
QCDNUM Status and Plans

Michiel Botje
Nikhef, Amsterdam

xFitter external workshop

DESY February 27, 2020

QCDNUM

QCDNUM releases

• 17-01/15: Released March 17, 2019
• Out-of-the-box evolution routine with intrinsic heavy flavours
• New out-of-the-box singlet/non-singlet evolution routine
• New routine to set cuts in the kinematic plane
• More flexibility in setting thresholds
• Evolution start scale can be anywhere in 𝜇2

• Pdf access not anymore restricted to those with current
parameters

• 17-01/15: Update October 31, 2019
• Few minor fixes

DESY Febfruary 27, 2020 xFitter External Workshop 1

QCDNUM program structure

DESY Febfruary 27, 2020 xFitter External Workshop 2

QCDNUM out-of-the-box routines
o Unpolarised/polarised/timelike evolution
o Import pdf sets (external or from toolbox)
o Pdf interpolation, create lists or tables

QCDNUM toolbox routines
o Partition local workspace into sets of tables
o Weight calculations
o N-fold DGLAP evolution
o Convolution tools, fast convolution engine

QCDEVOL package to
come

QCDNUM out-of-the
box routines

Structure function packages
ZMSTF and HQSTF

QCDEVOL package to come

QCDNUM workspace (weight tables, αs tables, pdf tables)

QCDNUM toolbox

Local workspace

QEDEVOL package to come

Why upgrade QCDNUM ?

• The QCDNUM code is written in Fortran77

• Its key feature is an in-house dynamic memory manager that eliminates
the use of multi-dimensional Fortran arrays

• This in-house memory management allows for very fast code

• The memory manager has been developed over many years and starts
to hinder the maintenance of QCDNUM

• A way-out could be to abandon F77 and goto C++ dynamic memory

• My choice is to re-vamp the manager and provide a C++ interface to it

• Modularisation/encapsulation in object-oriented style will make code
maintenance much easier, also by other people than me

DESY Febfruary 27, 2020 xFitter External Workshop 3

Long-term program structure

DESY Febfruary 27, 2020 xFitter External Workshop 4

QCDNUM
BASE

ROUTINES
TOOLBOX

OUT-OF-THE-BOX C++ wrappers

C++ wrappers C++ classes

This structure needs a more
modular organisation of the

QCDNUM routines

This branch exists

This branch
does not exist

Modular organisation of the code
● A module is defined as a table-set in a workspace, together with associated

routines that manage this table-set (create object, setters, getters, …)
● A module in Fortran is just the equivalent of a class in C++
● The list of module types (classes) in QCDNUM is not very large:

– Memory manager
– 𝑥-grid
– 𝜇2-grid
– Convolution weight tables
– Evolution parameter tables
– 𝛼s tables
– Pdf tables

● Everything will be stored in modules ⟹ get rid of Fortran common blocks
● Fortran: all modules reside in one large workspace (allocated at compilation)
● C++: each module sits in a separate workspace (allocated dynamically)
DESY Febfruary 27, 2020 xFitter External Workshop 5

First step in the symbiosis of Fortran and C++
C---
CXXHDR int imb_hdsize();
C---
CXXHFW #define fimb_hdsize FC_FUNC(imb_hdsize,IMB_HDSIZE)
CXXHFW int fimb_hdsize();
C---
CXXWRP //--
CXXWRP int imb_hdsize()
CXXWRP {
CXXWRP return fimb_hdsize();
CXXWRP }
C---

C =============================
 integer function imb_HdSize()
C =============================

C-- Return header size

C-- Author: Michiel Botje h24@nikhef.nl 02-12-19

 implicit double precision (a-h,o-z)

 include 'wspace0.inc'

 imb_HdSize = nwHeader0

 return
 end

DESY Febfruary 27, 2020 xFitter External Workshop 6

C++

Fortran

• Fortran code and C++
wrapper code now sit
together in one file

• Release script extracts
the C++ code and
puts it into a directory
in the release tree

• Maintenance godsend

Most basic ingredient: memory module

ü Routine to convert 1-dim double precision array into a workspace (formatting)

ü Routines to create table-sets and populate them with one or more n-dim tables

ü Routines to clone, copy, disk dump and read tables and table-sets

ü Object fingerprinting (equal fingerprint = equal object structure)

ü Easy and fast navigation through linked-list structure

ü Each object has a tag-field to store attributes

ü Can build object hierarchies by storing addresses (pointers) in the tag-fields

ü Hooks to create very fast iterators and address functions

DESY Febfruary 27, 2020 xFitter External Workshop 7

DESY Febfruary 27, 2020 xFitter External Workshop 8

Contents

1 Introduction 3

2 Utility Routines 3

3 Floating-point Comparisons 7

4 Vector Operations 7

5 Triangular and Diagonal Band Equations 8

6 Pointer Arithmetic in a Linear Store 11

7 Workspaces 14

7.1 Workspace layout . 14

7.2 Workspace routines in fortran and C++ 15

7.3 Create a workspace . 16

7.4 Query a workspace . 18

7.5 Navigate a workspace . 19

7.6 Pointer functions . 20

8 Fast Interpolation 21

9 Bitwise Operations 23

10 Character String Manipulations 25

11 String Formatter 27

Index 32

2

The C++ prototypes of these routines (without the scope resolution operator MBUTIL::) are:

int iaddr = imb_wsinit(double *w, int nw, int nt)
void smb_setwsn(double *w, int nw)
int iaddr = imb_wtable(double *w, int *imin, int *imax, int ndim)
int iaddr = imb_newset(double *w)
int iaddr = imb_wclone(double *obj1, double *w2)
void smb_tbcopy(double *table1, double *table2, int itag)
void smb_tsdump(string fname, int key, double *tbset, int &ierr)
int iaddr = imb_tsread(string fname, int key, double *w, int &ierr)
int marker = imb_marker(string otype)
int nwords = imb_tbsize(int *imin, int *imax, int ndim)
int nwords = imb_hdsize()

C++

7.4 Query a workspace

Below we list the functions to query a workspace.

Function Description
Workspace

imb IsaWorkspace(w) Returns 1 (0) if w is (not) a workspace
imb SizeOfW(w) Total size of the array w
imb WordsUsed(w) Number of words used (without trailer)
imb Nheader(w) Number of header words (same for all objects)
imb Ntags(w) Number of tag words (same for all objects)
imb HeadSkip(w) Size of header + tag field (1)
imb IaDrain(w) Address of the drain word
imb IaNull(w) Address of the null word

Object (workspace, table-set or table)

imb ObjectType(w,ia) Object type (2)
imb ObjectSize(w,ia) Size of object
imb Nobjects(w,ia) Number (n) of objects inside object ia
imb ObjectNumber(w,ia) Serial number of object [1,n]
imb FingerPrint(w,ia) Fingerprint of object
imb IaFirstTag(w,ia) Address of the first tag of an object

Table

imb TableDim(w,ia) Number of table dimensions
imb IaKARRAY(w,ia) Address of the first word of KARRAY
imb IaIMIN(w,ia) Address of the first word of IMIN
imb IaIMAX(w,ia) Address of the first word of IMAX
imb BeginTbody(w,ia) Address of the first word of the table-body
imb EndTbody(w,ia) Address of the last word of the table-body
Addresses returned by the functions are always global addresses (ia) in the workspace.

(1) For the workspace HeadSkip(w) is the distance to the first table-set, for a table-set
it is that to the first table, and for a table it is that to the metadata field.

(2) Object types are: not-an-object (0), workspace (1), table-set (2) and table (3).

18

subroutine K3(w, ia, kk) void K3(double *table, int (&kk)[5]) {
dimension kk(*) int ia = int(*(table+1));
double precision w(*) double *w = table-ia;
iak = imb IaKARRAY(w,ia) int iak = imb IaKARRAY(table);
kk(1) = imb FingerPrint(w,ia) *(kk) = imb FingerPrint(table);
kk(2) = int(w(iak)) *(kk+1) = int(*(w+iak));
.. ..
kk(5) = int(w(iak+3)) *(kk+4) = int(*(w+iak+3));
return }
end

Now we can write our fast pointer function.

integer function iP3(w, ia, i, j, k) int iP3(double *tb, int i, int j, int k) {
double precision w(*) static int kk[5];
dimension kk(5) int ifp = imb FingerPrint(tb);
save kk if(kk[0] != ifp) { K3(tb, kk); }
ifp = imb FingerPrint(w,ia) int ip = kk[1]+kk[2]*i+kk[3]*j+kk[4]*k;
if(kk(1).ne.ifp) call K3(w, ia, kk) int ia = int(*(tb+1));
ip = kk(2)+kk(3)*i+kk(4)*j+kk(5)*k return ia + ip;
iP3 = ia + ip }
return
end

This is about as fast as we can get with pointer functions but much gain can be ob-
tained by reducing the calls to these functions. In Section 6 we have shown a fast loop
construct—in fortran—over the elements of a 3-dimensional table. Here we show it
again, in C++. We assume that the K3 routine has been called before.

int di = kk[2]; int dj = kk[3]; int dk = kk[4]; // address increments
int ia = iP3(table, i1, j1, k1); // start address
for(int i=i1; i<=i2; i++) { int ja = ia;
for(int j=j1; j<=j2; j++) { int ka = ja;
for(int k=k1; k<=k2; k++) { double Tijk = w[ka]; // table(i,j,k)
ka = ka + dk;

}
ja = ja + dj;

}
ia = ia + di;

}

All addresses are obtained from (cheap) running sums with only one call to iP3. For
other fast loop constructs please note that tables are stored column-wise with the first
index running fastest, like a fortran array (native C++ arrays are stored row-wise).

8 Fast Interpolation

Piecewise polynomial interpolation of order n on tabulated data consists of selecting
an n-point sub-grid (mesh) around the interpolation point, followed by an interpolation

21

Memory module exists (in MBUTIL) with full documentation … … and a C++ interface …

… and code examples in Fortran and C++
Presently I am trying to

encapsulate the C++ interface
into a C++ class that creates and

manages an arbitrary set of
tables in a dynamic C++ array

✓

Up to now it all seems to work ✓✓

✓

Whats Next
• Freeze the current status in a new release qcdnum-17-01-16

• The QCDNUM part of 16 will be the same as 15, except that a few
compiler complaints are fixed as a bonus

• I am currently writing the workspace C++ class

• This class serves as a proof of principle but is not essential (basic
memory management will be encapsulated anyway)

• Next step is then to code the grid modules

• Will keep a keen eye on thread support (my dream) via OpenMP

• Let me know if new functionality is needed beyond version 15

DESY Febfruary 27, 2020 xFitter External Workshop 9

