
E The Toolbox by Examples

In this tutorial we will show how to write an application program, based on the qcdnum
toolbox, that can evolve polarised and unpolarised pdfs at LO, and hold both of these
pdfs in memory. Of course, qcdnum itself does these evolutions already up to NNLO
but the aim here is not to develop useful software, but to learn how to use the toolbox.

The reader who wants to write code is advised to start from tutorial00.f which
can be found in the testjobs directory of the qcdnum distribution. This example
program (see also Section 4.2) provides a basic set-up of qcdnum as is needed by the
toolbox. A kick-start with Toolbox00.f also will enable you to run the evolutions with
qcdnum, and directly compare the results with those from your own code.

E.1 How to partition a workspace

In this section we describe how to set-up the local workspace w(nw) for our evolution of
unpolarised and polarised pdfs at LO. The toolbox routines are described in Section 6.3.

We set ↵s common for both type of evolution so that we will need a single ↵s table.
In addition we need, for each type of evolution, four weight tables (Pqq, Pqg, Pgq, Pgg)
and 13 pdf tables (one gluon and up to 6 flavours of quark and antiquark). Note from
eqs. (A.2) and (A.3) in Appendix A that there are two splitting functions that depend
only on x (type-1) and two that depend on x and n

f

(type-2).42

There is of course nothing against putting all these tables into one set:43

parameter (nw = ...)
dimension w(nw)
dimension itypes(6)
data itypes / 4, 4, 0, 0, 26, 1 /

call MAKETAB(w, nw, itypes, 0, 0, iset, nwused) !returns iset = 1

However, the code will become much more flexible if we put the ↵s, unpolarised and
polarised tables into separate sets. At this point we envisage to dump the weight tables
to disk which implies that they should be separated from the pdfs by storing them in
their own sets. Thus we arrive at a memory layout with five sets, as shown below.

↵

s

| {z }

1

unpolarised
z }| {

weights
| {z }

2

pdfs
| {z }

3

polarised
z }| {

weights
| {z }

4

pdfs
| {z }

5

Here is the code that partitions the local workspace in the manner shown above; note
that each call to maketab will generate a new set of tables.

42In fact, you can put all the splitting functions into type-2 tables, or even type-3 or 4 if desired; it
won’t do harm but should be avoided because it is a waste of memory and CPU.

43To find out how much space is needed simply put nw = 1 and let the maketab error message give
you the answer.

84

parameter (nw =)
dimension w(nw)
dimension itypes_alf(6),itypes_pij(6),itypes_pdf(6)
data itypes_alf / 0, 0, 0, 0, 0, 1 /
data itypes_pij / 2, 2, 0, 0, 0, 0 /
data itypes_pdf / 0, 0, 0, 0,13, 0 /

call MAKETAB(w, nw, itypes_alf, 0, 0, iset_alfa, nwused) !set 1
call MAKETAB(w, nw, itypes_pij, 0, 0, iset_piju, nwused) !set 2
call MAKETAB(w, nw, itypes_pdf, 0, 0, iset_pdfu, nwused) !set 3
call MAKETAB(w, nw, itypes_pij, 0, 0, iset_pijp, nwused) !set 4
call MAKETAB(w, nw, itypes_pdf, 0, 0, iset_pdfp, nwused) !set 5

Please bear in mind that the table set identifiers are assigned by qcdnum and returned

in the pointers iset alfa, iset piju, etc. The ↵s table is simply addressed by

id_alfa = 1000*iset_alfa + 601

while the pdfs can be mapped onto, for instance, the indices (0–12) by the function

id_pdf_unpolarised(i) = 1000*iset_pdfu + 501 + i

To map the splitting function tables onto the indices (1, 2, 3, 4)—see Eq. (E.1) in the
next section—it is best to introduce a little pointer array like that shown below.

dimension ipoint(4)
data ipoint / 101, 201, 102, 202 /

id_pij_unpolarised(i) = 1000*iset_piju + ipoint(i)

The weight tables must be filled before they can be used so that it makes sense to
introduce weight filling routines that also take care of the partitioning:

subroutine FillWtU(w, nw, iset_piju) !iset_piju is out, not in
implicit double precision (a-h,o-z)
dimension w(nw)
dimension itypes(6)
data itypes / 2, 2, 0, 0, 0, 0 /

call MAKETAB(w, nw, itypes, 0, 0, iset_piju, nwused)
..
code to fill the unpolarised weight tables
..
return
end

85

Now we are in a position to maintain up-to-date weight files on disk, as is shown by the
code below. Note that we shu✏ed the calls to make the code more readable; the table
set identifiers will therefore be di↵erent from those above but this does not matter since
they are stored in pointers (in fact, you should never hardwire them in your code).

parameter (nw =)
dimension w(nw)
dimension itypes_alf(6),itypes_pdf(6)
data itypes_alf / 0, 0, 0, 0, 0, 1/
data itypes_pdf / 0, 0, 0, 0,13, 0/
character*24 key
data key /’MyAddOn v1.0 22-Oct-2014’/

call READTAB(w, nw, lun, ’unp.wt’, key, 0, iset_piju, nwused, ierr)
if(ierr.ne.0) then

call FillWtU(w, nw, iset_piju)
call DUMPTAB(w, iset_piju, lun, ’unp.wt’, key)

endif

call READTAB(w, nw, lun, ’pol.wt’, key, 0, iset_pijp, nwused, ierr)
if(ierr.ne.0) then

call FillWtP(w, nw, iset_pijp)
call DUMPTAB(w, iset_pijp, lun, ’pol.wt’, key)

endif

call MAKETAB(w, nw, itypes_alf, 0, 0, iset_alfa, nwused)
call MAKETAB(w, nw, itypes_pdf, 0, 0, iset_pdfu, nwused)
call MAKETAB(w, nw, itypes_pdf, 0, 0, iset_pdfp, nwused)

By default, the weights are now read from disk, unless qcdnum finds reason to reject
them (read error, change of the x-µ2 grid, new qcdnum version, new memory layout,
etc.), in which case readtab returns ierr 6= 0. This causes a jump into the if-block
and the weights are calculated from scratch, followed by an update of the disk file.

Of course a disk file can also become obsolete if you have made changes in the weight
calculation itself. In this case you can simply change the version number or the date
(or whatever) in the key variable. Such a change will then raise the error flag and force
a weight calculation from scratch followed by a disk dump, with the new key. Needless
to say that this is a very easy and user-friendly way to manage the weight calculations.

In Toolbox01.f you can find the code presented in this section.

E.2 How to calculate weight tables

We will now further develop the routine FillWtU to calculate the weight tables for the
unpolarised splitting functions at LO. The same code will work in the polarised case,
provided that we feed-in the polarised splitting functions.

86

For the singlet-gluon evolution the LO splitting functions can be arranged in a 4 ⇥ 4
matrix as follows:

P

ij

=

✓

Pqq Pqg

Pgq Pgg

◆

, id =

✓

1 2
3 4

◆

!
✓

101 201
102 202

◆

, (E.1)

where in the second matrix we have indicated our choice of P
ij

identifiers and in the
third matrix the mapping to the table identifiers that we are going to use. The splitting
functions are given by the Eqs. (A.2) and (A.3) in Appendix A:

Pqq(x) =

4

3
(1 + x

2)

�

| {z }

PQQR

⇥

1

(1� x)+

�

| {z }

PQQS

+

2

�

|{z}

PQQD

�(1� x)

Pqg(x) = n

f

⇥

x

2 + (1� x)2
⇤

| {z }

PQGA

Pgq(x) =
4

3

1 + (1� x)2

x

�

| {z }

PGQA

(E.2)

Pgg(x) =

6x

�

| {z }

PGGR

⇥

1

(1� x)+

�

| {z }

PGGS

+6

1� x

x

+ x(1� x)

�

| {z }

PGGA

+

11

2
� n

f

3

�

| {z }

PGGD

�(1� x).

Here we have separated the regular and singular components, and have indicated the
names of the fortran functions of these components. These functions all have x, µ2

and n

f

as (dummy) arguments, for instance:

double precision function PQQD(x,qmu2,nf)
implicit double precision (a-h,o-z)
PQQD = 2.D0
return
end

We will not further discuss here the simple task of programming all the splitting function
ingredients in (E.2) and will assume from now on that this has been done.

From (E.2) it is seen that the splitting functions in the second column of the matrix
in (E.1) do depend on n

f

, while those in the first column do not. This is reflected in
the type-1 and type-2 table identifiers shown in the third matrix.

Apart from properly encoding the splitting functions, we also have to establish the rela-
tion � = ax between the rescaling variable � and the Bjorken variable x, see Sections 3.3
and 6.3. In our case � = x, a = 1 as defined by the function

double precision function ACHI(qmu2)
implicit double precision (a-h,o-z)
ACHI = 1.D0
return
end

87

Now we can write the complete code of the weight filling routine FillWtU which looks
as follows (see Section 6.3 for a description of the toolbox routines used):

subroutine FillWtU(w, nw, iset_piju) !out: iset_piju
implicit double precision (a-h,o-z)
dimension w(nw)
dimension itypes(6)
data itypes / 2, 2, 0, 0, 0, 0 /

external ACHI,PQQR,PQQS,PQQD,PQGA,PGQA,PGGR,PGGS,PGGA,PGGD

call MAKETAB(w, nw, itypes, 0, 0, iset_piju, nwused)

idPQQ = 1000*iset_piju + 101
idPQG = 1000*iset_piju + 201
idPGQ = 1000*iset_piju + 102
idPGG = 1000*iset_piju + 202

call MAKEWRS(w, idPQQ, PQQR, PQQS, ACHI, 0)
call MAKEWTD(w, idPQQ, PQQD, ACHI)

call MAKEWTA(w, idPQG, PQGA, ACHI)

call MAKEWTA(w, idPGQ, PGQA, ACHI)

call MAKEWRS(w, idPGG, PGGR, PGGS, ACHI, 0)
call MAKEWTA(w, idPGG, PGGA, ACHI)
call MAKEWTD(w, idPGG, PGGD, ACHI)

return
end

We leave it as an exercise to dig out the polarised LO splitting functions from the
literature, or from the qcdnum pij library, and write the weight filling routine FillWtP.
The (unpolarised) code of this section you can find in Toolbox02.f.

E.3 How to fill the ↵s table

At this point we have partitioned the workspace and filled the weight tables. The next
step is to fill the ↵s table and for this we have to use the toolbox routine evfilla.

external AlfasFun
id_as = 1000*iset_alfa + 601
call EVFILLA(w, id_as, AlfasFun)

Here AlfasFun is a function—provided by us—that should return ↵s/2⇡ versus iq.44

44If we upgrade to beyond LO, additional tables and functions must be provided to store (↵s/2⇡)n.

88

It would seem that the qcdnum function asfunc (Section 5.5) is a good way to get ↵s

but this is not so. The reason is that asfunc gives ↵s at the renormalisation scale µ

2
R,

but we will need it at the factorisation scale µ2
F. The relation between ↵s(µ2

R) and ↵s(µ2
F)

is given by the truncated Taylor expansion described in Section 2.3 and this is taken
care of in internal qcdnum tables. Thus we have to get the ↵s values stored in these
tables by calling the toolbox routine getalfn (Section 6.7), instead of using asfunc.
As a bonus, we will now also have the proper renormalisation scale dependence of our
evolutions and, in fact, of any calculation that uses ↵s. Thus we write

double precision function AlfasFun(iq, nf, ithresh)
implicit double precision (a-h,o-z)
if(ithresh .eq. -1) then

AlfasFun = GETALFN(-iq, 1, ierr) !alfas/2pi
else

AlfasFun = GETALFN(iq, 1, ierr) !alfas/2pi
endif
return
end

In this code we have used the threshold indicator ithresh to properly take care of
discontinuities in ↵s at the flavour thresholds. These are of course absent in our LO
calculations but not anymore if we would upgrade the program to NLO or NNLO. Note
also that getalfn does not return ↵s but ↵s/2⇡.

The next thing to worry about is how to keep the ↵s table up to date. It should clearly
be updated when the input value ↵s(µ2

0) changes, for instance in the iterations of a fit,
but also when we change the order of the calculations, the flavour threshold settings or
the relation between µ

2
R and µ

2
F. Here is a routine that checks the current parameter

values returned by calls to getalf(as,r2), getord(io), getcbt(nf,qc,qb,qt) and
getabr(ar,br); the code is quite trivial and not all of it is shown.

logical function AtabInvalid()
implicit double precision (a-h,o-z)
save asL, r2L, ioL, nfL, qcL, qbL, qtL, arL, brL

call GETALF(as, r2)
..
call GETABR(ar, br)
if(as.eq.asL .and. r2.eq.r2Land. br.eq.brL) then

AtabInvalid = .false.
else

AtabInvalid = .true.
asL = as
..
brL = br

endif
return
end

89

Now we can write the first lines of our evolution code.

subroutine EvolSGNS(w, iset_alfa, ...)
implicit double precision (a-h,o-z)
logical AtabInvalid
external AlfasFun
dimension w(*)

id_as = 1000*iset_alfa + 601
if(AtabInvalid()) call EVFILLA(w, id_as, AlfasFun)
..

In this way the ↵s tables will always be up to date in our evolution routines.

You can find the code we have developed up to now in Toolbox03.f.

E.4 Singlet/gluon and non-singlet evolution

We can use the n ⇥ n evdglap routine (Section 6.5) both for the non-singlet and the
singlet/gluon evolution by setting n = 1 or 2, respectively. Because Pqq is shared
between the two evolutions we can compactly wrap everything into one user routine.
Note, however, that this is only possible at LO because at higher orders the non-singlet
splitting functions proliferate, and so will the code.

In what follows we will adopt the same pdf indexing (6.7) and (6.8) as qcdnum. For
convenience we show them here again for the flavour basis

�6 �5 �4 �3 �2 �1 0 1 2 3 4 5 6

t̄ b̄ c̄ s̄ ū d̄ g d u s c b t

, (E.3)

and for the singlet/non-singlet basis

0 1 2 3 4 5 6 7 8 9 10 11 12

g qs e

+
2 e

+
3 e

+
4 e

+
5 e

+
6 qv e

�
2 e

�
3 e

�
4 e

�
5 e

�
6

. (E.4)

The singlet/non-singlet basis functions e± are in qcdnum defined by45

0

B

B

B

B

B

B

@

e

±
1

e

±
2

e

±
3

e

±
4

e

±
5

e

±
6

1

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

@

1 1 1 1 1 1
�1 1
1 1 �2
1 1 1 �3
1 1 1 1 �4
1 1 1 1 1 �5

1

C

C

C

C

C

C

A

0

B

B

B

B

B

B

@

d

±

u

±

s

±

c

±

b

±

t

±

1

C

C

C

C

C

C

A

with q

±
i

⌘ q

i

± q̄

i

. (E.5)

The main purpose of our evolution routine is to hide details like the filling of the ↵s

table, the setting of the table identifiers, and the threshold loop described in Section 6.5.

45Note that e2 = u � d, instead of d � u. The reason for this is purely cosmetic: d � u is negative
which would make e2 look shocking on a plot.

90

Input to the evolution routine are the table-set identifiers iseta, isetp and isetf, a
pdf table identifier idfin, the starting point iq0 and an array start with start values.
The order of the calculation is not passed as an argument but should, if the code is
upgraded to beyond LO, be taken from qcdnum via a call to getord. The code below
will automatically perform a singlet/gluon evolution when idfin = 1 and a non-singlet
evolution when idfin > 1.46 Note that inside the routine the start array is saved to a
bu↵er because the start values are not preserved by evdglap.

A robust user routine should of course include checks on the input, like verifying that
idfin is in the range 1–12, that qcdnum runs in LO, and that iq0 is within the grid
boundaries but we will not clutter the code below with such checks.

subroutine EvolSGNS(w, iseta, isetp, isetf, idfin, iq0, start)
implicit double precision (a-h,o-z)
logical AtabInvalid
external AlfasFun
dimension w(*), start(2,*)
parameter (nxmax = 200) !change this when you use a larger xgrid
dimension sbuf(2,nxmax)
dimension idw(2,2,1), ida(2,2,1), idf(2), iqlim(2)

idalf = 1000*iseta + 601
idw(1,1,1) = 1000*isetp + 101 !PQQ
idw(1,2,1) = 1000*isetp + 201 !PQG
idw(2,1,1) = 1000*isetp + 102 !PGQ
idw(2,2,1) = 1000*isetp + 202 !PGG
ida(1,1,1) = idalf
ida(1,2,1) = idalf
ida(2,1,1) = idalf
ida(2,2,1) = idalf
idf(1) = 1000*isetf + 501 + idfin !quark table
idf(2) = 1000*isetf + 501 !gluon table

if(AtabInvalid()) call EVFILLA(w, idalf, AlfasFun)

n = 1 !non-singlet evolution
if(idfin.eq.1) n = 2 !singlet/gluon evolution

call GRPARS(nx, xmi, xma, nq, qmi, qma, iosp)
do i = 1,n

do j = 1,nx
sbuf(i,j) = start(i,j) !copy start array

enddo
enddo
iqlim(2) = iq0

46Note that LO DGLAP only makes a distinction between singlet/gluon and non-singlet evolution;
the evolution routine does not care which non-singlet is evolved.

91

nf = 1
do while(nf.gt.0) !upward evolution

iqlim(1) = iqlim(2)
iqlim(2) = 99999
call EVDGLAP(w, idw, ida, idf, sbuf, 2, n, iqlim, nf, eps)

enddo

do i = 1,n
do j = 1,nx

sbuf(i,j) = start(i,j) !copy start array
enddo

enddo
iqlim(2) = iq0
nf = 1
do while(nf.gt.0) !downward evolution

iqlim(1) = iqlim(2)
iqlim(2) = -99999
call EVDGLAP(w, idw, ida, idf, sbuf, 2, n, iqlim, nf, eps)

enddo

return
end

This routine can be used for both unpolarised and polarised evolution, simply by pro-
viding the correct table-set identifiers for the splitting functions and the pdfs. This
flexibility clearly shows the advantage of organising tables into sets.

To test-run the evolution, you can of course fill the start array with any suitable smooth
function of x but we propose here to take the starting values from an evolution previously
run with the qcdnum. In this way we can directly compare the pdfs from EvolSGNS
with those from evolfg and check that our code is correct. Here is a routine that fills
the start array with qcdnum basis pdfs.

subroutine SetStart(iset, idf, iq0, start)
implicit double precision (a-h,o-z)
dimension start(2,*)
i = 1 !quarks
if(idf.eq.0) i = 2 !gluon
call GRPARS(nx, xmi, xma, nq, qmi, qma, iord)
do ix = 1,nx

start(i,ix) = FSNSIJ(iset, idf, ix, iq0, 1)
enddo
return
end

Here iset= 1 (2) for unpolarised (polarised) evolution and idf is the gluon/singlet/non-
singlet basis pdf identifier as defined by (E.4). The code that runs the singlet/gluon
and the light quark non-singlet evolution now may look as follows.

92

parameter (nxmax = 200) !change this when you use a larger xgrid
dimension start(2,nxmax)
..
iset = 1 !1= unpolarised 2 = polarised
isetp = iset_piju
isetf = iset_pdfu
if(iset.eq.2) then

isetp = iset_pijp
isetf = iset_pdfp

endif
call SetStart(iset, 1, iq0, start) !singlet
call SetStart(iset, 0, iq0, start) !gluon
call EvolSGNS(w, iset_alfa, isetp, isetf, 1, iq0, start)
do idf = 2,3

call SetStart(iset, idf, iq0, start) !nonsinglet e^+
call EvolSGNS(w, iset_alfa, isetp, isetf, idf, iq0, start)

enddo
do idf = 7,9

call SetStart(iset, idf, iq0, start) !nonsinglet e^-
call EvolSGNS(w, iset_alfa, isetp, isetf, idf, iq0, start)

enddo
..

This code correctly evolves the gluon, singlet and the light quark pdfs in the vfns, and
also in the ffns with n

f

= 3. To handle all flavours 3–6 in the ffns you can simply set
the upper limits in the loops above to n

f

and n

f

+ 6, respectively, see Toolbox04.f.

The heavy quarks in the vfns evolve only upward from their thresholds, starting from
the singlet pdf for e+4,5,6 and the valence pdf for e�4,5,6. The code above clearly cannot do
this and we leave it as an exercise to extend the evolution program so that it can fully
handle the ffns and vfns. For this, note that the heavy flavour basis functions are not
evolved below their thresholds or perhaps even not at all, depending on the ffns/vfns
settings. To avoid that the heavy quarks in memory are partially undefined, it is a good
idea to initialise their basis pdfs to the singlet or valence before they are evolved (this
precaution might save you some headaches later). Here is the initialisation code.47

id(i) = 1000*isetf + 501 + i !statement function
.. code to evolve singlet/gluon
do i = 4,6 !loop over c,b,t

call COPYWGT(w, id(1), id(i), 0) !copy singlet
enddo
.. code to evolve valence
do i = 10,12 !loop over c,b,t

call COPYWGT(w, id(7), id(i), 0) !copy valence
enddo
..

47The routine copywgt can copy tables of all types including type-5 (pdfs) and type-6 (↵s).

93

A fully generalised evolution routine can be found in the example program Toolbox05.f.
In this program we have packaged the code into three user interface routines

MyWeight(w, nw, iset, key)
MyEvolve(w, iset, iq0, nfmax, idb)
CompareF(w, iset, idf, iq, nprint, dif)

for weight calculation, evolution and comparison of the evolved pdfs with qcdnum,
respectively. In these routines iset = 1 (2) for unpolarised (polarised) evolution; we
refer to the comments in the code for the meaning of the other parameters.

The introduction of a user interface raises several issues. First of all, we have up to now
communicated common variables via parameter lists in brackets, but we cannot do this
anymore for variables that have to be hidden for the user. One solution is to put them
in common blocks but we have, instead, chosen the alternative to pass their values via
setter/getter routines (SetGetI in Toolbox05).

Second, we have now to worry about the robustness of the code. Any sensible user would
call the routines in the order given above—weights-evolution-comparison—but a robust
program must handle, in one way or another, all the possible orderings of these calls. If
you try this out with Toolbox05 then you will find that qcdnum itself is already quite
robust and that we do not need to take action at this point. In the last Section of this
tutorial we will add more robustness to the code, and also make it more user-friendly.

E.5 How to construct the singlet/non-singlet basis pdfs

Input to EvolSGNS are the gluon, singlet and non-singlet pdfs at µ2
0. Up to now we have

taken the start values from basis pdfs previously evolved by qcdnum but ultimately we
would like to take them from user-defined parameterisations. In the quark sector these
parameterisations then represent a set of arbitrary (but independent) linear combina-
tions of quarks and antiquarks. Our task is now to construct the singlet/non-singlet
input basis pdfs from the set of pdfs provided by the user.

For definiteness we write for the set of input quark pdfs

|f
i

i ⌘
nf
X

j=1

↵

ij

|q
j

i+ �

ij

|q̄
j

i =
2nf
X

j=1

d

ij

|e
j

i, i = 1, . . . , 2n
f

. (E.6)

In matrix notation this reads

|fi = D |ei ! |ei = D�1 |fi. (E.7)

We adopt the convention (E.5) for the basis pdfs so that we can use the routine efromqq
(Section 6.7) to build the matrix D, and smb dminv from mbutil to invert this matrix.

This is done in the routine GetDinv below. Input to this routine is the active number of
flavours nf and an array abmat(-6:6,12) where the user should specify in abmat(i,j)
the contribution of (anti)quark flavour (i) to the input pdf (j).

94

subroutine GetDinv(abmat, dinv, nf)
implicit double precision (a-h,o-z)
dimension abmat(-6:6,12), d(12), dmat(12,12), dinv(12,12)

C-- Build dmat
do i = 1,2*nf

call EFROMQQ(abmat(-6,i), d, nf)
do j = 1,12

dmat(i,j) = d(j)
enddo

enddo
C-- Invert dmat

call InvertD(dmat, dinv, nf, ierr)
if(ierr.ne.0) stop ’GetDinv : singular matrix’
return
end

Before inversion by smb dminv, the dmat array must be copied into an 2n
f

⇥2n
f

working
matrix. This is hidden in the routine InvertD (as an exercise, try to write it yourself).

subroutine InvertD(dmat, dinv, nf ,ierr)
implicit double precision (a-h,o-z)
dimension dmat(12,12), dinv(12,12), work(12,12), iw(12)

C-- Indexing e1+ e2+ e3+ e4+ e5+ e6+ e1- e2- e3- e4- e5- e6-
C-- 1 2 3 4 5 6 7 8 9 10 11 12

C-- Initialise dinv to zero (code not shown)
..

C-- Copy dmat to a 2nf x 2nf working matrix
do i = 1,2*nf

do j = 1,nf
work(i,j) = dmat(i,j)
work(i,j+nf) = dmat(i,j+6)

enddo
enddo

C-- Invert working matrix
call SMB_DMINV(2*nf, work, 12, iw, ierr)
if(ierr.ne.0) return

C-- Copy inverted working matrix to dinv
do i = 1,nf

do j = 1,2*nf
dinv(i ,j) = work(i ,j)
dinv(i+6,j) = work(i+nf,j)

enddo
enddo
return
end

95

The input coe�cients stored in the array abmat(i,j) are schematically shown below.

i �6 �5 �4 �3 �2 �1 0 1 2 3 4 5 6
j t̄ b̄ c̄ s̄ ū d̄ g d u s c b t
1 T B C L L L ⇥ L L L C B T
2 T B C L L L ⇥ L L L C B T
3 T B C L L L ⇥ L L L C B T
4 T B C L L L ⇥ L L L C B T
5 T B C L L L ⇥ L L L C B T
6 T B C L L L ⇥ L L L C B T
7 T B C C C C ⇥ C C C C B T
8 T B C C C C ⇥ C C C C B T
9 T B B B B B ⇥ B B B B B T
10 T B B B B B ⇥ B B B B B T
11 T T T T T T ⇥ T T T T T T
12 T T T T T T ⇥ T T T T T T

(E.8)

When n

f

(µ2
0) = 3, the 6 ⇥ 6 matrix formed by the light quark coe�cients L must be

invertible; all other coe�cients are ignored. For n
f

(µ2
0) = 4, the 8⇥ 8 matrix formed by

the L and C coe�cients must likewise be invertible, and so on for n
f

= 5 and 6.

Now we can put GetDinv into a routine that gets the start values of the gluon and
quark pdfs from a user-given subroutine and transforms the latter into start values for
the quark basis pdfs |e±i. The result is returned in the array stval(i,ix), with i the
basis pdf identifier, indexed according to (E.4).

subroutine UsrStart(usub, abmat, iq0, stval)
implicit double precision (a-h,o-z)
external usub
dimension abmat(-6:6,12), dinv(12,12), pdfusr(0:12), stval(0:12,*)

nf = NFLAVOR(iq0)
call GetDinv(abmat, dinv, nf)
call GRPARS(nx, xmi, xma, nq, qmi, qma, iord)
do ix = 1,nx

call usub(ix, pdfusr)
stval(0,ix) = pdfusr(0)
do i = 1,nf

stval(i ,ix) = 0.D0
stval(i+6,ix) = 0.D0
do j = 1,2*nf

stval(i ,ix) = stval(i ,ix) + dinv(i ,j)*pdfusr(j)
stval(i+6,ix) = stval(i+6,ix) + dinv(i+6,j)*pdfusr(j)

enddo
enddo

enddo

return
end

96

The user-supplied subroutine usub should, as a function of ix, return the values of the
gluon in pdfusr(0) and those of the 2n

f

quark densities in pdfusr(1), . . . , pdfusr(2nf).

Note that in UsrStart the transformation matrix dinv is calculated at every call; if we
care about e�ciency (yes, of course we do) we could be a bit smarter and calculate the
transformation matrix only when necessary:

save nflast, dinv
data nflast /0/
..
nf = NFLAVOR(iq0)
if(nf.ne.nflast) then

call GetDinv(abmat, dinv, nf)
nflast = nf

endif

The array stval(0:12,nx) filled by UsrStart cannot be directly fed into our evolution
routine EvolSGNS so that we must first make a copy into the start array. Here is the
subroutine that does it.

subroutine CpyStart(idf, stval, start)
implicit double precision (a-h,o-z)
dimension stval(0:12,*), start(2,*)
i = 1 !copy quqarks
if(idf.eq.0) i = 2 !copy gluon
call GRPARS(nx, xmi, xma, nq, qmi, qma, iord)
do ix = 1,nx

start(i,ix) = stval(idf,ix)
enddo
return
end

The upgraded evolution code can be found in Toolbox06.f.

E.6 Your own interpolation routine

The toolbox routines evplist and evtable can be used to interpolate the pdfs stored
in the local workspace. But these routines cannot transform them to the flavour ba-
sis (d,u,s,. . .) simply because the flavour composition of the pdfs in the local memory is
not known to qcdnum. So how can we then get interpolated pdfs in flavour space?

First of all we can copy the pdfs from the local workspace into the qcdnum internal
memory and then call the built-in interpolation routines such as pdflst, etc. For this
we can use pdfinp (Section 5.6) or, better, evfcopy (Section 6.5) to import the pdfs as
an external pdf set into qcdnum. An additional advantage of this is that we can then
also use the structure function packages zmstf and hqstf, or any other package that
works with internal pdfs. Note, however, that qcdnum can only store the gluon and 6

97

flavours of quark and antiquark so that other types of pdf, such as that of the photon,
have to remain in the local workspace.

Second, we can provide our own interpolation routine which can be done very easily with
the fast convolution engine described in Section 6.8. This may be attractive because
you can write the code such that it can interpolate any pdf in the local workspace. The
interpolation will also be faster since there is no copy step to qcdnum internal memory.

The idea behind the fast engine is that it constructs an interpolation mesh from a
given list of x-µ2 interpolation points. Calculations are then performed at these mesh
points, and only at these points, followed by an interpolation of the final result. This
mechanism usually leads to very fast code since it can very much reduce redundant
calculations. Please read the introduction part of Section 6.8 to understand the sparse
(for interpolation) and dense (for convolution) storage schemes in the fast engine.

In our code we will use the engine to store the appropriate linear combination of pdfs in
a fast bu↵er, immediately followed by an interpolation without any kind of calculation
in between. In fact, a basic interpolation routine is quite straight forward:

subroutine Interpolate(w, isetf, id, x, q, f, n, ichk)
implicit double precision (a-h,o-z)
dimension w(*), x(*), q(*), f(*)
dimension coef(3:6)
data coef /4*1.D0/
idf = 1000*isetf + 501 + id !pdf table identifier
call FASTINI(x, q, n, ichk) !create interpolation mesh
call FASTINP(w, idf, coef, -1, 0) !sparse storage in buffer 1
call FASTFXQ(1, f, n) !interpolate buffer 1
return
end

This routine does not (yet) make transformations to the flavour basis but e�ciently
interpolates a pdf in w to a list of n points, and returns the result in the array f.

A little drawback is that the number of interpolation points is limited by the parameter
mpt0 (set by default to 5000 in the file qcdnum.inc). Instead of raising this limit it is
better to run through the list of interpolation points in batches of mpt0 points, so that
you will never hit the limit. The wrapper code below can handle an arbitrary long list
of points.

call GETINT(’mpt0’, mpt0)
nlast = 0
ntodo = min(n,mpt0)
do while(ntodo.gt.0)

i1 = nlast+1
call Interpolate(w, iset, id, x(i1), q(i1), f(i1), ntodo, ichk)
nlast = nlast+ntodo
ntodo = min(n-nlast,mpt0)

enddo

98

Let us now modify the routine Interpolate so that it returns the gluon or an (anti)quark
density. To see how this works we again write down the transformation (E.6) as

|fi ⌘
nf
X

i=1

↵

i

|q
i

i+ �

i

|q̄
i

i =
2nf
X

i=1

d

i

|e
i

i, (E.9)

where |fi is now a single quark or antiquark pdf. We thus set one coe�cient ↵
i

or �
i

to one, and the rest to zero, and calculate the coe�cients d
i

with the routine efromqq.

subroutine getcoefs(idf, coefd) !idf = +-[1,2,3,4,5,6]
implicit double precision (a-h,o-z)
dimension qvec(-6:6), temp(12), coefd(3:6,12)
data qvec /13*0.D0/
qvec(idf) = 1.D0 !select idf (and nothing else)
do nf = 3,6

call EFROMQQ(qvec, temp, nf)
do i = 1,12

coefd(nf,i) = temp(i)
enddo

enddo
qvec(idf) = 0.D0 !deselect idf
return
end

The d
i

depend on n

f

so that coefd is a 2-dimensional array with n

f

the first dimension
(which runs fastest in fortran) and the basis pdf identifier [1–12] the second dimension.

Now we have to store the linear combination on the right-hand side of (E.9) into a fast
bu↵er. This is easy to do with the fastinp routine since it has the capability to multiply
an input pdf with an n

f

-dependent constant and then to either put or add the result
into the bu↵er. Thus we build the linear combination

P

d

i

|e
i

i in a loop:

call FASTINP(w, id(1), coefd(3,1), -1, 0) !0 = store
do i = 2,12

call FASTINP(w, id(i), coefd(3,i), -1, 1) !1 = add
enddo

In this snippet, id(i) is the table identifier of the basis pdf i = 1, . . . ,12.

Putting it all together, and setting the the gluon (idf = 0) coe�cients to one for all n
f

,
we arrive at the following interpolation routine.

subroutine Interpolate(w, isetf, idf, x, q, f, n, ichk)
implicit double precision (a-h,o-z)
dimension w(*), x(*), q(*), f(*)
dimension coefg(3:6), coefd(3:6,12)
data coefg /4*1.D0/

99

id(i) = 1000*isetf + 501 + i !statement function

call FASTINI(x, q, n, ichk) !interpolation mesh
if(idf.eq.0) then

call FASTINP(w, id(0), coefg, -1, 0) !put gluon in buf1
else

call getcoefs(idf, coefd) !get coefficients
call FASTINP(w, id(1), coefd(3,1), -1, 0) !put c1*id1 in buf1
do i = 2,12

call FASTINP(w, id(i), coefd(3,i), -1, 1) !add ci*idi to buf1
enddo

endif
call FASTFXQ(1, f, n) !interpolate buf1
return
end

The routine Interpolate now returns a list of interpolated gluon or (anti)quark pdfs
for idf = -6, . . . ,0, . . . ,6.

It always is tempting to call an interpolation routine in a loop

do i = 1,100
xi = ...
qi = ...
call Interpolate(w, iset, idf, xi, qi, fi, 1, ichk)

enddo

but note that this is very slow because it completely counteracts the idea of bulk pro-
cessing in the fast engine. Here is the correct way to obtain the same result.

dimension x(100), q(100), f(100)
do i = 1,100

x(i) = ...
q(i) = ...

enddo
call Interpolate(w, iset, idf, x, q, f, 100, ichk)

In toolbox07.f the routine Interpolate is compared to its qcdnum equivalent pdflst.

More to come . . .

100

