is satisfied:

qllf)
A= =—] #0 3.27
! (pAf ( )

Commonly an alternative classification of direct and indirect CP violation is made [6].
Direct CP violation is defined as |A(f)| # |Af|. In terms of the above categories, direct
CP violation obviously appears in the CP violation in decay. In addition, the term direct
CP violation is used for the situation where C'y # 0, probed by the first term in Eq. (3.25),
since |A(f)| # |Af| — |\f| # 1 — C; # 0. Indirect CP violation is the type of CP
violation that involves mixing in any way, either through |¢/p| # 1 or via the second term
of Eq. (3.25). Historically this distinction originates from so-called superweak models that
predicted CP violation to appear only in mixing diagrams. The discovery of direct CP
violation excluded these superweak models.

Finally, we comment on the relative size of CP violation in the interference of mixing
and decay in the K and B system. The difference arises from the CKM-factor of the
box-diagram. The real part of the CKM-factor in the K-system is given by:

(VeaV32)? = N2

The imaginary part is proportional to A2\%y. Therefore, we expect for the ratio of the
CP violating part to the CP non-violating part of Amyg to be

SA
;RjA—Z o A%\ (3.28)

In the B system the CKM factor is given by
(ViaVip)? = (1 = p —in)* A2\°

from which we can deduce that the ratio of CP violation to CP non-violation in the B
system is
SAm n(l—p)
Am] > (= P+
In the B system we then have the strength of CP violation of the same order as CP
non-violation, whereas in the K system it is suppressed by a factor of A* ~ 2 1073,

(3.29)
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CP violation in the B-system

In the previous chapter we have identified where CP violation occurs in the general for-
malism of meson decays, and classified the various categories. In the coming sections we
will investigate a few special decays with which CP violation is measured and the phases
of the CKM elements are determined [9)].

Remember the Wolfenstein parametrization, Eq. (2.16), since it so widely used. This pa-
rameterization is very convenient to localize weak phase differences in Feynman diagrams:

‘Vud‘ ‘VuS‘ |Vub|€_m
Vermwoltenstein = | —[Veal  [Ves| Ve +0(\) (4.1)
Viale™  =[Visle™ Vi

In this chapter we will see how the angles 3, 35 and v can be determined.

At first sight it might be remarkable that complex phases can be observed, because the
complex phase in an amplitude A = |A|e*? disappears in the expectation value, AAT =
|A]2ei#=¢) = | A|2. However, several decay amplitudes A; = |A;|e’¥* might contribute to
the total amplitude A [18]. Each phase consists of a CP-odd phase ¢; originating from
complex coupling constants, and a CP-even phase §;, typically originating from gluon
exchange in the final state (and strong interactions are CP-conserving!). Therefore we
have for the CP-conjugated amplitude A; = |A4;|e/=?*%). Now we can calculate the
difference in the magnitude of the total amplitude |A(a — b)| and the CP-conjugate
A(a — b)l:

‘A|2 = |A; + AZ‘Q = |A1|2 + ‘AQ‘Q + | Ay Ay (ei((¢1+51)*(¢2+52)) + ei(*(¢>1+51)+(¢2+52))>
= JAI]? + |Ag* + 2] A1 Ag| cos(A¢ + AS)
AR = 1A+ A7 = [ A4+ [Af? + |4, Ag] (e 0=(ortin) . it-(ontis-oasin))

= AP+ |Ay]* 4 2| AL Ay cos(—A¢ + AS)

An explicit example will be shown in Section 4.1.

43
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4.1 f(: the B' — J/¢Y K} decay

In the case of decays into CP eigenstates (i.e. [f) = CP[f) = n¢|f), with n; = £1)
only two independent amplitudes need to be considered: Ay and Ay. We define the CP
asymmetry as (see Eq. (3.25)):

Upoy—r = Tpoy s

App(t) =
orlt) oy~ + oy

Let us now concentrate on specific decays to get an idea where the CKM phase enters the
asymmetry measurement. We start with the decay B® — J/¢ K% [19] and will investigate
Eq. (3.26) further.

The first observation is that at the quark level the B° decay and the B° decay have a
different final state, B® — J/¢K°® and B® — J/9K°. As a result, we need to consider
the mass eigenstates in the K system, see Eq. (3.7), to obtain the same final state f
for the B® and B° decay: |K2) = p|K°) + q|K°). (The details of the K-system will be
discussed in chapter 5.) Secondly, in the B%-system AL & 0 (see Table 3.2), so Eq. (3.26)
can simply be written as:

Acp(t) = —%)\f sin(Amt) (4.2)

For a given final state f, the magnitude and phase of Ay fully describe the decay and
oscillation of the BY and the B%-meson. (If the final state is not a CP-eigenstate, we will
also need \7.) Starting from the definition of Ay we write

Ao Ajug
s < p) 50 <77J/w<g Aypors ) \ o) N o (4.3)

The three parts in this equation correspond to the mixing of the B%meson, (q/p)pgo, the
decay of the B® or B°, A/A, and the mixing of the K°%meson, (¢/p)xo. These three parts
are diagrammatically shown in Fig. 4.1. The factor 1, K9 accounts for the CP-eigenvalue
of the final state. The J/4 has spin-1 and is CP-even, while Kg has spin-0 and is (almost)
CP-even. The B is spin-0, and thus the particles in the final state must have a relative
angular momentum [ = 1. As a result the final state J/¢ K is CP-odd, 1;/yx0 = —1 .

The B° «» BY mixing is induced by the box diagram shown in Fig. 4.1a). We have seen
that the mass matrix element My o Vi;ViaViiVig, (see Eq. (3.16)), and that we can neglect
the term I'y5, see Table 3.2, and therefore:

<€) _ /@:Vtzvtf (4.4)
P/ go Mo thth

!The analogous measurement can be performed with the decay B® — J/¥K?, with N/pro = +1.
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Figure 4.1: The diagrams that enter in the phase of the decay B — J/YK2. (a) B°
mizing, (b) B® decay and (c¢) K mizing.

For the ratio of the decay amplitudes we find on inspection of the diagram in Fig. 4.1b)

that _
AN VeV
A ViVes
At this point we have however not produced a K5 but either a K° or a K to finally make

a prediction of the CP violation in the decay BY — J/¢ K2 we also have to take into
account the K° <+ K° mixing. This adds a factor in analogy to Eq. (4.4) (see Fig. 4.1c):

(Zj) _ M12:VCSVCZ
q) g M, ViEVe

Taking everything together we find for the parameter A/, K9

Vtthd> (VCbVC’;> (VCSVCZ) _ ViV VaVa (4.5)

A ro = —(
oK VieVy) \ViiVe) \ViiVig VieVyy ViV

and for its imaginary part

: VieVidVeb Ve . Ve Vo :
SAskg = —sin {arg (W) } = —sin {2 arg (#Vtg) } =sin208, (4.6)

where f3 is defined as in Eq. (2.15). In short we can also write \;/yx9 = —e %8,

To recapitulate, the CP-asymmetry of the decay BY — J/¢ K} is given by the imaginary
part of Ay ko

ACP, BO—>J/1,/)Kg (t) = —sin 26 Sln(Amt) (47)

Using the Wolfenstein parameterization we see that the CKM-element V4 is the only
component with a non-vanishing imaginary part, leading to Eq. (4.6). We conclude that
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the CP-asymmetry in the decay B — J/¢ K arises from the phase difference of the
amplitudes B® — J/YK$ and B — BY — J/¢KY. The phase difference arises from the
CKM-elements V4 (in the Wolfenstein parametrization) originating from the box-diagram
that is responsible for the B® «— B oscillations.

The value of sin 23 has been determined very accurately by the BaBar and Belle experi-
ments with the process efe™ — T — B°BY A remarkable feature of this process is that
the B°BO-pair is produced coherently, which means that the B%-clock only starts ticking
when the B° has decayed. The lifetime of the B°-meson is thus expressed as the time
diffrence between the two decays, At. The number of decaying B’-mesons is determined
by requiring that the other B had decayed as a B°. This number is called the number of
tagged B-mesons, Ngo. The asymmetry is given by:

r _r—1I5 . Moo — [iaee
App(At) = BO(At)—f BO(At)—f L tag=pBo tag=DB0

= = nsin 25 sin AmAL.
Ipoaty—r +Upoany—r  Drag=po + Ltag=po !

After correcting for imperfect tagging, we see that the amplitude of the asymetry gives
the value of sin23. The present world average is: sin 23 = 0.68 £ 0.03.
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Figure 4.2: Number of n; = —1 candidates (mainly J/YK2) in the signal region with
a B° tag Npo and with a B° tag Ngo , and b) the raw asymmetry Acp(t) = (Npo —
Npo)/(Ngo + Npo), as functions of At. Figs. c¢) and d) are the corresponding plots
for the ng = +1 mode J/Y K. The shaded regions represent the estimated background
contributions. From [20].
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Measuring complex numbers

Before we continue, we can reflect on the principle behind the measurement of the complex
phase . Let us show once more how the complex phase appears as an observable, starting
from the |B?) wave function and the two decay amplitudes. Remember our wave function
of the decaying, oscillating neutral meson, Eq. (3.10):

B0 = 018+ (L) 9 O157) = 12 (cos 218 1 isin S5 (1) 15

p p

5°0) = 0-0) (2) 18740 0159 = 220 (i S22 ()15 4 cos 251

again using AI' ~ 0 for the B case, see Table 3.2. The factor % accounts for the
B® — B oscillation. We saw that for the B°-mesons holds 2] = 1, more specifically,

i = e’ How is this phase factor e?® measurable, in general? If we would measure

the number of B%mesons (i.e. produced as a BY) and compare that to the number of

B°-mesons (i.e. produced as a B°) at time ¢t = 37—, then both the unoscillated and the

oscillated amplitudes are of equal magnitude, and the CP asymmetry can be written as:

m ) 14 ie?P)? — |ie 20 4 1)

Acp (1= = . , — sin2 48
P \'=38m) = T+ iep 4 e 1 1p 5020 (48)

The situation is schematically shown in Fig. 4.3. The total amplitude of the CP-conjugated

situation will have a different magnitude if there are two phases, of which one flips sign

under CP transformation!

Figure 4.3: Adding two amplitudes results in a Ay with different magnitude under CP.



4.2 By: the B? — J/v¢ decay 49

4.2 (,: the B? — J/¢¢ decay

The decay BY — J/1¢ is the B? analogue of the decay B® — J/¢ K2, with the spectator
d-quark replaced by an s-quark. However, there are four major differences:

I Vis vs Viq. Since the spectator d-quark is replaced by an s-quark, the CKM-
element responsible for the CP-asymmetry (in the Wolfenstein parameterization) is
now Vi, instead of V4, see Fig. 4.4. In contrast to V;y the imaginary part of Vi, is
no longer of comparable size as the real part, see Egs. (2.10-2.11), and the predicted
CP asymmetry is therefore small, arg(V;,) ~ nA%.

II No K-oscillations. The final state, containing the mesons .J /¥ and ¢, is the same
for the B? and the B%-meson, and hence we do not need the extra K-oscillation
step as in the B system.

IIT AT # 0. In contrast to the B? case, the B%-system has non-vanishing AI'. This
is caused by the existence of a final state common to B? and BY, with a large
branching fraction around 5%, namely the CP-eigenstate DX DI, Since this

is a CP-eigenstate with eigenvalue +1 this decay channel is only accessible for the

CP-even eigenstate B, g and not for B, ;. Hence the different lifetime for B, i and

B, 1, with a predicted value of AT/T" ~ 0.1. (A similar situation for the B° case

does not occur, because the branching ratio for B — D* DT is Cabibbo suppressed,

A~ Vedl)

IV Vector-vector final state. The final state now contains two vector-particles with
spin-1. As a result the final state is not a pure CP-eigenstate, in contrast to B® —
J/YKY. The spin of the final state particles J/¢ and ¢ can be pointing parallel,

Figure 4.4: The two interfering diagrams of the decay BY — J/v¢, with phase differ-
ence 2.
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orthogonal, or opposite, which need to be compensated by an orbital momentum,
of I =2, 1 and 0, respectively, to obtain the spin of the initial state, Sp, = 0. The
CP-eigenvalue of the final state now depends on the orbital momentum due to the
factor (—1)! in the total wave function;

CPLJ/4¢), = (=1)'T/¥o),

The fact that the predicted CP-asymmetry is so small in the Standard Model, makes
this decay particularly sensitive to new particles participating in the box-diagram. Any
deviation from the Standard Model value would signal New Physics.

The asymmetry for the decay of the B%-meson to the common final state J/¢¢ is given
by Eq. (3.26):

Acp(t) = Ugoy—a/we — UBowy—a/ve _ — S\ /s Sin Amit "
Lpoy—a/we T Toow—apws  cosh gATE + RNy sinh 3A' '
where i
. Aspuo L (ViVis (VaVe
Mo = (), ( )= (v55) (752) 4.10
J/ve p/ BO m/WAJ/w =1 Vi Vi Vi Ves ( )
and

SAspe = (—1)'sin(—2,) (4.11)

By comparing Egs. (4.6) and (4.11) a relative minus sign occurs due to the definition of
6 and (s: [ is defined with V4 in the denominator, whereas (3 has V,, in the numerator,
see Egs. (2.15).

A complication arises from the above mentioned vector-vector final state. The contri-
butions from the terms with different orbital momentum, A, A, and Ay, for values of
the orbital momentum of 2, 1 and 0, respectively, need to be disentangled statistically
by examining the angular distributions of the final state particles, J/¢» — putpu~ and
o — KTK~.
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4.3 ~: the B! — DFKT decay

CP violation in interference between a decay with and without mixing is most simply
realized by considering a final state that is a CP eigenstate. In that case the amplitudes
B — fand B — B — f occur and interfere. In addition, the formulas simplify because
[Agl = |As] = [Afl = |Af].

The decay B? — DFKT is a final state that is not a CP eigenstate. The interference
can however occur when both the B? and the BY decay to the same final state, albeit
with different amplitudes this time. We will first examine the pair B — D7 K" and
BY — BY — D7 K" in a similar way as in the previous sections. This is then followed by
the pair B — DK~ and B — B? — D K~. The information from both pairs allows
for the extraction of the angle v in the unitarity triangle.

By examining Fig. 4.5 we see that the amplitude of the decay BY — D;K™* proceeds
proportional to Ay ~ V3V, whereas the decay B? — D, K™ proceeds proportional to
Ay ~ Vi V. At this point we should note three important aspects:

I Although both the B%-decay and the B%-decay are equally Cabibbo suppressed,
|Ap- g+ ~ A3 and |AD; x+| ~ A3, nevertheless they are not completely equal
|AD;_K+| #* \AD:K+\. If we split off the part from the weak couplings, and in-
troduce the hadronic amplitude including effects from the strong interactions in the
final state, A; and A,, we get:

Ap; A
(i) = () () (412

IT Both amplitudes will not only differ by their magnitude, but also by a relative

Figure 4.5: The two interfering diagrams of the decay B? — D7 K™, with phase difference
— + 20,.
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phase v, originating from V,;, see Eq. (4.1), and therefore

Ap- Ap-ree|
Yoo Aocied (4.13)
AD;K+ |AD;K+|

III In fact, since the transitions BY — D7 K+ and BY — D; K™ proceed in a different
way, an extra relative phase d, needs to be introduced, originating from strong
interactions in the final state,

Ap- Ap- ,
Dy K+ | Ap; K+‘6z(aﬂ) (4.14)

Ap-k+  Apr g+l
(This complication is exactly the reason why we will need the second pair of decays

to the final state DI K~: to disentangle the two phases v and Js.)

Combining these three points leads to the following expression:

= (3, () -
Dy K+ p/ Bo AD;K‘*'

In a similar way we obtain the expression for the other pair, where the B? decays to the
CP-conjugated final state, BY — Df K~ and B? — B? — DK~ (see Fig. 4.6):

VipVis
Vi Vi

ViV
Vs Vus

Ay

i(—2Bs—7+6s)) 4.15
2l (415

M- = (9) (%>:
Dy K™= p/ B? AD;*'K*

where we used |Ap- .| = [Apr | ~ AL

Vi Vis
VinVis

Viis Ve
VesVib

Ay
Ap

e!(~28s=7=05)) (4.16)

Figure 4.6: (a-b) The two interfering diagrams of the decay B? — DK™, with phase
difference —y + 2.



4.4 Direct CP violation: the B® — 7~ K+ decay 53

4.4 Direct CP violation: the B’ — 7~ K" decay

An example of direct CP violation is given by the decay B® — 7~ K. A CP-asymmetry
has been observed in the processes B’ — 7~ KT and its CP-conjugate B — 77K,

|Ag| # | Ayl [21]:

FBO—WT_K"' - FBO(t)Hﬂ‘*‘K_

Acp = = —0.098 + 0.012 (4.17)

Ipoyn—x+ + Lpo)y—nt k-

As before, a different magnitude of the total amplitude between a decay and its CP-
conjugate only appears if the total amplitude Apgo_, -+ consists of two interfering am-
plitudes with a phase difference. In addition, as before, this phase difference needs to
have two components of which one part is CP-odd and flips sign under the CP-operation,
and one part that is CP-even and does not change sign under the CP-operation (often
denoted as the strong phase, since this phase often arises from final state gluon exchange).

In the decays described in the previous sections, the second amplitude originated from the
possibility that the B-meson oscillated before its decay. That is not possible this time,
because the decay B® — BY — 77 K~ results in a different final state.

The second amplitude is now given by the a so-called penguin-diagram, as shown in
Fig. 4.7. These penguin diagrams are notoriously difficult to calculate, and therefore it
is difficult to interpret this results in terms of the CKM-angles. However, from Fig. 4.7
it is clear that there is a weak phase difference between the tree (~ V.5 V,s) and penguin
amplitude (~ V;;Vis), and in general a different strong phase is expected. Intriguingly,
no CP-asymmetry has been observed in the analogous decay BT — 7K™, where the
spectator d-quark is “simply” replaced by a u-quark, Acp = 0.050 £ 0.025 [21].

Figure 4.7: (a-b) The two interfering diagrams of the decay B® — 7~ K.
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4.5 CP violation in mixing: the B" — [TvX decay

In the previous sections we always assumed for the Bo—meson§ that |¢/p| = 1, originating
from calculations of the box diagram responsible for B? < B oscillations. If |q/p| # 1
that would mean that the probability to oscillate differ for the B° and the B°:

Prob(B° — B°) # Prob(B° — B°)

The experimental confirmation has been measured using semi-leptonic decays. A semi-
leptonically decaying b-quark proceeds as b — [TV X, whereas the anti-b quark decays as
b — ITvX. The charge of the lepton contains information whether the B-meson decayed
as a B (containing a b-quark) or whether it oscillated and decayed as a B (containing
a b-quark). At the B-factories with the BaBar and Belle experiments both a B? and a
B%meson are produced simultaneously through the process ete™ — T — B°BO.

If the probability to oscillate would be larger for the B° than for the B, then the prob-
ability to observe two negatively charged leptons (B® — B° — ["vX and B® — ["vX)
would be larger than to observe two positively charged leptons!

P(B®— B%) — P(B° = B°) _N**+—N—~ 1 |q¢/p|*
P(B"— B%) + P(B" — B%)  N*++ N-— 1+ |q/p|*

Acp =

The combined value as measured at the B-factories and LHCD yields:

)2) — 1.0007 % 0.0009 (4.18)
pl1Be

In other words, no CP violation in mixing is observed in the BY-system.

The energy at the B-factories is not large enough to produce B%-mesons. The measure-
ment of |q/p| for the BY-system has been done at the Tevatron with the DO and CDF
experiments [21], and at LHCb:

’2

p

Recent measurements of the flavour-specific asymmetry in semi-leptonic decays at the D0
experiment seem to suggest however that |q¢/p| # 1, see Eq.(3.6).

= 1.0038 = 0.0021. (4.19)
BY
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4.6 Penguin diagram: the B' — ¢K? decay

Already in the decay B — 7~ K™ we introduced the loop diagram that is known as
the penguin diagram, see Section 4.4. On the one hand these diagrams are difficult to
calculate, but on the other hand, these loop diagrams are very interesting because new,
heavy particles might run around in these loops, affecting the measurements. And because
the particles in the loop are virtual, even very heavy particles can contribute.

A particularly interesting example is the decay B® — ¢K2, which caused excitement
in recent years. The two interfering diagrams are shown in Fig. 4.8. The situation is
completely analogous as for the decay B® — J/¥ K9 from Section 4.1: the B® — B°
oscillation gives rise to the phase difference between the two diagrams (V4 ~ ¢) and the
time dependent CP-asymmetry is again given by

Acp, pogiy(t) = —sin2fsin(Ami)

Any difference in the measurement of sin 23 between the decays B® — J/¥ K2 and B® —
¢ K might be attributed to new particles in the loop adding an extra phase. The value
of sin 284k, was slighly low compared to the value of sin23;/,k, as measured with tree
diagrams, which generated considerable debate a few years ago.

Figure 4.8: The two interfering diagrams of the decay B — ¢K2, with phase differ-
ence 2[3.



26

Chapter 4 CP violation in the B-system




Chapter 5

CP violation in the K-system

CP violation was first discovered in the kaon system and struck the community with large
surprise. CP violation was discovered almost 10 years before the CKM-mechanism was
invented, at the time that only the three quarks (u, d and s) were known. We will discuss
CP violation in the K-system because of its large historical importance.

The nomenclature used in the K-system has some small differences compared to the
B-system, which we will introduce in this chapter. The connection in the K-system
between CP violation and our well known Lagrangian and its short range couplings is less
straightforward.

5.1 CP and pions

Before we dive into the K-system, we give the CP properties of the pion, which will be
relevant when we will discuss the K-decay into pions.

The 7° is a pseudoscalar meson consisting of a quark and an antiquark. The total wave-
function of the 7 must be symmetric as it has spin 0. It must however be antisymmetric
under the interchange of the spin of quark and anti-quark as these are fermions. Therefore
the wave function must also be antisymmetric under interchange of the positions of the
quark and antiquark.

) =lgtal)—lalat)+lgtal)—lglal)
Performing the parity transformation then yields
Ple®y =lglqt)—laTal)+lalat)—lg1ql)=-1|r")

The 7% is thus an eigenstate of the Parity operation with eigenvalue -1. One says it has
negative itrinsic parity.

o7
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Performing the C-operation yields (check)
Clr") = [=°)

This can also be deduced from the fact that it decays into two photons. As a photon is
nothing more than a combination of electric and magnetic fields and the C operation will
invert both components (why), so that

Cly) =—11]y)

from which it follows that

Clx°%) = Clyy) = (=1)*|yy) = [=°)

The combined transformation yields:

CP|7% = -1 |7°) (5.1)

and so it is a CP eigenstate with eigenvalue -1 or it “has CP=-1" or “is CP-odd”.

The system |7%7%) must be symmetric under interchange of the two particles as they
are identical bosons. The CP operation will therefore be merely the product of the CP
operation on the two 7’s separately

CP|n°7% = (=1)? |7°7%) = +1 |=°7%)

For the |7t7~) system the C operation interchanges 7t and 7~ and the P operation
changes them back again so that the full CP operation is equivalent to the identity trans-
formation:

CPIrtn” ) =1zt )y =+1|zx"7")
All systems of two pions are eigenstates of CP with eigenvalue +1: they are thus “CP-
even”.

The |797%7%) system is again simple because we are dealing with identical bosons the CP
operation is the product of the operation on the three pions separately:

CP|r%7°7°%) = (=1)? |2°7°7%) = —1 |7%7°=0)
It is therefore a CP-odd system.

For the |7 "7~ %) system the relative angular momenta come into play. Let us consider the
situation where the |7777) system is produced with angular momentum L = [ then if the
total angular momentum of the |77~ 7°) system is zero (we are heading for K° decay)
the relative angular momentum of 7° « (77~) will also be L = [. Now performing
the CP operation will for the |7"7~) be the identity operation again, performing it on
the |7%) will give -1 and for the part of the wavefunction describing the relative angular
momentum L(7® < (7777)) = [ one gets (—1)' (the wave function is proportional to
Py(cos®)). So for | even the system is CP-odd, and for 1 odd the system is CP-even.

Summarizing the results sofar we have:
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Pion state | CP eigenvalue

0 -1

Tt +1

7070 +1

70070 -1

rtr— 0 -1 (Liztr-yomo = 0,2,..)
+1 (Lintryomo = 1,3,..)

So if CP-symmetry holds then a particle will only be able to decay into a two pion system
if it is a CP eigenstate with eigenvalue +1.

5.2 Description of the K-system

As was introduced in chapter 3 we express the CP-eigenstates as follows:

K9) = == [IK) + K]
1

V2

Sl

(K%)= — [|K7) — |K")]

The |K{) and |K?) states have definite CP-eigenvalues

CP|K}) = +1|KY)

CPIK") = —1|K°)
If CP is conserved, the state |K{) will only decay into #ta~ or 7%z% (‘or with a higher
angular momentum to 777~ 7") whereas the the state |K°) is strictly forbidden to decay
into a two pion final state. Because the mass of the K9 /s is approximately 497.6 MeV and
the mass of a pion is about 139.6 MeV the available phasespace for the two pion decay
is almost a factor 1000 larger than that available for the three pion decay. As a result,
the lifetime of the CP-odd eigenstate of the K-system is very large, much larger than the
lifetime of the CP-even eigenstate. This is the reason that the CP-eigenstates are referred
to as the K2 and K?, where the subscripts stand for short and long, respectively, and not
referred to as heavy and light as is done in the B-system !.

1

K8 = =5 (1K) + K]
KY) = —— [|K°) — |K] (5.2)

V2

!The K9 corresponds to the heavy eigenstate, so could also have been named the Kpg...
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5.3 The Cronin-Fitch experiment

Until 1964 all measurements were consistent with the notion of CP-symmetry, even those
which involve the weak interaction. In fact CP-symmetry was invoked to explain the
large difference in lifetime between the K9 and K2. The experiment which unexpectedly
changed this situation was performed by Christensen, Cronin, Fitch and Turlay [22] in
1964.

The experimental apparatus is shown in Fig. 5.1. It consisted of a Be-target placed in
a 7~ beam. All particles produced in the interactions, including any K% were allowed
to decay in a low pressure He-tank. Decay products were detected in two magnetic
spectrometers placed roughly 20 m from the target. The distance of 20 m corresponds to
approximately 300 lifetimes for the K2. All decay products must therefore come from the
K?. All opposite charge combinations of particles, which had a reconstructed decay vertex
within the He-volume were analysed and their invariant mass was determined under the
assumption that both detected particles were pions. Obviously one expects to observe
invariant mass combinations with a mass smaller than the K° mass emanating from the
K? — 77 7% decay (M(rt7n~) < M(K?) — M(x°)). However some background was
produced in the experiment from the decays K? — muv and K? — mev where the y and
the e are misidentified as pions (check the mass limit for these decays). Fig. 5.2a) shows
the measured spectrum. The figure shows a Montecarlo prediction from all known decays
of the K¢ (e.g. the peak at about 350 MeV is from the K? — 7t7 70 decay. At first
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Figure 5.1: The experimental apparatus with which CP violation was first measured.
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glance there is no real discrepancy between the measurements and the MC prediction.
Certainly there is no indication of an excess of events at around 500 MeV. If we however
plot the cosine of the angle between the flightpath of the K° and the direction of the
momentum sum of the two particles for 490 < M (rt7—) < 510 MeV we start to see an
excess appear for cos ~ 1, see Fig. 5.2b). This is of course exactly what one expects for
the decay KY — 7rx~. Fig. 5.2d) shows this in a little more detail. The forward peak
is only present for 494 < M (ntn—) < 504 MeV. Outside this mass interval there is no
indication for a forward enhancement. The enhancement contains 49+9 events. This was
after many consistency checks finally taken as proof that the decay K? — w7~ occurs
in nature. After acceptance correction the experiment gave a branching ratio of:

I(K? - 7t7n7)

=2.04+04x107°
['(K? — all charged decay modes) x

BR(K) — 77n7) =

This result proves then that CP-symmetry is violated in the decay of the K?, of course
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Figure 5.2: (a) The measured two “pion” mass spectrum. (b) The distribution of the cosine
of the angle between the summed momentum vector of the two pions and the direction of
the K° beam. (c-e) The angular distribution for different ranges in the invariant mass.
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one has to be careful that the effect seen is indeed the decay of the K?, as there are some
subtle effects that could affect the result.

5.3.1 Regeneration

Here we will discuss the effects of the passage through matter of a state which is a
superposition of |[K°) and |K°). In the Hamiltonian we will now also have to take into
account the strong interactions of the state with the matter it is passing through. We
will neglect any inelastic interactions as these will merely decrease the intensity. We
know from experiment that the strong interactions of |[K°) and |KV) are different. The
|K%) (sd) contains an s-quark and can, in its interaction with matter, produce strange
baryon resonances, like K°+n — A+ 7%, whereas the K° (5d) can not. So the total cross
section for K scattering will be smaller than for K°.

Suppose that a pure K beam would incident on matter where all K° would be absorbed,
then the outgoing beam would be pure K°. Similar to a Stern-Gerlach filter, half of the
outgoing kaons would then decay as a K3 and half as K?, see Eq. 5.2:

1

[K°) = 7 [[Kg) + | K7)]

In principle the effect seen in the Cronin experiment could have been due to regeneration
of the K? beam. If this would be the case then clearly by introducing more material in the
path of the K? beam the effect would increase. The experiment was therefore repeated
with liquid hydrogen instead of He in the decay path. The density and so the size of the
regeneration then grows by a factor of 1000. The growth of the signal was found to be
the equivalent of 10 events. The experiment was also repeated with the He replaced by
vacuum. The signal persisted, so that regeneration could be ruled out as the cause.

Finally one has to prove that the particle which decays into the 7#* 7~ state is in fact the
K9 state. To prove this one determined that there existed interference between the state
decaying into 777~ and a regenerated K.

The only remaining conclusion was therefore that CP-symmetry is violated in weak
interactions.
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5.4 Master Equations in the Kaon System

In Section 3.7 a classification of the various types of CP violation was made. In the
following these various types will be examined in the kaon system. First, let us introduce
the quantity n,_ by starting from the familiar master equations.

Prop(®) = A7 (lge®F + IXPlo- )P + 2R\ ;05 (H)g-(1)])
2
P *
Tro_s(t) = |Aff? p (lg— @)1 + [Xs g ()]* + 2R[Apg1 (£) g (£)])
(5.3)
with
1 . ,
|gi(t)|2 — Z (67F5t _‘_e*FLt + eth(eszmt +e+zAmt))
A . ,
)\fgi(t)gf (t) — Zf (67F5t _ 67FLt + 67Ft(672Amt _ e+7,Amt)) (54)
yields
_ ‘AfP —Tst 2 Tt 2
Lo p(t) = 1 e S L4 [ Af]" 4+ 2R p) + e EH(1 4 | Af|F — 2RAp) +
e—Ft((l . ‘)\f‘Q)(e—iAmt + e+z‘Amt) + 2§R()\f(e—iAmt . 6+iAmt)))>
_ ‘Af‘Q (67F5t(1 T\ 1 PV —I'rt 1=\ 1 — \*
- =L LX) + e TH (1= Ag) (1= X) +
e (1 — [Af[?)(cos Amt) + 23()\/) sin Amt)))
—I'gt —I'pt (1 - Af)(l B )\f)*
~ +
(e M W I WE
e, (=1 S(Ar) .
2 Amt) — 4 Amt
T A 2o A A S Am)
and finally
Trop(t) = N (e +e " n_|> +2e " |ni_| cos(Amt + ¢, _))
Pro_s(t) = N (7" ey | —2¢7 |y | cos(Amt + ¢ )
(5.5)
with 7, = % = [n4—e?-|.
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5.5 CP violation in mixing: ¢
It is clear that we can no longer identify the K} with the K° and the K¢ with the K9,
as they are clearly no longer eigenstates of the full Hamiltonian, and therefore we write:
KD = plKY) +qlK”)
K1) = plK°) —q|K?)

Historically, the CP violation was parameterized by introducing an arbitrary complex
number ¢, because the K2 and K? were almost CP-eigenstates:

oy _ 1 0y 4 (| KO
|K7) = Ninrs (IKY) +€lKY)) (5.6)
and .
|Kg) = NiEarE (1K) —€lK?)) (5.7)

where p = (1+¢€)//2(1 + |€]?), ¢ = (1 — €)/+/2(1 + |€|?) and thus ¢/p = (1 —€)/(1 +€).

The parameters p and ¢ are normalized such that |p|? + |¢|? = 1.

Let us consider the decays K — 77~ and K° — 717~ and define the parameter \ f, as
in Eq. (3.17) [2]:

q) Artae (5.8)

)\7r T — <_
i p KA#""#‘

The amount of CP violation is measured by determining the relative branching ratio of
BR(K? — nt7~) over BR(KY — 7 77):

<7T+7T7‘T|K2> _ pA7r+7r* - qAW*W* o - )‘7r+7r*
T T G TIKY) ~ pApen 4 qApen 1+ Aoy

If n, _ # 0 then that means |A\+,-| # 1. In this way we have reduced the CP violation to
CP violation in the mixing of the K and K°, whereas the interaction that describes the
decay is still CP-invariant. Only the part of the wavefunction that is CP-even will decay
to the CP-even two pion states.

Similarly, for the decay to two neutral pions the parameter 7y, is introduced. Their
measured values are:

Ine | = (2.28540.019) x 10~°
meo| = (2.27540.019) x 1073

The value of € is related to € ~ ny_ and € & 1y (see next section) and amounts to
le| = (2.229 £0.012) x 1073 [23], yielding (compare to Eqgs. (4.18-4.19)):

’q l—e
p

Ko 14e€

= 0.995552 £ 0.000024. (5.9)
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If this is true this will have consequences for the semi-leptonic decay of the K?. We
rewrite Eq. (5.6) as:

o _ L 9y + ¢ K©
K0y — — (IK°) + €| K2))
1 0 0
= o (LI - (- 9K

The charge asymmetry in the decay of the K¢ will then be

NK? - efnv) —T(K) - e nti)
N(KY) — etmv,) + (K — e nti,)
L2 = |1 = P
114+ €2+ |1 —¢?

~ 2R e

A

(5.10)

If the wavefunction of the K? is indeed a superposition of the two CP-eigenstates then
there will be a difference in the rates. The measured asymmetry [23] is

A, =33240.06x107°

confirming the above assumption (¢ = |e|e®, with ¢, = 43°). The size of the effect is
consistent with the two pion decay rates.

There is of course still the possibility that the decay of the CP-eigenstates, from which
the K is built, also violates CP-symmetry: i.e. the |K°) part of the wavefunction decays
into 77~ in that case we speak of direct CP violation.

5.6 CP violation in decay: €

If the amount of CP violation would depend on the final state, then that obviously implies
that the decay contributes to the CP violation. In other words, n,_ # 1y implies direct
CP violation. We will see that this difference is expressed with the parameter € [2]:

700 €—2 €
Ny e+¢€ €

Q

To investigate the possibility of direct CP violation in the KY system we consider the
transition from the |K°) state to an eigenstate of the strong interaction and perform the
CP transformation:

(A[H|K) <5 (A(CP) " H(CP)|K®) = (A|H|K°)

Here we have used the arbitrary phase of the CP-transformation CP|K%) = +|K°). For
one transition amplitude this is always possible. However if a second transition can take
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place then this will have to follow the same phase-convention, and so if a transition is
found that has a non-zero phase with respect to the first then we will have CP violation.

The two pion system can occur in two distinct eigenstates of the strong interaction, namely
I =0and I =2. So we can decompose the two-pion states emanating from the K9 and
K? decay into the Isospin eigenstates:
1 <
oy = — (V22,1 = 0) + 27?,]22)
) = o (VEm I =0) 4 m 1 =2)
1 <
0.0
2 = —(j2r,1=0 —\/§2w,1=2>
wn) =z (lemI=0) - Vapn1=2)

We can now define the amplitude for the transitions into the I = 0 state as:
(27,1 = 0|T|K°® = (27,1 = 0|T|K°) = Age™

where we have added a phase shift due to the final state strong interactions in the I =0
state, dp. For the I = 2 state we will in general then not have a real amplitude:

(2r, 1 =2|T|K® = Ay
(2m, 1 =2|T|K" = Aje™

(62 is the final state strong interaction phaseshift for the I = 2 state.) Introducing the
following variables:

F = ¢i(02-%)
A = i Ay
V2 A

, 1F SAs

V2 Ay
we find for the amplitudes

(rtr | H|K}) , 4
= & = 1+ A
M = Ry Ut A
and
(7| H|K?)
Noo = 00 0
(7O H|KJ)

so that, assuming that |[A] < 1 and |¢/| < 1 will be small, we find for the rate asymmetry

=e—2¢(1-2A)71

mo [ _ RUKY = °7) R(KY — )
ne—| ~ R(KS — m0m0) R(KY — wor)
So if € # 0 then A, # 0 and so the phase of the transition to the I = 2 state is not equal
to the phase of the transition to the I = 0 state and we will have direct CP violation.

/
= 1-6R"
€

The experimental result is

[
~

/
R~ S =1.65+0.26 x 1073 (5.11)
€

o |
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5.7 CP violation in interference

In Section 3.7 a classification of the various types of CP violation was made. We just saw
how CP is violated in the kaon system in decay, and in mixing:

1) CP violation in decay: ¢
2) CP violation in mixing: e

3) CP violation in interference between a decay with and without mixing,

The CP violation in the interference between a decay with and without mixing obviously
depends on the neutral meson mixing and is therefore time-dependent. Often this is thus
referred to as time-dependent CP-asymmetry. Interference occurs when there are two
amplitudes for a transition from a given initial state to a given final state. For this to
happen, we now need a final state that is a CP eigenstate in order to obtain the two
amplitudes K — fop and K° — K% — fop. An example of such a final state is simply
K% — 7hr=.

The time dependent CP asymmetry of K° — 777~ and K — n+7~ is shown in Fig 5.3b)
and is compared to the time dependent CP asymmetry as measured in the B-system with
B® — J/YKg.

- & g
) o e CPLEAR
= 200 g I "-...-
c .g.
s orf e,
0 -
2 o KV -
: °
> oz @) KO Oo;peﬁ o
= thy peIER T
o ‘ o
:I = ) o5 Neutral—kaoon decay time [74]
® 05 I N
£ 1 -
E N %Z-_?’\ ¥ ez kb
1 o.1
2 0 ] ; o E
B w o b
2 0.5+ hE
i 1 ! 1 *0:5 : = = s = i iz & e s 2o
_5 0 5 Neutral—kaon decay tirme [741
() Atlesl )

Figure 5.3: Number of B® — J/YKY candidates with a B° tag Ngo and with a B° tag
Npo , and below the asymmetry Acp(t) = (Ngo — Ngo)/(Npo + Npo), as functions of At.
From [20]. (b) Number of K° — 7t~ candidates. Open circles o correspond to kaons
that started as K°, wheras closed circles  correspond to K° tags. From [24]
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Chapter 6

Experimental Aspects and Present
Knowledge of Unitarity Triangle

6.1 B-meson production

In principle b and b quarks are always made in pairs, the way they dress up into hadrons
is however dependent on the specific production. At present there are three accelerator
types, where significant results can be expected for CP violation.

e cTe™ colliding beam machines at a CM energy of the Y(4S5)
e cTe™ colliding beam machine at a large CM energy (p.e. LEP)

e Hadron colliders such as Tevatron (pp) or LHC (pp)

ete” colliding beam machines at a CM energy of the T(45)

The T(4S) resonance is the first bb resonance which can decay into “open” b. It decays
into B® B® or BY B~-mesons, see Fig. 6.1. The CM energy (mass of the T(45)) is such
that only the B-mesons are produced. Most notably the mass of the BY is such that it
can not be produced in these collisions. Also additional hadrons (pions and kaons) are
kinematically forbidden. In the CM system the B-mesons are produced essentially at
rest. This means that the decay-length cannot be measured as the velocity of the meson
is to good approximation zero. This means that if a decay-length measurement is to be
made one must ensure that the CM system is in motion. For this reason the accelerators
at Stanford (BaBaR) and KEK (Belle) employ asymmetric beam energies for the e+ and
e~ beams. It has a disadvantage for the machine as one needs two separate accelerators.
BaBaR for instance has a 3.1 GeV e+ beam and a 9 GeV e~ beam to produce a CM
energy of 10.56 GeV. The CM system thus has a v = 0.56 so that the mean decay length

69
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Figure 6.1: B°B° production via Y (4S) decay.

of a B-meson (7 = 1.5 ps) produced at rest in the CM system is Syer & 250 um. There
is also a disadvantage for the analysis as the actual production vertexr is not known, so
that all CP asymmetries must be rewritten in terms of the difference of the lifetimes of
the two B-mesons. Fig 6.2 shows an example of what an event could look like.

Figure 6.2: Event topology for low energy B factories

ete” colliding beam machine at a large CM energy

In this case the production goes via an intermediate photon or Z° (see Fig. 6.3). Again a
bb-pair will be created but because of the available CM energy the hadronization will give
particles in addition to the B-mesons. In addition, since the B-mesons do not originate
from a Y resonance, the B-mesons are not necessarily B°B° combinations. All flavours
of B-mesons are in principle allowed (even baryons) as long as they contain one b quark
and one b quark. The advantage in this case is that the primary interaction vertex can be
determined (see Fig. 6.4). Also the mean momentum of the B-mesons is about 35 GeV so
that By = 7 so that the mean decay length is fycr &~ 3.2 mm. The disadvantage is that
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hadr ons

Figure 6.3: B B production in high energy ete™ interactions

/ v . .
/B mesony / . Y / \
i i foprimary /B meson;
i decay /i [ i

N /i vertex ; i decay ;

Figure 6.4: Event topology at high energy e™e™ machines

the B? is very difficult to distinguish from the BY. An extremely good mass resolution
and particle identification is needed to accomplish this. Otherwise one has mixed effects
of the two flavours of mesons.

Hadron colliders such as Tevatron (pp) or LHC (pp)

The production mechanism for b and b quarks is the same in both pp and pp collisions.
They are formed when a gluon from the proton fuses with a gluon of the (anti-)proton
(see Fig. 6.5). From measurements in deep-inelastic scattering we know that the gluon
density in the (anti-)proton is largest at very small fractional momentum (z). In fact the
gluon density behaves approximately as
g(x) oc 2732

This means that to produce a mass M (= 2my,) = \/Z1228, where s is the centre-of-mass
energy squared, the most probable situation is that either z1 or x5 is very small (and the
other large). The b and the b are thus produced in the same hemisphere at small angles
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hadr ons

Figure 6.5: B B production in high energy hadron machines through gluon-gluon fusion

to the beam and at quite high momentum. The momenta are in the range of 30 to 100
GeV giving a mean decay distance of fver =~ 3 — 10 mm. In addition to the B-mesons
many other particles are produced. A similar mixture of B-meson flavours occurs as in
collisions (see Fig. 6.6).

high energy ete

Figure 6.6: Event topology at high energy hadron machines

At these machines the interaction rate of events with no b quarks is so high that a selection
must be performed in order not to be swamped by unwanted events. In fact at the LHC
the production rate of b quark containing events is so high that a large fraction have to be
filtered away because they do not contain interesting decays. This question is obviously
a very subtle one and is too involved for the present lecture.
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6.2 Flavour Tagging

As we saw in chapter 4 many measurements depend on the knowledge whether the B-
meson oscillated or not. In order to determine whether the B-meson was produced as a
B or a B, the flavour at production needs to be tagged. In principle tagging is simple.
All one has to do is identify the flavour of the B meson accompanying the one decaying
into a CP eigenstate. There are several methods which are or will be used.

e Complete reconstruction of the decay of a charged B-meson. This is the gold plated
tagging method. It suffers however from efficiencies and branching ratios. Typically
the decay in which one is interested has a branching ratio of less than 1073. Com-
bining this with a similar branching ratio for the tagging decay gives too small a
fraction of events. At the T this method is anyway excluded.

e Determination of the charge of the secondary vertex of the accompanying B-meson.
Also not usable at the T.

e Semi-leptonic decay of the accompanying B-meson. The b-quark will decay into
a negatively charged lepton whereas the b-quark decays into a positively charged
lepton. If these semi-leptonic decays are of charged B-mesons detection of the lepton
will provide an unambiguous tag. If however the accompanying B-meson is neutral
then the tag only indicates the flavour at the time of the accompanying B-meson’s
decay and it can have oscillated. It is interesting to calculate that the time integrated
CP asymmetry actually becomes zero at the T if only the difference in lifetimes and
the semi-leptonic tagging are used. In the high energy ete™ and hadron machines
this method works, be it with some tagging inefficiency. This inefficiency has to be
measured using other channels (p.e. double semi-leptonic decays) or estimated from
Monte Carlo. This method also suffers from misidentification due to semi-leptonic
charm decay in the decay of the accompanying B-meson. The lepton from this decay
has the opposite charge to the one from the original b decay and so will further wash
out the tagging information.

e Other methods include reconstruction of charm particles (the charge of the kaon
in the decay provides an unambiguous tag, apart from BY < B° oscillations) and
charge of the total opposite jet (at high energy ete™)
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6.3 Present Knowledge on Unitarity Triangle

At present there are several measurements which constrain the CKM unitarity triangle.
Combining all these measurements in a global fit is a stringent test of the internal consis-
tency of the Standard Model. The two best known groups that perform these global fits
are CKMfitter [25] and UTJfit [26].

In this section we will present the input to the fit, of which the following four measurements
provide the strongest constraints:

I sin23 The measurement of sin 23 constrains one of the three angles of the triangle.

IT ex  The measurement of ex provides a constraint that follows a hyperbola in the
(p,m) plane.

IIT |Vup| The measurement of |V,;,/V| constrains one side of the triangle as it is
proportional to \/p? + n?.

IV Am The measurements of Amg and Am, for the B® and B? systems constrain
another side, as it is proportional to ((1 — p)? 4+ n?).

The first two measurements are direct proofs of CP violation, in the B and K-system
respectively. The last two measurements however, provide strong constraints in the p, 7-
plane, but are no signs of CP violation on their own, since they allow for vanishing
imaginary part of the CKM elements, 1 = 0, see Fig. 6.7.

15

UL L [Trr T rrrprrrrd =

excluded area has CL > 0.95 |

1
1.0

0.5

0.5

-0.5

fi r Y : sol.wicos B<0 o 1
Summer 14 1 (excl: at CL > 0.95) —

....I../.I..

10 05 00 05 1.0 15 2.0 - 0. 0 05 1
p p
Figure 6.7: Global fits to the unitarity triangle, by (a) CKMfitter [25] and (b) UTfit [26].
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6.3.1 Measurement of sin 24

The determination of the angle § as measured at the B factories with the BaBar and
Belle experiments, has been extensively discussed in Section 4.1, which resulted in the
present world average [21]:

sin23 = 0.68 £ 0.02

sin(@p) = sin(2e,) FEEB

PRELIMINARY

BaBar ; 0.69 +0.03 +0.01
PRD 79 (2009) 1072009 ;

BaBar X : i 0.69+0.52+0.04+0.07
PRD 80 (%00093 112000

BaBar J/{ (hadronic) Kg i : 1,56 +0.42£0.21
PRD 69 (2004):052001 H ;

Belle : 5 : 0.67+0.02 +0.01

PRL 108 (2012) 171802

e . 0847%% 1016

ALEPH
PLB 492, 259 (2000)
3.20 38+ 0.50,

OPAL ;
EPJ C5, 379 (1998)

CDF : : : 0.79 154
PRD 61, 072005 (2000) * ;

LHCb : : L, 0.73+0.07 £ 0.04
PLB 721 (2013) 24 H :

Belle5S : : : 0.57 +0.58 + 0.06
PRL 108 (2012) 171801 S T

Average ; : ; 0.68 + 0.02
HFAG : : ;

-2 -1 0 1 2 3

Figure 6.8: Average value of the measurement of sin 23.

6.3.2 Measurement of ey

The measurement of |ex| = (2.228 £0.011) x 1073 provides a constraint on the position of
the apex of the universality triangle in the (p,7) plane. The value of |ex| is a measure of
the CP violation in K-mixing, and is thus related to the imaginary part of the box diagram
contribution that is responsible for the short range mixing of K° < K%: ¢ ~ SMyy/Amy.

Using the box diagram to calculate |ex|, see Eq. (3.15), one arrives at the following
form [27]:

2m2, m 2 * * * *
lex| = TERL RIS (o) (Vi Vea)? + meS (20) (ViaVia)? + 20e0S (e, ) (Vi Vea Vi Via)]

AmK
Grmiy mic /5B * * * *
= s T (1S (1) 2R(VEVia) S(VitVea) + 1S () 2R (Vi Vi) S(ViE Vi) —
NS (e, )RV Ver) SV Vea)

here again the functions S(z,) have been derived by Inami and Lim [16] and quantify
the loop contributions from quark ¢, depending on z, = mg /m,. The 7, include the
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NLO QCD corrections for each function. The factors f# By again parameterize the non-
perturbative strong corrections. The value of fx is well known from measurements of
charged K decay, so that the most uncertain value is that of the bag-factor Bg. The
third term is evaluated as follows: (VAV.ViiVia) = (AcA) = (R +iSA) (RN + iSN).
Using S\, &= —Q N\ and R\, < R, we then find S(VEV,ViiVig) = —R(VEV)S(VEVe).

Using the Wolfenstein parameterization we find [2]:
Gymiy mi fi B

el = 12v27%  Amyg
~ 10* A2A677 [ch(l’c) - Ut5($t)A2)\4(1 —p) — nctS(xc,a:t)] .

AQ}\% [77«:5(%) - ntS(xt)A2)\4(1 —p) = NetS (e, xt)]

With |V,] = AN? and |V,,| = A and the evaluation of the Inami-Lim functions S(z.) ~
2.4 x 107 S(zy) ~ 2.6 and S(x., ;) = 2.2 x 107 [28] we can rewrite as:

10% 7| Vo[ Vius|* [2.4 x 107 + 2.6| Vi [*(1 — p) — 2.2 x 1077]
~ 107° (1 - p)]

Q

lex]

(6.1)

which becomes a hyperbolic band in the (p,7) plane, given in Fig. 6.7.

6.3.3  [Vip/ Vil

The ratio |Vy,/V| provides a strong constraint on the unitarity triangle. The present
measurement is given by
Vi) = (4.13 £ 0.49) x 107

In the Standard Model in the Wolfenstein parameterization this quantity is given by

A - -
|Vub/‘/cb| - 1 P (p2 + 7]2)
2

where p = (1 — A\?/2)p and 7 = (1 — A*/2)n. This constraint is shown in Fig. 6.7 by the
circular band with its origin at (0,0) in the (p,7) plane. This band is a strong constraint
in the (p,7n) plane, but it is on its own not a measurement of CP violation: a solution
with the apex of the unitarity triangle at 7 = 0 would be perfectly consistent with this
constraint.

6.3.4 Measurement of Am

The mass difference Am of the two mass-eigenstates of a neutral meson system results in
an oscillatory behaviour between the meson and anti-meson, B° <+ B°, as explained in
chapter 3.
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The oscillations of neutral B-mesons were first observed at the PETRA collider at DESY
with the ARGUS experiment in 1987 [29]. The oscillations were more rapid than expected
at that time, because the mass of the top quark was not expected to be that heavy. In
fact, fortunately it turned out that the B°-meson has a fair chance to oscillate before she
decays. As a consequence of the determination of Amy, a lower limit on the top quark
mass could be set, m; > 40 GeV !

The mass difference Amg, has been very accurately determined by the B factories.

These decays can, as with semi-leptonic decays, only proceed from the B® or B° part of
the wavefunction. In this case the tagging is done using muons detected in the opposite
hemisphere to the particle under study. A clear oscillation is seen and the extracted mass
difference is obtained

Amg = (0.510 £ 0.003)ps~*

In the Standard Model the calculation of the box-diagram yields the following expression
for this mass difference, see Eq. (3.16):

G2 _ _
Amg = 6—7;777/%1/7705(%)142)\6 [(1 —p)P+ 772] defédBBd
where S(z;) is again the Inami-Lim function [16], z; = m?/m%,, m; and my, are the top
quark and W masses, 7. = 0.55£0.01 is the NLO QCD correction to the box-diagram am-
plitude and the most uncertain factor féd Bp, parameterizes the non-perturbative strong
corrections. Using the best estimates of all the parameters this translates into a limiting

region in the (p,7) plane. It is shown as the circular shaded band centered around (1, 0)
in Fig. 6.7.

Recently the CDF and DO experiments at the pp collider Tevatron at Fermilab have
measured the mass difference in the B? system:

Amg = (17.761 £ 0.022)ps ™"

The ratio Amgy/Am, will allow a determination of this radius which is theoretically less
uncertain, as this quantity is given by:

2
Amd _ dedeBBd

- 2
Ams mBszSBBs

A (1= p)* + 7]

Here almost all corrections have cancelled and the ratio of the non-perturbative factors is
much better under control, hence the narrow circular band inside the circle coming from
Amy alone, see Fig. 6.7.

IThis happened at the time that the TOPAZ e*e-collider in Japan was about to become operational
with the aim to discover the top quark up to a mass of about 40 GeV...
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Figure 6.9: Sketch of the four measurements ey, |Vup|, Amg and sin 23 in the (p,n) plane.
In the Standard Model, all four curves should be consistent with one value of (p,n).
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6.4 Outlook: the LHCb experiment

The B-factories at the SLAC (USA) and KEK (Japan) with the BaBar and Belle ex-
periments have been extremely succesful in measuring CP violation in the B° system,
resulting in a very accurate determination of the angle 3. However, the uncertainty on
the angle ~ is still large. The angle (3, has not been measured at all yet, although some
claims of new physics have been made [30, 31], based on the measurements at the CDF
and DO experiments with the Tevatron collider at Fermilab, Chicago. The B? system is to
date very poorly constrained, and might hide interesting new physics effects in the b < s
transition.

The LHCb detector aims at determining v and (s at unprecedented precision. Two prime
examples are given in Sections 4.3 and 4.2 were v and [, are extracted from the decays
BY — DEKF and BY — J/v¢, respectively. The B-factories run at the Y(4S) resonance
which does not provide enough energy to produce B%-mesons. On the other hand, BY-
mesons are produced at the pp collider at Fermilab. But a relatively low bb cross section
of 50ub at the center-of-mass energy of 2 TeV and a modest yearly collected luminosity
of ~ 1fb~! only yields ~ 3,000 B? — J/1¢ events in the period from 2002-2008.

The LHCD experiment operates at the LHC collider running at a center-of-mass energy
of 7(8) TeV in 2011 (2012) (with a bb cross section of 230ub) and a yearly luminosity of
2 fb~1. In 2015-2018 the LHC operates at 13 TeV, and as a result, the LHCb experiment
is expected to collect about 100,000 B? — J/1¢ events per year. Not only due to the
large amount of collected B%-mesons, but also due to the optimized (forward) detector
design, see Fig. 6.10, an accuracy of o3, = 0.04 was reached in 2014. The optimized

/ ’ Ecar HCAL
SPD/PS

P
/
/ / Magnet RICH2 M1

Figure 6.10: Schematic view of the LHCb detector.
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detector design also comprises particle identification (to distinguish kaons from pions)
and an efficienct hadron trigger, which places LHCb in a special situation compared to
the other LHC experiments ATLAS and CMS. Due to these two features, LHCb collected
1770 B? — D*KT events only in 2011, with which v was determined with 0., = 35°,
showing the feasibility of this analysis with high precision, once more data is collected.

These new precision measurements will scrutinize the Standard Model and her CKM-
mechanism. Together with the determination of angular distributions and branching
ratios of rare decays such as B — K*utp~ and BY — p™u~ the measurements at LHCb
might reveal new particles inside virtual loops, complementary to the possible direct
production of new particles at ATLAS and CMS.
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Some properties are discussed of the §°, a heavy boson that is known to decay by the process #*—z* 47",
According to certain schemes proposed for the interpretation of hyperons and K particles, the 8° possesses an
antiparticle & distinct from itself. Some theoretical implications of this situation are discussed with special
reference to charge conjugation invariance. The application of such invariance in familiar instances is
surveyed in Sec. I. It is then shown in Sec. IT that, within the framework of the tentative schemes under
consideration, the 8 must be considered as a “particle mixture” exhibiting two distinct lifetimes, that each
lifetime is associated with a different set of decay modes, and that no more than half of all #’s undergo the
familiar decay into two pions. Some experimental consequences of this picture are mentioned.

I

T is generally accepted that the microscopic laws of

physics are invariant to the operation of charge
conjugation (CC); we shall take the rigorous validity
of this postulate for granted. Under CC, every particle
is carried into what we shall call its “antiparticle”.
The principle of invariance under CC implies, among
other things, that a particle and its antiparticle must
have exactly the same mass and intrinsic spin and must
have equal and opposite electric and magnetic moments.
_ A charged particle is thus carried into one of opposite
charge. For example, the electron and positron are
each other’s antiparticles; the #+ and »— and the pt
and p~ mesons are supposed to be pairs of antiparticles;
and the proton must possess an antiparticle, the
“antiproton”.

Neutral particles fall into two classes, according to
their behavior under CC:

(a) Particles that transform into themselves, and
which are thus their own antiparticles. For instance
the photon and the #° meson are bosons that behave
in this fashion. It is conceivable that fermions, too,
may belong to this class. An example is provided by
the Majorana theory of the neutrino.

In a field theory, particles of class (a) are represented
by “real” fields, i.e., Hermitian field operators. There
is an important distinction to be made within this class,
according to whether the field takes on a plus or a minus

must not change sign can be inferred from the observed
two-photon decay of the =°.

We are effectively dealing here with the “charge con-
jugation quantum number” C, which is the eigenvalue of
the operator @, and which is rigorously conserved in the
absence of external fields. If only an odd (even) number
of photons is present, we have C=—1(4-1); if only
7%s are present, C=-1; etc. As a trivial example of
the conservation of C, we may mention that the decay
of the 7° into an odd number of photons is forbidden.!

We may recall that a state of a neutral system
composed of charged particles may be one with a
definite value of C. For example, the 1S, state of
positronium has C=+1; a state of a =+ and a 7™
meson with relative orbital angular momentum !/ has
C=(—1)} etc. )

For fermions, as for bosons, a distinction may be
made between “odd” and “even’’ behavior of neutral
fields of class (a) under CC. However, the distinction
is then necessarily a relative rather than an absolute
one? In other words, it makes no sense to say that a
single such fermion field is “odd” or “even”, but it
does make sense to say that two such fermion fields
have the same behavior under CC or that they have
opposite behavior.

(b) Neutral particles that behave like charged ones
in that: (1) they have antiparticles distinct from
themselves; (2) there exists a rigorous conservation law

sign under CC. The operation of CC’is performed by a
unitary operator @. The photon field operator A4,(x)
satisfies the relation

CA(X)C 1= —A,(x), )
while for the #° field operator ¢(x) we have
Co(x)C =g (x). 2

Equation (1) expresses the obvious fact that the
electromagnetic field changes sign when positive and
negative charges are interchanged; that the #° field

*On leave from Department of Physics and Institute for
Nuclear Studies, University of Chicago, Chicago, Illinois.

that-prohibits-virtual-transitions between-particle-and
antiparticle states.

A well-known member of this class is the neutron N,
which can obviously be distinguished from the anti-
neutron N by the sign of its magnetic moment. The
law that forbids the virtual processes Ne2N is the law

1 For other consequences of invariance under charge conjugation
see A. Pais and R. Jost, Phys. Rev. 87, 871 (1952); L. Wolfenstein
and D. G. Ravenhall, Phys. Rev. 88, 279 (1952); L. Michel,
Nuovo cimento 10, 319 (1953).

2 This is due to the fact that fermion fields can interact only
bilinearly, For example, one easily sees that the interactions
responsible for P—N +-¢*-+» would not lead to physically distin-
guishable results if » were either an even or an odd Majorana
neutrino.
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of conservation of baryons,® which is, so far as we know,
exact, and which states that », the number of baryons
minus the number of antibaryons, must remain un-
changed. Clearly all neutral hyperons likewise belong
to this class. Although we know of no “elementary”
bosons in the same category, we have no a priori
reason for excluding their existence. [Note that the
H atom is an example of a ‘‘non-elementary” boson of
class (b).]

Particles in this class are represented by ‘‘complex”
fields, and the operation of charge conjugation trans-
forms the field operatorsinto their Hermitian conjugates.

It is the purpose of this note to discuss the possible
existence of neutral particles that seem, at first sight,
to belong neither to class (a) nor to class (b).

I

Recently, attempts have been made to interpret
hyperon and K-particle phenomena by distinguishing
sharply between strong interactions, to which essen-
tially all production of these particles is attributed, and
weak interactions, which are supposed to induce their
decay. It is necessary to assume that the strong inter-
actions give rise to “associated production “exclusively.?

Certain detailed schemes® which meet this require-
ment lead to further specific properties of particles and
interactions. In particular, a suggestion has been made
about the 8° particle, a heavy boson that is known to
decay according to the scheme:

Bt (~215 Mev). 3)

It has been proposed that the 6° possesses an antiparticle
6° distinct from itself, and that in the absence of the
weak decay interactions, there is a conservation law
that prohibits the virtual transitions §°%=6°. [In our
present language, we would say that the 6° belongs to
class (b) if the weak interactions are turned off.] This
conservation law also leads to stability of the 6° and 8°;
moreover, while it permits the reaction =+ P—A%-6°
it forbids the analogous process 7+ P—A%-°, In the
schemes under consideration this is the same law that
forbids the reaction: 2 neutrons—2A°.

The weak interactions that must be invoked to
account for the observed decay (3) evidently cause the
conservation law to break down (a fact that is, of
course, of little importance for production). This
breakdown makes the forbiddenness of the processes
6°%=8° no longer absolute, as can be seen from the
following argument: In the decay (3) the pions are
left in a state with a definite relative angular momentum
and therefore with a definite value of the charge-
conjugation quantum number C. The charge-conjugate
process, ]

fo—mtt7, 4

8 Nucleons and hyperons are collectively referred to as baryons.

4 A. Pais, Phys. Rev. 86, 663 (1952).

& M. Gell-Mann, Phys. Rev. 92, 833 (1953); A. Pais, Proc. Nat,
Acad. Sci. U. S. 40, 484, 835 (1954); M. Gell-Mann and A. Pais.

Proceedings of the International Conference Glasgow (Pergamon
Press, London, to be published).
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must also occur and must leave the pions in the same
state; moreover the reverse of (4) must also be possible,
at least as a virtual process. Therefore the virtual
transition '2at4-78 is induced by the weak
interactions, and we are no longer dealing exactly
with case (b).

In order to treat this novel situation, we shall find it
convenient to introduce a change of representation.
Since the 6° and &° are distinct, they are associated,
in a field theory, with a “complex” field ¥ (a non-
Hermitian field operator), just as in case (b). Under
charge conjugation ¥ must transform according to
the law:

eyet=yt,
oyrete ®)
‘p c ."‘p,
where ¢t is the Hermitian conjugate of ¥. Let us now
define
Y= ¢/ V2 (6)
and
Y= (b—y*)/V2i, M
so that ¢, and y» are Hermitian field operators satisfying
CY1C =y, ®
and
CYaC7l= —yn. )

The fields y; and y, evidently correspond to class (a);
in fact ¢, is “even” like the #° field and . is “odd”
like the photon field. Corresponding to these real fields
there are quanta, which we shall call 6,° and 8;° quanta.
The relationship that these have to the quanta of the
complex ¢ field, which we have called 6° and &, may be
seen from an example: Let ¥; be the wave-functional
representing a single 6; quantum in a given state, while
¥y and ¥y describe a 6° and a &, respectively, in the
same state. Then we have

‘1’1 = (‘I’o+‘I’ol)/'\/2-

Thus the creation of a 8; (or, for that matter, of a 6)
corresponds physically to the creation, with equal
probability and with prescribed relative phase, of
either a 8 or a §°. Conversely, the creation of a 6°
(or of a &) corresponds to the creation, with equal
probability and prescribed relative phase, of either a 6,°
or a 85

The transformation (6), (7) to two real fields could
equally well have been applied to a complex field of
class (b), such as that associated with the neutron.
However, this would not be particularly enlightening.
It would lead us, for instance, to describe phenomena
involving neutrons and antineutrons in terms of “Ni
and N; quanta”. Now a state with an N; (or N)
quantum is a mixture of states with different values of
the quantum number #, the number of baryons minus
the number of antibaryons. But the law of conservation
of baryons requires this quantity to be a constant
of the motion, and so a mixed state can never arise from
a pure one. Since in our experience we deal exclusively
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with states that are pure with respect to #, the introduc-
tion of V1 and N, quanta can only be a mathematical
device that distracts our attention from the truly
physical particles N and N.

On the other hand, it can obviously not be argued in
a similar way that the 8,° and 6,° quanta are completely
unphysical, for the corresponding conservation law
in that case is not a rigorous one. Always assuming the
correctness of our model of the 6°, we still have the 8°
and #° as the primary objects in production phenomena.
But we shall now show that the decay process is best
described in terms of 6,° and 6.°.

The weak interactions, in fact, must lead to very
different patterns of decay for the 6,° and 8,° into pions
and (perhaps) v rays; any state of pions and/or v
rays that is a possible decay mode for the 8,° is not
a possible one for the 6,° and vice versa. This is because,
according to the postulate of rigorous CC invariance,
the quantum number C is conserved in the decay; the
6,° must go into a state that is even under charge
conjugation, while the 6;° must go into one that is odd.
Since the decay modes are different and even mutually
exclusive for the 8,° and 829, their rates of decay must
be quite unrelated. There are thus two independent
lifetimes, one for the 6,° and one for the 8.°.

An important illustration of the difference in decay
modes of the 6,° and 8,° is provided by the two-pion
disintegration. We know that reaction (3) occurs;
therefore at least one of the two quanta 6,° and 65,
say 6%, must be capable of decay into two charged pions.
The final state of the two pions in the 8,° decay is then
even under charge conjugation like the 6,° state itself.
These two pions are thus in a state of even relative
angular momentum and therefore of even parity. So
the 6, must have even spin and even parity. Now we
assume that the 6° has a definite intrinsic parity, and
therefore the parity and spin of the 6,° must be the
same as those of the 8%, both even. If the 8,° were to
decay into two pions, these would again be in a state of
even relative angular momentum and thus even with
respect to charge conjugation. However, the 62 is
itself odd under charge conjugation; its decay into
two pions is therefore forbidden.

Alternatively, if the 62° is the one that actually goes
into two pions, then the spin and parity of 6,° and the
6, are both odd, and so the 6,° cannot decay into two
pions.

Of the 8,° and the 85% that one for which the two-pion
decay is forbidden may go instead into #t4-a—4+v or
possibly into three pions (unless the spin and parity of
the &° are 0%), etc.

While we have seen that the 6," and 6" may each be
assigned a lifetime, this is evidently not true of the
@ or 8. Since we should properly reserve the word
“‘particle” for an object with a unique lifetime, it is the
6,° and 6,° quanta that are the true “particles”. The
@ and the 8° must, strictly speaking, be considered as
“‘particle mixtures.”
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It should be remarked that the 6,° and the 6,° differ
not only in lifetime but also in mass, though the mass
difference is surely tiny. The weak interactions re-
sponsible for decay cause the 6,° and the 8° to have their
respective small level widths and correspondingly must
produce small level shifts which are different for the
two particles.

To sum up, our picture of the §° implies that it is a
particle mixture exhibiting two distinct lifetimes, that
each lifetime is associated with a different set of decay
modes, and that not more than helf of all 6”s can undergo
the familiar decay into two pions.®

We know experimentally that the lifetime r for the
decay mode (3) (and hence for all decay modes that
may compete with this one) is about 1.5X 107 sec.
The present qualitative considerations, even if at all
correct in their underlying assumptions, do not enable
us to predict the value of the “second lifetime” 7’ of
the 6% Nevertheless, the examples given above of
decays responsible for the second lifetime lead one to
suspect that” 7>>7. As an illustration of the experi-
mental implications of this situation consider the study
of the reaction 7+ P—A%+#° in a cloud chamber. If
the reaction occurs and subsequently A'—P-+7—,
f*—gt+7—, there should be a reasonable chance to
observe this whole course of events in the chamber, as
the lifetime for the A' decay (~3.5X1071 sec) is
comparable to r. However, if it is true that 7>, it
would be very difficult to detect the decay with the
second lifetime in the cloud chamber with its charac-
teristic bias for a limited region of lifetime values.®
Clearly this also means an additional complication in
the determination from cloud chamber data as to
whether or not production always occurs in an
associated fashion. In some such cases the analysis of
the reaction 7+ P—A}-? may still be pushed further,
however, if one assumes that besides the A’ only one
other neutral object is formed.?

At any rate, the point to be emphasized is this: a
neutral boson may exist which has the characteristic 6°
mass but a lifetime 4+ and which may find its natural
place in the present picture as the second component of
the 6° mixture. )

One of us, (M. G.-M.), wishes to thank Professor E.
Fermi for a stimulating discussion.

¢ Note that if the spin and parity of the 6 are even, then the 8,°
may decay into 2x%'s as well as into »*+=~.

7 The process 82—+~ may occur as a radiative correction
to the allowed decay into =+~ connected with the lifetime r;
see S. B. Treiman, Phys. Rev. 95, 1360 (1954). The process may
also occur as one of the principal decay modes associated with
the second lifetime +'. The latter case may be distinguished from
the former not only by the distinct lifetime but also by a different
energy spectrum which probably favors higher y-ray energies;
such a spectrum is to be expected in a case where the emission
of the v ray is not just part of the “infrared catastrophe”, but
is an integral part of the decay process.

8 See, e.g., Leighton, Wanlass, and Anderson, Phys. Rev. 89,
148 (1953), Sec. IIL.

9 See Fowler, Shutt, Thorndike, and Whittemore, Phys. Rev.
91, 1287 (1953).
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The location of the curve on the 8 axis can be
shifted to larger angles by increasing V, and R
(thus maintaining the well-known VR ambiguity
in the optical model) and to smaller angles by in-
creasing V, and Inl, the energy diiference between
entrance and exit channels, which is determined
experimentally and not treated as a parameter.
The effect of varying V, is much larger than that
of varying V,, since V, determines two optical-
model wave functions, V, only determines one.

It was found that a large difference between V,
and V, was necessary to locate the curves proper-
ly. The values quoted are not unique.

The over-all width is determined almost exclu-
sively by R;,. Increasing Ry decreases the over-
all width and increases the magnitude of the cross
section at the center of the curve. It is found that
when the best value of Ry is used in each state,
the relative magnitudes are automatically fitted
well.

The effects of increasing W,, W,, and a are
small. Increasing W, and W, decreases the mag-
nitude of both curves slightly. In fitting the p-
state curve, V, and V, have opposite effects on
the ratio of peak heights. Increasing V, increases
the ratio. Increasing both V, and V, reduces the
depth of the minimum by a very small amount.

The physical conclusions which we tentatively
draw from this calculation are rather significant.
For finite potentials there cannot be significant
differences between single-particle wave functions
whose principal quantum number, angular momen-
tum, binding energy, and rms radius are given.
Hence it seems that a distorted-wave analysis of
(p, 2p) experiments determines the single-particle

wave functions very well.

The rms radius of the charge distribution in C'?
given by our empirical values of R, is 2.5 F. The
experimental value obtained from electron scat-
tering is 2.4 F. The rms radius for s-state pro-
tons is 1.7 F, which is the experimental value
for the a particle. Whether this is true for s
states in other light nuclei is, at present, being
investigated by a systematic study of the available
data. Finer points concerning curve fitting are
also being investigated.

We would like to thank Dr. M. A. Melkanoff,
Dr. J. S. Nodvik, Dr. D. S. Saxon, and Dr. D. G.
Cantor for the use of their optical-model code
SCAT 4 which was used to calculate our optical-
model wave functions, and Dr. C. A. Hurst and
Mr. K. A. Amos for valuable discussions.

*Work supported in part by the Australian Institute
for Nuclear Science and Engineering and a Colombo Plan
scholarship.
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UNITARY SYMMETRY AND LEPTONIC DECAYS

Nicola Cabibbo
CERN, Geneva, Switzerland
(Received 29 April 1963)

We present here an analysis of leptonic decays
based on the unitary symmetry for strong inter-
actions, in the version known as “eightfold way,”?
and the V-A theory for weak interactions. 3 Our
basic assumptions on J w the weak current of
strong interacting particles, are as follows:

(1) J,, transforms according to the eightfold
representation of SU;. This means that we neg-
lect currents with AS=-A@Q, or Al=3/2, which
should belong to other representations. This
limits the scope of the analysis, and we are not

able to treat the complex of K° leptonic decays,
or Z*~n+e* +v in which AS=-AQ currents play
a role. For the other processes we make the
hypothesis that the main contributions come from
that part of J M which is in the eightfold represen-
tation.

(2) The vector part of J, is in the same octet as
the electromagnetic current. The vector contri-
bution can then be deduced from the electromag-
netic properties of strong interacting particles.
For AS=0, this assumption is equivalent to vector-
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current conservation. ?

Together with the octet of vector currents, j#,
we assume an octet of axial currents, g, - In
each of these octets we have a current with AS
=0, AQ=1, jl-l«»’ and g,,?, and a current with
AS=AQ=1, j,%, and g @, Their isospin selec-
tion rules are, respectively, AI=1 and A/=1/2.

From our first assumption we then get

J =a . (0)+ (1)) +b : (1)+ (1))_ (1)
" (J“ g, ) (J“ g,

A restriction @ =b=1 would not ensure univer-
sality in the usual sense (equal coupling for all
currents), because if J, [as given in Eq. (1)]
is coupled, we can build a current, b(j , @ +g, @)
—a(j#‘”+gll 1), which is not coupled. We want,
however, to keep a weaker form of universality,
by requiring the following:

(3) J, has “unit length,” i.e.,

We then rewrite J, as*

a?+b2=1.

J =cost(j Q+g Misgind(j Y+g V) (2)
i (J“ g, i, e,

where tanf=b/a. Since J,,, as well as the baryons
and the pseudoscalar mesons, belongs to the oc-
tet representation of SUg, we have relations (in
which ¢ enters as a parameter) between process-
es with AS=0 and processes with AS=1.

To determine 6, let us compare the rates for
Kt —=pt+vand 7t - ut+y; we find

DK = pv)/C(nt = )
= tan"BMK(l - Muz/MKz)z/M"(l - Muz/M"’)z. (3)

From the experimental data, we then get®®
6=0.251. (4)

For an independent determination of 8, let us con-
sider K¥ = 7°+e*+v. The matrix element for

this process can be connected to that for at-n°
+et+v, known from the conserved vector-cur-
rent hypothesis (2nd assumption). From the rate®
for Kt =n°+et+v, we get

6=0.26. (5)

The two determinations coincide within experi-
mental errors; in the following we use 6=0. 26.
We go now to the leptonic decays of the baryons,
of the type A ~B+e +v. The matrix element of
any member of an octet of currents among two
baryon states (also members of octets) can be
expressed in terms of two reduced matrix ele-
ments’
(@) (@)

<Alju 8, |B) (6)
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the f’s and d’s are coefficients defined in Gell-
Mann’s paper.'»? It is sufficient to consider only
allowed contributions and write

+HO’E

O,E
vy Y V5

O ,E =F (7
uoou

From the connection with the electromagnetic

current we get the vector coefficients: FO-= 1,

FE =0; from neutron decay we get

P +HF =1.25. (8)

We remain with one parameter which can be de-
termined from the rate for Z- - A+e~ +v. The
relevant matrix element for this is

cost(Zlj QD+g @A
( i+, )
=cosO(VE =(P?cosoHE . (9
(3 " € Y5 (9)

Taking the branching ratio for this mode to be
0.9x107.° we get

HE =40.95. (10)

The negative solution can be discarded because
it produces a large branching ratio for Z~ -n
+e~ +v, of the order of 1%. The positive solu-
tion (HE =0.95, HO=0.30) is good, because it
produces a cancellation of the axial contribution
to this process. This explains the experimental
result that this mode is more depressed than the
A—~p+e” +V in respect to the predictions of
Feynman and Gell-Mann.? In Table I we give a
summary of our predictions for the electron
modes with AS=1. The branching ratios for
A-p+e~+vand T~ -n+e” +v are in good agree-
ment with experimental data.®

As a final remark, the vector-coupling constant
for B decay is not G, but Gecos@. This gives a
correction of 6.6% to the ft value of Fermi tran-
sitions, in the right direction to eliminate the
discrepancy between O and muon lifetimes.

Table I. Predictions for the leptonic decays of hy-
perons,
Branching ratio
From Present Type of
Decay reference 2 work interaction
A—p+e~+7 1.4 % 0.75%x107® V-0.724
I —=n+te +7 5.1 % 1.9 X107 Vv+0.654
ET—~A+te +7 1.4 % 0.35x107% V+0.024
ET—~zl4e"4D 0.14%  0.07x107% Vv-1.254
E0—zt+em+7 0.28%  0.26x107% Vv-1.254
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The correction is, however, too large, leaving
about 2% to be explained.!®

M. Gell-Mann, California Institute of Technology
Report CTSL-20, 1961 (unpublished); Y. Ne’eman,
Nucl. Phys. 26, 222 (1961).

R, P, Feynman and M. Gell-Mann, Phys. Rev.
109, 193 (1958).

3R. E. Marshak and E. C. G. Sudarshan, Proceed-
ings of the Padua-Venice Conference on Mesons and
Recently Discovered Particles, September, 1957
(Societd Italiana di Fisica, Padua-Venice, 1958);
Phys. Rev. 109, 1860 (1958).

4Similar considerations are forwarded in M. Gell-
Mann and M. Lévy, Nuovo Cimento 16, 705 (1958),

5The lifetimes from W. H. Barkas and A. H. Rosen-
feld, Proceedings of the Tenth Annual International
Rochester Conference on High-Energy Physics, 1960
(Interscience Publishers, Inc., New York, 1960), p.
878. The branching ratio for K*— u* + v is taken as
57.4%. W. Becker, M. Goldberg, E. Hart, J. Leit-
ner, and S, Lichtman (to be published).

8B. P. Roe, D. Sinclair, J. L. Brown, D. A. Glaser,
J. A. Kadyk, and G. H. Trilling, Phys. Rev. Letters
1, 346 (1961). These authors give the branching ratio
for K¥—pu*+v as 64%, from which 6=0.269. Also this
value agrees with that from K* — 7%+ ¢% + p within ex-
perimental errors.

™N. Cabibbo and R. Gatto, Nuovo Cimento 21, 872
(1961). Our notation for the currents is different from
the one used in this reference and by Gell Mann; the
connection is j ¥=j ! ] j “’" +l]

fw. willis et al. reported at the «’ashmgton meeting
of the American I Physical Society, 1963 (W. Willis et

1., Bull. Am, Phys. Soc. 8, 349 (1963] this branch-
ing ratio as (0.97:) x1074. 1If it is allowed to vary be-
tween these limits, our predictions for the T~ —ne”v
varies between 0.8 X10~3 and 4 x107%, and that for A°
—pe~7 between 1.05 X10™% and 0.56 1073, I am grate-
ful to the members of this group for prepublication
communication of their results,

'R. P. Ely, G. Gidal, L. Oswald, W, Singleton,

W. M. Powell, F, W, Bullock, G. E. Kalmus,

C. Henderson, and R. F. Stannard [Proceedings of
the International Conference on High-Energy Nuclear
Physics, Geneva, 1962 (CERN Scientific Information
Service, Geneva, Switzerland, 1962), p. 445] give
the branching ratio for A—p+e~+7 as (0.85%0.3)
%1073, while that for Z™—n+e”+7 is given (see pre-
ceding reference) as (1.9%0.9) x1073

1R, P. Feynman, Proceedings of the Tenth Annual
International Rochester Conference on High-Energy
Physics, 1960 (Interscience Publishers, Inc., New
York, 1960), p. 501. Recent measurements of the
muon lifetime have slightly increased the discrepancy.
We think that more information will be needed to de-
cide whether our 3rd assumption can be maintained.

EXPERIMENTAL EVIDENCE ON 7 - r SCATTERING NEAR THE p AND f° RESONANCES,
FROM 7~ +p ~ 7 +7+NUCLEON, AT 3 BeV/cT

V. Hagopian and W. Selove
University of Pennsylvania, Philadelphia, Pennsylvania
(Received 22 April 1963)

This note reports some preliminary results on
nm - 7 scattering, near the 770-MeV p and 1250-
MeV f° resonances. The experiment is the one
reported earlier'; with more data measured (now
about 75% of the two-prong events), we have ex-
amined the data to see to what extent they seem
analyzable in terms of 7 - 7 scattering. We give
a brief summary of the results, and then a few
details. A more detailed report will be available
later.

(1) There is evidence of a major contribution
from the one-pion-exchange mechanism (“pe-
ripheral collision”), for low nucleon recoil mo-
mentum. We take the region of A< A i, +10
to be interpretable in terms of 7 - 7 scattering.
(A? is the square of the four-momentum transfer
to the nucleon, in units of the pion mass squared;
Apin?® is the lower kinematic limit, which is a
function of the 7 -7 “mass” and the incident en-
ergy )

(2) We then consider these “peripheral” (i.e.,
peripheral-collision) events to be representative
of the angular distribution of 7 - 7 scattering. Two
obvious points of caution must be mentioned here:
(a) Interference effects arise from nucleon isobar
production, and (b) the effective 7 - 7 scattering
is off the energy shell. From detailed examina-
tion of the data, we believe neither of these ef-
fects is so severe as to grossly affect the further
conclusions below. A third possible complicat-
ing effect is interference from two-pion decay of
the w, into 7*#~; the possible magnitude of this
effect is at present difficult for us to estimate.

(3) The spin of the f° is greater than zero, as
reported earlier by Veillet et al. ? We believe
it is difficult to draw any conclusion from these
data as to whether the spin is 2 or greater than
2. (Isospin arguments, and the data directly,
exclude spin 1.)

(4) The 7~ - 7° scattering in the p region is con-
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exchange reactions®® (r*p— K+Z+, mp— K°AY, etc.)
gives the intercepts ape=0.35 and ayp=0.24 (with
uncertain errors). The intercepts resulting from an
analysis of total cross-section data are also consistent
with the values of the present analysis provided we
postulate!® that the Pomeranchuk trajectory has a
small 7=0 octet component in addition to the usual
SU(3) singlet component. Table I summarizes the
situation on the intercepts of the ¢ and Q trajectories.

In conclusion, the following comments may be made:
Although the quality of the fits in the present case is
not comparable with those which can be made with the
A-production data, it nevertheless demonstrates that
SU(3) symmetry for Regge vertices and Regge behavior
are consistent with the data. Further, the same mecha-
nism seems to be operative in the production of these
members of the $*+ decuplet. The ¢ and Q trajectories

18D, D. Reeder and K. V. L. Sarma, Phys. Rev. 172, 1566
(1968).

¥ K. V. L. Sarma and G. H. Renninger, Phys. Rev. Letters 20,
399 (1969).
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do not seem to be degenerate,? and the values deter-
mined from the analysis of the V;*(1385)-production
reactions are consistent with earlier determinations
from other reactions.
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Weak Interactions with Lepton-Hadron Symmetry*

S. L. Grassow, J. Iriorouros, anp L. Marantt
Lyman Laboratory of Physics, Harvard University, Cambridge, Massachuseits 02139
(Received 5 March 1970)

We propose a model of weak interactions in which the currents are constructed out of four basic quark
fields and interact with a charged massive vector boson. We show, to all orders in perturbation theory,
that the leading divergences do not violate any strong-interaction symmetry and the next to the leading
divergences respect all observed weak-interaction selection rules. The model features a remarkable symmetry
between leptons and quarks. The extension of our model to a complete Yang-Milis theory is discussed.

INTRODUCTION

EAK-INTERACTION phenomena are well de-

scribed by a simple phenomenological model
involving a single charged vector boson coupled to an
appropriate current. Serious difficulties occur only when
this model is considered as a quantum field theory,
and is examined in other than lowest-order perturbation
theory.! These troubles are of two kinds. First, the
theory is too singular to be conventionally renormal-
ized. Although our attention is not directed at this
problem, the model of weak interactions we propose

* Work supported in part by the Office of Naval Research, under
Contract No. N00014-67-A-0028, and the U. S. Air Force under
Contract No. AF49(638)-1380.

1 On leave of absence from the Laboratori di Fisica, Istituto
Superiore di Santa, Roma, Italy.

1B, L. Ioffe and E. P. Shabalin, Yadern. Fiz. 6, 828 (1967)
[Soviet J. Nucl. Phys. 6, 603 (1968)]; Z. Eksperim. i Teor. Fiz.
Pis’'ma v Redaktsiyu 6, 978 (1967) [Soviet Phys. JETP Letters
6, 390 (1967)]; R. N. Mohapatra, J. Subba Rao, and R. E. Mar-
shak, Phys. Rev. Letters 20, 1081 (1968); Phys. Rev. 171, 1502
(1968) ; F. E. Low, Comments Nucl, Particle Phys. 2, 33 (1968);
R. N. Mohapatra and P. Olesen, Phys. Rev. 179, 1917 (1969).

may readily be extended to a massive Vang-Mills
model, which may be amenable to renormalization with
modern techniques. The second problem concerns the
selection rules and the relationships among coupling
constants which are carefully and deliberately incorpo-
rated into the original phenomenological Lagrangian.
Our principal concern is the fact that these properties
are not necessarily maintained by higher-order weak
interactions.

Weak-interaction processes, and their higher-order
weak corrections, may be classified? according to their
dependence upon a suitably introduced cutoff momen-
tum A. Contributions to the S matrix of the form

3 4, (GAY)"

n=1

(where G is the usual Fermi coupling constant and 4.
are dimensionless parameters) are called zeroth-order

2 T. D. Lee, Nuovo Cimento 594, 579 (1969).
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weak effects, terms of the form

G S B.(GAY"

n=0

are called first-order weak effects, and generally, terms
of the form

G'S Cin(GAY"

n=0

are called /th order. (We are disregarding possible
logarithmic dependences on the cutoff.) The zeroth-
order terms present us with the dangerous possibility
of serious violations of parity and hypercharge in
strong interactions. First-order terms include the usual
lowest-order contributions (order G) to leptonic and
semileptonic processes. However, other first-order terms
may yield violations of observed selection rules: There
can be AS=2 amplitudes, yielding a K;-K. mass
splitting, beginning at order G(GA?), as well as con-
tributions to such unobserved decay modes as K,;—
ut+u—, K+ — wt+I+1, etc., involving neutral lepton
pairs, or departures from the leptonic AS=AQ law.
We shall say of a model that its divergences are properly
ordered if it is true that the zeroth-order terms do not
yield violations of parity or hypercharge, and if the
first-order terms do satisfy the observed selection rules
of weak-interaction phenomena,

In most conventional formulations of a weak-inter-
action field theory (say, a vector boson coupled to a
quark triplet), the divergences are not properly ordered.
Defenders of such theories must argue that there is an
effective weak-interaction cutoff which guarantees that
the induced higher-order effects are as small as experi-
ment indicates. A remarkably small cutoff,! not greater
than 3 or 4 GeV, seems necessary. Should such a
cutoff be justified, the problem of higher-order depar-
tures from known selection rules is solved; all such
departures are small.

Others feel that such a small cutoff is implausible
and unrealistic, and that one must confront the possi-
bility that GA? is large—perhaps obtaining sensible
results in the limit GA2—c. In this case, one may
regard all the first-order terms as having the same
general magnitude, that of observed weak phenomena,
and #th-order terms as having the magnitude naively
expected of nth-order weak interactions.

An elegant solution to the problem of the zeroth-
order terms was recently discovered, removing the
specter of strong violations of parity and hypercharge.3#
One assumes a particular form for the breakdown of
chiral SU(3) : The symmetry-breaking term must trans-

3 C. Bouchiat, J. Hliopoulos, and J. Prentki, Nuovo Cimento
56A, 1150 (1968); J. Tliopoulos, ibid. 62A, 209 (1969); R. Gatto,
G. Sartori, and M. Tonin, Phys. Letters 28B, 128 (1968) ; Nuovo
Cimento Letters 1, 1 (1969).

4 N. Cabibbo and L. Maiani, Phys. Letters 28B, 131 (1968);
Phys. Rev. D 1, 707 (1970).
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form like the (3,3)4 (3,3) representation®; in a quark
model, like the quark mass term. In this case, the
zeroth-order weak interactions may be identified as an
object belonging to the same representation as the
symmetry-breaking term. After an appropriate SU(3)
XSU(3) transformation, their only effect is to cause
a renormalization of the symmetry-breaking terms,
giving renormalized quark masses.* There is no violation
of hypercharge or parity. Indeed, from a speculative
stability requirement of the symmetry-breaking term
under weak and electromagnetic corrections, the correct
value of the Cabibbo angle may be deduced.*

Although the zeroth-order terms are controlled with
an appropriate model of strong interactions, the first-
order terms remain troublesome. Indeed, with a quark
model, we immediately encounter strangeness-violating
couplings of neutral lepton currents and contributions
to the neutral kaon mass splitting to order G(GA?).8
(In such a model, departures from AS = AQ) first appear
at second order.) For this reason, it appears necessary
to depart from the original phenomenological model of
weak interactions. One suggestion? involves the intro-
duction of a large number of intermediarics of spins
one and zero, so coupled that the leading divergences
are associated with only the diagonal symmetry-
preserving interactions; in this fashion a proper order-
ing of divergences is readily obtained. But this model
is an awkward one involving many intermediaries with
different spins but degenerate coupling strengths. Few
would concede so much sacrifice of elegance to
expediency.®

We wish to propose a simple model in which the
divergences are properly ordered. Our model is founded
in a quark model, but one involving four, not three,
fundamental fermions; the weak interactions are medi-
ated by just one charged vector boson. The weak
hadronic current is constructed in precise analogy with
the weak lepton current, thereby revealing suggestive
lepton-quark symmetry. The extra quark is the simplest
modification of the usual model leading to the proper
ordering of divergences. Just as importantly, we argue
that universality is preserved, in the sense that the

88, L. Glashow and S. Weinberg, Phys. Rev. Letters 20, 224
(1968); M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Rev.
175, 2195 (1968).

¢ Of course, one cannot exclude a priori the possibility of a
cancellation in the sum of the relevant perturbation expansion
in the limit A — .

7M. Gell-Mann, M. L. Goldberger, N. M. Kroll, and F. E.
Low, Phys. Rev. 179, 1518 (1969).

8 For other departures from the conventional theory, see, for
example, C. Fronsdal, Phys. Rev. 136B, 1190 (1964); W. Kum-
mer and G. Segré, Nucl. Phys. 64, 585 (1965); G. Segre, Phys.
Rev. 181, 1996 (1969); L. F. Li and G. Segr?, ibid. 186, 1477
(1969); N. Christ, sbid. 176, 2086 (1968). It should be understood
that the ingenious conjecture of T. D, Lee and G. C. Wick [Nucl.
Phys. B9, 209 (1969)] for removing divergences is logically
independent of our analysis. If their hypothesis is correct, the
role of the cutoff momentum is played by Mw. Only if Mw is
small (~3-4 GeV) would the problems associated with ordering
of divergences be solved ; otherwise, a modification of the coupling
scheme, such as ours, is still necessary.
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leading divergent corrections (i.e., the first-order terms)
yield a common renormalization to each of the various
observed coupling constants.

The new model is discussed in Sec. I. Since Cabibbo’s
algebraic notion of universality® is maintained, that is
to say, the entire weak charges generate the algebra of
SU(2), we observe in Sec. II that an extension to a
three-component Yang-Mills model may be feasible. In
contradistinction to the conventional (three-quark)
model, the couplings of the neutral intermediary—now
hypercharge conserving—cause no embarrassment. The
possibility of a synthesis of weak and electromagnetic
interactions is also discussed.

In Sec. ITI we briefly note some of the implications of
the existence of a fourth quark, and finally, in Sec. IV
we discuss some of the experimental tests of our model
of weak interactions.

I. NEW MODEL

We begin by introducing four quark fields.”® The
three quarks @, 9, and A form an SU(3) triplet, and
the fourth, ¢, has the same electric charge as @ but
differs from the triplet by one unit of a new quantum
number @ for charm. The strong-interaction Lagrangian
is supposed to be invariant under chiral SU(4), except
for a symmetry-breaking term transforming, like the
quark masses, according to the (4,4)+ (4,4) representa-
tion. This term may always be put in real diagonal
form by a transformation of SU(4)XSU(4), so that B,
Q, Y, @, and parity are necessarily conserved by these
strong interactions.

The extra quark completes the symmetry between
quarks and the four leptons », ¥', ¢, and u~. Both
quadruplets possess unexplained unsymmetric mass
spectra, and consist of two pairs separated by one in
electric charge.

The weak lepton current may be expressed as

JuL= zCL'Yu(1+‘Ya)l, 1

where [ is a column vector consisting of the four lepton
fields (», ¥, ¢~, p~) and the matrix Cy, is given by

0010
|00 01
CL= 00 0 ol (2)
0000

This is a convenient way to rewrite the conventional
current. In analogy with this expression, we define the
weak hadron current to be

JuE=3Cuvu(1+75)g, 3)
where ¢ is the quark column vector (¢',®,97,A) and the

® NI, Cabibbo, Phys. Rev. Letters 10, 531 (1963).
1 B, J, Bjorken and S. L. Glashow, Phys. Letters 11, 255 (1964).
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matrix Cy must be of the form

0 0]

ool YU
Cu=|---——-~- (4)

00}00

00/00

in order for J,# to carry unit charge. Pursuing the
analogy further, we demand that the 2)X2 submatrix U
be unitary, so that the matrix Cx is equivalent to Cz
under an SU(4) rotation. Of course, it is not convenient
to carry out the transformation making Cx and Cz
coincide, for this would destroy the diagonalization of
the SU(4)-breaking term, the quark masses. Never-
theless, suitable redefinitions of the relative phases of
the quarks may be performed in order to make U real
and orthogonal, so without loss of generality we write

U=|:—sin0 cosO]. )

cosf siné

This is just the form of the weak current suggested in
an earlier discussion of SU(4) and quark-lepton sym-
metry.”® What is new is the observation that this model
is consistent with the phenomenological selection rules
and with universality even when all divergent first-
order terms [i.e., G(GA?)"] are considered.

To see this, we proceed diagrammatically in the
quark model ignoring the strong SU(4)-invariant inter-
actions,!! Zeroth-order terms occur only in diagrams
with only one external quark line, and give contribu-
tions to the quark mass operator of the form

SM(vk)=2 An(GAD"qMwy-k(1+vs)g.  (6)

The A, are dimensionless parameters, and the matrix
M, is a symmetric homogeneous polynomial of order
n in Cg and of order # in Cx'. From the definition of
Cu, it is seen that M, must be a multiple of the unit
matrix—again in contradistinction to the SU(3) situa-
tion. Now, the zeroth-order terms are SU(4) invariant.

There remains an apparent zeroth-order violation of
parity, which may be transformed away because of the
simple fashion of chiral SU(4) breaking we have as-
sumed. We simply define new quark fields

g = (a+PBvs)g: (M

with the real cutoff-dependent parameters ¢ and f
chosen so that the entire (bare plus zeroth-order) mass
operator, in terms of ¢/, is diagonal and parity con-
serving. The SU(4)XSU(4)-invariant strong interac-
tions are left unchanged. The procedure is analogous

11 All our results about the zero- and first-order selection rules
are trivially extended to the case of an SU(4)-invariant strong
interaction which consists of a neutral vector boson coupled to
quark number, the so-called “‘gluon” model. The only results of
this paper which might be affected by such an interaction are the
universality conditions in Eq. (9).
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(c)

Fic. 1. (a) Connected part of the ¢§ — ¢ amplitude. The
crossed (annihilation) channel is also understood. (b) Connected
part of the gl — ¢l amplitude. (c) Connected part of the Il =
amplitude.

to that of Recf. 4, with the difference that the trans-
formation (7) is SU(4) invariant and does not change
the definition of strangeness (or charm), or of the
Cabibbo angle. An important consequence of the fact
that M, does not depend on the Cabibbo angle is that,
unlike the situation in Ref. 4, it is impossible in our
case to evaluate the Cabibbo angle by imposing a
condition on the leading divergences. We conclude
that zeroth-order weak effects are not significant.

We now consider the first-order G(GA?)™ terms which
are of four types: (i) next-to-the-leading contributions
to the quark and lepton mass operators, (ii) leading
contributions to quark-quark or quark-antiquark scat-
tering, (iii) leading contributions to quark-lepton scat-
tering, and (iv) leading contributions to lepton-lepton
scattering. Graphs with more than two external fermion
lines yield no larger than second-order effects. Terms
of type (i) are harmless: They contribute to observable
nonleptonic AI=3% processes, but since they cannot
give AV =2, they do not produce a KK mass splitting.
On the other hand, type-(ii) diagrams could lead to
A — FI\, possibly giving rise to first-order contribu-
tions to the KK, mass difference, contrary to experi-
ment. Let us show that they do not.

Graphs contributing to type (ii) effects are of the
general form shown in Fig. 1(a), where the bubble
includes any possible connections among the boson
lines, and any number of closed fermion loops. The
leading divergent contributions to ¢-g scattering from
these graphs have the form

Tuu=G 3. Ba(GA?)" [ gvu(1+vs)
no=2
XBy™ggy*(1+v5)Ba™g], (8)

where the B, are finite dimensionless parameters inde-
pendent of masses or momenta. It is clear that these
first-order terms are independent of all external mo-
menta. The matrix Bg(™ is a polynomial in Cy and
Cyt of order k& and I, respectively, with k+I<n.
Furthermore, the charge structure of the quark multi-
plets allows a change of charge no greater than unity,

ILIOPOULOS,

AND MAIANI 2

so that [k—I| must be zero or one, and the matrices
B are easily computed (see the Appendix) to be

Bp™=Cpg or Cgt (&)
=[Cx,Cu'] (8"”)

Thus, Tux gives rise to contributions with |AYV]|<1
and, in particular, it does not yield a first-order K1K>»
mass splitting. Of course, the next-to-the-leading diver-
gences of these graphs will give A¥=2, and do con-
tribute to a second-order KK ; mass difference, agreeing
with experiment.

The leading divergences of types (iii) and (iv) give
first-order contributions 71 and Tz, to semileptonic
and leptonic processes. There will be a 1-to-1 corre-
spondence among the graphs contributing to Tz, Th.
[Figs. 1(b) and 1(c)], and T'j7;r. Because the algebraic
properties of Cy and Cp are identical, we construct
Tur and Tpp from Tgy by the appropriate substitu-
tions of g— L and Cy — CL.

In processes where the lepton charge changes, no
violations of observed selection rules occur, but the
first-order terms cause a renormalization of observed
coupling constants. It is important to note that these
renormalizations are common to leptonic and semi-
leptonic processes, so that the relations

(k=1=%1)
(k=1).

Gy(AS=0)=G, cosf,

. )
Gy(AS=1)=G, sinf

remain true when all first-order terms are included. This
renormalization is given by the factor 143 B.(GA)™L.
A sufficient condition for these renormalizations to be
common is the algebraic version of universality—a con-
dition which is satisfied by our model, as well as by
the usual three-quark model.

Next, we turn to the induced first-order couplings of
hadrons to neutral lepton currents and self-couplings
of neutral lepton currents. The neutral lepton currents
are generated by the matrix C;° and the neutral hadron
currents by the matrix Cg® where

1 0
CL0=[CL,CL’r:]=[O 1]=[C”,C”*:]=CH°. (10)

Evidently, there are no induced couplings of neutral
lepton currents to strangeness-changing currents. The
induced couplings involve the strangeness-conserving
current

Juo=q’Y»CHO(1+75)q+z'YuCLo(1+‘)’5)l
= 6""_)/,,(1-{—75)0"4- 65’)’#(1‘*‘75)@—977#(1'{‘75)31
=M (1 v+ 77, (1476)p + 57u (1+vs)w

- é’Yu(1+'Yﬁ)e_ﬁ'Yn(1+'Yﬁ)F . (11)

The coupling constant for this new neutral current-
current interaction is a first-order expression of the
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form

o0
G X C.(GAY™1,

n=2
We anticipate that its strength should be comparable
to the strength of the charged leptonic interactions.
The new coupling plays no role in observed decay
modes, but is should be detectable in accelerator
experiments.

In Sec. IT we discuss the possible extension of our
model to a Yang-Mills model, where the coupling
strength of the neutral W to its current is uniquely
determined. These neutral lepton couplings constitute
the most characteristic and interesting feature of our
model. Relevant experimental evidence is discussed in
Sec. IV.

II. YANG-MILLS MODEL OF WEAK
INTERACTIONS

Divergences appear in our model of weak interac-
tions, but they are properly ordered; observed selection
rules are broken only in order G*(GA?)". But, the model
is certainly not renormalizable, There is at least a
possibility that a Yang-Mills model of weak interac-
tions may be less singular.”? In this section, we show
how our model can be extended to include a symmetri-
cally coupled triplet of W’s. It is possible that W self-
couplings can be introduced to give a complete Yang-
Mills theory.

The Lagrangian with which we work may be written,
in the four-quark model, without electromagnetism,

£=£kin+£a+£ﬂl+£w, (12)
where Lyin is the purely kinematic term
Lrtn=7qv" Pq+ Z'Y y Pl+GnvG‘"+ Wuth‘w (13)

describing four free massless quarks, four leptons, and
their strong and weak intermediaries (X, denotes the
antisymmetric curl of X,). £, denotes the SU(4)-
invariant strong interaction, most simply

"G"':jG#Q'Y“q ) (14)
and £, is the weak interaction
Luw=gW [GCHv* (1+7s)g
+ICy*(14vs)i+Ha]. (15)

The bare-mass term £, produces the observed masses
of the leptons, the masses of W and G, and gives rise
to the observed hicrarchy of hadron symmetry,

Lur=gMuqg+IM I+ m* GG+ MW W, (16)

2 See, for example, S. Mandelstam, Phys. Rev. 175, 1580
(1969) ; M. Veltman, Nucl. Phys. B7, 637 (1968); H. Reiff and
M. Veltman, 7bid. B13, 545 (1969); D. Boulware, Ann. Phys.
(N. Y.) 56, 140 (1970); A. A. Slavnor, University of Kiev Report
No. ITP 69/20 (unpublished); E. S. Fradkin and I. V. Tyutin,
Phys. Letters 30B, 562 (1969). Notice, however, that none of
these references consider the far more difficult case of vector
mesons coupled to nonconserved currents,
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where M g and My are 4X4 matrices. This model gives
a complete description of weak-interaction phenomena.
The most important new feature is the appearance of
neutral currents generated by the most divergent parts
of diagrams containing an exchange of W+, W— pairs
between iwo fermion lines. The effective coupling
strength of these currents is expected to be of order G
but, at this stage, we cannot predict its precise nu-
merical value since we are unable to sum the perturba-
tion series. In order to extend this model to a more
symmetric one, we introduce an additional weak inter-
mediary W, with appropriate couplings.

The couplings of W, to hadrons and leptons must
be taken to be

2712 W o {(q[Cu'\Cr Jvu (1+v5)g
HICHColvu(l+s)} . (17)

We emphasize that the introduction of Wy is by no
means necessary in our model; however, we think that
it gives a much more symmetric and aesthetically
appealing theory.

In the conventional model of weak interactions, the
extension to a three-component vector-meson theory
cannot be made without contradicting experiment : The
neutral boson leads to strangeness-changing decays
involving neutral-lepton currents and to AS=2 at order
G. This is because the commutator of the conventional
weak charge with its adjoint yields a strangeness-
violating neutral charge. In our case, the corresponding
operator is diagonal, and these difficulties are absent.

It is straightforward to show that the introduction
of the neutral current does not spoil the proper order-
ing of divergences: The observed selection rules are
preserved by all terms of order G(GA%)". This is shown
in the Appendix.

We note that Wy is coupled to precisely the same
neutral current appearing in the last section as an
induced coupling. In the symmetric three-W model,
its strength is uniquely predicted. Universality now
applies to both charged and neutral couplings. That is
to say, the leading divergent corrections to each are
the same. The bare relationship

Go=3G (18)

is preserved by the renormalizations, to first order
[ie., including all terms of order G(GA%)"]. This as-
sertion is proved in the Appendizx.

The introduction of a neutral W opens the possi-
bility of formulating the weak interactions into a
Yang-Mills theory. Self-couplings must be introduced
among the W triplet in order to ensure the gauge
symmetry. This is accomplished if we choose the
Lagrangian in a manifestly gauge-invariant fashion:

&=y ag+ WL+ WL,Wo+ GuGrt Sart- L4, (19)
where

1= 34 +ig (Cou-WH) (1+75), (19)

Ip#=6*+ig (Co-W¥) (14s), (197)
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TasLE I. Quark quantum numbers.
Fractional Integral
assignment assignment
Q Yy e Q Y c
(i 3 -3 1 0 0 (4]
@ 4 3 0 0 0 ~1
N -3 3 0 -1 0 ~1
A —3 -3 0 -1 -1 -1
and
WHv= HW“W"'— bl WVI/V“, (1911/)
where
(Hw“)ij‘: 6.-,~a"+ig2“/2(t-W“);,~. (19"”)

The matrix-valued vectors Cy and C, have components
(C,Ct, 2742 [C*,C]) in a basis where charge is diagonal,
and t are the usual 3)X3 gencrators of 0(3), with f;
diagonal. The gauge group thus introduced is an exact
symmetry of the entire Lagrangian excepting both £
and electromagnetism.

The Yang-Mills model is undoubtedly the most
attractive way to couple a triplet of vector mesons
and the only one for which people have expressed some
hope of constructing a renormalizable theory. The
massless case has been proved to be renormalizable’?;
however, very little is known about the physically
more interesting massive theory. In fact, the naive
power counting shows that the highest divergence in
a Yang-Mills theory is g?”A¥ with N =06n. Notice that
in the absence of the self-couplings the corresponding
divergences are given, as we have already seen, by
N=2n. So, at first sight, the Yang-Mills theory seems
to be much more divergent than the ordinary coupling
of the vector mesons with the currents. However, one
can show that the naive limit N'=6#n can be considera-
bly lowered. We have already been able to show that
N<3n and we believe that one can still lower this
limit to at least N = 2n. In other words, we believe that
the introduction of the self-couplings does not make
the theory more divergent.

Let us briefly consider a more daring speculation.
It has long been suspected® that there may be a funda-
mental unity of weak and electromagnetic interactions,
reflected phenomenologically by the common vectorial
character of their couplings. For this reason, it may
have been wrong for us to introduce a gauge symmetry
for the weak interactions not shared by electromag-
netism. As a more speculative alternative, consider
the possibility of a four-parameter gauge group in-
volving W, and an additional Abelian singlet W,
broken only by the mass term £u. Suppose, however,
that a one-parameter gauge symmetry, corresponding
to a linear combination 4 of Wy and W g remains un-
broken. Then A4 must be massless, and may be identi-
fied as the photon. The orthogonal neutral combination
B is massive, and acts as an intermediary of weak

13 T, Schwinger, Ann, Phys. (N. Y.) 2,407 (1957); S. L. Glashow,
Nuel. Phys. 10, 107 (1959); 22, 579 (1961)
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interactions along with W%, This model could be
correct only if the weak bosons are very massive
(100 GeV) so that the weak and electromagnetic
coupling constants could be comparable. With this
model, the relation (18) would not persist, and the
weak neutral current would involve (1—+vs) as well
as (14-vs) currents. The precise form of the model
would depend on what linear combination of Wy and
W g is the photon.

III. ANOTHER QUARK MAKES SU(4)

Having introduced four quarks, we must consider
strong interactions which admit the algebra of chiral
SU(4). Does this mean we should expect SU(4) to be
an approximate symmetry of nature? Nothing in our
argument depends on how much SU(4) is broken; the
divergences are necessarily properly ordered. However,
for the higher-order nonleading divergences to be as
small as they must be, the breaking of SU(4) cannot
be too great: The limit on the cutoff A is replaced by a
limit on A, a parameter measuring SU(4) breaking;
and from the observed KiK, mass difference we now
conclude that A must be not larger than 3-4 GeV.
Thus, some residue of SU(4) symmetry should persist.

We expect the appearance of charmed hadron states.*
Meson multiplets, made up of a quark-antiquark pair,
must belong to the 15-dimensional adjoint representa-
tion of SU(4), consisting of an uncharmed SU(3)
singlet and octet, as well as two SU(3) triplets of
charm =-1. The structure of baryons depends on the
quantum numbers assigned to the quarks. The two
simplest possibilities are shown in Table I. For the
more conventional fractional charge assignment, the
baryons are made up of three quarks, and must belong
to one of the representations contained in 4X4X4.
The only possibility is a 20-dimensional representation,
which contains, besides the baryon octet, a triplet
and sextet of charmed states and a doubly charmed
triplet. The j=$* baryon decuplet belongs to another
20-dimensional representation with a charmed sectet,
a doubly charmed triplet, and a triply charmed singlet.

With the integral-charge assignment, the baryon
octet must be made of two quarks and an antiquark,
the decuplet of three quarks and two antiquarks. The
lepton and quark charged spectra now coincide, and
the synthesis of weak and electromagnetic interactions
appears more plausible. Moreover, there is no difficulty
in obtaining the correct value for the #° lifetime.

Why have none of these charmed particles been
seen? Suppose they are all relatively heavy, say ~2
GeV. Although some of the states must be stable under
strong (charm-conserving) interactions, these will decay
rapidly (~10%3 sec™!) by weak interactions into a very
wide variety of uncharmed final states (there are about
a hundred distinct decay channels). Since the charmed
particles are copiously produced only in associated
production, such events will necessarily be of very
complex topology, involving the plentiful decay prod-
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ucts of both charmed states. Charmed particles could
easily have escaped notice.

Finally, we briefly comment on the leptonic decay
rates of p, 0, and ¢ (I',, Ty, and T'y). Our electric
current contains SU(3) singlet as well as octet terms,
so that the inequality

m,.,I‘,,+m¢I‘¢2%m,,I‘, (20)

may be deduced from the Weinberg spectral function
sum rules and w, ¢, p dominance.'* A stronger result is
obtained if we extend Weinberg’s Schwinger-term hy-
pothesis to the vector currents of SU(4):

mﬁ,I‘w+mv¢I‘¢2m,,I‘,. (21)

This result is in poor agreement with experiment, which
favors the equality in (20). A resolution of this difficulty
that does not abandon the Schwinger-term symmetry
requires the introduction of a third ¥=T=0 vector
meson, another partner of w and ¢, corresponding to
the SU(4) singlet vector current.

IV. EXPERIMENTAL SUGGESTIONS

In this section, we discuss some of the observable
effects characteristic of our picture of strong and weak
interactions. Firstly, consider the experimental impli-
cations of the existence of a new quantum number—
charm—broken only by weak interactions. The charmed
particles, because they are heavy, are too short lived
to give visible tracks. However, they should be copi-
ously produced in hardonic collisions at accelerator
energies:

(hadron or ¥)+ (hadron) —» X D4+ X 4. ..

where X @) are oppositely charmed particles, each
rapidly decaying into uncharmed hadrons with or with-
out a charged lepton pair. The purely hadronic decay
modes could provide illusory violations of hypercharge
conservation in strong interactions. The leptonic decay
modes provide a mechanism for the seemingly direct
production of one or two charged leptons in hadron-
hadron collisions.!® Conceivably, muons thus produced
may be responsible for the anomalous observed angular
distribution of cosmic-ray muons in the 10'>-eV range,'
where these directly produced muons may dominate
the sea-level muon flux.

Should this last speculation about cosmic rays be
correct, we need to revise radically estimates of the
flux of » and 7 in this energy range. We expect the
charmed particle decays to yield equal numbers of each

4 S, Weinberg, Phys. Rev. Letters 18, 507 (1967); T. Das,
V. Mathur, and S. Okubo, ibid. 19, 470 (1967).

15 In a recent experiment, P. J. Wanderer ef al. [Phys. Rev.
Letters 23, 729 (1969)] have performed a search for W’s by mea-
suring the intensity and polarization of prompt energetic muons
from the interaction of 28-GeV protons with nuclei. Their results
are compatible with the assumption that all 25-GeV prompt
muons have electromagnetic origin. There is no indication of the
existence of W’s. However, the published evidence does not seem
to be relevant to the existence of charmed particles, which are
produced in pairs, decay into many final states, and are not

expected to produce many very energetic muons.
16 . E. Bergeson et al., Phys. Rev. Letters 21, 1089 (1968).
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lepton variety; this gives a flux of electron neutrinos
and antineutrinos equal to the muon flux, and 10-100
times greater than other estimates. This fact is of
crucial importance to the possible detection of the
resonance scattering!’

pte — i tu.

Charmed particles may be produced singly by
neutrinos in such reactions as

V4+N—-p+X, ¥+N-opr4+X,

where the charmed particle X would have a variety of
decay modes, including leptonic ones. With the frac-
tional charge assignment, the neutrino processes are
suppressed by sin? and the antineutrino processes are
forbidden. On the other hand, with the integral-charge
assignment, the neutrino processes are again propor-
tional to sin? while the antineutrino processes are
proportional to cos?.

Thesecond new feature of our model is the appearance
of neutral leptonic and semileptonic couplings involving
a specified (¥ =0) current and with a coupling constant
comparable with the Fermi constant. Without the
introduction of a Wy, we may say only Go~G. To be
more definite, we shall phrase our arguments in terms
of the value Go,=3G of Eq. (18).

Let us summarize the presently available data about
these interactions.!® Consider the following three reac-
tions induced by muon neutrinos:

i) v4e —v+e,
(i) »+p—v+p,
(iii) »+p— vV +rttn.

None of these neutral couplings have been observed;
experimentally, we can only quote limits. From the
absence of observed forward energetic electrons in the
CERN bubble-chamber experiments, we may conclude

Go<G,

a limit which is close to but consistent with our
prediction.
For reaction (ii), it is found that

R=o('p— v'$)/o(#p — utn)<0.5.

Because our neutral current contains both /=0 and
I=1 parts, we cannot unambiguously predict this ratio.
In a naive quark model, where the proton consists of
only 9 and ® quarks, we find R=%, again close but
consistent.

Finally, we quote the experimental limit on reaction
(iii) :
R=c(/+p— rt+ntv')/

o(v'+p— w4 p4u7)<0.08.

1 17\'1 G. K. Menon ¢! al., Proc. Roy. Soc. (London) A301, 137
(1967).

18 See D. H. Perkins, in Proceedings of the Topical Conference

in Weak Interactions, CERN, 1969 [CERN Report No. 69-7],
pp. 1-42 (unpublished).
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Frc. 2. Decomposition of the gf — ¢§ connected amplitude by
crossing the external fermion lines.

Because this transition is AI=1, we unambiguously
predict R’=% under the hypothesis of A(1238) domi-
nance. In each of these three reactions, experiment is
very close to a decisive test of our model.

In our model, the parity-violating nonleptonic inter-
action is also changed. In particular, the parity-
violating one-pion-exchange nuclear force is no longer
suppressed by sin%.

Next we consider some experiments which could
discover the existence of Wy. A simple and attractive
possibility is the search for muon tridents in the
semiweak reaction'

W+ Z -y Wot Z,

with the subsequent muonic decay of W, Another
possibility is the reaction?

ete™ — utu—.

The interference between the 1W/° and photon con-
tributions causes an asymmetry of the p* angular
distribution relative to the momentum of the incident
et given by

N F—ZV B 3M W2 G S5

8= = ,
A71a+1\711 16\/2 am S—Mw2

where
G=10"M 2, «=1/137, and s=4EZ2.

Away from the WY pole, the effect is rather small (less
than 19, for E.=3.5 GeV) and it is masked by a
similar effect due to the iwo-photon contribution.
However, the factor s/(s— M w?) makes the asymmetry
increase sharply and change sign near M. Therefore,
this reaction is an excellent tool to sweep a substantial
mass range looking for W’s. Another effect, much
harder to detect, would be the direct observation of
parity violation in ete~ — p*u~. This requires the mca-
surement of u polarization.

Ilinally, we recall from Sec. III that the SU(4)
description of leptonic decays of vector mesons sug-
gested the existence of another strongly coupled

19 M. Tannenbaum (private communication).
2 N, Cabibbo and R. Gatto, Phys. Rev. 129, 1577 (1961).
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neutral /=0 vector meson with considerable coupling
to lepton pairs. Evidence for its existence could come
from colliding beam experiments.

APPENDIX

In this appendix we determine the form of the lead-
ing weak corrections to the g-g, g-I, and /-] amplitudes.

We have already shown that the wave-function re-
normalization of spinors is the same for both quarks
and leptons and contributes a common factor to Ty,
Tyr, and Trr. Therefore we need consider only the
g-§ amplitude Tyy. The other amplitudes Ty and
T1r can be obtained from Txx by appropriate sub-
stitutions. In the following, we shall omit the common
wave-function renormalization factors.

For the sake of clarity, let us first consider our model
of weak interactions, where we have three vector
bosons symmetrically coupled.

The graphs of Fig. 1(a) can be decomposed into
four classes of terms, obtained by keeping the boson
lines fixed and reversing the fermion lines, as shown
in Fig. 2. We then obtain for the contribution to Try
corresponding to these four classes of diagrams

T”H(n,k,l)
=Q'Yn(1+')’5)[Ci1Ciz' Coy— ('— I)kC,'kC;,‘_l- ' 'Cﬁ](/
XP,',-..._,',;;‘-...ikq“(l-f—'ys)
X[CiCrp - -Ci— (—1)C;Ciy - -Ci g,
E+i<n, k,Ii>1. (A1)
All the 4’s and j's go from 1 to 3 and the sum over all
indices is understood. Pj,...;5;4,..+i i & tensor made out

of the invariant tensors 8;; and ejjx.
It is easy to show that for any %

Tr[CiCiyr - -Cip— (—)*Ci,Ci - Ciy1=0. (A2)

Therefore, since the interaction is O(3) invariant,
the connected part of Ty has the form

T([][=G Z b,.(GA2)"

n=0
X (@vu(1+75)Cng)- (@v*(1+7v5)Crg) . (A3)
In the case where we have only charged bosons, the
argument is even simpler. Each of the indices 4;- - -1,
J1+ - ji appearing in Eq. (A1) takes only two possible
values. With the relations

(Cr)t=(Cr")=0,

(CuCut?=CuCu,

(CutCu)=Cu'Cu,

Eq. (A1) explicitly reads
Tyyikd = (gyu(14+vs)[Cu,Cn'lg)
X (@v*(1+vs)[Cu,Cu'lg), k=1

T 10 = (Gv, (1475)Cng) @y (1+7s)Cu'g)
k=1+1.

(A4)

Q.ED.
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In a framework of the renormalizable theory of weak interaction, problems of CP-violation
are studied. It is concluded that no realistic models of CP-violation exist in the quartet
scheme without introducing any other new fields. Some possible models of CP-violation are
also discussed.

When we apply the renormalizable theory of weak interaction® to the hadron
system, we have some limitations on the hadron model. It is well known that
there exists, in the case of the triplet model, a difficulty of the strangeness chang-
ing neutral current and that the quartet model is free from this difficulty. Fur-
thermore, Maki and one of the present authors (T.M.) have shown® that, in the
latter case, the strong interaction must be chiral SU(4) x SU(4) invariant as
precisely as the conservation of the third component of the iso-spin [,. In addi-
tion to these arguments, for the theory to be realistic, CP-violating interactions
should be incorporated in a gauge invariant way. This requirement will impose
further limitations on the hadron model and the CP.violating interaction itself.
The purpose of the present paper is to investigate this problem. In the following,
it will be shown that in the case of the above-mentioned quartet model, we cannot
make a CP.violating interaction without introducing any other new fields when
we require the following conditions: a) The mass of the fourth member of the
quartet, which we will call &, is sufficiently large, b) the model should be con-
sistent with our well-established knowledge of the semi-leptonic processes. After
that some possible ways of bringing CP-violation into the theory will be discussed.

We consider the quartet model with a charge assignment of Q, Q—1, Q-1
and Q for p, n, 1 and ¢, respectively, and we take the same underlying gauge
group SUgeax(2) X SU(1) and the scalar doublet field ¢ as those of Weinberg’s
original model.? Then, hadronic parts of the Lagrangian can be devided in the
following way:

-Ehad= -[—,kin + -[—,mass + -[—,strong + -[:’s

where [y, is the gauge-invariant kinetic part of the quartet field, g, so that it
contains interactions with the gauge fields. . iS 2 generalized mass term of
g, which includes Yukawa couplings to ¢ since they contribute to the mass of ¢
through the spontaneous breaking of gauge symmetry. _Lurong 1S a Strong-inter-
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action part which conserves I; and therefore chiral SU(4) X SU(4) invariant.?
We assume C- and P-invariance of [ omg. J1he last term denotes residual inter-
action parts if they exist. Since L. includes couplings with ¢, it has possi-
bilities of violating CP.conservation. As is known as Higgs phenomena,” three
massless components of ¢ can be absorbed into the massive gauge fields and
eliminated from the Lagrangian. Even after this has been done, both scalar and
pseudoscalar parts remain in ... For the mass term, however, we can eliminate
such pseudoscalar parts by applying an appropriate constant gauge transformation
on g, which does not affect on _[gong due to gauge invariance.

Now we consider possible ways of assigning the quartet field to represen-
tations of the SUyex(2). Since this. group is commutative with the Lorentz
transformation, the left and right components of the quartet field, which are re-
spectively defined as g, =31 +7:)q and g=3%(1 —7s)q, do not mix each other
under the gauge transformation. Then, each component has three possibilities:

A) 4=2+2,
B) 4=2+1+1,
C) 4=1+1+1+1,

where on the r.h.s., n denotes an n-dimensional representation of SU(2). The
present scheme of charge assignment of the quartet does not permit representations
of n>>3. As a result, we have nine possibilities which we will denote by (A4, 4),
(A, B), -+, where the former (latter) in the parentheses indicates the transforma-
tion properties of the left (right) component. Since all members of the quartet
should take part in the weak interaction, and size of the strangeness changing
neutral current is bounded experimentally to a very small value, the cases of
(B,C), (C, B) and (C, C) should be abandoned. The models of (B, A) and (C, A)
are equivalent to those of (A, B) and (A4, C), respectively, except relative signs
between vector and axial vector parts of the weak current. Since ¢,/¢y ratios
are measured only for composite states, this difference of the relative signs .would
be reduced to a dynamical problem of the composite system. So, we investigate

in detail the cases of (A4, 4), (4,B), (A4,C) and (B, B).
1) Case (4,0C)

This is the most natural choice in the quartet model. Let us denote two
(SUweax (2)) doublets and four singlets by Ly, La, RP, R®, R{Y and R{P, where

superscript p(z) indicates p-like (z-like) charge states. In this case, L. takes,
in general, the following form:

Lnzes= 2, Z[M,‘,’"Z“chS’}’ + MPLyuep*RP] +hec.,

i, /=1,
(5o @

*
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where M{P and M{P are arbitrary complex numbers. We can eliminate three
Goldstone modes ¢; by putting

gmee @

A+a>’

where 1 is a vacuum expectation value of ¢° and ¢ is a massive scalar field.
Thereafter, performing a diagonalization of the remaining mass term, we obtain

Linass=qmq (1 + %)

m, 0 0 0 »
0 m, 0 O n
"o omo |° Tle ®
0 0 0 m, A
Then, the interaction with the gauge field in [y, is expressed as
> Aligdir . @

Here, A4; is the representation matrix of SU,.x(2) for this case and explicitly
given by

100 0 1 000
A+=£+‘—Z4I=K<o U>K_1, Aa= 0100 = 0010 ’
2 0 0 0 0 -10 01 00
0 0 0 —1 00 01
4)

where U is a 2x 2 unitary matrix. Here and hereafter we neglect the gauge
field corresponding to U(1l) which is irrelevant to our discussion. With an ap-
propriate phase convention of the quartet field we can take U as

U=< cosf sinf ) )

—sinf cos@

Therefore, if [”=0, no CP-violations occur in this case. It should be noted,
however, that this argument does not hold when we introduce one more fermion
doublet with the same charge assignment. This is because all phases of elements
of a 3x 3 unitary matrix cannot be absorbed into the phase convention of six
fields. This possibility of CP-violation will be discussed later on.

ii) Case (A, B)
This is a rather delicate case. We denote two left doublets, one right doublet
and two singlets by Ly, Ly, Ry, R.™ and R,™, respectively. The general form
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of Limass 1S given by
-[—,mass = Z [”ltzdiRd + Mi(n)zdt¢R.(n) + Mi(p)Z¢{€¢*R.(p)] + h.C. )
{=1,2

where m;, M;™ and M" are arbitrary complex numbers. After diagonalization
of mass terms (in this case, the CP-odd part of coupling with ¢ does not disappear
in general) each multiplet can be expressed as follows:

L¢u=1+“< b ), Ld’=1+7’5< et >’

2 \cos fe'“n +sin 0e*2 2 —sin fe'“n + cos 0e**3
l—Tg(SiDE-P-}-cosE.C 1_')’5 )
Ry==_1% R R‘(P) — = 1Is A 6,
‘ 2 sinﬂ.n+cos77.,1) 2 (cos&-p—sin &)

RM™M= %(cos prn—siny-1), (7)

where phase factors a, 8 and 7 satisfy two relations with the masses of the quartet:

e'’m, sin 0 cos § =m, cos 0 sin & —c**m, sin 7,

e'"m, cos fl cos €= —m, sin 6 cos.& +e**m, cos 7. 8

Owing to the presence of phase factors, there exists a possibility of CP.violation
also through the weak current. However, the strangeness changing neutral current
is proportional to sin 7 cosy and its experimental upper bound is roughly

sin 7 cos y<<10*~%. )]

Thus, making an approximation of siny~0 (the other choice cos y~0 is less
critical) we obtain from Eq. (8)

my/my~cot@-tan §,

my/Ma~sin &/sin @ . 10

We have no low-lying particle with a quantum number corresponding to ¢, so
that m,, which is a measure of chiral SU(4) x SU(4) breaking, should be suf-
ficiently large compared to the masses of the other members. However, the
present experimental results on the g,/gy ratios of the octet baryon (-decay would
not permit siné>>sin§. Thus, it seems difficult to reconcile the hierarchy of
chiral symmetry breaking with the experimental knowledge of the semileptonic
processes.

iii) Case (B, B)

As a previous one, in this case also, occurrence of CP.violation is possible,
but in order to suppress |4S|=1 neutral currents, coefficients of the axial-vector
part of 4S=0 and |4S|=1 weak currents must take signs oppossite to each other.
This contradicts again the experiments on the baryon f(-decay.
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iv) Case (A, A)

In a similar way, we can show that no CP-violation occurs in this case as
far as [’=0. Furthermore this model would reduce to an exactly U(4) sym-
metric one.

Summarizing the above results, we have no realistic models in the quartet
scheme as far as /”=0. Now we consider some examples of CP-violation through
[L’. Hereafter we will consider only the case of (4,C). The first one is to

introduce another scalar doublet field ¢. Then, we may consider an interaction
with this new field

f'=q¢cl—;£q +he., an
57).0 ¢)+ 0 0 en 0 ¢c2 O
_ _¢)_ ([)0 O 0 _ O du 0 du
“b_ooa"w’ “lew 0 e O f
O 0 '—¢}_ ¢)0 0 dn O dﬂ

where ¢,y and d;; are arbitrary complex numbers. Since we have already made
use of the gauge transformation to get rid of the CP-.odd part from the quartet
mass term, there remains no such arbitrariness. Furthermore, we note that an
arbitrariness of the phase of ¢ cannot absorb all the phases of ¢;; and d;;. So,
this interaction can cause a CP.violation.

Another one is a possibility associated with the strong interaction. Let us
consider a scalar (pseudoscalar) field S which mediates the strong interaction.
For the interaction to be renormalizable and SUge(2) invariant, it must belong
to a (4,4%) + (4%, 4) representation of chiral SU(4) xSU(4) and interact with
g through scalar and pseudoscalar couplings. It also interacts with ¢ and possible
renormalizable forms are given as follows:

tr {G,S*¢} +h.c.,
tr {G,S*@G.p*S} +h.c.,

tr {G/S*pGy' St} +h.c., (12)
with
g ot 0 0
—p- ¢ 0 0
=l 0 0 7 ot |
0 0 —¢ ¢°

where G, is a 4 X4 complex matrix and we have used a 4 x4 matrix represen-
tation for S. It is easy to see that these interaction terms can violate CP-con-
servation.
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Next we consider a 6-plet model, another interesting model of CP-violation.
Suppose that 6-plet with charges (Q, Q,Q,Q—1,0—1,0—1) is decomposed into
SUsyeax(2) multiplets as 24+2+42 and 14+1+1+1+1+1 for left and right com-
ponents, respectively. Just as the case of (A4, C), we have a similar expression
for the charged weak current with a 3 x 3 instead of 2X2 unitary matrix in Egq.
(5). As was pointed out, in this case we cannot absorb all phases of matrix
elements into the phase convention and can take, for example, the following
expression:

cos 6, —sin @, cos G —sin 0, sin §,

sin @, cos 8, cos 6 cos @, cos fs—sin O sin Bse*® cos 0, cos B, sin Os+ sin §; cos Gee®’

sin@,sinf, cos 6, sin @, cos B;+ cos f; sin fe*®  cos 6, sin O, sin fs — cos @, sin Hse®’

13)

Then, we have CP.violating effects through the interference among these different
current components. An interesting feature of this model is that the CP-violating
effects of lowest order appear only in 4S#0 non-leptonic processes and in the
semi-leptonic decay of neutral strange mesons (we are not concerned with higher
states with the new quantum number) and not in the other semi-leptonic, 4S5=0
non-leptonic and pure-leptonic processes.

So far we have considered only the straightforward extensions of the original
Weinberg’s model. However, other schemes of underlying gauge groups and/or
scalar fields are possible. Georgi and Glashow’s model” is one of them. We
can easily see that CP-violation is incorporated into their model without introduc-
ing any other fields than (many) new fields which they have introduced already.
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