
Status of the SPLINT package

• Pre-release qcdnum-17-01-80 on

https://www.nikhef.nl/~h24/download

• SPLINT package sits in splint sub-directory

• Write-up can be found in splint/doc

• Include file in splint/inc/splint.inc with memory size parameter

parameter (nw0=200000)

• Splines are created dynamically, provided that memory is large enough

• Adjust nw0 and recompile if you run out of space (error message)

• Pre-release: few things still missing but otherwise FORTRAN is OK

• C++ interface still being checked, found several typos, don’t use yet
Michiel Botje BAT meeting 30-03-2021 1

2-dim spline

ssp_spinit(nuser); //initialise

ia = isp_s2make(istepx,istepq); //new spline object

ssp_s2fill(ia,sfun,rs); //sfun → spline

val = dsp_funs2(ia,x,q,ichk); //spline function

val = dsp_ints2(ia,x1,x2,q1,q2); //integrate

1. Can reserve nuser words of user space (use as common block to pass information)

2. Take every nth evolution grid-point as node of the spline (istep)

3. The memory address ia is an array index and not a C++ pointer

4. Input function sfun(ix,iq,first)- see write-up for how to code

5. Can enter limit 𝜇! ≤ 𝑥𝑠 by setting rs argument in s2fill (√𝑠 = 300 at HERA)

Michiel Botje BAT meeting 30-03-2021 2

Spline with user nodes

1. Input can be un-sorted sparse arrays: routine will turn them into valid nodes
• Points outside grid are discarded
• Points are rounded-down to nearest evolution grid-point
• Sorted in ascending order
• Discard equal node-points

2. Useful when
• Auto-nodes cannot be used (create spline in restricted region e.g. between thresholds)
• Auto-nodes need some fine-tuning

ia = isp_s2user(xarray,nx,qarray,nq);

Michiel Botje BAT meeting 30-03-2021 3

ia = isp_s2make(istepx,istepq); //create spline
ssp_unodes(ia,xarr,n,nx); //get x-nodes
ssp_vnodes(ia,qarr,m,nq); //get q-nodes
xarr[n-1] = 0.10; //add node point
ja = isp_s2user(xarr,n,qarr,m); //new spline

Run QCDNUM in the VFNS

Michiel Botje BAT meeting 30-03-2021 4

• Spline does not like
discontinuities at thresholds

• Should spline each threshold
region separately

• Should be non-issue for x-secs
since these must be continuous
(please check)

Large deviation of
spline with step 9

Add node at 𝑥 = 0.1

For tuning purposes
compare to step-1

reference spline

Michiel Botje BAT meeting 30-03-2021 5

Tune proton vs 𝑥 with grid-step 9

Proton vs 𝑥 with grid-step 9 + 1 extra node

Just one extra node gives
a large improvement in

accuracy

Michiel Botje BAT meeting 30-03-2021 6

2-dim view of tuning the 9-step spline

Extra node at 𝑥 = 0.1

Michiel Botje BAT meeting 30-03-2021 7

Can also do 1-dim splines

• Input function is the same as for 2-dim with both ix and iq

• Can fix one coordinate in the fill routine

• Thus you can take 1-dim slices in 𝑥 or 𝜇! without re-writing fun

• Can of course also ignore fixed coordinate in the body of fun

Michiel Botje BAT meeting 30-03-2021 8

ia = sp_sxmake(istepx); ia = isp_sqmake(istepq);
ia = isp_sxuser(xarray,nx); ia = isp_squser(qarray,nq);
ssp_sxfill(ia,fun,iq); ssp_sqfill(ia,fun,ix);

val = dsp_funs1(ia,u,ichk); val = dsp_ints1(ia,u1,u2);

Kinematic limit

• Enter non-zero value of √𝑠 in ssp_s2fill routine

• Input x-section undefined above kinematic limit
• Spline needs function defined over entire bin

• User responsibility to provide reasonable extrapolation
above the kinematic limit in the dark-shaded bins

• Alternative: spline extrapolation not yet implemented (may
be too unreliable anyway)

• Integration over bins crossed by the cut is not yet
implemented but it is more or less clear what to do

• Royal pain to find fast algorithm to sub-divide box & integrate

Michiel Botje BAT meeting 30-03-2021 9

𝑥𝜇! plane with and without kinematic cut

Michiel Botje BAT meeting 30-03-2021 10

Don’t care

Integration

Michiel Botje BAT meeting 30-03-2021 11

• Bit complicated since splines are polynomials in 𝑦 = − ln 𝑥 and 𝑡 = ln 𝜇! and not in 𝑥 and 𝜇!

• Introduces Jacobians 𝑒"# and 𝑒$ in the integrals

• Described in appendix A and B of the write-up

• 1- and 2-dim integrals checked against Gauss numerical integration → OK

• 2-dim Gauss much slower than SPLINT integration

• Integral over bin with crossing kinematic limit not yet implemented

We are close to getting there

Michiel Botje BAT meeting 30-03-2021 12

So where are we?

• Fortran routines can already be interfaced to JULIA

• Shakedown of C++ interface in progress; you can try but don’t complain

• Integration of bin with crossing kinematic cut still to be done

• Also few bells and whistles are still missing

