
QCDNUM Nikhef-10-002

arXiv:1005.1481

QCDNUM: Fast QCD Evolution and Convolution

QCDNUM Version 17.01/14

M. Botje∗

Nikhef, Science Park, Amsterdam, the Netherlands

December 21, 2017

Abstract

The qcdnum program numerically solves the evolution equations for parton den-
sities and fragmentation functions in perturbative QCD. Un-polarised parton den-
sities can be evolved up to next-to-next-to-leading order in powers of the strong
coupling constant, while polarised densities or fragmentation functions can be
evolved up to next-to-leading order. In addition to these evolution routines, a
large set of tools is provided to solve n-fold coupled QCD evolution equations and
to compute convolution integrals in the zero-mass or generalised mass schemes.
Based on this toolbox and included in the software distribution are two add-on
packages to calculate zero-mass structure functions in un-polarised deep inelas-
tic scattering, and heavy flavour contributions to these structure functions in the
fixed flavour number scheme.

∗Nikhef, Science Park 105, 1098XG Amsterdam, the Netherlands; email m.botje@nikhef.nl

PROGRAM SUMMARY

Program Title: qcdnum

Version: 17.01

Author: M. Botje

E-mail: m.botje@nikhef.nl

Program obtainable from: http://www.nikhef.nl/user/h24/qcdnum

Distribution format: gzipped tar file

Journal Reference:

Catalogue identifier:

Licensing provisions: GNU Public License

Programming language: fortran-77

Computer: all

Operating system: all

RAM: Typically 3 Mbytes

Keywords: QCD evolution, DGLAP evolution equations, Parton densities, Fragmentation
functions, Structure functions

Classification: 11.5 Quantum Chromodynamics, Lattice Gauge Theory

External routines/libraries: none, except the mbutil, zmstf and hqstf packages that are
part of the qcdnum software distribution.

Nature of problem: Evolution of the strong coupling constant and parton densities, up to
next-to-next-to-leading order in perturbative QCD. Computation of observable quantities by
Mellin convolution of the evolved densities with partonic cross-sections.

Solution method: Parametrisation of the parton densities as linear or quadratic splines on a
discrete grid, and evolution of the spline coefficients by solving (coupled) triangular matrix
equations with a forward substitution algorithm. Fast computation of convolution integrals as
weighted sums of spline coefficients, with weights derived from user-given convolution kernels.

Restrictions: Accuracy and speed are determined by the density of the evolution grid.

Running time: Less than 10 ms on a 2 GHz Intel Core 2 Duo processor to evolve the gluon
density and 12 quark densities at next-to-next-to-leading order over a large kinematic range.

2

Contents

1 Introduction 6

2 QCD Evolution 7

2.1 Evolution of the Strong Coupling Constant 7

2.2 The DGLAP Evolution Equations . 8

2.3 Renormalisation Scale Dependence . 10

2.4 Decomposition into Singlet and Non-singlets 11

2.5 Flavour Number Schemes . 13

3 Numerical Method 16

3.1 Polynomial Spline Interpolation . 16

3.2 Convolution Integrals . 19

3.3 Rescaling Variable in Convolution Integrals 21

3.4 DGLAP Evolution . 22

3.5 Backward Evolution . 24

4 The QCDNUM Program 26

4.1 Source Code . 26

4.2 Application Program . 27

4.3 Validation and Performance . 31

5 Subroutine Calls 32

5.1 C++ interface . 34

5.2 Pdf Sets . 36

5.3 Initialisation . 37

5.4 Grid . 39

5.5 Weights . 42

5.6 Parameters . 44

5.7 Evolution . 47

5.8 Pdf Import . 50

5.9 Pdf Interpolation . 52

5.10 Lists and Tables . 55

6 Program Steering with Datacards 56

3

6.1 Datacard File . 57

6.2 Predefined Keycards . 58

6.3 User-defined Keycards . 59

7 Tools 61

7.1 Toolbox Workspace . 63

7.2 Table Identifiers . 66

7.3 Weight Tables . 67

7.4 Combined Weights . 69

7.5 Coupled DGLAP Evolution . 71

7.6 Pdf interpolation . 75

7.7 Transformations . 77

7.8 Convolution Tools . 78

7.9 Fast Convolution Engine . 79

7.10 Error Messages in Add-On Packages . 85

8 Acknowledgements 86

A Space-like and time-like singlet evolution 87

B Singularities 88

C Triangular Systems in the DGLAP Evolution 90

D Zero Mass Structure Functions 91

D.1 General Formalism . 91

D.2 Renormalisation and Factorisation Scale Dependence 92

D.3 The zmstf Package . 92

E Heavy Quark Structure Functions 96

E.1 General Formalism . 96

E.2 The hqstf Package . 97

F The Toolbox by Examples 99

F.1 How to partition a workspace . 99

F.2 How to calculate weight tables . 101

F.3 How to fill the αs table . 103

4

F.4 Singlet/gluon and non-singlet evolution 105

F.5 How to construct the singlet/non-singlet basis pdfs 109

F.6 Your own interpolation routine . 112

F.7 How to compute a structure function . 115

F.8 Make it robust and user-friendly . 115

G QCDNUM17 Releases and Updates 116

References 117

List of tables 119

Index 120

5

1 Introduction

In perturbative quantum chromodynamics (pQCD), a hard hadron-hadron scattering
cross section is calculated as the convolution of a partonic cross section with the mo-
mentum distributions of the partons inside the colliding hadrons. These parton distri-
butions depend on the Bjorken-x variable (fractional momentum of the partons inside
the hadron) and on a scale µ2 characteristic of the hard scattering process. Whereas
the x-dependence of the parton densities is non-perturbative, the µ2 dependence can be
described in pQCD by the DGLAP evolution equations [1]. The perturbative expansion
of the splitting functions in these equations has recently been calculated up to next-to-
next-to-leading order (NNLO) in powers of the strong coupling constant αs [2, 3].

Qcdnum is a fortran program (with a C++ interface)1 that numerically solves the
DGLAP evolution equations on a discrete grid in x and µ2. Input to the evolution are
the x-dependence of the parton densities at some input mass factorisation scale, and an
input value of αs at some input renormalisation scale. To study the scale uncertainties,
the renormalisation scale can be varied with respect to the mass factorisation scale. All
calculations in qcdnum are performed in the MS scheme.

The program was originally developed in 1988 by members of the BCDMS collabora-
tion [4] for a next-to-leading order (NLO) pQCD analysis of the SLAC and BCDMS
structure function data [5]. This code was adapted by the NMC for use at low x [6]. A
complete revision led to the version 16.12 which was used in the QCD fits by ZEUS [7],
and in a global QCD analysis of deep inelastic scattering data by the present author [8].

Qcdnum17 is the NNLO upgrade of qcdnum16. A new evolution algorithm, based
on quadratic spline interpolation, yields large gains in accuracy and speed; on a 2012
MacBook it takes less than 4 ms to evolve over a large kinematic range the full set of
parton densities at NNLO in the variable flavour number scheme. Qcdnum17 can evolve
un-polarised parton densities up to NNLO, and polarised densities or fragmentation
functions up to NLO. It is also possible to read an external pdf set into memory.

A large toolbox provides routines to solve user-defined coupled QCD evolution equations
and to calculate convolution integrals in the zero-mass or generalised mass schemes.
Using these tools the functionality of qcdnum can be extended in add-on packages.

Based on the toolbox and included in the software distribution are the zmstf and hqstf
packages to compute un-polarised zero-mass structure functions and, in the fixed flavour
number scheme, the contribution from heavy quarks to these structure functions.

This write-up is organised as follows. In Section 2 we summarise the formalism un-
derlying the DGLAP evolution of parton densities. The qcdnum numerical method
is described in Section 3. Details about the program itself and the description of an
example job can be found in Section 4. A subroutine-by-subroutine manual is given
in Section 5, while Section 6 shows how to steer the program with data cards. The
qcdnum toolbox is presented in Section 7, and the zmstf and hqstf packages in the
Appendices D and E, respectively. A toolbox tutorial can be found in Appendix F.

The C++ interface [9] is described in Section 5.1 and in dedicated text boxes.

1I thank V. Bertone for providing a first working version of the interface.

6

2 QCD Evolution

In pQCD, the strong coupling constant αs evolves on the renormalisation scale µ2
R. The

starting value is specified at some input scale, which usually is taken to be m2
Z.

The parton density functions (pdf) evolve on the factorisation scale µ2
F. The starting

point of a pdf evolution is given by the x dependence of the pdf at some initial scale µ2
0.

The coupled evolution equations that are obeyed by the gluon and the quark densities
can, to a large extent, be decoupled by writing them in terms of the singlet quark density
(sum of all active quarks and anti-quarks) and non-singlet densities (orthogonal to the
singlet in flavour space). A nice feature of qcdnum is that it automatically takes care
of the singlet/non-singlet decomposition of a set of pdfs.

Another input to the QCD evolution is the number of active flavours nf which specifies
how many quark species (d,u,s,. . .) are participating in the QCD dynamics. In the fixed
flavour number scheme (ffns), nf is kept fixed throughout the evolution. Input to an
ffns evolution are then the gluon density and 2nf (anti-)quark densities at the input
scale µ2

0. In the variable flavour number scheme (vfns), the flavour thresholds µ2
c,b,t

are introduced and 3 light quark densities (d,u,s) are, together with the corresponding
anti-quark densities, specified below the charm threshold µ2

c. The heavy quarks and
anti-quarks (c,b,t) are dynamically generated by the QCD evolution equations at and
above their thresholds. Both the ffns and the vfns are supported by qcdnum.

The QCD evolution formalism is relatively simple when the renormalisation and fac-
torisation scales are equal, but it becomes more complicated when µ2

R 6= µ2
F. Qcdnum

supports a linear relationship between the two scales.

In the following sections we describe the evolution of αs and the pdfs, the renormalisation
scale dependence, the singlet/non-singlet decomposition, and the flavour schemes.

2.1 Evolution of the Strong Coupling Constant

The evolution of the strong coupling constant reads, up to NNLO,

das(µ
2)

d lnµ2
= −

2∑
i=0

βi a
i+2
s (µ2). (2.1)

Here µ2 = µ2
R is the renormalisation scale and as = αs/2π. The β-functions in (2.1)

depend on the number nf of active quarks with pole mass m < µ. In the MS scheme
they are given by [10, 11]

β0 =
11

2
− 1

3
nf

β1 =
51

2
− 19

6
nf

β2 =
2857

16
− 5033

144
nf +

325

432
n2

f . (2.2)

The leading order (LO) analytic solution of (2.1) can be written as

1

as(µ2)
=

1

as(µ2
0)

+ β0 ln

(
µ2

µ2
0

)
≡ β0 ln

(
µ2

Λ2

)
. (2.3)

7

In (2.3), the parameter Λ is defined as the scale where the first term on the right-hand
side vanishes, that is, the scale where αs becomes infinite. Beyond LO, the definition of a
scale parameter is ambiguous so that it is more convenient to take αs(m

2
Z) as a reference.

The value of αs at any other scale is then obtained from a numerical integration of (2.1),2

instead of from approximate analytic solutions parameterised in terms of Λ.

In the evolution of αs, the number of active flavours is set to nf = 3 below the charm
threshold µ2

R = µ2
c and is changed from nf to nf +1 at the flavour thresholds µ2

R = µ2
c,b,t.

At NNLO, and sometimes also at NLO, there are small discontinuities in the αs evolution
at the flavour thresholds [12]; see Section 2.5 for details.

In Figure 1, we plot the evolution of αs calculated at LO, NLO and NNLO.3 Because

]2 [GeV
R
2µ1 10

sα

0.2

0.4

0.6

0.8

1

NNLO

NLO

LO

2 2.1 2.2 2.3 2.4 2.5
0.34

0.35

0.36

c
2µ

Figure 1 – The strong coupling constant αs(µ
2
R) evolved downward from αs(m

2
Z) = 0.118 at LO

(dotted curve), NLO (dashed curve) and NNLO (full curve). The inset shows an enlarged view of
the NNLO discontinuity in αs at the charm threshold µ2

c .

pQCD breaks down when αs becomes large, qcdnum will issue a fatal error when αs(µ
2)

exceeds a pre-set limit. For a given value of αs(m
2
Z), it is clear from the figure that such

a limit will correspond to larger values of µ2 at larger perturbative order.

2.2 The DGLAP Evolution Equations

The DGLAP evolution equations can be written as

∂fi(x, µ
2)

∂ lnµ2
=
∑
j=q,q̄,g

∫ 1

x

dz

z
Pij

(x
z
, µ2
)
fj(z, µ

2) (2.4)

where fi denotes an un-polarised parton number density, Pij are the QCD splitting
functions, x is the Bjorken scaling variable and µ2 = µ2

F is the mass factorisation scale,

2I thank A. Vogt for providing his 4th order Runge-Kutta routine to integrate (2.1) up to NNLO.
3With the settings αs(m

2
Z) = 0.118 and µc,b,t = (1.5, 5, 188) GeV.

8

which we assume here to be equal to the renormalisation scale µ2
R. The indices i and j

in (2.4) run over the parton species i.e., the gluon and nf active flavours of quarks and
anti-quarks. In the quark parton model, and also in LO pQCD, the parton densities
are defined such that f(x, µ2)dx is, at a given µ2, the number of partons which carry a
fraction of the nucleon momentum between x and x+ dx. The distribution xf(x, µ2) is
then the parton momentum density.4 Beyond LO there is no such intuitive interpreta-
tion. The definition of f then depends on the renormalisation and factorisation scheme
in which the calculations are carried out (MS in qcdnum).5

Introducing a short-hand notation for the Mellin convolution,

[f ⊗ g](x) =

∫ 1

x

dz

z
f
(x
z

)
g(z) =

∫ 1

x

dz

z
f(z) g

(x
z

)
, (2.5)

we can write (2.4) in compact form as (we drop the arguments x and µ2 in the following)

∂fi
∂ lnµ2

=
∑
j=q,q̄,g

Pij ⊗ fj. (2.6)

If the x dependencies of the parton densities are known at some scale µ2
0, they can be

evolved to other values of µ2 by solving this set of 2nf + 1 coupled integro-differential
equations. Fortunately, (2.6) can be considerably simplified by taking the symmetries
in the splitting functions into account [10]:

Pgqi
= Pgq̄i

= Pgq

Pqig = Pq̄ig =
1

2nf

Pqg

Pqiqk
= Pq̄iq̄k

= δikP
v
qq + P s

qq

Pqiq̄k
= Pq̄iqk

= δikP
v
qq̄ + P s

qq̄. (2.7)

Inserting (2.7) in (2.6), we find after some algebra that the singlet quark density

qs =

nf∑
i=1

(qi + q̄i) (2.8)

obeys an evolution equation coupled to the gluon density

∂

∂ lnµ2

(
qs

g

)
=

(
Pqq Pqg

Pgq Pgg

)
⊗
(
qs

g

)
, (2.9)

with Pqq given by
Pqq = P v

qq + P v
qq̄ + nf(P

s
qq + P s

qq̄). (2.10)

Likewise, we find that the non-singlet combinations

q±ij = (qi ± q̄i)− (qj ± q̄j) and qv =

nf∑
i=1

(qi − q̄i) (2.11)

4In this section we use the number densities f(x, µ2). In qcdnum itself, however, we use xf(x, µ2).
5In the DIS scheme f is defined such that the LO (quark-parton model) expression for the F2

structure function is preserved at NLO. But this is true only for F2 and not for FL and xF3.

9

evolve independently from the gluon and from each other according to

∂ q±ij
∂ lnµ2

= P± ⊗ q±ij and
∂ qv

∂ lnµ2
= Pv ⊗ qv, (2.12)

with splitting functions defined by

P± = P v
qq ± P v

qq̄ and Pv = P v
qq − P v

qq̄ + nf(P
s
qq − P s

qq̄). (2.13)

The evolution of the q±ij is linear in the densities, so that any linear combination of the
q+
ij or q−ij also evolves according to (2.12).

The splitting functions can be expanded in a perturbative series in αs which presently
is known up to NNLO. For the four splitting functions Pij in (2.9) we may write

Pij(x, µ
2) = as(µ

2) P
(0)
ij (x) + a2

s (µ2) P
(1)
ij (x) + a3

s (µ2) P
(2)
ij (x) + O(a4

s) (2.14)

where we have set, as in the previous section, as = αs/2π. Note the separation in the
variables x and µ2 on the right-hand side of (2.14). We drop again the arguments x
and µ2 and write the expansion of the non-singlet splitting functions as

P± = as P
(0)
qq + a2

s P
(1)
± + a3

s P
(2)
± + O(a4

s)

Pv = as P
(0)
qq + a2

s P
(1)
− + a3

s P
(2)
v + O(a4

s). (2.15)

Truncating the right-hand side to the appropriate order in as, it is seen that at LO
the three types of non-singlet obey the same evolution equations. At NLO, q−ij and qv

evolve in the same way but different from q+
ij . At NNLO, all three non-singlets evolve

differently.

It is evident from (2.7), (2.10) and (2.13) that several splitting functions depend on the
number of active flavours nf . This number is set to 3 below µ2

F = µ2
c and changed to nf =

(4, 5, 6) at and above the thresholds µ2
F = µ2

c,b,t. In case µ2
F 6= µ2

R, qcdnum adjusts the
µ2

R thresholds such that nf changes in both the splitting and the beta functions when
crossing a threshold; see also Section 2.5.

The LO splitting functions are given in Appendix B. Those at NLO can be found in [13]
(non-singlet) and [14] (singlet).6 The NNLO splitting functions and their parameterisa-
tions are given in [2] (non-singlet) and [3] (singlet). The DGLAP equations also apply
to polarised parton densities and to fragmentation functions (time-like evolution), each
with their own set of evolution kernels. For the polarised splitting functions up to NLO
we refer to [15], and references therein. The time-like evolution of fragmentation func-
tions at LO is described in [16]. The NLO time-like splitting functions can be found
in [13] and [14]. In Appendix A we show which splitting functions actually enter in the
space-like and time-like evolution (2.9) since this is not entirely obvious from [14].

2.3 Renormalisation Scale Dependence

In the previous section, we have assumed that the factorisation and renormalisation
scales are equal. For µ2

F 6= µ2
R we expand as in a Taylor series on a logarithmic scale

6Two well-known misprints in [14] are: (i) the lower integration limit in the definition of S2(x) must

read x/(1+x); (ii) in the expression for P̂
(1,T)
FF the term (10−18x− 16

3 x
2) must read (−10−18x− 16

3 x
2).

10

around µ2
R

as(µ
2
F) = as(µ

2
R) + a′s(µ

2
R)LR +

1

2
a′′s (µ2

R)L2
R + . . . (2.16)

with LR = ln(µ2
F/µ

2
R). Using (2.1) to calculate the derivatives in (2.16), we obtain

as(µ
2
F) = as(µ

2
R)− β0LR a

2
s (µ2

R)− (β1LR − β2
0L

2
R) a3

s (µ2
R) + O(a4

s)

a2
s (µ2

F) = a2
s (µ2

R)− 2β0LR a
3
s (µ2

R) + O(a4
s)

a3
s (µ2

F) = a3
s (µ2

R) + O(a4
s). (2.17)

To calculate the renormalisation scale dependence of the evolved parton densities, the
powers of as in the splitting function expansions (2.14) and (2.15) are replaced by the
expressions on the right-hand side of (2.17), with the understanding that these are
truncated to order as when we evolve at LO, to order a2

s when we evolve at NLO, and
to order a3

s when we evolve at NNLO.

2.4 Decomposition into Singlet and Non-singlets

In this section we describe the transformations between a flavour basis and a singlet/non-
singlet basis, as is implemented in qcdnum. For this purpose we write an arbitrary
linear combination of quark and anti-quark densities as

|p〉 =

nf∑
i=1

(αi|qi〉+ βi|q̄i〉), (2.18)

where the index i runs over the number of active flavours. To make a clear distinction
between a coefficient and a pdf, we introduce here the ket notation |f〉 for f(x, µ2).

Because a linear combination of non-singlets is again a non-singlet, it follows directly
from the definition (2.11) that the coefficients of any non-singlet satisfy the constraint

nf∑
i=1

(αi + βi) = 0, (2.19)

that is, a non-singlet is—by definition—orthogonal to the singlet in flavour space.

It is convenient to define |q±i 〉 = |qi〉 ± |q̄i〉 and write the linear combination (2.18) as

|p〉 =

nf∑
i=1

(b+
i |q+

i 〉+ b−i |q−i 〉). (2.20)

The coefficients b±i , αi and βi are related by

b±i =
αi ± βi

2
, αi = b+

i + b−i , βi = b+
i − b−i . (2.21)

We define a basis of singlet, valence, and 2(nf − 1) additional non-singlets by

|e+
1 〉 = |qs〉, |e−1 〉 = |qv〉, |e±i 〉 =

i−1∑
j=1

|q±j 〉 − (i− 1) |q±i 〉 for 2 ≤ i ≤ nf . (2.22)

11

In matrix notation, this transformation can be written as

|e±〉 = U |q±〉, (2.23)

where U is the nf × nf sub-matrix of the 6× 6 transformation matrix

U =


1 1 1 1 1 1
1 −1 0 0 0 0
1 1 −2 0 0 0
1 1 1 −3 0 0
1 1 1 1 −4 0
1 1 1 1 1 −5

 . (2.24)

It is seen that the second to sixth row of (2.24) are orthogonal to the first row (singlet),
so that they indeed represent non-singlets as defined by (2.19). In fact, all rows of U are
orthogonal to each other, so that scaling by the row-wise norm yields a rotation matrix,
which has the transpose as its inverse. By scaling back this inverse we obtain

U−1 = UTS2, (2.25)

where UT is the transpose of U and S2 is the square of the diagonal scaling matrix:

S2
ij = δij

(
nf∑
k=1

U2
ik

)−1

=

{
δij/nf for i = 1
δij/i(i− 1) for i > 1.

(2.26)

Using (2.25) and (2.26) to invert any nf × nf sub-matrix of (2.24), it is straight forward
to show by explicit calculation that

U−1
ij =


1/nf for j = 1
−1/j for j = i 6= 1

1/j(j − 1) for j > i
0 otherwise.

(2.27)

The inverse of the transformation (2.22) is thus given by

|q±1 〉 =
|e±1 〉
nf

+

nf∑
j=2

|e±j 〉
j(j − 1)

|q±i 〉 =
|e±1 〉
nf

− |e
±
i 〉
i

+

nf∑
j=i+1

|e±j 〉
j(j − 1)

i > 1. (2.28)

We can now write the linear combination |p〉 on the |e±〉 basis as

|p〉 =

nf∑
i=1

(d+
i |e+

i 〉+ d−i |e−i 〉), (2.29)

where the coefficients d±i are related to the b±i of (2.20) by

d±i =

nf∑
j=1

b±j U
−1
ji , b±i =

nf∑
j=1

d±j Uji. (2.30)

12

Let the starting values of the DGLAP evolutions be given by the gluon density and
2nf arbitrary quark densities, that is, by 2nf + 1 functions of x at some input scale µ2

0.
We can arrange the input quark densities in a 2nf-dimensional vector |p〉. Likewise, we
store the densities |q±i 〉 in a vector |q〉, the |e±i 〉 in a vector |e〉 and the b± coefficients
of each input density in the rows of a 2nf × 2nf matrix B. The flavour decomposition
of the input densities can then be written as |p〉 = B|q〉 and the singlet/non-singlet
decomposition as

|p〉 = BT−1|e〉 with T ≡
(
U 0
0 U

)
. (2.31)

Provided that B−1 exists (i.e. the input densities are linearly independent), the starting
values of the singlet and non-singlet densities are calculated from the inverse relation

|e〉 = TB−1|p〉. (2.32)

2.5 Flavour Number Schemes

Qcdnum supports two evolution schemes, known as the fixed flavour number scheme
(ffns) and the variable flavour number scheme (vfns, see below for the mfns variant.)

In the ffns we assume that nf quark flavours have zero mass, while those of the re-
maining flavours are taken to be infinitely large. In this way, only nf flavours participate
in the QCD dynamics so that in the ffns the value of nf is simply kept constant for
all µ2, with 3 ≤ nf ≤ 6. In the ffns, the input scale µ2

0 can be chosen anywhere within
the boundaries of the evolution grid, although one should be careful with backward
evolution in qcdnum; see Section 3.4.

In the vfns, the number of flavours changes from nf to nf + 1 when the factorisation
scale is equal to the pole mass of the heavy quarks µ2

h = m2
h, h = (c, b, t). A heavy

quark h is thus considered to be infinitely massive below µ2
h and mass-less above µ2

h. As
a consequence, the heavy flavour distributions are zero below their respective thresholds
and are dynamically generated by the QCD evolution equations at and above µ2

h. Such
an abrupt turn-on at a fixed scale is of course un-physical but this poses no problem
since the parton densities themselves are not observable. The vfns or ffns parton
densities evolved with qcdnum are, in fact, valid input to structure function and cross
section calculations that include mass terms and obey the kinematics of heavy quark
production [17, 18, 19]. Such calculations are not part of qcdnum itself, but can be
coded in add-on packages; see the tools described in Section 7.

An important feature of vfns evolution is that the input scale µ2
0 cannot be above the

lowest heavy flavour threshold µ2
c. This is because otherwise heavy flavour contributions

must be included in the input parton densities which clearly is in conflict with the
dynamic generation of heavy flavour by the QCD evolution equations.

Another feature of the vfns is the existence of discontinuities at the flavour thresholds
in αs and the parton densities; we will now turn to the calculation of these discontinuities.
Because the beta functions (2.2) depend on nf , it follows that the slope of the αs evolution
is discontinuous when crossing a threshold in the vfns. Beyond LO there are not only
discontinuities in the slope but also in αs itself [12]. In N`LO, the value of α

(nf+1)
s is, at

13

a flavour threshold, related to α
(nf)
s by, in the notation of [20],

a(nf+1)
s (κµ2

h) = a(nf)
s (κµ2

h) +
∑̀
n=1

{[
a(nf)

s (κµ2
h)
]n+1

n∑
j=0

Cn,j lnj κ
}

` = 1, 2. (2.33)

Here µ2
h is the threshold defined on the factorisation scale and κ is the ratio µ2

R/µ
2
F at µ2

h.
For as = αs/4π, the coefficients C in (2.33) read

C1,0 = 0, C1,1 = 2
3
, C2,0 = 14

3
, C2,1 = 38

3
, C2,2 = 4

9
.

Note that there is always a discontinuity in αs at NNLO. At NLO, a discontinuity
only occurs when κ 6= 1, that is, when the renormalisation and factorisation scales are
different. In case of upward evolution, α

(nf+1)
s is computed directly from (2.33) while for

downward evolution, α
(nf−1)
s is evaluated by numerically solving the equation

a(nf)
s − a(nf−1)

s −∆as

(
a(nf−1)

s

)
= 0,

where the function ∆as(as) is given by the second term on the right-hand side of (2.33).

In the vfns at NNLO, not only αs but also the parton densities have discontinuities at
the flavour thresholds [21]:

g(x, µ2
h, nf + 1) = g(x, µ2

h, nf) + ∆g(x, µ2
h, nf)

q±i (x, µ2
h, nf + 1) = q±i (x, µ2

h, nf) + ∆q±i (x, µ2
h, nf) i = 1, . . . , nf

h+(x, µ2
h, nf + 1) = ∆h+(x, µ2

h, nf)

h−(x, µ2
h, nf + 1) = ∆h−(x, µ2

h, nf) = 0, (2.34)

where h = (c, b, t) for nf = (3, 4, 5). Note that a heavy quark h becomes a light quark
qi above the threshold µ2

h.

In qcdnum, the flavour thresholds on the renormalisation scale are adjusted such that
nf changes by one unit in both the beta functions and the splitting functions when
crossing a threshold. With this choice, the parton densities are continuous at LO and
NLO while at NNLO the calculation of the discontinuities is considerably simplified (all
terms proportional to powers of ln(m2/µ2) in ref. [21] vanish). So we may write

∆g(x, µ2
h, nf) = a2

s

{
[Agq ⊗ qs](x, µ

2
h, nf) + [Agg ⊗ g](x, µ2

h, nf)
}

∆q±i (x, µ2
h, nf) = a2

s [Aqq ⊗ q±i](x, µ2
h, nf)

∆h+(x, µ2
h, nf) = a2

s

{
[Ahq ⊗ qs](x, µ

2
h, nf) + [Ahg ⊗ g](x, µ2

h, nf)
}
. (2.35)

Here as stands for a
(nf+1)
s (κµ2

h) as defined by (2.33). The convolution kernels Aij can be
found in Appendix B of [21].7

The discontinuities in the basis vectors |e±i 〉 are calculated from

e±i (x, µ2
h, nf + 1) = e±i (x, µ2

h, nf) + ∆e±i (x, µ2
h, nf) + λi(nf)∆h

±(x, µ2
h, nf), (2.36)

7In the notation of [21], Agq = A
S,(2)
gq,H (eq. B.5), Agg = A

S,(2)
gg,H (B.7), Aqq = A

NS,(2)
qq,H (B.4), Ahq =

Ã
PS,(2)
Hq (B.1) and Ahg = Ã

S,(2)
Hg (B.3). For the latter we use a parameterisation provided by A. Vogt.

14

where the light component ∆e±i is given by (2.35), with q±i replaced by e±i . With the
definition (2.22) of the basis functions, the values of the coefficients λi(nf) are

nf λ1 λ2 λ3 λ4 λ5 λ6

3 1 0 0 −3
4 1 0 0 0 −4
5 1 0 0 0 0 −5

(2.37)

When the densities are evolved upward in µ2, it is straight forward to calculate with (2.34)
and (2.35) the parton densities at nf + 1 from those at nf . However, qcdnum is capable
to invert the relation between nf and nf + 1 so that it can also calculate the discontinu-
ities in case of downward evolution. For this it is convenient to write the calculation of
the singlet and gluon discontinuities in matrix form, similar to (2.9)(

qs

g

)(nf+1)

=

(
qs

g

)(nf)

+ a2
s

(
Aqq + Ahq Ahg

Agq Agg

)
⊗
(
qs

g

)(nf)

. (2.38)

In Section 3.4 we will show how (2.38) is turned into an invertible matrix equation.

Note that the heavy quark non-singlets do not obey the DGLAP evolution equations
over the full range in µ2, because the heavy flavours are simply set to zero below their
thresholds, instead of being evolved. The evolution of the set |e±i 〉 thus proceeds in
the vfns as follows: The singlet/valence densities |e±1 〉 and the light non-singlets |e±2,3〉
are evolved both upward and downward starting from some scale µ2

0 < µ2
c. The heavy

non-singlets |e±4,5,6〉 are dynamically generated from the DGLAP equations by upward
evolution from the thresholds µ2

c,b,t. At and below the thresholds, |e+
4,5,6〉 is set equal

to the singlet and |e−4,5,6〉 to the valence. This is equivalent to setting the heavy quark
and anti-quark distributions to zero, except that at NNLO the heavy flavours do not
evolve from zero but from the non-zero discontinuity given in (2.34). This is illustrated
in Figure 2 where we plot the charm and bottom starting distributions, normalised to

x-510 -410 -310 -210 -110

 [
%

]
s

 /
q

h+ q

-12

-10

-8

-6

-4

-2

0

2

charm

bottom

Figure 2 – The NNLO starting densities q+h (x, µ2
h), normalised to the singlet density qs(x, µ

2
h),

for charm (full curve) and bottom (dotted curve).

the singlet distribution. It is seen that the bottom discontinuity is less than 3% of the

15

singlet over the whole range in x, while for charm it is much larger, exceeding 10% at
low x. Note that the starting distributions are negative below x ≈ 10−2.

For the matching conditions in the time-like evolution of fragmentation functions we
refer to [22]. By default, these are applied but can be switched-off, if desired.

Qcdnum also supports what we call the mixed flavour number scheme (mfns) where the
pdfs are evolved with a fixed number of light flavours, while αs evolves with a variable
number of flavours that change at given heavy quark mass thresholds. Thus nf remains
fixed in the splitting functions, but is variable in the β-functions, as is required in some
heavy flavour calculations, see for instance [23].

3 Numerical Method

The DGLAP evolution equations are in qcdnum numerically solved on a discrete n×m
grid in x and µ2. In such an approach the convolution integrals can be evaluated
as weighted sums with weights calculated once and for all at program initialisation.
Because of the convolutions, the total number of operations to solve a DGLAP equation
is quadratic in n and linear in m. The accuracy of the solution depends, for a given
grid, on the interpolation scheme chosen (linear or quadratic).

The advantage of this ‘x-space’ approach, compared to ‘N -space’ [20], is its conceptual
simplicity and the fact that one is completely free to chose the functional form of the
input distribution since it is fed into the evolution as a discrete vector of input values.
A disadvantage is that accuracy and speed depend on the choice of grid and that each
evolution will yield no less than n × m parton density values (typically 104) whether
you want them or not.

The numerical method used in qcdnum is based on polynomial spline interpolation
of the parton densities on an equidistant logarithmic grid in x and a (not necessarily
equidistant) logarithmic grid in µ2. The order of the x-interpolation can in be set to
k = 2 (linear) or 3 (quadratic). The interpolation in µ2 is always quadratic. With such
an interpolation scheme, the DGLAP evolution equations transform into a triangular set
of linear equations in the interpolation coefficients. This leads to a very fast evolution
of these coefficients from some input scale µ2

0 to any other scale µ2
i on the grid. In the

following sections we will describe the spline interpolation, the calculation of convolution
integrals and the QCD evolution algorithm. Note that several features of the qcdnum17

numerical method have been previously proposed in, for example, [24, 25].

3.1 Polynomial Spline Interpolation

To interpolate a function h(y),8 we sample this function on an (n+ 1)-point grid

y0 < y1 < . . . < yn−1 < yn

8In qcdnum, h(y) represents a parton momentum density in the scaling variable y = − lnx.
However, for this section the identification of h with a parton density is not so relevant.

16

and parameterise it in each interval by a piece-wise polynomial of order k. Such a piece-
wise polynomial is turned into a spline by imposing one or more continuity relations at
each of the grid points. Usually—but not always—continuity is imposed at the internal
grid points on the function itself and on all but the highest derivative, which is allowed to
be discontinuous. Without further constraints at the end points, the spline has k+n−1
free parameters. Increasing the order k of the interpolation thus costs only one and
not n extra parameters as is the case for unconstrained piece-wise polynomials.

It is convenient to write a spline function as a linear combination of so-called B-splines

h(y) =
∑
i

AiYi(y). (3.1)

The basis Yi of B-splines depends on the order k, on the distribution of the grid points
along the y axis (equidistant in qcdnum) and on the number of continuity relations
we wish to impose at the internal grid points and at the two end points. For how to
construct a B-spline basis and for more details on splines in general we refer to [26].

In Figure 3 are shown the B-splines for linear (k = 2) quadratic (k = 3) and cubic

0 1 2 3 40

0.5

1
Graph

(c)

Y1 Y2 Y3

0 1 2 3 40

0.5

1

Graph

(b)
Y1 Y2 Y3

0 1 2 3 40

0.5

1

Graph

(a)
Y1 Y2 Y3 Y4

Figure 3 – B-spline bases generated on an equidistant grid. (a) Linear B-splines (k = 2). Removing
the dashed spline enforces the boundary condition h(y0) = 0; (b) Quadratic B-splines (k = 3).
Removing the first two dashed splines enforces the boundary condition h(y0) = h′(y0) = 0; (c)
Cubic B-splines (k = 4). Removing the first three dashed splines enforces the boundary condition
h(y0) = h′(y0) = h′′(0) = 0. Spline interpolation on such a basis is numerically unstable.

(k = 4) interpolation on an equidistant grid. In case h(y0) = h(0) = 0—which is always
true for parton densities—we may remove the first B-spline in the plots of Figure 3.
Removing the second B-spline in Figure 3b gives quadratic interpolation with an addi-

17

tional boundary condition h′(y0) = 0.9 With these boundary conditions—and because
the grid is equidistant—the remaining B-splines possess translation invariance, that is,
the basis can be generated by successively shifting the first spline one interval to the
right (full curves in Figure 3a,b). Translation invariance greatly simplifies the evolution
algorithm, as we will see later.

It is therefore tempting to extend the scheme to cubic interpolation by removing the
first three B-splines in Figure 3c. This would yield a translation invariant basis with
the boundary conditions h(y0) = h′(y0) = h′′(y0) = 0. However, it turns out that such
a cubic spline interpolation tends to be numerically unstable. The cure is to drop the
constraint h′′(y0) = 0 and impose a constraint on h′(yn) at the other end of the grid. But
this does not fit in the evolution algorithm as it now stands so that we have abandoned
cubic and higher order splines in qcdnum.

If we number the B-splines 1, 2, . . . , n from left to right as indicated in Figure 3 it is
seen that for both k = 2 and 3 the following relation holds (translation invariance):

Yi(y) = Y1(y − yi−1). (3.2)

Furthermore, for linear interpolation (k = 2) we have Yi(yi) = 1 so that

h(y0) = 0

h(yi) = AiYi(yi) = Ai 1 ≤ i ≤ n. (3.3)

Likewise, for quadratic interpolation (k = 3) we have Yi−1(yi) = Yi(yi) = 1/2 so that

h(y0) = 0

h(y1) = A1Y1(y1) = A1/2

h(yi) = Ai−1Yi−1(yi) + AiYi(yi) = (Ai−1 + Ai)/2 2 ≤ i ≤ n. (3.4)

We denote h(yi) by hi, the column vector of function values by h = (h1, . . . , hn)T, the
corresponding vector of spline coefficients by a and write (3.3) and (3.4) as

h = S a (3.5)

where S is the identity matrix in case of linear interpolation and a lower diagonal band
matrix for the quadratic spline. On a 5-point equidistant grid y0, . . . , y4, for instance,
we have in case of quadratic interpolation the vector h = (h1, . . . , h4)T and the matrix

S =
1

2


1
1 1

1 1
1 1

 with inverse S−1 = 2


1
−1 1

1 −1 1
−1 1 −1 1

 . (3.6)

Note that S is sparse but S−1 is not. Thus, when a parton distribution h0 is given
at some input scale µ2

0, the corresponding vector a0 of spline coefficients is found by
solving (3.5).10 This vector is then evolved to other values of µ2 using the DGLAP
evolution equations as is described in the next two sections.

9A parton density parameterisation should thus behave like h(y → 0) ∝ yλ with λ > 1 because
otherwise the condition h′(0) = 0 is violated and the spline might oscillate. All known pdf parame-
terisations fulfil this requirement but when the parameters are under control of a fitting program one
should take precautions that λ will always stay above unity.

10Obtaining a from solving (3.5) by forward substitution (Appendix C) costs O(2n) operations. This
is cheaper than the alternative of calculating a = S−1h which costs O(n2/2) operations.

18

3.2 Convolution Integrals

The Mellin convolution (2.5) calculated in qcdnum is not that of a number density f
and some kernel g but, instead, that of a momentum density p = xf and a kernel q = xg.
These convolutions differ by a factor x:

[p⊗ q](x) = x[f ⊗ g](x). (3.7)

This also true for multiple convolution: for p = xf , q = xg and r = xh we have

[p⊗ q ⊗ r](x) = x[f ⊗ g ⊗ h](x). (3.8)

A change of variable y = − lnx turns a Mellin convolution into a Fourier convolution:

[f ⊗ g](x) = [u⊗ v](y) =

∫ y

0

dz u(z) v(y − z) =

∫ y

0

dz u(y − z) v(z), (3.9)

where the functions u and v are defined by u(y) = f(e−y) and v(y) = g(e−y).

In the following we will denote by h(y, t) a parton momentum density in the logarithmic
scaling variables y = − lnx and t = lnµ2. In terms of h, the DGLAP non-singlet
evolution equation (2.12) is written as

∂h(y, t)

∂t
=

∫ y

0

dz Q(z, t) h(y − z, t) =

∫ y

0

dz Q(y − z, t) h(z, t) (3.10)

with a kernel Q(y, t) = e−yP (e−y, t). Here P (x, t) is a non-singlet splitting function, as
given in Section 2.2. To solve (3.10) we first have to evaluate the Fourier convolution

I(y, t) ≡
∫ y

0

dz Q(y − z, t) h(z, t). (3.11)

Inserting (3.1) in (3.11) we find for the integrals at the grid points yi (for clarity, we
drop the argument t in the following)

I(yi) =
i∑

j=1

Aj

∫ yi

0
dz Q(yi − z) Yj(z) ≡

i∑
j=1

WijAj (1 ≤ i ≤ n). (3.12)

The summation is over the first i terms only, because B-splines with an index j > i are
zero in the integration domain z ≤ yi, see Figure 3.

Eq. (3.12) defines the weights Wij which are calculated as follows. Because Yj(y) = 0
for y < yj−1 the weights can be written as

Wij =

∫ yi

yj−1

dz Q(yi − z)Yj(z) =

∫ yi−yj−1

0

dz Q(yi − yj−1 − z)Y1(z) (3.13)

where we have used (3.2) in the second identity. From the property of equidistant grids

yi + yj = yi+j

19

it follows that Wij depends only on the difference i− j (Toeplitz matrix):

Wij = wi−j+1 with w` ≡
∫ y`

0

dz Q(y` − z)Y1(z) (1 ≤ ` ≤ n). (3.14)

The integrand only contributes in the region k∆ where Y1 is non-zero so that in practical
calculations the upper integration limit y` is replaced by min(y`, k∆), with ∆ the grid
spacing. We remark that the calculation of the weights w` is a bit more complicated
than suggested by (3.14) because singularities in the splitting functions have to be taken
into account; for the relevant formula’s we refer to Appendix B.

The weights can thus be arranged in a lower-triangular Toeplitz matrix, as is illustrated
by the 4× 4 example below:

Wij =


w1

w2 w1

w3 w2 w1

w4 w3 w2 w1

 . (3.15)

This matrix is fully specified by the first column, taking n instead of n(n+ 1)/2 words
of storage. This is not only advantageous in terms of memory usage but also in terms of
computing speed since frequent calculations like summing the perturbative expansion

W (t) = as(t){W (0) + as(t)W
(1) + · · · } (3.16)

takes only O(n) operations instead of O(n2/2). We write the vector of convolution
integrals as I and express (3.12) in vector notation as

I = Wa. (3.17)

Also multiple convolutions can be calculated as weighted sums. Let f(x) be a number
density and Ka,b(x) be two convolution kernels. The vector of Mellin convolutions

Ii = xi[f ⊗Ka ⊗Kb](xi)

can be calculated from (3.17), using the weight table

W = WaS
−1Wb. (3.18)

Here Wa and Wb are the weight tables of Ka and Kb, respectively, and S is the trans-
formation matrix defined by (3.5).

Another interesting convolution is that of two number densities fa and fb

Ii = xi[fa ⊗ fb](xi).

This ‘parton luminosity’ [27] (times x) is calculated from the Fourier convolution

I(yi) =

∫ yi

0

dz ha(z)hb(yi − z). (3.19)

20

Inserting the spline representation (3.1) gives an expression for the convolution integral
as a weighted sum over the set of spline coefficients a of ha and b of hb,

I(yi) =
i∑

j=1

i∑
k=1

AjBk Wijk with Wijk ≡
∫ yi

0

dz Yj(z)Yk(yi − z).

To reduce the dimension of Wijk, we use the translation invariance (3.2) and write

Wijk =

∫ yi−j+1

0

dz Y1(z) Yk(yi−j+1 − z).

Because B-splines with index k > i−j+1 do not have their support inside the integration
domain, we obtain an upper limit k ≤ i−j+1. Again using translation invariance yields

Wijk =

∫ yi−j−k+2

0

dz Y1(z) Y1(yi−j−k+2 − z).

We now have a compact expression for the convolution integral (3.19):

I(yi) =
i∑

j=1

i−j+1∑
k=1

AjBk wi−j−k+2 with w` =

∫ y`

0

dz Y1(z) Y1(y` − z). (3.20)

Because Y1 has a limited support, it turns out that only the first 3 (5) terms of w` are
non-zero in case of linear (quadratic) interpolation. The operation count to calculate a
convolution of parton densities is thus not more than O(5n), for quadratic splines.

3.3 Rescaling Variable in Convolution Integrals

Calculating structure functions for heavy quarks leads to convolution not in x, but in
the so-called rescaling variable χ. In this section we describe how qcdnum handles such
convolution integrals.

The general expression for a structure function can be written as [28]

Fi(x,Q2) =
∑
j

x

∫ 1

χ

dz

z
fj(z, µ

2) Cij

[χ
z
, µ2, Q2,m2

h, αs(µ
2)
]
. (3.21)

Here the index i labels the structure function (e.g. F2, FL, xF3, F c
2 , . . .) and j labels a

parton number density like the gluon, the singlet and various non-singlets. The coeffi-
cient function Cij depends on x, on the scale variables µ2 and Q2, on one or more quark
masses m2

h and on the strong coupling constant αs. The variable χ = ax, a ≥ 1, is a
so-called rescaling variable which takes into account the kinematic constraints of heavy
quark production, for instance,

χ = ax =

(
1 +

4m2
h

Q2

)
x. (3.22)

We have 0 ≤ χ ≤ 1 so that the range of x in (3.21) is restricted to 0 ≤ x ≤ 1/a. In the
zero-mass limit a = 1, χ = x, and (3.21) reduces to the Mellin form x[f ⊗ C](x).

21

To calculate the structure function, we first have to evaluate the convolution integrals
(for clarity we drop αs and the indices i, j)

F(x,Q2) = x

∫ 1

χ

dz

z
f(z, µ2) C

(χ
z
, µ2, Q2,m2

h

)
. (3.23)

As in Section 3.2 we denote by h(y, t) a parton momentum density in the logarithmic
scaling variables y = − lnx and t = lnµ2. In terms of these, and provided that χ is
proportional to x, (3.23) can be written as a weighted sum of spline coefficients

F(yi, Q
2) =

i∑
j=1

WijAj (3.24)

with Wij = wi−j+1 and

w` = e−b
∫ y`−b

0

dz Y1(z)D(y` − b− z, t, Q2,m2
h) (1 ≤ ` ≤ n). (3.25)

Here D(y, t, Q2,m2
h) = e−yC(e−y, et, Q2,m2

h) and b = ln(a). It is understood that the
integral (3.25) is set to zero in case y` − b ≤ 0.

In the massive schemes, b > 0 depends on t which implies that the weights must be
stored in 2-dimensional y-t tables unless, of course, χ = x (b = 0) so that we are back
to the integrals of Section 3.2 which are functions of y only.

3.4 DGLAP Evolution

We denote by the vector h0 a non-singlet quark density at the input scale t0 = lnµ2
0. The

derivative of h0 with respect to the scaling variable t is given by the DGLAP evolution
equation (3.10) which can be written in vector notation as, from (3.5) and (3.17)

dh0

dt
=

dSa0

dt
= W0 a0 or

da0

dt
≡ a′

0 = S−1W0 a0. (3.26)

Likewise we have at t1
a′
1 = S−1W1 a1. (3.27)

We have indexed the weight matrices above by a subscript because they depend on t
through multiplication by powers of as, see (3.16).

Assuming that a(t) is quadratic in t, we can relate a0, a1, a′
0 and a′

1 by

a1 = a0 + (a′
0 + a′

1)∆1 (3.28)

with ∆1 = (t1 − t0)/2. If t1 > t0, ∆1 is positive and we perform forward evolution. If
t1 < t0, ∆1 is negative and we perform backward evolution.

Inserting (3.26) and (3.27) in (3.28) we obtain a relation between the known spline
coefficients a0 and the unknown coefficients a1

(1− S−1W1∆1) a1 = (1 + S−1W0∆1) a0. (3.29)

22

Multiplying both sides from the left by U1 ≡ S/∆1 gives

(U1 −W1) a1 = (U1 +W0) a0. (3.30)

Eq. (3.30) is more convenient than (3.29) because matrix multiplication S−1W is re-
placed by matrix addition.11 Note that U is a lower diagonal band matrix so that
U ±W is still lower triangular with, in fact, the Toeplitz structure (3.15) preserved.
All this leads to a very simple and fast evolution algorithm, starting from a0:

1. At t0, calculate a0 from (3.5), W0 from (3.16) and U1 as defined above. Then
construct the vector b1 ≡ (U1 +W0) a0.

2. Subsequently, at t1,

(a) Calculate W1 and the lower triangular matrix V1 = U1 −W1;

(b) Solve the equation V1a1 = b1 by forward substitution, see Appendix C;

(c) Calculate U2 and b2 = (U1 +U2)a1 − b1 for the next evolution to t2.12

3. Repeat step 2 at t2 and so on.

With this algorithm each evolution step consists of a few vector manipulations which
have an operation count O(n) and solving one triangular matrix equation which has an
operation count O(n2/2). The total operation count only very weakly depends on the
order k of the interpolation chosen: quadratic interpolation is almost for free.

The algorithm can also be used for the coupled evolution of the singlet quark (as)
and gluon (ag) spline coefficients, provided we make the following replacements in the
formalism:

a→
(
as

ag

)
S →

(
S

S

)
W →

(
W qq W qg

W gq W gg

)
.

In Appendix C is shown how the coupled triangular equations are solved by extending
the forward substitution algorithm. The operation count is 4 × O(n2/2) so that for m
grid points in t we have in total O(2n2m) operations for the singlet-gluon evolution and
O(n2m/2) operations for each non-singlet evolution.

Finally, let us express in vector notation the NNLO parton density discontinuities at
the flavour thresholds. The relation between the singlet and gluon distributions at nf

and nf + 1 as given by (2.38) can be written as(
S

S

)(
as

ag

)(nf+1)

=

(
S +Aqq +Ahq Ahg

Agq S +Agg

)(
as

ag

)(nf)

. (3.31)

It is easy to solve this linear equation for a(nf+1) when a(nf) is known (forward evolution)
or for a(nf) when a(nf+1) is known (backward evolution). Likewise, we may write for the
non-singlet discontinuities

S a(nf+1)
ns = (S +Aqq) a(nf)

ns + λ
(
Ahq a

(nf)
s +Ahg a

(nf)
g

)
, (3.32)

11In fact, adding a matrix with band structure (3.6) to a lower triangular matrix with structure
(3.15) takes only two additions irrespective of the dimension of the matrices.

12Using (3.30) it is a simple exercise to establish this relation between b, U and a. Note that b in
step (2c) is calculated much faster than b in step (1).

23

where λ is defined by (2.36). Also this equation can easily be inverted.

It can be seen from (3.5) and (3.28) that h(y, t) is, by construction, a spline in both
the variables y and t. However, it turns out that it is technically more convenient to
represent the pdfs by their values on the grid, instead of by their spline coefficients.
Polynomial interpolation of order k in y and quadratic in t is then done locally on a
k × 3 mesh around the interpolation point. The NNLO discontinuities are preserved
by storing, at the flavour thresholds, the pdf values for both nf − 1 and nf , and by
prohibiting the interpolation mesh to cross a flavour threshold. Note, however, that the
interpolation routine yields a single-valued function of t, so that one has to calculate
h(y, tc,b,t − ε) to view the discontinuity.13

In qcdnum it is possible to evolve on multiple equidistant y-grids which allow for a
finer binning at low y (large x) where the parton densities are rapidly varying. This is
illustrated below by a grid G0 which is built-up from three equidistant sub-grids G1, G2

and G3 with spacing ∆/4, ∆/2 and ∆, respectively.

r r r r r r r r r r r r r r r r r
r r r r r r r r rr r r r r r r r rr r r r r r r r r

G0

G1

G2

G3

y0 y1 y2 y3

∆

(I) (II) (III)

On such a multiple grid, the parton densities are first evolved on the grid G1 and the
results are copied to the region (I) of G0. The evolution is then repeated on the grids G2

and G3 followed by a copy to the regions (II) and (III) of G0, respectively. We refer to
Section 4.3 for spectacular gains in accuracy that can be achieved by employing these
multiple grids.

3.5 Backward Evolution

As remarked above, the evolution algorithm can—at least in principle—handle both
forward and backward evolution in µ2 simply by changing the sign of ∆ in (3.28). This
works very well for linear spline interpolation but it turns out that backward evolution
of quadratic splines can sometimes lead to severe oscillations. This is illustrated in
Figure 4 where is shown a non-singlet quark density evolved downward from µ2

0 = 5
to µ2 = 2 GeV2 in the quadratic interpolation scheme (dotted curve). In qcdnum this
numerical instability is handled as follows: (i) evolve downward from µ2

0 to µ2 in the
linear interpolation scheme (which is stable); (ii) then take µ2 as the starting scale and
evolve upward to µ2

0 in the quadratic interpolation scheme (also stable); (iii) calculate
the difference ∆f between the newly evolved pdf and the original one at µ2

0; (iv) subtract
∆f from the starting value at µ2

0 used in (i) and repeat the procedure.

The full curve in the top plot of Figure 4 shows the result of downward evolution in the
linear interpolation scheme, that is, without iterations. Oscillations are absent but the
evolution is not very accurate as is evident from the difference between the dotted and

13Do not take ε too small because qcdnum may snap to the threshold, see Section 5.4.

24

log(x)
-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

-0.5

0

0.5

1

1.5

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

xf
(x

)

-0.5

0

0.5

1

1.5

Figure 4 – A non-singlet parton density xf(x) versus log(x) evolved downward from µ2
0 = 5 to

µ2 = 2 GeV2 in the quadratic interpolation scheme showing large oscillations (dotted curve). The
full curve in the top plot shows the result of downward evolution in the linear interpolation scheme.
The full curve in the bottom plot shows an improved result obtained by iteration, as described in
the text.

full curve at large x. One iteration already much improves the precision as can be seen
from the good match at large x between the two curves in the bottom plot. It turns out
that one iteration (qcdnum default), perhaps two, are sufficient while more iterations
tend to spoil the convergence. Clearly best is to limit the range of downward evolution
by keeping µ2

0 low or, if possible, to set it at the lowest grid point to avoid downward
evolution altogether.

Qcdnum checks for quadratic spline oscillation as follows. We denote the values of
the quadratic B-spline at (1

2
∆,∆, 3

2
∆) by (b1, b2, b3) = (1

8
, 1

2
, 3

4
). It is easy to show that

quadratic interpolation mid-between the grid points is given by u = Da, where D is
a lower diagonal Toeplitz band matrix, of bandwidth 3, which is characterised by the
vector (b1, b3, b1). Likewise, the linear interpolation of the spline at the mid-points is cal-
culated from v = Ea, where E is the lower diagonal Toeplitz band matrix (1

2
b2, b2,

1
2
b2).

The maximum deviation ε = ‖u− v‖ = ‖(D−E)a‖ should be small; for pdfs sampled
on a reasonably dense grid, ε ≈ 0.1 or less. For each pdf evolution, ε is computed at the
input scale, and at the lower and upper end of the µ2 grid. An error condition is raised
when it exceeds a given limit, indicating that the spline oscillates, or that the x-grid is

25

not dense enough.

4 The QCDNUM Program

4.1 Source Code

The qcdnum source code can be downloaded from the web site

http://www.nikhef.nl/user/h24/qcdnum

Unpacking the tar file produces a directory qdcnum-xx-yy-nn with xx-yy the version
number and nn the update number (see Appendix G). Sub-directories contain the source
code, example jobs and write-up. See the README file for how to build qcdnum with a
simple script or with autotools.14

The code comes with a utility package mbutil (including write-up) which is a collection
of general-purpose routines (some developed privately, some taken from cernlib and
some taken from public source code repositories like netlib). Because qcdnum uses
several of these routines, mbutil must also be compiled and linked to your application
program. Apart from this, qcdnum is completely stand-alone. To calculate structure
functions, the zmstf and hqstf add-on packages are provided, see Sections D.3 and E.2.

Before compiling qcdnum you may want to set several parameters which control the
size of internal arrays. These parameters can be found in the include file qcdnum.inc:

mxg0 Maximum number of multiple x-grids [5].

mxx0 Maximum number of points in the x-grid [300].15

mqq0 Maximum number of points in the µ2-grid [150].13

mst0 Maximum number of table sets in a workspace [30].

mpl0 Maximum number of evolution parameter lists [30].

mce0 Maximum number of coupled evolutions [20].

mbf0 Maximum number of fast convolution scratch buffers [10].

mky0 Maximum number of data-card keys [50].

mqs0 Size of the qcdnum user store [100].

nwf0 Size of the qcdnum dynamic store in words [1200000].

The first 9 parameters are simply dimensions of book-keeping arrays which you may
want to adjust to your needs. More important is the parameter nwf0 that defines the
size of an internal store that contains the weight tables and the tables of parton densities.
How many words are needed depends on the size of the tables which, in turn, depends
on the size of the current x-µ2 grid. It also depends on how many different sets of tables
(un-polarised pdfs, polarised pdfs, fragmentation functions, etc.) you want to store.
Note that qcdnum is very user-friendly by always gracefully grinding to a halt if it runs
out of memory, with a message that tells you how large nwf0 should be.

14Autotools is mandatory if you want to use the C++ interface.
15For technical reasons the maximum number of grid points is about 10 less than mxx0 and mqq0.

26

Qcdnum offers the possibility to call its fortran routines via a C++ interface [9]. To learn
about the interface we refer to the code shown in Figure 6 below, to the general remarks made
in Section 5.1 and to the information given in text boxes like this one.

C++

4.2 Application Program

To illustrate the use of qcdnum, we present in Figure 5 the listing of a simple application
program. For a detailed description of the subroutine calls, and for additional routines
not included in the example, we refer to Section 5.

In Figure 6 we show the C++ version of the example program.C++

The first step in a qcdnum based analysis is initialisation (qcinit), setting up the x-µ2

grid (gxmake, gqmake) and the calculation of the weight tables (fillwt). The weights
depend on the grid definition and the interpolation order so that fillwt must be called
after the grid has been defined. The weight tables are calculated for LO, NLO and
NNLO as well as for all possible flavour settings in the range 3 ≤ nf ≤ 6 so that you
do not have to call fillwt again when you set or re-set qcdnum parameters further
downstream. Although the weight calculation is fast (typically about 10–20 s) it may
become a nuisance in semi-interactive use of qcdnum so that there is a possibility to
dump the weights to disk and read them back in the next qcdnum run.

In the example code, the weight calculation is followed by setting the perturbative order
(setord) and the input value of αs at some renormalisation scale µ2

R (setalf). The call
to setcbt sets the vfns mode and defines the thresholds on the factorisation scale µ2

F.

The second step is to evolve the parton densities from input specified at the scale µ2
0. It

is important to note that qcdnum evolves parton momentum densities xf(x), although
all theory in this write-up is expressed in terms of parton number densities f(x). The
evolution is done by calling the routine evolfg which evolves 2nf + 1 input parton
densities (quarks plus gluon) in the ffns, vfns or mfns scheme. The routine internally
takes care of the proper decomposition of the input quark densities into singlet and
non-singlets. In the vfns the input scale µ2

0 must lie below the charm threshold µ2
c so

that, as a consequence, µ2
c must lie above the lower boundary of the µ2 grid.

The flavour composition of each of the input quark densities is given by a table of
weights def(-6:6,12). In the example program, six light quark input densities are
defined: three valence densities x(q − q̄) and three anti-quark densities xq̄. This is
sufficient input to run evolutions in the vfns scheme. One is completely free to define
the flavour composition of the input quark densities as long as they form a linearly
independent set (qcdnum checks this). Note that the flavours are ordered according to
the PDG convention d, u, s, . . . and not u, d, s, . . . as often is the case in other programs.

The x dependence of these momentum densities at µ2
0 must be coded for each identifier

27

C --

program example

C --

implicit double precision (a-h,o-z)

data ityp/1/, iord/3/, nfin/0/ !unpolarised, NNLO, VFNS

data as0/0.364/, r20/2.D0/ !alphas

external func !input parton dists

dimension def(-6:6,12) !flavor decomposition

data def /

C-- tb bb cb sb ub db g d u s c b t

C-- -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

+ 0., 0., 0., 0., 0.,-1., 0., 1., 0., 0., 0., 0., 0., !dval

+ 0., 0., 0., 0.,-1., 0., 0., 0., 1., 0., 0., 0., 0., !uval

+ 0., 0., 0.,-1., 0., 0., 0., 0., 0., 1., 0., 0., 0., !sval

+ 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., !dbar

+ 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., !ubar

+ 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., !sbar

+ 78*0. /

data xmin/1.D-4/, nxin/100/, iosp/3/ !x grid, splord

dimension qq(2),wt(2) !mu2 grid

data qq/2.D0,1.D4/, wt/1.D0,1.D0/, nqin/60/ !mu2 grid

data q2c/3.D0/, q2b/25.D0/, q0/2.0/ !thresh and mu20

data x/1.D-3/, q/1.D3/, qmz2/8315.25D0/ !output scales

C --

call qcinit(6,’ ’) !initialise

call gxmake(xmin,1,1,nxin,nx,iosp) !x-grid

call gqmake(qq,wt,2,nqin,nq) !mu2-grid

call fillwt(ityp,id1,id2,nw) !calculate weights

call setord(iord) !LO, NLO, NNLO

call setalf(as0,r20) !input alphas

iqc = iqfrmq(q2c) !mu2c

iqb = iqfrmq(q2b) !mu2b

call setcbt(nfin,iqc,iqb,0) !thresholds in the VFNS

iq0 = iqfrmq(q0) !starting scale

call evolfg(ityp,func,def,iq0,eps) !evolve all pdfs

csea = 2.D0*fvalxq(ityp,-4,x,q,0) !charm sea at x,Q2

asmz = asfunc(qmz2,nfout,ierr) !alphas(mz2)

end

C --

double precision function func(id,x) !momentum density xf(x)

C --

implicit double precision (a-h,o-z)

if(id.eq.0) func = gluon(x) !0 = always gluon

if(id.eq.1) func = dvalence(x) !1 = defined in def

.. ..

if(id.eq.6) func = strangebar(x) !6 = defined in def

return

end

Figure 5 – Listing of a qcdnum application program evolving a complete set of parton densities
in the vfns at NNLO. The array def defines the light quark valence (xq − xq̄) and anti-quark
(xq̄) distributions as an input to the evolution. The x dependence of the input densities is coded
in the function func. After evolution, the pdfs are interpolated to some x and µ2 and αs(m

2
Z) is

calculated.

28

#include <iostream> //not shown <iomanip>, <cmath>, <fstream>

#include "QCDNUM/QCDNUM.h"

using namespace std;

double func(int* ipdf, double* x) {

int i = *ipdf;

double xb = *x;

double f = 0;

if(i == 0) f = xglu(xb);

if(i == 1) f = xdnv(xb);

..

if(i == 6) f = xsbar(xb);

return f;

}

int main() {

int ityp = 1, iord = 3, nfin = 0;

double as0 = 0.364, r20 = 2.0, xmin[] = {1.e-4};

int iwt[] = {1}, ng = 1, nxin = 100, iosp = 3, nqin = 60;

double qq[] = { 2e0, 1e4}, wt[] = { 1e0, 1e0};

double q2c = 3, q2b = 25, q0 = 2;

double x = 1e-3, q = 1e3, qmz2 = 8315.25, pdf[13];

double def[] = //input flavour composition

// tb bb cb sb ub db g d u s c b t

{ 0., 0., 0., 0., 0.,-1., 0., 1., 0., 0., 0., 0., 0., // 1=dval

0., 0., 0., 0.,-1., 0., 0., 0., 1., 0., 0., 0., 0., // 2=uval

0., 0., 0.,-1., 0., 0., 0., 0., 0., 1., 0., 0., 0., // 3=sval

0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., // 4=dbar

0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., // 5=ubar

0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., // 6=sbar

.. // more not shown

0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.}; //12=zero

int nx, nq, id1, id2, nw, nfout, ierr ; double eps;

int lun = 6 ; string outfile = " ";

QCDNUM::qcinit(lun,outfile); //initialise

QCDNUM::gxmake(xmin,iwt,ng,nxin,nx,iosp); //x-grid

QCDNUM::gqmake(qq,wt,2,nqin,nq); //mu2-grid

QCDNUM::fillwt(ityp,id1,id2,nw); //compute weights

QCDNUM::setord(iord); //LO, NLO, NNLO

QCDNUM::setalf(as0,r20); //input alphas

int iqc = QCDNUM::iqfrmq(q2c); //charm threshold

int iqb = QCDNUM::iqfrmq(q2b); //bottom threshold

QCDNUM::setcbt(nfin,iqc,iqb,999); //set VFNS thresholds

int iq0 = QCDNUM::iqfrmq(q0); //start scale

QCDNUM::evolfg(ityp,func,def,iq0,eps); //evolve all pdf’s

QCDNUM::allfxq(ityp,x,q,pdf,0,1); //interpolate all pdf’s

double csea = 2 * pdf[2]; //charm sea at x,mu2

double asmz = QCDNUM::asfunc(qmz2,nfout,ierr); //alphas(mz2)

cout << scientific << setprecision(4);

cout << "x, q, CharmSea = " << x << " " << q << " " << csea << endl;

cout << "as(mz2) = " << asmz << endl;

return 0;

}

C++

Figure 6 – The qcdnum example program in C++. Note the different indexing of the array pdf

and that the arguments of func are passed as pointers.

29

in an if-then-else block in the function func. The sum rules∫ 1

0

xg(x)dx+

∫ 1

0

xqs(x)dx = 1,∫ 1

0

[d(x)− d̄(x)]dx = 1,∫ 1

0

[u(x)− ū(x)]dx = 2 (4.1)

cannot be reliably evaluated by qcdnum since it has no information on the x-dependence
of the pdfs below the lowest grid point in x. These sum rules should therefore be built
into the parameterisation of the input densities. The evolution does, of course, conserve
the sum rules once they are imposed at µ2

0. The easiest way to evolve with a symmetric
strange sea is to include xsv = x(s− s̄) in the collection of input densities and set it to
zero for all x at the input scale µ2

0. In the vfns at LO or NLO, the generated heavy
flavour densities h = (c, b, t) are always symmetric (xh − xh̄ = 0) but this is not true
anymore at NNLO, which generates a small asymmetry.

After the parton densities are evolved, the results can be accessed by fvalxq. This
routine transforms the parton densities from the internal singlet/non-singlet basis to
the flavour basis and returns the gluon, a quark, or an anti-quark momentum density,
interpolated to x and µ2. Also here the flavours d, u, s, . . . are indexed according to the
PDG convention. The last call in the example program evolves the input value of αs to
the scale m2

Z . This evolution is completely stand-alone and does not make use of the µ2

grid. The function asfunc can thus be called at any point after the call to qcinit. We
refer to Section 5 for more ways to access the qcdnum pdfs, and for ways to change the
renormalisation scale with respect to the factorisation scale.

From the example code you may notice that the fortran array pdf(-6:6) is declared as pdf[13]
in C++, with an index that counts from zero. Thus pdf(-4) in fortran becomes pdf[2] in C++.
For more on the fortran versus C++ correspondence see Section 5.1.

C++

Qcdnum has an extensive checking mechanism which maintains internal consistency
and verifies that all subroutine arguments supplied by the user are within their allowed
ranges. Error messages might pop-up unexpectedly when the renormalisation scale is
changed with respect to the factorisation scale because the low end of the µ2 grid may
then map onto values of µ2

R < Λ2.

Another qcdnum feature is that nf = (4, 5, 6) and not (3, 4, 5) at the heavy flavour
thresholds µ2

h. This implies, first of all, that parton evolution in the vfns must start
from µ2

0 < µ2
c and not from µ2

0 ≤ µ2
c, simply because the number of flavours must be

nf = 3 at the starting scale. There is, however, no restriction on the starting (renor-
malisation) scale of αs so that it may very well coincide with a flavour threshold, either
before or after varying the renormalisation scale with respect to the factorisation scale.
If this happens at NNLO, the input value of αs is assumed to include the discontinuity.

30

4.3 Validation and Performance

The CPU time that is needed to evolve a pdf on a discrete grid grows quadratic with the
number of grid points in x. With linear (quadratic) interpolation the accuracy increases
linearly (quadratic) with the number of grid points. It follows that an r-fold gain in
accuracy will cost a factor of r2 in CPU for linear interpolation but only a factor of r
for quadratic interpolation. This reduction in cost motivated the inclusion of quadratic
splines in qcdnum.

To investigate the performance of the two interpolation schemes, we compare results
from qcdnum to those from the N -space evolution program pegasus [20]. In this
comparison a default set of initial distributions [29] is evolved at NNLO from µ2 = 2 to
µ2 = 104 GeV2 with nf = 4 flavours. The dashed curve in the top plot of Figure 7 shows

x0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

g/
g

 [%
]

∆

0

1

2

3

Graph

Linear Interpolation

x0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-0.04

-0.02

0

0.02

0.04

0.06

Graph

Quadratic Interpolation

Figure 7 – The relative difference ∆g/g (in percent) of gluon densities evolved from µ2 = 2 to
µ2 = 104 GeV2 by qcdnum and pegasus. Top: Evolution with linear splines on a 200 point
single grid down to x = 10−5 (dashed curve) and on multiple grids (full curve). Bottom: Evolution
with quadratic splines on a 100 point single grid (dotted curve, also shown in the top plot) and on
multiple grids (full curve). Note the different vertical scales in the two plots.

the relative difference ∆g/g versus x for qcdnum evolution with linear splines on a
single 200 point grid extending down to x = 10−5. The accuracy at low x is satisfactory
(few permille) but deteriorates rapidly to ∆g/g > 2% for x > 0.35.

The precision is much improved by evolving on multiple grids (Section 3.4) as shown by
the full curve in the top plot of Figure 7. Here the 200 grid points are re-distributed over
five sub-grids with lower limits as given in Table 1. For each successive grid the point
density is twice that of the previous grid. It is seen from Figure 7 that the precision is
now better than 2% for x < 0.85.

The dotted curves in Figure 7 (top and bottom) correspond to evolution with quadratic

31

Table 1 – Lower x limits of multiple grids used in the evolution with linear and quadratic splines.

n x1 x2 x3 x4 x5

Linear interpolation 200 10−5 0.01 0.10 0.40 0.70
Quadratic interpolation 100 10−5 0.20 0.40 0.60 0.75
Relative point density 1 2 4 8 16

splines on a single 100 point grid. There is a large improvement in accuracy (more
than a factor of 10) compared to linear splines even though the number of grid points is
reduced from 200 to 100. However, also here the precision deteriorates with increasing x,
reaching a level of 2% at x = 0.65. A five-fold multiple grid with lower limits as
listed in Table 1 yields a precision ∆g/g < 5 × 10−4 over the entire range x < 0.9 as
can be seen from the full curve in the lower plot of Figure 7. Note that this is for
evolution up to µ2 = 104 GeV2; at lower µ2 the accuracy is even better since it increases
(roughly linearly) with decreasing ln(µ2). To fully validate the qcdnum evolution with
pegasus,16 we have made additional comparisons in the ffns with nf = 3, 5 or 6
flavours, in the vfns with and without backward evolution, and with the renormalisation
scale set different from the factorisation scale. This for both un-polarised evolution up
to NNLO and polarised evolution up to NLO.

As remarked in Section 3.4, the quadratic spline evolution is not more expensive in CPU
time than linear spline evolution. On the contrary: qcdnum runs 4 times faster since
we need only 100 instead of 200 grid points. With the multiple grid definition given in
Table 1 for quadratic splines, the density of the first grid (x > 10−5) is 12 points per
decade. It follows that for evolution down to x = 10−6 (10−4) a grid with 100+12 = 112
(100− 12 = 88) points should be sufficient.

To investigate the execution speed we did mimic a QCD fit by performing 1000 NNLO
evolutions in the vfns (13 pdfs), using a 60 point µ2 grid and the 5-fold 100 point x-grid
given in Table 1. After each evolution, the proton structure functions F2 and FL were
computed at NNLO for 1000 interpolation points in the HERA kinematic range. For this
test, qcdnum, mbutil, and zmstf were compiled with the gfortran compiler, using
level 2 optimisation and without array boundary check. The computations took 18.5
CPU seconds on a 2 GHz Intel Core 2 Duo processor under Mac OS-X: 8.5 s for the
evolutions and 10 s for the structure functions.

5 Subroutine Calls

In this section we describe all qcdnum routines, listed in Table 2.

16Similar bench-marking between hoppet [24] and pegasus is given in [29] and [30], where also pdf
reference tables can be found. We do not provide here benchmark tables for qcdnum, but a program
that generates such tables and compares them with pegasus is available upon request from the author.

32

Table 2 – Subroutine and function calls in qcdnum.

Subroutine or function Description

Initialisation
QCINIT (lun, ’filename’) Initialise
SETLUN (lun, ’filename’) Redirect output
NXTLUN (lmin) Get next free lun

SET|GETVAL (’opt’, val) Set|Get parameters
SET|GETINT (’opt’, ival) Set|Get parameters

QSTORE (’action’, i, val) Store user data
Grid

GXMAKE (xmi, iwt, n, nxin, *nxout, iord) Define x grid
IXFRMX (x) Get ix from x
XFRMIX (ix) Get x from ix
XXATIX (x, ix) Verify grid point
GQMAKE (qarr, wt, n, nqin, *nqout) Define µ2

F grid
IQFRMQ (q2) Get iµ from µ2

F

QFRMIQ (iq) Get µ2
F from iµ

QQATIQ (q2, iq) Verify grid point
GRPARS (*nx, *x1, *x2, *nq, *q1, *q2, *io) Get grid definitions
GXCOPY (*array, n, *nx) Copy x grid
GQCOPY (*array, n, *nq) Copy µ2 grid

Weights
FILLWT (itype, *idmi, *idma, *nw) Fill weight tables
DMPWGT (itype, lun, ’filename’) Dump weight tables
READWT (lun, ’fn’, *idmi, *idma, *nw, *ie) Read weight tables
NWUSED (*nwtot, *nwuse, *ndummy) Memory words used

Parameters
SET|GETORD (iord) Set|Get order
SET|GETALF (alfs, r2) Set|Get αs start value

SETCBT (nfix, iqc, iqb, iqt) Set nf or thresholds
MIXFNS (nfix, r2c, r2b, r2t) Set mfns parameters
GETCBT (*nfix, *q2c, *q2b, *q2t) Get nf or thresholds
NFLAVS (iq, *ithresh) Get nf at iµ

SET|GETABR (ar, br) Set|Get µ2
R scale

RFROMF (fscale) Convert µ2
F to µ2

R

FFROMR (rscale) Convert µ2
R to µ2

F

SET|GETCUT (xmi, q2mi, q2ma, dummy) Set|Get cuts
CPYPAR (*array, n, iset) Copy parameter list
KEYPAR (iset) Get parameter key
USEPAR (iset) Activate parameters
PUSHCP Push on a stack
PULLCP Pull from a stack

Evolution
ASFUNC (r2, *nf, *ierr) Evolve αs(µ

2
R)

ALTABN (iset, iq, n, *ierr) Returns ans (µ2
F)

continued on next page

33

continued from previous page

EVOLFG (iset, func, def, iq0, *eps) Evolve all pdfs
PDFCPY (iset1, iset2) Copy pdf set
EXTPDF (fun, iset, n, offset, *eps) Pdfs from outside
NPTABS (iset) Number of pdf tables

Interpolation
BVALXQ|IJ (iset, id, x|ix, qmu2|iq, ichk) Get one basis pdf
FVALXQ|IJ (iset, id, x|ix, qmu2|iq, ichk) Get one flavour pdf
ALLFXQ|IJ (iset, x|ix, qmu2|iq, *pdf, n, ichk) Get all flavour pdfs
SUMFXQ|IJ (iset, c, isel, x|ix, qmu2|iq, ichk) Linear combination

SPLCHK (iset, id, iq) Check spline
FSPLNE (iset, id, x, iq) Spline interpolation
FFLIST (iset, c, is, x, q, *f, n, ichk) Make list of pdfs
FTABLE (iset, c, is, x, nx, q, nq, *f, ichk) Make table of pdfs

Datacards
QCARDS (mycards, ’filename’, iprint) Process datacard file
QCBOOK (’action’, ’key’) Manage keycards

Output arguments are prefixed with an asterisk (*).

In the following we will prefix output variables with an asterisk (*). We use the fortran
convention that integer variable and function names start with the letters I–N. Character
variables are given in quotes as in ’opt’. Other variables and functions are in double
precision unless otherwise stated. Note that floating point numbers should be entered
in double precision format:

ix = ixfrmx (x) ! ok

ix = ixfrmx (0.1D0) ! ok

ix = ixfrmx (0.1) ! wrong!

Unlike fortran, qcdnum is case insensitive so that character arguments like ’ALIM’

or ’Alim’ are both valid inputs.

Most qcdnum functions will, upon error, generate an error message. The inclusion of
function calls in print or write statements can then cause program hang-up in case
the function tries to issue a message. Thus:

write(6,*) ’Glue = ’, fvalxq(1,0,x,q,1) ! not recommended

glue = fvalxq(1,0,x,q,1) ! OK

write(6,*) ’Glue = ’, glue ! OK

5.1 C++ interface

In this section we describe the correspondence between the qcdnum calls in fortran
and C++. For this we also refer to the listings of the example program shown in Figures 5
and 6 of Section 4.2. A few more remarks and C++ code examples can be found in the
subroutine-by-subroutine descriptions given in the next sections.

34

1. Unlike fortran, C++ code is case-sensitive. We have therefore adopted the con-
vention that the C++ wrappers will have the same name (and argument list) as
their fortran counterparts, but written in lower case. Furthermore, to avoid
possible name-conflicts with other codes, all the wrappers are assigned to the
namespace QCDNUM. We thus have

call SUB(arguments) → QCDNUM::sub(arguments);

2. In C++ there is no implicit type declaration so that each variable must be explicitly
typed, for example,

implicit double precision (a-h,o-z)

ix = IXFRMX(x)
→ double x;

int ix = QCDNUM::ixfrmx(x);

3. The wrapper for logical functions returns an int and not a bool.17

logical gridpoint, xxatix

gridpoint = XXATIX(x,ix)

if(gridpoint) then ...

→
double x; int ix;

int gridpoint = QCDNUM::xxatix(x,ix);

if(gridpoint) { ...

4. The type of a character input argument should be string. String literals are
delimited by double quotes in C++ and by single quotes in standard fortran77.

character*50 file

file = ’example.log’

call QCINIT(20,file)

call SETVAL(’Alim’,5.0D0)

→
string file = "example.log";

QCDNUM::qcinit(20,file);

QCDNUM::setval("Alim",5);

5. A fortran array index starts at one unless you specify the index range, as is
done for the array pdf(-6:6). However, this is not possible in C++ where arrays
always start at index zero. Thus you should account for index shifts between the
fortran and C++ arrays as is shown below.

dimension pdf(-6:6)

call ALLFXQ(1,x,q,pdf,0,1)

gluon = pdf(0)

→
double x, q, pdf[13];

QCDNUM::allfxq(1,x,q,pdf,0,1);

double gluon = pdf[6];

6. Two-dimensional arrays become one-dimensional arrays in the C++ wrappers; see
the def array in the listings of Figure 5 and 6. Best is to provide a pointer k(i, j)
that maps the indices of a fortran array A(n,m) onto those of a C++ array
A[n*m] with k(i+ 1, j) = k(i, j) + 1, k(i, j + 1) = k(i, j) + n and k(1, 1) = 0.

17In C++ any nonzero (zero) value evaluates as true (false) in logical expressions.

35

inline int kij(int i, int j, int n) { return i-1 + n*(j-1); }

Here is an example of how to use such a pointer.

dimension c(-6:6),x(8),q(5),f(8,5)

call FTABLE(1,c,0,x,8,q,5,f,1)

fij = f(i,j)

→
double c[13],x[8],q[5],f[8*5];

QCDNUM::ftable(1,c,0,x,8,q,5,f,1);

double fij = f[kij(i,j,8)];

7. Care has to be taken when passing functions as arguments. An example is the
evolution routine evolfg where the pdf values fi(x) at the input scale µ2

0 are,
in fortran, entered via the user-defined function func(i,x) which should be
declared external in the calling routine. To port this to C++ the corresponding
function must have its input arguments passed as pointers, as is shown for the
input function func in the listing of Figure 6.

In this qcdnum version wrappers are available for the out-of-the-box routines listed
in Table 2 (except the steering by data cards) and for the zmstf (Table 5) and hqstf
packages (Table 6). The toolbox will be interfaced in a future version.

5.2 Pdf Sets

The qcdnum internal memory is a linear array that is dynamically partitioned into sets
of tables. Its size is given by the parameter nwf0 in the file qcdnum.inc; if you run out
of space (error message), you should increase the value of nwf0 and recompile qcdnum.

Apart from sets of weight tables, which are managed internally, and a base pdf set (id = 0),
the memory can hold up to 24 additional pdf sets as given below.18

Id Pdf set Number of pdf tables Created/filled by
0 Base set 5 (for internal use) Managed internally
1 Unpolarised pdfs 13 EVOLFG

2 Polarised pdfs 13 EVOLFG

3 Fragmentation functions 13 EVOLFG

4 User-defined evolution 13 Presently disabled
5–24 External pdfs 13 + n PDFCPY, PDFEXT, EVPCOPY

The base set (id = 0) contains the list of active evolution parameters (see Section 5.6),
a set of up-to-date αs tables, and 5 pdf scratch tables for internal use. The pdf sets 1–24
inherit the parameters and αs tables from the base set at the moment when they are
filled by one of routines given in the table above.19 Each pdf set in internal memory
thus remembers its own evolution parameters and αs tables.

18Apart from the base set, the maximum number of sets is mset = mst0−6 = 24, where mst0 can
be adjusted in qcdnum.inc. The call getint(’mset’,mset) gives you the current value of mset.

19An exception is the copy routine pdfcpy where the parameters and αs tables are inherited from
the source set instead of from the base set.

36

Note that the pdf sets in qcdnum contain the gluon and (anti)quark tables for all 6
flavours (13 pdfs). The (anti)quarks are stored as the singlet/non-singlet basis functions
|e±〉, defined by (see also Section 2.4)20

e±1
e±2
e±3
e±4
e±5
e±6

 =


1 1 1 1 1 1
−1 1

1 1 −2
1 1 1 −3
1 1 1 1 −4
1 1 1 1 1 −5




d±

u±

s±

c±

b±

t±

 with q±i ≡ qi ± q̄i. (5.1)

Apart from the 13 basis pdfs, one can import any number of additional pdfs (photon,
for instance) into a set of external pdfs.

5.3 Initialisation

call QCINIT (lun, ’filename’)

Initialise qcdnum and define the output stream. Should be called before anything else.

lun Output logical unit number. When set to 6, qcdnum messages appear
on the standard output. When set to -6, the qcdnum banner printout
is suppressed on the standard output.

’filename’ Output file name. Irrelevant when lun is set to 6 or -6.

call SETLUN (lun, ’filename’)

Redirect the qcdnum messages. The parameters are as for qcinit above. This routine
can be called at any time after qcinit.

lun = NXTLUN (lmin)

Returns a free logical number lun ≥ 10, or lun ≥ lmin, whichever limit is larger. This
routine can be called before or after qcinit. Returns 0 if there is no free logical unit.
Handy if you want to open a file on a unit that is guaranteed to be free.

call SETVAL|GETVAL (’opt’, val)

Set or get qcdnum floating point parameters.

’null’ Result of a calculation that cannot be performed. Default, null = 1.D11.

’epsi’ The tolerance level in the floating point comparison |x−y| < ε, which qcdnum
uses to decide if x and y are equal. Default, epsi = 1.D-9.

20Note that e2 = u− d, instead of d− u. The reason for this is purely cosmetic: u− d is positive.

37

’epsg’ Required numerical accuracy of the Gauss integration in the calculation of
weight tables. Default, epsg = 1.D-7.

’elim’ Allowed difference between a quadratic and a linear spline interpolation mid-
between the grid points in x. Default, elim = 0.5; larger values may indicate
spline oscillation. To disable the check, set elim < 0.

’alim’ Maximum allowed value of αs(µ
2). When αs exceeds the limit, a fatal error

condition is raised. Default, alim = 10.21

’qmin’ Smallest possible lower boundary of the µ2 grid. Default, qmin = 0.1 GeV2.

’qmax’ Largest possible upper boundary of the µ2 grid. Default, qmax = 1.D11 GeV2.

These parameters can be set and re-set at any time after qcinit.

call SETINT|GETINT (’opt’, ival)

Set or get qcdnum integer parameters.

’iter’ This parameter is only relevant when you evolve in the quadratic interpola-
tion scheme. It then sets the number of iterations to perform when evolving
backwards, see Section 3.5. When set negative, you will quadratically evolve
backward (not recommended since this is prone to spline oscillations). When
set to zero, you will evolve backward in the linear interpolation scheme, with-
out iterations (numerically stable but less accurate). A value larger than zero
gives the number of iterations to perform. Default, iter = 1. Note again that
all this is irrelevant when qcdnum runs in the linear interpolation scheme.

’tlmc’ Switch the time-like matching conditions off (0) or on (6= 0). Default is on.

’nopt’ Set the number of perturbative terms (nopt) in the evdglap evolution. In
QCD this is 1/2/3 at LO/NLO/NNLO but it may also be something differ-
ent like 2/3/4 when LO QED corrections are included in the evolution. The
number of perturbative terms at different orders is encoded in an integer such
as 123 (default) or 234; see evdglap in Section 7.5 for more on this.

’ichk’ Check that pdfs are evolved with the current (active) set of evolution param-
eters (1 = default) or switch the check off (0, not recommended).

And then for getint only:

’vers’ Returns the current 6-digit version number like 170007. Can be used
to check if qcdnum is initialised because the version is set to 0 if not.

’lunq’ Returns the qcdnum logical unit number. Useful if you want to write
messages on the same output stream as qcdnum.

’mset’ Maximum number of pdf sets allowed in internal memory.

’mxg0’. . .’nwf0’ Value of a fixed parameter in qcdnum.inc (see Section 4.1).

For instance, getint(’nwf0’,nwords) will give you the size of the internal memory.

21When you raise alim > 10 then αs will at some point be limited by internal cuts in qcdnum.

38

call QSTORE (’action’, i, val)

Qcdnum reserves 100 words of memory for the user to store and retrieve data.22 This
is useful to share data between different parts of a user program. For instance when a
function is passed as an argument to a qcdnum routine one can use qstore to transfer
some parameter values to this function, other than via the brackets.

In fortran one often transfers data via a common block but not so in C++.C++

The ’action’ argument can be set to any word starting with the letters W, R, L or U.

’write’ Write val into qstore(i).

’read’ Read val from qstore(i).

’lock’ Make the store read-only.

’unlock’ Allow to write into the store (default).

5.4 Grid

A proper choice of the grid in x and µ2 is important because it determines the speed
and accuracy of the qcdnum calculations.23 The grid definition also sets the size of the
weight and pdf tables and thus the amount of space needed in the internal store.

The x grid must be strictly equidistant in the variable y = − lnx but in qcdnum you
can generate multiple equidistant grids (Section 3.4) to obtain a finer binning at low y
(large x). Multiple grids are generated when the x-range is subdivided into regions with
different densities, as is described below.

The µ2 grid does not need to be equidistant. So you can either enter a fully user-defined
grid or let qcdnum generate one by an equidistant logarithmic fill-in of a given set of
intervals in µ2.

call GXMAKE (xmin, iwt, n, nxin, *nxout, iord)

Generate a logarithmic x-grid.

xmin Input array containing n values of x in ascending order: xmin(1) defines the
lower end of the grid while the other values define the approximate positions
where the point density will change according to the values set in iwt. The list
may or may not contain x = 1 which is ignored anyway.

iwt Input integer weights. The point density between xmin(1) and xmin(2) will be
proportional to iwt(1), that of the next region will be proportional to iwt(2)

and so on. The weights should be given in ascending order and must always
be an integer multiple of the previous weight. Thus, to give an example, the
triplets {1,1,1} and {1,2,4} are allowed but {1,2,3} is not.

22The store size can be set by the parameter mqs0 in qcdnum.inc.
23We refer to Section 4.3 for recommended grids in the linear and quadratic interpolation schemes.

39

n The number of values specified in xmin and iwt. This is also the number of
sub-grids used internally by qcdnum.

nxin Requested number of grid points (not including the point x = 1). Should of
course be considerably larger than n for an x-grid to make sense.

nxout Number of generated grid points. This may differ slightly from nxin because of
the integer arithmetic used to generate the grid.

iord you should set iord = 2 (3) for linear (quadratic) spline interpolation.

With this routine, you can define a (logarithmic) grid in x with higher point densities
at large x, where the parton distributions are strongly varying. Thus

xmin = 1.D-4

iwt = 1

call gxmake(xmin,iwt,1,100,nxout,iord)

generates a logarithmic grid with exactly 100 points in the range 10−4 ≤ x < 1, while

xmin(1) = 1.D-4

iwt(1) = 1

xmin(2) = 0.7D0

iwt(2) = 2

call gxmake(xmin,iwt,2,100,nxout,iord)

generates a 100-point grid with twice the point density above x ≈ 0.7.

A call to gxmake invalidates the weight tables and the pdf store.

ix = IXFRMX (x) x = XFRMIX (ix) L = XXATIX (x, ix)

The function ixfrmx returns the index of the closest grid point at or below x. Returns
zero if x is out of range (note that x = 1 is outside the range) or if the grid is not
defined. The inverse function is x = xfrmix(ix). Also this function returns zero if ix
is out of range or if the grid is not defined. To verify that x coincides with a grid point,
use the logical function xxatix, as in

logical xxatix

ix = xfrmix(x) !x is at or above grid point ix

if(xxatix(x,ix)) then !x is at grid point ix

Note that qcdnum snaps to the grid, that is, x is considered to be at a grid point i if
|y − yi| < ε with y = − lnx and, by default, ε = 10−9.

In the C++ interface a logical function returns an int with 0 (6=0) evaluating as false (true).

int gridpoint = QCDNUM::xxatix(x,ix);

if(gridpoint) { ... }

C++

40

call GQMAKE (qarr, wgt, n, nqin, *nqout)

Generate a logarithmic µ2
F grid on which the parton densities are evolved.24

qarr Input array containing n values of µ2 in ascending order: qarr(1) and qarr(n)

define the lower and upper end of the grid, respectively. The lower end of the
grid should be above 0.1 GeV2. If n > 2 then the additional points specified in
qarr are put into the grid. In this way, you can incorporate a set of starting
values µ2

0, or thresholds µ2
c,b,t.

wgt Input array giving the relative grid point density in each region defined by qarr.
The weights are not restricted by integer multiples as in gxmake but can be set
to any value in the range 0.1 ≤ w ≤ 10. With these weights, you can generate
a grid with higher density at low values of µ2 where αs is changing rapidly.

n The number of values specified in qarr and wgt (n ≥ 2).

nqin Requested number of grid points. The routine generates these grid points by a
logarithmic fill-in of the regions defined above. When nqin = n the grid is not
generated but taken from qarr. This allows you to read-in your own µ2 grid.

nqout Number of generated grid points. This may differ slightly from nqin because of
the integer arithmetic used to generate the grid.

A call to gqmake invalidates the weight tables and the pdf store.

iq = IQFRMQ (q2) q2 = QFRMIQ (iq) L = QQATIQ (q2, iq)

The function iqfrmq returns the index of the closest grid point at or below µ2. The
inverse function is qfrmiq. To verify that µ2 coincides with a grid point, use the logical
function qqatiq. As described above for the corresponding x grid routines, a value of
zero is returned if q2 and/or iq are not within the range of the current grid, or if the
grid is not defined.

call GRPARS (*nx, *xmi, *xma, *nq, *qmi, *qma, *iord)

Returns the current grid definitions

nx Number of points in the x grid not including x = 1.

xmi Lower boundary of the x grid.

xma Upper boundary of the x grid. Is always set to xma = 1.

nq Number of points in the µ2 grid.

qmi Lower boundary of the µ2 grid.

qma Upper boundary of the µ2 grid.

iord Order of the spline interpolation (2 = linear, 3 = quadratic).

24Note that αs is evolved (without using a grid) on µ2
R which may or may not be different from µ2

F.

41

call GXCOPY (*array, n, *nx)

Copy the x grid to a local array

array Local array containing on exit the x grid but not the value x = 1.

n Dimension of array as declared in the calling routine.

nx Number of grid points copied to the local array. A fatal error occurs if array is
not large enough to contain the current grid.

call GQCOPY (*array, n, *nq)

As above, but now for the µ2 grid.

5.5 Weights

In this section we describe routines to calculate the weight tables, to dump these to disk
and to read them back. The weight tables are calculated for all orders (LO,NLO,NNLO)
and all number of flavours nf = (3, 4, 5, 6), irrespective of the current qcdnum settings.
There is thus no need to re-calculate the weights when one or more of these settings are
changed later on.

Weight tables can be created for un-polarised pdfs, polarised pdfs and fragmentation
functions and these can all exist simultaneously in memory.

call FILLWT (itype, *idmin, *idmax, *nwds)

Partition the pdf store and fill the weight tables used in the calculation of the convolution
integrals. Both the x and µ2 grid must have been defined before the call to fillwt.

itype Select un-polarised pdfs (1), polarised pdfs (2) or fragmentation functions (3).
Any other input value will select un-polarised pdfs (default).

idmin Returns, on exit, the identifier of the first pdf table. Always idmin = 0.

idmax Identifier of the last pdf table in the store. Always idmax = 12.

nwds Total number of words used in memory.

You can create more than one set of tables tables by calling fillwt with different values
of itype. For instance, the sequence

call fillwt(1,idmin,idmax,nw) !Unpolarised pdfs

call fillwt(2,idmin,idmax,nw) !Polarised pdfs

makes both the un-polarised and the polarised weights available. If there is not enough
space in memory to hold all the tables, fillwt returns with an error message telling
how much memory it needs. You should then increase the value of nwf0 in the include
file qcdnum.inc, and recompile qcdnum.25 Note that fillwt acts as a do-nothing when
the pdf type already exists in memory:

25This you may have to repeat several times because fillwt proceeds in stages and will report the
memory needs of the current stage, but not beyond.

42

call fillwt(1,idmin,idmax,nw) !Unpolarised pdfs

call fillwt(1,idmin,idmax,nw) !Do nothing

call DMPWGT(itype, lun, ’filename’)

Dump the weight tables (not the pdf tables) of a given pdf type [1–3] to disk. Fatal
error if itype does not exist. Additional information about the qcdnum version, grid
definition and partition parameters is also dumped, to protect against corruption of the
dynamic store when the weights are read back in future qcdnum runs. The dump is
un-formatted so that the output file cannot be exchanged across machines. You can use
the function nxtlun of Section 5.3 to find a free logical unit number.

call READWT(lun, ’fname’, *idmin, *idmax, *nwds, *ierr)

Read the weight tables from a disk file. Both the x and µ2 grid must have been defined
before the call to readwt. Like in fillwt, you will get a fatal error message if there is
not enough space in memory to hold all the tables. Otherwise, ierr is set as follows:

0 Weights are successfully read in.

1 Read error or input file does not exist.

2 Input file was written with another qcdnum version.

3 Key mismatch (should never occur).

4 Incompatible x-µ2 grid definition.

When successful (ierr = 0), the routine returns on exit the parameters idmin, idmax
and nwds as does the subroutine fillwt. Upon failure (ierr 6= 0), the routine acts as
a do-nothing in which case you should create the weights from scratch, as in

lun = nxtlun(0) !find free logical unit number

call readwt(lun,’polarised.wgt’,idmin,idmax,nw,ierr)

if(ierr.ne.0) then

call fillwt(2,idmin,idmax,nw)

call dmpwgt(2,lun,’polarised.wgt’)

endif

The code above thus automatically maintains an up-to-date weight file on disk.

call NWUSED(*nwtot, *nwuse, *ndummy)

Returns the size nwtot of the qcdnum store (the parameter nwf0 in qcdnum.inc) and
the number of words used (nwuse). The parameter ndummy is reserved for later use.

43

5.6 Parameters

In this section we describe the qcdnum routines to set evolution parameters like the
perturbative order, flavour thresholds, αs, etc. All these parameters have reasonable
defaults but you can change them at any point in the code. A call to one of the routines
below will update the internal parameter list which we call active because they steer to
a great extent the behaviour of qcdnum. In particular, the internal set of αs tables and
pointer tables for the grid indexing do depend on one or more of these parameters.

When you evolve (Section 5.7) or import (Section 5.8) a pdf set, the parameters and αs

tables are copied to that set. Each pdf set thus remembers its own evolution parameters.

call SETORD|GETORD (iord)

Set (or get) the order of the qcdnum calculations to 1, 2 or 3 for LO, NLO and NNLO,
respectively. Default, iord = 2.

call SETALF|GETALF (alfs, r2)

Set or get for the αs evolution the starting value alfs and the starting renormalisation
scale r2. Default αs(m

2
Z) = 0.118.

call SETCBT(nfix, iqc, iqb, iqt)

Select the ffns or vfns mode, and set thresholds on µ2
F.

nfix Number of flavours in the ffns mode. If not set to 3, 4, 5 or 6, qcdnum
runs in the vfns mode.

iqc,b,t Grid indices of the quark mass thresholds µ2
c,b,t. This input is ignored when

qcdnum runs in the ffns mode, that is, when nfix is set to 3, 4, 5 or 6. There
are some restrictions, dictated by the evolution and interpolation routines:
iqc ≥ 2, iqb ≥ iqc+2 and iqt ≥ iqb+2.

A threshold index value of zero (or larger than the number of grid points) means ‘beyond
the upper edge of the grid’. For instance, setting (iqc,b,t) = (0,0,0) is equivalent
to setting ffns with 3 flavours, while the setting (2,4,0) puts the top quark threshold
beyond the evolution range. By default, qcdnum runs in the ffns with nf = 3.

call MIXFNS (nfix, r2c, r2b, r2t)

Select the mfns mode, and set thresholds on µ2
R.

nfix Fixed number of flavours [3–6] in the pdf evolution.

r2c,b,t Thresholds defined on the renormalisation scale µ2
R. When crossing a thresh-

old, nf changes in the β-functions but not in the splitting functions.

To put a threshold below the evolution range, set it to a value ≤ 0. For instance,

44

call mixfns (3, r2c , r2b, r2t) !nf(pdf)= 3 nf(as)= 3,4,5,6

call mixfns (4, 0.D0, r2b, r2t) !nf(pdf)= 4 nf(as)= 4,5,6

call mixfns (5, 0.D0, 0.D0, r2t) !nf(pdf)= 5 nf(as)= 5,6

call mixfns (6, 0.D0, 0.D0, 0.D0) !nf(pdf)= 6 nf(as)= 6

To put the threshold above the evolution range, set it to a large value (please note that
non-zero thresholds must be in ascending order, as is shown in the calls below):

call mixfns (3, 1.D9, 2.D9, 3.D9) !nf(pdf)= 3 nf(as)= 3

call mixfns (4, 0.D0, 2.D9, 3.D9) !nf(pdf)= 4 nf(as)= 4

call mixfns (5, 0.D0, 0.D0, 3.D9) !nf(pdf)= 5 nf(as)= 5

call mixfns (6, 0.D0, 0.D0, 0.D0) !nf(pdf)= 6 nf(as)= 6

These calls are equivalent to calling setcbt with nf = 3,4,5,6, respectively.

call GETCBT(*nfix, *q2c, *q2b, *q2t)

Return the current threshold settings.

When nfix = 0 on return, qcdnum runs in the vfns and the routine returns the
threshold values (not the indices) on the µ2

F scale.

When nfix = +(3,4,5,6) on return, qcdnum runs in the ffns and the values of q2c,b,t
are irrelevant.

When nfix = -(3,4,5,6) on return, qcdnum runs in the mfns and the routine returns
the threshold values on the µ2

R scale.

nf = NFLAVS(iq, *ithresh)

Get the number of flavours at a µ2 grid point.

iq Grid point in µ2. The function returns nf = 0 if iq is outside the µ2 grid.

ithresh Threshold indicator that is set to +1 (-1) if iq is at a threshold with the
larger (smaller) number of flavours, to 0 otherwise.

Note that nflavs will return (4,5,6) at the thresholds (iqc,b,t), as is the qcdnum
convention, unless you set iq negative in which case it will return (3,4,5).

nf = nflavs(iqc,ithresh) !nf = 4 and ithresh = 1

nf = nflavs(-iqc,ithresh) !nf = 3 and ithresh = -1

call SETABR|GETABR (ar, br)

Define the relation between the factorisation scale µ2
F and the renormalisation scale µ2

R

µ2
R = aR µ

2
F + bR.

Default: ar = 1 and br = 0.

45

rscale2 = RFROMF(fscale2) fscale2 = FFROMR(rscale2)

Convert the factorisation scale µ2
F to the renormalisation scale µ2

R and vice versa.

call SET|GETCUT (xmi, q2mi, q2ma, dummy)

Restrict the kinematic range of a pdf evolution to a part of the x-µ2 grid.26

xmi, q2mi, q2ma Re-define the x-µ2 range. To release a cut, enter a value of zero (or
outside the current grid boundaries). Acts as a do-nothing if the
cuts would lead to an empty kinematic domain.

dummy Not used at present.

A call to getcut returns the values of the current cuts.

Restricting the evolution to the kinematic range of the data is a nice way to save CPU
time in the χ2 minimisation stage of a QCD fit. When the fit has converged, you can
release the cuts and evolve, just once, over the full grid to obtain the final pdf set.

call CPYPAR (*array, n, iset)

Copy the evolution parameters stored in a pdf set to a local array.

array Double precision array, dimensioned to at at least array(13) in the calling
routine. On exit, the array will be filled with the following parameter values:27

1 iord 2 alfas 3 r2alf 4 nfix 5 q2c 6 q2b

7 q2t 8 ar 9 br 10 xmin 11 qmin 12 qmax

In array(13) is returned the type of pdf stored in iset:

1 = unpolarised, 2 = polarised, 3 = time-like, 4 = user, 5 = external.

n Dimension of array as declared in the calling routine. Fatal error if n < 13.

iset Pdf set identifier in the range 0–24. When iset = 0, the internal set of
parameters is returned (this is like calling all of getord, getalf, etc.). Fatal
error if iset does not exist.

key = KEYPAR (iset)

Give the parameter key of a pdf set (iset = 0 selects the internal parameters). Useful
to quickly check if parameter lists are (un)equal since then the keys are (un)equal:

26You can also use setcut to define the kinematic domain of an external pdf set (see Section 5.8).
27Note that integer parameters are returned as double precision numbers so that you should take

care of the type conversion yourself, like iord = array(1) or iord = int(array(1)), etc.

46

if(keypar(iset).eq.keypar(0)) !pdfs are evolved with current params

call USEPAR (iset)

Copy the parameters of a pdf set back into the internal (active) parameter list.

iset Pdf set identifier in the range 1–24. Fatal error if iset does not exist.

This routine activates the parameters of iset which may be necessary because qcdnum
blocks access to pdfs that are not evolved with the current (active) set of parameters.

call PUSHCP|PULLCP

The routine pushcp pushes the current (active) parameter set on a LIFO stack (5-deep),
and pullcp pulls them out again.28 In this way you can temporarily activate your
favourite set of parameters, as is shown in the example code below.

if(keypar(iset).eq.keypar(0)) then

call ftable(iset,...) !no need to activate iset

else

call pushcp !save the current parameters

call usepar(iset) !activate the parameters of iset

call ftable(iset,...) !make table of pdfs from iset

call pullcp !restore the current parameters

endif

Be aware of the brackets in the wrappers QCDNUM::pushcp() and QCDNUM::pullcp().C++

Note that frequent activation of parameter sets (with or without a push/pull) can be-
come quite expensive in CPU since these calls (partially) re-initialise qcdnum.

5.7 Evolution

alphas = ASFUNC(r2, *nf, *ierr)

Standalone evolution of αs on the renormalisation scale µ2
R (without using the µ2 grid

or weight tables). Qcdnum internally keeps track of αs so that there is no need to call
this function; it is just a user interface that gives access to αs(µ

2
R).

r2 Renormalisation scale µ2
R where αs is to be calculated.

nf Returns, on exit, the number of flavours at the scale r2.

28Because of the LIFO stack, a routine that does a push/pull can call another routine that does a
push/pull and so on, up to a nesting of 5-deep which should be more than enough.

47

ierr = 1 Too low value of r2. Internally, there is a cut r2 > 0.1 GeV2 and also a
cut on the slope, to avoid getting too close to Λ2.

The input scale and input value of αs, the order of the evolution and the flavour thresh-
olds are those set by default or by the routines described in Section 5.6. Note that
although αs is evolved on the renormalisation scale the result, in the vfns, may still
depend on the relation between µ2

R and µ2
F. This is because the position of the heavy

flavour thresholds depends on this relation.29

It is important to realise, however, that αs(µ
2
R) returned by asfunc is not the right

expansion coefficient in a qcdnum perturbative series because αs must then be given
at the factorisation scale µ2

F instead of at the renormalisation scale µ2
R. The relation

between αs(µ
2
R) and αs(µ

2
F) is given by the truncated Fourier series (2.17) where each

power of αs is computed seperately. Note that the truncation is different for the splitting
function expansion (αs, α

2
s , α

3
s) and the structure function expansion (1, αs, α

2
s).

To keep track of all this, qcdnum maintains tables of αns (µ2
F) in terms of powers

of as ≡ αs/2π and keeps them always up-to date. The following function gives you
access to these internal tables, or to those stored in one of the pdf sets 1-24.

asn = ALTABN (iset, iq, n, *ierr)

Returns the value of (αs/2π)n at the factorisation scale µ2
F.

iset Select the internal αs table (0), or the one from a pdf set (1–24). Fatal error if
iset does not exist or is not evolved with the current (active) set of parameters.

iq Index of a µ2 grid point.

n Power of αs which should be set as follows for the different perturbative series.

n = 1, 2, 3, . . . for the series αs, α2
s , α3

s , . . .
n = 0, -1, -2, . . . for the series 1, αs, α2

s , . . .

ierr Set, on exit, to 1 if iq is close to or below the value of Λ2, and to 2 if iq is
outside the grid boundaries. Upon error, the function returns a null value.

To have access to the NNLO discontinuities at the thresholds, you can set iq positive
(takes nf above threshold, qcdnum default) or negative (nf below threshold), thus:

asn = altabn (iset, iqc, n, ierr) !result for nf = 4

asn = altabn (iset, -iqc, n, ierr) !result for nf = 3

In other words, by prefixing iq with a minus sign you effectively change the qcdnum
convention nf = (4, 5, 6) at the thresholds to the alternative nf = (3, 4, 5).

Note that the qcdnum expansion parameter is αs/2π but that many convolution kernels
found in the literature are defined for an expansion in αs/4π, in which case you must
be careful to account somewhere for the missing factors of 2n.

29If µ2
R = aµ2

F +b then the flavour thresholds are similarly related: µ2
h,R = aµ2

h,F +b. In this way, nf
changes simultaneously in both the splitting and the β-functions, as required (see Section 2.5).

48

call EVOLFG(iset, func, def, iq0, *epsi)

Evolve a set of parton momentum densities from an input scale µ2
0. If qcdnum runs in

the ffns, the gluon and 2nf quark densities must be given as an input at µ2
0. In the

vfns, the gluon and 2nf = 6 light quark densities must be given at µ2
0 < µ2

c.

Here and in the following the parton densities are written on the flavour basis (note the
PDG convention) with an indexing defined by

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

t̄ b̄ c̄ s̄ ū d̄ g d u s c b t
(5.2)

iset Pdf set identifier: un-polarised (1), polarised (2) or time-like (3).

func User defined function func(j,x) (see below) that returns the input parton
momentum density xfj(x) at iq0. Must be declared external in the calling
routine. The index j runs from 0 (gluon) to 2nf .

def Input array dimensioned in the calling routine to def(-6:6,12) which contains
in def(i,j) the contribution of parton species i to the input distribution j,
that is, def(i,j) specifies the flavour decomposition of all input distributions j.
The indexing of i is given in (5.2). Internally, qcdnum constructs from def

a 2nf × 2nf sub-matrix of coefficients and tries to invert this matrix. If that
fails, the 2nf input densities are not linearly independent in flavour space and
an error condition is raised; see also (2.32) and (F.8) in Appendix F.5.

iq0 Grid index of the starting value µ2
0. When evolving in the ffns the input scale

can be anywhere inside the range of the µ2 grid or cuts. In the vfns, however, µ2
0

should be below the charm threshold.

epsi Maximum deviation of the quadratic spline interpolation from linear interpo-
lation mid-between the grid points (see Section 3.4). By definition, epsi = 0

when qcdnum is run in the linear interpolation scheme but for quadratic inter-
polation a large value epsi > elim may indicate spline oscillation and will cause
a fatal error message. The value of elim can be set by a call to setval. When
elim ≤ 0 the error message—and program stop—is suppressed so that you can
investigate the cause of oscillation with the routines splchk and fsplne, as is
described Section 5.9.

The input function func must be coded as follows

double precision function func(ipdf,x)

implicit double precision (a-h,o-z)

if(ipdf.eq.0) then

func = xgluon(x) !0 = gluon xg(x)

elseif(ipdf.eq.1) then

func = my_favourite_quark_dstn_1(x) !1 = quarks xq1(x)

elseif(ipdf.eq.2) then

func = my_favourite_quark_dstn_2(x) !2 = quarks xq2(x)

elseif(ipdf.eq.3) then

..

endif

49

return

end

The C++ function prototype is (see also the listing Figure 6 in Section 4.2):

double func(int* ipdf, double* x)

C++

Because evolfg will call func only at the grid points xi, it is possible to feed tabulated
values into the evolution routine as is illustrated by the following code

double precision function pdfinput(ipdf,x)

implicit double precision (a-h,o-z)

common /input/ table(0:12,nxx) !table with input values

ix = ixfrmx(x)

pdfinput = table(ipdf,ix)

return

end

Here is code that evolves both un-polarised and polarised pdfs.

call fillwt(1, idmin, idmax, nw) !unpolarised

call fillwt(2, idmin, idmax, nw) !polarised

..

call evolfg(1, func1, def1, iq01, epsi1) !unpolarised

call evolfg(2, func2, def2, iq02, epsi2) !polarised

5.8 Pdf Import

Additional pdf sets with identifiers 5–24 can be stored in qcdnum memory by (i)
copying an internal set to another location, (ii) importing a pdf set from some external
source and (iii) importing a pdf set from a toolbox workspace (see Section 7.5).

As mentioned in Section 5.2, all pdf sets in qcdnum contain a list of evolution param-
eters, αs tables, and the full set of gluon, singlet and non-singlet basis tables (13 pdfs).
Apart from the 13 basis pdfs, one can import any number of additional pdfs into the
set like, for instance, the photon.

call PDFCPY (iset1, iset2)

Copy an internal pdf set to another location.

iset1 Identifier 1–3 of a pdf set previously evolved with evolfg. Fatal error if iset1
does not exist.

iset2 Identifier 5–24 of the target set. If iset2 does not exist it is created (with 13
pdf tables), otherwise it is overwritten. Fatal error if the internal memory is not
large enough to hold iset2.

Here is example code that stores LO/NLO/NNLO unpolarised pdfs in memory.

50

do iord = 1,3

call setord(iord)

call evolfg(1, func, def, iq0, epsi)

call pdfcpy(1, 4+iord)

enddo

call EXTPDF (fun, iset, n, offset, *epsi)

Import a pdf set from an external source.

fun User function (see below), declared external in the calling routine.

iset Pdf set identifier in the range 5–24. If iset does not exist it is created (with
13 + n pdf tables), otherwise it is overwritten. Fatal error if there is not
enough memory to hold iset or if an existing set cannot hold 13 + n pdfs.

n Number of extra pdfs to be imported, beyond the 13 quark and gluon pdfs.

offset Relative offset δ at the thresholds µ2
h which is used to catch discontinuities at

the thresholds, if any, by sampling the pdfs at µ2
h(1±δ). Usually you can set δ

to a small value like 10−3, but this depends on the external representation of
the discontinuities, and on how accurate the thresholds are set in qcdnum.30

epsi Maximum deviation of the quadratic spline interpolation from linear interpo-
lation mid-between the grid points, as is described for the routine evolfg.

The function fun provides the interface between qcdnum and the external repository:

double precision function fun (ipdf, x, qmu2, first)

implicit double precision (a-h,o-z)

logical first

if(first) some initialisation, if any

if(i .eq. -6) fun = xTopBar(x,qmu2)

if(i .eq. -5) ...

The C++ prototype is double fun(int* i, double* x, double* q, bool* f).C++

The index ipdf runs from -6 to 6, indexed according to (5.2) in the PDG convention.
For the extra pdfs, if any, the index is 7 ≤ ipdf ≤ 6+n. The first time func is called
by extpdf the flag first is set to true and you can initialise the function, if needed.

If arguments are passed other than through the function brackets you can do this via a common
block in fortran or make use of qstore. Here is a C++ example that uses extpdf to copy a
pdf set (as does pdfcpy). The pdf set identifier is passed to fun via qstore; note that iset

must be declared static in the body of fun.

double fun(int* i, double* x, double* q, bool* first){

static int iset; double val;

if(*first) { QCDNUM::qstore("Read",1,val); iset = int(val); }

return QCDNUM::fvalxq(iset,*i,*x,*q,1);

}

...

C++

30If there is a sharp step at µ2
h you can set δ = 0 to let qcdnum bracket µ2

h as tightly as possible.

51

QCDNUM::qstore("Write",1,double(iset1));

QCDNUM::extpdf(fun,iset2,0,offset,epsi); //this copies iset1 to iset2

It is important that the perturbative order, flavour scheme, positions of the thresholds
and the input value of αs are set correctly in qcdnum before the call to extpdf. Oth-
erwise the pdf set may inherit incorrect evolution parameters and αs tables, or might
suffer from corrupted threshold discontinuities if the thresholds are set wrongly. Note
also that the kinematic cuts, if any, will be applied.

ntabs = NPTABS(iset)

Returns the number of pdf tables in iset = 1–24. Can be used to check if iset exists,
because nptabs returns 0 if not.

5.9 Pdf Interpolation

There are several routines to access the flavour momentum densities |xg〉, |xq〉 and |xq̄〉,
or one of the basis pdfs |xe±〉 as defined by (5.1). The pdfs can be interpolated to
an (x, µ2) point inside the grid, or just be returned at a given grid point.

Access is limited to pdf sets that are evolved with the current (active) set of evolution
parameters; this restriction protects you against an unintentional mix of incompatible
pdf sets in a QCD calculation. If you want to use pdfs in memory that are evolved
with a different set of parameters then you have to first activate these parameters as
is described in Section 5.6. The code below shows how to temporarily activate the
parameters of a pdf set by first saving and then restoring the current parameters.

call PUSHCP !save current parameters

call USEPAR(iset) !activate iset

pdf = FVALXQ (iset, id, x, q, ichk) !get pdf value

call PULLCP !restore current params

Below we give the indexing of the flavour pdfs (note the PDG convention)

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 · · ·
t̄ b̄ c̄ s̄ ū d̄ g d u s c b t f1 . . .

(5.3)

and that of the basis pdfs

0 1 2 3 4 5 6 7 8 9 10 11 12 13 · · ·
g qs e+

2 e+
3 e+

4 e+
5 e+

6 qv e−2 e−3 e−4 e−5 e−6 f1 . . .
(5.4)

Here fi is an imported pdf beyond the gluon or quarks with an index 6+ i on the flavour
basis, and 12 + i on the internal basis.

52

pdf = BVALXQ (iset, id, x, qmu2, ichk)

Returns one of the basis pdfs |xg〉 or |xe±〉, interpolated to x and µ2.

iset Pdf set identifier of un-polarised (1), polarised (2), fragmentation function (3),
or external pdfs (5–24).

id Basis pdf identifier running from 0 to 12+n, indexed as given in (5.4). Here n

is the number of extra pdfs in iset, beyond the gluon and the quarks.

x, qmu2 Input value of x and µ2.

ichk Input flag that steers the error checking.

0 Return a null value when x or qmu2 are outside the grid boundaries.
+1 Fatal error message when x or qmu2 are outside the grid boundaries.
-1 As above, but do not check the input values of iset and id.

Thus ichk = -1 makes the routine faster but see the remark at the end of this section.

pdf = FVALXQ (iset, id, x, qmu2, ichk)

Returns |xg〉, |xq〉 or |xq̄〉. The arguments are the same as for bvalxq except that the
pdf identifier runs from -6 to 6+n, indexed according to (5.3) . Note that fvalxq is
slower than bvalxq because a linear combination of basis pdfs has to be taken.

call ALLFXQ (iset, x, qmu2, *pdf, n, ichk)

Returns all flavour-pdf values in one call. The arguments are as given above, except

pdf Output array, dimensioned to pdfs(-6:6+n) in the calling routine.

n Number of extra pdfs (those beyond the gluon and quarks) to be returned
in pdfs, provided that they exist in iset (fatal error if not).

pdf = SUMFXQ (iset, c, isel, x, qmu2, ichk)

Return the gluon or a weighted sum of quark densities, depending on the selection
flag isel. The arguments are as given above, except

c Input array, dimensioned to c(-6:6) in the calling routine, containing the
coefficients of a linear combination of quarks and antiquarks, indexed according
to (5.3). Note that c(0) is ignored since it does not correspond to a quark.

isel Selection flag that determines what is actually returned.

0 Return the gluon density |xg〉.
1 Return the linear combination of (anti)quarks as specified in c.

2–8 Return a specific singlet/non-singlet quark component (see below).
12+i Return the extra pdf |xfi〉, if present in iset (fatal error if not).

53

To describe the setting of isel = 1–8 we write the quark linear combination (2.29) as

|xp〉 =

si︷ ︸︸ ︷
d+

1 |xe+
1 〉 +

ns+︷ ︸︸ ︷
nf∑
i=2

d+
i |xe+

i 〉 +

va︷ ︸︸ ︷
d−1 |xe−1 〉 +

ns−︷ ︸︸ ︷
nf∑
i=2

d−i |xe−i 〉 . (5.5)

The isel flag selects specific combinations of the singlet and nonsinglet components
in (5.5), as is needed in structure function calculations where, depending on the pertur-
bative order, each component may convolute with a different coefficient function.

isel = 1 : si + ns+ + va + ns− 2 : si 3 : ns+ + va + ns− 4 : ns+

5 : va + ns− 6 : ns− 7 : va 8 : d+
1 |xg〉

Note that isel = 8 returns a weighted gluon which is useful since a singlet convolution
Cs ⊗ d+

1 |e+
1 〉 is usually accompanied by a gluon convolution Cg ⊗ d+

1 |g〉.
There are also routines that return the value of a pdf at a given grid point (ix,iq). They
have the same argument list as their interpolation equivalents, except that x and qmu2

must be replaced by the grid indices ix and iq, as shown below.

pdf = bvalij(iset, id, ix, iq, ichk)

pdf = fvalij(iset, id, ix, iq, ichk)

call allfij(iset, ix, iq, pdf, n, ichk)

pdf = sumfij(iset, c, isel, ix, iq, ichk)

These routines are of course faster since no interpolation is required. They have the
additional feature that a negative iq will return the pdfs at the flavour thresholds for
nf = (3, 4, 5), instead of the qcdnum standard nf = (4, 5, 6). Here is the un-polarised
gluon discontinuity at the charm threshold:

disc = fvalij(1,0,ix,iqc,ichk) - fvalij(1,0,ix,-iqc,ichk)

Note that a routine like bvalij is very fast because it simply transfers a value stored
in the internal memory. The CPU time is thus spent in computing a memory address
and checking the argument list of the call. Setting ichk = -1 switches off part of the
checking so that you can optimise calls in a loop, as in the example below.

pdf(1) = bvalij(iset, id, ix(1), iq(1), 1) !check arguments

do i = 2,n

pdf(i) = bvalij(iset, id, ix(i), iq(i), -1) !no check

enddo

For bvalij this gives about a factor of two in speed but the gain is much less for the
other routines where most of the time is spent in computing weighted sums of pdfs.

The following two routines can help you to investigate the location and cause of oscil-
lating splines, in case you get complaints from evolfg or extpdf.

54

epsi = SPLCHK (iset, id, iq)

Returns ε = ‖u − v‖ of a singlet/non-singlet basis pdf id, indexed according to (5.4),
at a grid point iq. Here u and v are the vectors of quadratic and linear interpolation
mid-between the grid points in x, as is described in Section 3.4. By definition, ε = 0
for linear interpolation, and should be a small number (like 0.05, say) for quadratic
interpolation. A large value indicates that the spline oscillates at iq, which can then be
further investigated with the routine fsplne below.

pdf = FSPLNE (iset, id, x, iq)

This routine is identical to bvalxq, except that the local polynomial interpolation in x
is replaced by spline interpolation, as used in the qcdnum evolution and convolution
routines (note that fsplne does not interpolate in µ2). This function is provided as
a diagnostic tool to investigate quadratic spline oscillations, if any, which may not be
visible in the local interpolation used by bvalxq. You do not need fsplne or splchk to
detect spline oscillations, since that is done automatically by evolfg and extpdf.

5.10 Lists and Tables

Instead of calling an interpolation routine in a loop over x and µ2, you can gain speed
by passing to qcdnum a list of these points so that the program can optimise the loop
internally. Here are two fast routines to generate a list or a table of interpolated pdfs.

call FFLIST (iset, c, isel, x, q, *f, n, ichk)

Generate a x-µ2 list of interpolated pdfs.

iset Pdf set identifier [1–24].

c Input array, dimensioned to c(-6:6) in the calling routine, filled with the coef-
ficients of a linear combination of (anti)quarks. The indexing is given in (5.3).
Note that the value of c(0) is ignored.

isel Selection flag [0–8,12+i], as is described for the routine sumfxq above.

x, q List of interpolation points, dimensioned to at least n in the calling routine.

f Output array of pdf values, dimensioned to at least n in the calling routine.

n Number of items in x, q and f.

ichk If non-zero, qcdnum insists that all x-q points are within the grid boundaries
or cuts. If zero, a null value is returned for pdfs outside the boundaries.

55

call FTABLE (iset, c, isel, x, nx, q, nq, *table, ichk)

Generate a pdf table in x and µ2. The parameters are as for fflist, except,

x, nx x-grid, dimensioned to at least x(nx) in the calling routine, and filled with
x-values in strictly ascending order (no equal values allowed).

q, nq As above, but now for the µ2-grid.

table Output table of pdfs, dimensioned to table(nx,nq) in the calling routine. The
first dimension must be set to nx, the second dimension can be larger than nq.

This routine is fast since it partially scales with the sum nx + nq instead of with nx × nq.

As mentioned in Section 5.1 the table is stored in a one-dimensional array by the C++ wrapper.
To access the table it is best to use the pointer function kij below.

inline int kij(int i, int j, int n) { return i-1 + n*(j-1); }

int iset = 1, isel = 1, n = 30, m = 15;

double c[13], x[n], q[m], table[n*m];

QCDNUM::ftable(iset,c,isel,x,n,q,m,table,1);

double tij = table[kij(i,j,n)];

C++

6 Program Steering with Datacards

It is possible to steer qcdnum via a datacard input file. A keycard in such a file consists
of a keyword followed by a parameter list. Such a card will, upon reading, cause a call
to the corresponding qcdnum routine. As an example we show here a datacard file that
steers the example program given in Section 4.2 (the syntax will be described later).

’ SETLUN 6 ’

’ GXMAKE 3 100 1 1.D-4 ’

’ GQMAKE 60 2 2. 1.D4 ’

’ FILLWT 1 ’

’ SETORD 3 ’

’ SETALF 0.364 2. ’

’ SETCBT 0 3. 25. 1.D11 ’

Note that each card is read as a character string and should be embedded in single
quotes and that the parameter lists can be given in free format. The corresponding calls
in the example program can now be replaced by a call to qcards:

..

external mycards !to be explained later

..

call qcinit(6, ’ ’)

call qcards(mycards, ’example.dcards’, 0)

ityp = 1

q0 = 3.5

call evolfg(ityp, func, def, iqfrmq(q0), eps)

56

..

In the above we have used so-called predefined keycards that can execute qcdnum
routines prior to a pdf evolution; the call to evolfg (and beyond) is, in this example,
made in the fortran code itself. We will show in Section 6.3 how to define user
keycards that can drive a call to evolfg or to any other routine.

At present there is no C++ interface to the datacard routines described in this section. A solution
is to package all datacard handling in a fortran subroutine and interface that routine to C++.

C++

6.1 Datacard File

The input datacard file is a normal text file. Datacards in this file are strings of up to
120 characters long, embedded in single quotes (’ ... ’). Blank or unquoted records
are allowed on the file as long as the first word of that record is not a valid keyword.

List-directed (i.e. free-format) read from a string is not permitted in fortran77 [31],31

so that the format of each word in a datacard is classified by qcdnum as logical (L),
integer (I), floating point (F), exponential (E or D) or character (A).32 After classification
the words in a datacard are transferred to memory by a formatted read.

Note that cards are only processed if the first word is a keyword recognised by qcdnum.
Thus it is easy to add comment (or blank) lines to the file, or to comment-out data-cards
by inserting some non-blank characters in front of the keyword.

’ This line is a comment but the next line is a keycard ’

’ SETORD 3 ’

’ And the keycard below is commented out ’

’ C-- SETORD 2 ’

Inline comments can be put after the closing quote.

’ SETLUN 6 ’ This is an inline comment

If a parameter is a string with embedded blanks, you must put it in double quotes (’’).

’ MYCARD Paul Dirac ’’Paul Dirac’’ ’

This card has three parameters: first name (A4), last name (A5) and full name (A10).

In the examples above we have put the keywords in upper case for readability but note
that qcdnum is case-insensitive so that it does not matter if character strings are put
in upper, lower, or mixed case. File names are an exception to this since they are passed
directly to the operating system which usually is case-sensitive.

A datacard file is processed by a call to qcards.

31Most systems allow for a list-directed read from strings but this is not guaranteed to be portable.
32The string formatter recognises any number in I, F, E or D format. Anything else is classified as

a character word (A), except that a single uppercase T or F is classified as logical true or false. We
refer to the mbutil write-up for a full description of the string formatter.

57

call QCARDS (mycards, ’filename’, iprint)

Process all known keycards in a text file.

mycards Subroutine, declared external in the calling routine, that is called when a
user-defined card is encountered, see Section 6.3 for how it should be coded.
Must be supplied as a dummy routine when there are no user cards.

filename Input file name.

iprint No listing (0), listing and processing (1) or listing without processing (-1).
The latter is useful to get in a dummy run a clean datacard listing from
which you can check the correct qcdnum formatting of the parameters. If
you set iprint to ±2 also the format descriptor will be printed.

A fatal error message is issued if the datacard file does not exist, cannot be read or if
there is a problem with decoding a keycard. On exit, the input file will be closed.

6.2 Predefined Keycards

In Table 3 we list the qcdnum predefined keycards. Optional parameters are given in

Table 3 – Qcdnum predefined keycards.

SETLUN lun <filename>

SETVAL chopt dval

SETINT chopt ival

GXMAKE iosp nx nxlim xmi(1) ... xmi(nxlim)

GQMAKE nq nqlim qsq(1) ... qsq(nqlim)

FILLWT itype <filename>

SETORD iord

SETALF alfs r2

SETCBT nfix q2c q2b q2t

MIXFNS nfix r2c r2b r2t

SETABR ar br

SETCUT xmi q2mi q2ma

QCSTOP

brackets. Most keycards have exactly the same parameter lists as the subroutine calls
given in Table 2 but some of them have a slightly different syntax as is given below.

SETLUN lun <filename> : When lun is set to 6 you can omit the filename parameter;
in all other cases a filename must be given.

58

GXMAKE iosp nx nxlim xmi(1) ... xmi(nxlim) : Here the order of the parameters
differs from that in the fortran call: we first put the spline order, followed by the
requested number of grid points, the number of sub-grids, and then the subgrid limits.

’ GXMAKE 3 100 1 1.D-4 ’ single 100 pt x-grid

’ GXMAKE 3 100 3 1.D-4 0.1 0.7 ’ 3-fold 100 pt x-grid

’ GXMAKE 3 100 2 1.D-4 0.1 0.7 ’ 2-fold without xmi = 0.7

The point density increases by a factor of two for each subgrid generated.

GQMAKE nq nqlim qsq(1) ... qsq(nqlim) : Also here the order of the parameters
differs from that in the fortran call. You can inject up to 20 points into the grid
(including the end points). The point densities are set equal for all regions in µ2.

’ GQMAKE 60 2 2. 1.D4 ’ 60 points in range 2-10^4 GeV2

’ GQMAKE 60 4 2. 3. 25. 1.D4 ’ idem with q2c and q2b inserted

FILLWT itype <filename> : If a filename is given, an up-to-date disk file of weights
is maintained, if not, the weights are calculated from scratch.

’ FILLWT 1 ../weights/unpolarised.wt ’

’ FILLWT 2 ../weights/polarised.wt ’

SETCBT nfix q2c q2b q2t : Here you have to specify the threshold values, and not
the grid indices as in the fortran call to setcbt. All three thresholds must be given.

QCSTOP : An input file may contain other data in addition to the keycards (how to
read these data is up to you). In this case you can put a QCSTOP card to terminate the
search for keycards, which would otherwise continue until an end-of-file is reached.

6.3 User-defined Keycards

Suppose that we want, via a datacard, to run from a scale of µ2
0 = 3.5 GeV2 an evolution

of un-polarised pdfs (itype = 1).

’ EVOLFG 3.5 1 ’

Since this card is non-standard we have to do two things to make it active: (i) add
EVOLFG to the list of known keys by a call to qcbook and (ii) provide the fortran code
to be executed when the key is encountered in a datacard file.

59

call QCBOOK (’action’, ’key’)

Add or delete keys from the list of known keys.33

’action’ First character must be set to ’A’ (add) or ’D’ (delete). You can also set
it to ’L’ to get a list of known keys on the qcdnum output stream.

’key’ Name of the key. A new key should not be longer than 7 characters and
not be present in the list of known keys.

By default, mky0 = 50 key-names can be held in memory of which 13 are already taken
by the predefined keys. The value of mky0 can be changed in qcdnum.inc, if necessary.

Thus, in our example program, we have first to make a call to qcbook.

call qcbook(’Add’, ’EVOLFG’)

The routine qcards will now recognise EVOLFG as a user-defined keyword and will call
the subroutine mycards to process the card. This subroutine should be coded as follows.

subroutine mycards (key, nk, pars, np, fmt, nf, ierr)

implicit double precision (a-h,o-z)

character*(*) key, pars, fmt

..

The first 6 arguments are presented to you by qcdnum, the ierr flag you set yourself.

key Character string containing the name of the key in upper case.

nk Number of characters in key. Always 1 ≤ nk ≤ 7.

pars Character string containing the parameter list.

np Number of characters in pars (0 = no parameters for this key).

fmt Character string with the fortran format descriptor of pars.

nf Number of characters in fmt (0 = no format string).

ierr Should be set, on exit, to 0 if all OK, to 1 if the parameters cannot be read,
to 2 if the card cannot be processed, and to 3 if the key is unknown.

The pars character string acts as an internal file from which the parameters can be read
in the format given by fmt. This is illustrated in the following code which processes
the EVOLFG keycard (not all error handling shown).

subroutine mycards (key, nk, pars, np, fmt, nf, ierr)

implicit double precision (a-h,o-z)

character*(*) key, pars, fmt

external func

common /pass/ def(-6:6,12)

if(key .eq. ’EVOLFG’) then

read(unit=pars,fmt=fmt,err=100,end=100) q0, itype

33Note that you can also delete predefined keys. This is useful when you want to inhibit a keycard-
driven call or want to replace a key by deleting it and then add it again (it comes back as a user-defined
key). In this way you can taylor the predefined keys to your needs, if necessary.

60

call evolfg(itype,func,def,iqfrmq(q0),eps)

else

ierr = 3

endif

return

100 ierr = 1

return

end

It is easy to handle optional parameters by checking on read errors. In the modified
if-block below we also process EVOLFG with only q0 as input, and itype = 1 as default.

if(key .eq. ’EVOLFG’) then

read(unit=pars,fmt=fmt,err=10,end=10) q0, itype

call evolfg(itype,func,def,iqfrmq(q0),eps)

return

10 read(unit=pars,fmt=fmt,err=100,end=100) q0

call evolfg(1 ,func,def,iqfrmq(q0),eps)

else

ierr = 3

endif

Note that user keys are strictly local in the sense that they can only be defined in the
program that calls qcards to read the datacard file. It thus does not make sense to
define keys in an add-on package: packages should provide subroutines and not keys. Of
course you can easily define your own key that calls a package (or any other) routine.

7 Tools

In this section we describe a large set of tools that can be used to evolve a set of pdfs,
or to compute convolution integrals needed for the calculation of structure functions or
parton luminosities. With these tools you can write qcdnum add-on packages that will
extend the functionality of the program. For instance, the zmstf and hqstf structure
function packages (see Appendices D and E) are entirely based on the qcdnum toolbox.

At present there are no C++ wrappers available for the toolbox routines.C++

All toolbox routines operate on a workspace which is nothing else than a sufficiently large
linear array that you declare in your application program. This workspace is partitioned
into sets of tables after which you can call toolbox routines that act on these tables in
various ways. It is important to note that the toolbox inherits from the qcdnum main
program the x-µ2 grid and also the evolution parameters like the perturbative order,
flavour thresholds etc., as set by the routines described in Section 5.6. Note also that,
like in the main program, pdfs can only be accessed when they are evolved with the
current set of parameters, see Section 5.9.

In the next section we show how to partition the toolbox workspace, followed by a
description of the table indexing (Section 7.2), weight filling routines (7.3), combined

61

weights (7.4), coupled DGLAP evolution (7.5), pdf access (7.6), pdf tranformations (7.7),
convolution tools (7.8) and the fast convolution engine (7.9). In Appendix F you can
find a tutorial with many examples of how to use the toolbox.

All toolbox routines are listed in Table 4.

Table 4 – Routines in the qcdnum toolbox.

Subroutine or function Description

Workspace
MAKETAB (w, nw, itypes, np, new, *iset, *nwu) Create tables
SETPARW (w, iset, upars, n) Store user information
GETPARW (w, iset, *upars, n) Read user information
DUMPTAB (w, iset, lun, ’filename’, ’key’) Dump to disk
READTAB (w, nw, ..., *iset, *nwu, *ierr) Read from disk

Identifiers
IDSPFUN (’pij’, iord, iset) Internal weight table
IPDFTAB (iset, id) Internal pdf table

Weights
MAKEWTA (w, id, afun, achi) Regular piece A(x)
MAKEWTB (w, id, bfun, achi, nodelta) Singular piece [B(x)]+
MAKEWRS (w, id, rfun, sfun, achi, nodelta) Product R(x)[S(x)]+
MAKEWTD (w, id, dfun, achi) δ-Function D(x)δ(1− x)
MAKEWTX (w, id) Weights for x[fa ⊗ fb]

Combined weights
SCALEWT (w, c, id) Scale weight table
COPYWGT (w, id1, id2, iadd) Copy weight table
WCROSSW (w, ida, idb, idc, iadd) Convolution of weights
WTIMESF (w, fun, id1, id2, iadd) Multiply by f(µ2, nf)

Evolution
EVFILLA (w, id, func) Fill table of coefficients α
EVGETAA (w, id, iq, *nf, *ithresh) Get coefficients
EVDGLAP (w, iw, ia, if, ..., *nf, *e) Coupled evolution

Access to pdfs
EVPDFIJ (w, id, ix, iq, ichk) Pdf at a grid point
EVPLIST (w, id, x, qmu2, *pdf, n, ichk) List of interpolated pdfs
EVTABLE (w, id, x, nx, q, nq, *table, ichk) Table of interpolated pdfs
EVPCOPY (w, id, def, n, iset) Copy to internal memory

Evolution parameters
CPYPARW (w, *array, n, iset) Copy parameter list
KEYPARW (w, iset) Get parameter key
USEPARW (w, iset) Activate parameters

Transformations
EFROMQQ (qvec, *evec, nf) Transform from q, q̄ to e±

QQFROME (evec, *qvec, nf) Transform from e± to q, q̄
Convolution

FCROSSK (w, idw, idum, idf, ix, iq) Convolution x[f ⊗K]
continued on next page

62

continued from previous page

FCROSSF (w, idw, idum, ida, idb, ix, iq) Convolution x[fa ⊗ fb]
STFUNXQ (stfun, x, qmu2, stf, n, ichk) Interpolation

Fast convolution
FASTINI (x, qmu2, n, ichk) Pass a list of x and µ2

FASTCLR (ibuf) Clear buffer
FASTINP (w, idf, coef, ibuf, iadd) Store a pdf in a buffer
FASTEPM (idum, idf, ibuf) Store |g, e±〉 in a buffer
FASTSNS (iset, def, isel, ibuf) Store singlet or non-singlet
FASTSUM (iset, coef, ibuf) Store weighted sum of |e±〉
FASTFXK (w, idw, ibuf1, ibuf2) Convolution x[f ⊗K](x)
FASTFXF (w, idw, ibuf1, ibuf2, ibuf3) Convolution x[fa ⊗ fb](x)
FASTKIN (ibuf, fun) Scale by a kinematic factor
FASTCPY (ibuf1, ibuf2, iadd) Copy or accumulate result
FASTFXQ (ibuf, *f, n) Interpolate final result
Output arguments are prefixed with an asterisk (*).

7.1 Toolbox Workspace

The first step in using the toolbox is to declare a large double precision array w(nw)

in your application program.34 This toolbox workspace must be partitioned into one
or more sets of tables that, depending on your application, will contain evolution or
convolution weights, collections of pdfs, and tables of perturbative expansion coefficients.

All tables in the workspace depend on the x-µ2 grid as defined by upstream calls to
gxmake and gqmake; a downstream re-definition of the grid invalidates all your toolbox
workspaces and makes them inaccessible (see Section 7.10 for more on toolbox errors).

Internally these tables have up to 6 dimensions but you are exposed to only a few of
these, depending on what the table is used for. This leads to six different type of table:

itype = 1 Weight tables that depend only on x. Identifiers run from 101–199;

itype = 2 Weight tables that depend on x and nf . Identifiers run from 201–299;

itype = 3 Weight tables that depend on x and µ2. Identifiers run from 301–399;

itype = 4 Weight tables that depend on x, µ2 and nf . Identifiers run from 401–499;

itype = 5 Pdf tables that depend on x and µ2. Identifiers run from 501–599;

itype = 6 Tables that depend on µ2 only. Identifiers run from 601–699.

The nf dependence of weight tables should not be confused with that of the pdfs. For
pdfs it means that they are evolved with a certain number of active flavours that may,
in the vfns, depend on µ2. For the weight tables it means that nf is a parameter of the
convolution kernel so that there are four look-up tables, one for each nf = 3, 4, 5, 6.

Below we describe a routine (maketab) that creates a set of tables. Additional calls
to maketab will create additional sets, numbered in sequence, up to a maximum of 30

34How large should w be? Just put nw = 1 and get the answer from the maketab error message.

63

sets. Organising tables into sets can much simplify your bookkeeping because the same
table identifiers can be used in different sets, as is done internally in qcdnum for the
un-polarised (1), polarised (2) and time-like sets (3) where the gluon always has id = 0,
the singlet id = 1, etc.

In the following we describe the routines that partition the toolbox workspace, store
extra information into a set of tables, dump a set of tables to disk, and read them back.

call MAKETAB (w, nw, itypes, np, new, *iset, *nwused)

Add a set of tables to a workspace w.

w Double precision array declared in the calling routine.

nw Dimension of w as declared in the calling routine.

itypes Integer array dimensioned to itypes(6) in the calling routine which contains
in itypes(i) the number of tables (≤ 99) of type i to be generated. When
itypes(i) = 0 then no tables of type i will be generated.

np Number of words reserved to store user information (see setparw below).

new If new = 0 the set is added to those already present in the workspace and the
iset identifier is incremented up to a maximum of iset ≤ mst0 = 30 sets.35

If new = 1, then the existing sets, if any, are overwritten by the new set.

iset Gives, on exit, the identifier that qcdnum has assigned to the set of tables.

nwused Gives, on exit, the total number of words used in the workspace. If nwused is
negative, then the workspace is not sufficiently large (fatal error) and should
be re-dimensioned in the calling routine to at least -nwused.

Note that maketab initialises all tables in the set to zero.36

By default, the weight tables (type 1–4) can be used in both the evolution (evdglap)
and convolution routines (fcrossk, fcrossf, fastfxk, fastfxf). However, if your con-
volution kernels are not splitting functions, you can flag the tables as such by putting
a negative number in itypes(i). Such type-i tables can then only be used in a convo-
lution routine and not in evdglap (fatal error if you try) but have the advantage that
they are much smaller. This can lead to considerable savings in space and filling time,
in particular when the tables are type-3 or 4.

call SETPARW (w, iset, upars, n)

Store extra information such as quark masses or other parameters that you want to
dump to disk, along with the tables.37

w Workspace, partitioned by a previous call to booktab.

35For more than 30 sets please update the parameter mst0 in qcdnum.inc, and recompile qcdnum.
36You can use also the routine scalewt (Section 7.4) to explicitly zero a table, if needed.
37When you evolve a pdf set with evdglap (Section 7.5) the evolution parameters are automatically

stored so that you do not have to do this explicitly by a call to setparw. See also Section 7.6.

64

iset Table set identifier.

upars Array, dimensioned to at least upars(n) in the calling routine. On entry the
array must be filled with the extra information you want to store.

n Number of items to store, n ≤ np, where np is set in the call to maketab.

The user data can be retrieved by a call to getparw(w,iset,upars,n).

call DUMPTAB (w, iset, lun, ’filename’, ’key’)

Dump the table set iset to disk. Fatal error if iset does not exist. You can use
the function nxtlun of Section 5.3 to find a free logical unit number. Apart from the
tables, information is written about the qcdnum version, the x-µ2 grid definition and
the current spline interpolation order. The key text string can be used to stamp the file
with some identifier like a package name and version number. The dump is un-formatted
so that the file cannot be exchanged across machines. Note that a disk file can contain
only one set of tables so that different sets must be dumped on different files.

call READTAB (w, nw, lun, ’fn’, ’key’, new, *iset, *nwu, *ierr)

Read a set of tables from disk into the workspace w(nw). Like in maketab, the input flag
new controls the overwriting of existing tables. The parameter iset is, on exit, set to
the identifier that qcdnum has assigned to the set of tables read in. The total number
of words used in the workspace is returned in nwu. You will get a fatal error message
if w(nw) is not large enough to contain the tables or if the maximum number of table
sets mst0 = 30 is exceeded. On exit, the error flag is set as follows (non-zero means
that nothing has been read in so that it is up to you to take the appropriate action).

0 Set of tables successfully read in.

1 Read error or input file does not exist.

2 File written by another qcdnum version.

3 Key mismatch.

4 Incompatible x-µ2 grid definition.

Qcdnum insists that the key written on the file matches the key entered as an argument
to readtab.38 Thus if, for instance, the key is set to a package name and version number
then the user of the package cannot read obsolete files written by earlier versions, or
read files written by another package. If you don’t want to use keys, just enter an empty
string as a key in the calls to dumptab and readtab.

Note that the table set identifier iset is dynamically allocated so that it usually is not
preserved in a write-read sequence: if you dumped iset = 2 to disk, it may very well be
read back as iset = 5. Please be aware of this when addressing tables in your toolbox
workspace (see the next section).

38Note that the key matching is case insensitive and that leading and trailing blanks are ignored.

65

7.2 Table Identifiers

A table in the workspace w is characterised by three numbers:

iset The table set number assigned by qcdnum in the call to maketab or readtab;

itype The index 1–6 that differentiates between the various type of table;

n The table number in the range 1–99.

These numbers serve to build a so-called global identifier that uniquely identifies a table.

id global = 1000*iset + 100*itype + n. (7.1)

Thus id = 3206 refers to the 6th type-2 table of set 3 in the toolbox workspace.

If you store tables on disk please note that the iset identifier is dynamically allocated
so that only the last three digits of a global identifier are guaranteed to be preserved
between disk dump and a disk read. You have thus to construct, after a read, the global
identifier with (7.1) using the value of iset returned by readtab, and not use the table
identifier as it was before the dump.

Most toolbox routines allow you to use tables in the internal memory, in addition to those
in the toolbox workspace. To address the internal tables, qcdnum provides two func-
tions that return the identifiers of weight tables (idspfun) and pdf tables (ipdftab).39

id = IDSPFUN (’pij’, iord, iset)

Returns the global identifier of a weight table in internal memory (negative number).

’pij’ Name of the splitting function. Valid input strings are

PQQ, PQG, PGQ, PGG, PPL, PMI, PVA, AGQ, AGG, AQQ, AHQ, AHG

iord Select LO (1), NLO (2) or NNLO (3).

iset Select un-polarised (1), polarised (2) or fragmentation function (3).

id = IPDFTAB (iset, id)

Returns the global identifier of a pdf table in internal memory (negative number).

iset Pdf set identifier as is defined in Section 5.2 [1–24].

id Pdf identifier of an |e±〉 basis function, indexed according to (5.4) [0–98].

Both functions return -(1000*iset+100*itype+n) with iset, itype and n the internal
table identifiers (which are hidden for you). The minus sign tells qcdnum to address the
internal memory instead of the toolbox workspace. Upon error, the functions return an
error code that is understood by downstream toolbox routines which will then generate
the appropriate error message.

39The internal αs tables can be accessed by the function altabn described in Section 5.7.

66

7.3 Weight Tables

To calculate convolution integrals, the convolution kernels must first be turned into
weight tables. Note that the kernels presented to qcdnum must be defined by convolu-
tion with a parton number density f , and not with a momentum density xf .40

The convolution kernels may contain singularities (‘plus’ prescriptions), as is described
in Appendix B. To deal with such singularities, we formally decompose a kernel into a
regular part (A), a singular part (B), a product (RS) and a delta function

C(x) = A(x) + [B(x)]+ +R(x)[S(x)]+ +D(x)δ(1− x). (7.2)

For each term in (7.2) there exists a separate filling routine that will add its contribution
to the weight table of C.

The generalised mass (gm) form of a convolution integral is given by (3.23) in Section 3.3:

F(x,Q2) = x

∫ 1

χ

dz

z
f(z, µ2) C

(χ
z
, µ2, Q2,m2

h

)
, (7.3)

where χ = ax is a so-called rescaling variable and the factor a ≥ 1 is a function of Q2. In
the code examples below we will assume, for definiteness, that the relation between µ2

and Q2 is given by

Q2 = αµ2 + β (7.4)

and that the rescaling variable is defined by

χ = ax =

(
1 +

4m2
h

Q2

)
x. (7.5)

To the table generating routines must be supplied a function that defines the rescaling
variable (achi), together with one or more functions that provide the interface to the
convolution kernel (cfun). These functions must be coded as follows.

double precision function achi(qmu2)

implicit double precision (a-h,o-z)

common /pass/ alfa, beta, hmass,

Q2 = alfa*qmu2 + beta

achi = 1.D0 + 4.D0*hmass*hmass/Q2

return

end

double precision function cfun(chiz,qmu2,nf)

implicit double precision (a-h,o-z)

common /pass/ alfa, beta, hmass,

Q2 = alfa*qmu2 + beta

cfun = some_function_of(chiz,qmu2,Q2,nf,hmass,...) !chiz = chi/z

return

end

40The weight table conversion from number to momentum density is done internally in qcdnum.

67

Although one should take out as many µ2-dependent factors (e.g. powers of αs) as pos-
sible from the convolution kernel, it is clear from the above that quark mass parameters
and the relation between µ2 and Q2 may enter via the rescaling variable χ and that
such a dependence can never be factored out of the convolution integral. Therefore the
weight tables of the gm schemes will, in general, depend on x and µ2 and must be stored
in type-3 or 4 tables. The code below, for example, fills a type-4 table with the regular
part of a convolution kernel.

external cfun, achi

call MakeWtA(w,6402,cfun,achi) !fill table 402 of set 6

When you work in a mass-less scheme where χ = x and a = 1 then (7.3) reduces to the
familiar Mellin form F = x[f ⊗ C]. In this case you may code for the achi function

double precision function achi(qmu2)

implicit double precision (a-h,o-z)

achi = 1.D0

return

end

Here your weight table will most likely depend on x only, or on x and nf , and can thus
be stored in type-1 or 2 tables.

Qcdnum calculates by Gauss quadrature (cernlib routine D103) the integrals that
define the weights. In case the default accuracy of ε = 10−7 cannot be reached (fatal error
message), this limit can be raised by a call to setval(’epsg’,value). Note, however,
that problems with the Gauss integration will most likely be caused by problems with the
integrand—such as near-singular behaviour somewhere in the integration domain—and
that this cannot be cured by relaxing the required accuracy.

We emphasise once more that convolution integrals found in the literature must, if
necessary, be brought into the general form (7.3) by modifying the published convolution
kernel. An example of such a modification can be found in Appendix E.1.

call MAKEWTA (w, id, afun, achi)

Calculate the weights for the regular contribution A(x) to a convolution kernel and add
these to table id in the workspace w.

w workspace declared in the calling routine and previously partitioned by maketab.

id Weight table identifier, given in the global format (7.1).

afun Name of a function (see above) that returns the regular piece of the convolution
kernel. Should be declared external in the calling routine.

achi Name of a function (see above), declared external in the calling routine, that
returns the value a of the rescaling variable χ = ax. Qcdnum insists that
always achi ≥ 1; you will get a fatal error if not.

68

call MAKEWTB (w, id, bfun, achi, nodelta)

Calculate the weights for the singular contribution [B(x)]+ to a convolution kernel and
add these to a table in the workspace w. The arguments and the coding of bfun and
achi are as for makewta. Thus, if a kernel has both a regular and a singular part, then
do

call MakeWtA(w,1201,afun,achi) !put regular part in id = 1201

call MakeWtB(w,1201,bfun,achi,0) !add singular part to id = 1201

It is seen from Appendix B, equation (B.3), that a ‘+’ prescription generates a δ(1− x)
contribution. By default, makewtb includes this contribution, unless you set nodelta = 1.
In that case the δ(1 − x) contribution is not calculated and must be entered, perhaps
combined with other such contributions, via a call to makewtd, see below.

call MAKEWRS (w, id, rfun, sfun, achi, nodelta)

Calculate the weights for the product contribution R(x)[S(x)]+ to a convolution kernel
and add these to a table in the workspace w. The arguments and the coding of rfun,
sfun and achi are as for makewta.

call MAKEWTD (w, id, dfun, achi)

Calculate the weights for the δ(1−x) contribution to a convolution kernel and add these
to a table in the workspace w. The delta function is multiplied by the function dfun.
The arguments and the coding of dfun and achi is as for makewta.

call MAKEWTX (w, id)

Calculate the weights (3.20) for the convolution x[fa ⊗ fb](x).

w workspace declared in the calling routine and previously partitioned by maketab.

id Table identifier. Because the weight table depends only on x, it can be stored
in a type-1 table, but equally well in types-2, 3 or 4, if desired.

7.4 Combined Weights

Sometimes it is necessary to combine weight tables into another weight table. An
example of this is the coefficient function

C
(2,1)
2,+ = C

(0)
2,q ⊗ P

(1)
+ + C

(1)
2,+ ⊗ P (0)

qq − β0C
(1)
2,+ (7.6)

taken from expression (D.7) in Appendix D. Here we see convolutions of coefficient
and splitting functions, multiplication by a β-function, and, of course, the addition or
subtraction of terms. Below we will describe a set of routines that allow you to calculate
expressions like (7.6) and store the result in a combined weight table.

One feature of these routines is that you can combine tables of different type, provided
that this does not lead to a loss of information. Thus you can copy a type-1 table to a
type-3 table but not the other way around. All routines check that you use a correct
combination of types, and issue a fatal error condition if this is not the case.

69

call SCALEWT (w, c, id)

Multiply the contents of a weight table id by a constant c. Obviously, id cannot refer
to a table in internal memory. You can use this routine to explicitly set a table to zero.

call COPYWGT (w, id1, id2, iadd)

Copy the contents of table id1 to id2. You can copy weight tables (type-1–4), but also
pdf tables (type-5) or tables with expansion coefficients (type-6).

w Workspace declared in the calling routine.

id1 Input weight table identifier, given in the global format (7.1).

id2 Output table identifier with id2 6= id1. The output table type may be different
from the input table type, as is described above.

iadd If set to 0 copy id1 to id2, if set to +1 (-1) add (subtract) id1 to (from) id2.

You can use this routine to import a weight table from internal memory into the toolbox
workspace by setting id1 to an identifier that is generated by idspfun. Internal splitting
function tables are type-1 or type-2 (you can see this from the second but last digit of the
idspfun identifier) so that you can avoid errors simply by always importing to type-2.
Importing pdf tables from internal memory does not make sense and is not allowed.

call WCROSSW (w, ida, idb, idc, iadd)

This routine generates a weight table for the convolution of two kernels Ka and Kb. The
weight table is calculated with (3.18) from two input tables Wa and Wb.

w Workspace declared in the calling routine.

ida Table identifier containing the weights of kernel Ka.

idb As above for the weights of kernel Kb.

idc Output table identifier. Cannot be set equal to ida or idb.

iadd If set to 0 store the result of the convolution in idc, if set to +1 (-1) add
(subtract) the result to (from) the contents of idc.

Both ida and idb can refer to splitting functions in internal memory, with identifiers
constructed with idspfun. The table types of ida and idb may be different, but the
type of idc must be such that it can contain either input table. Thus if ida is type-2
(x, nf) and idb is type-3 (x, µ2), then idc must be type-4 (x, µ2, nf).

call WTIMESF (w, fun, id1, id2, iadd)

Multiply a weight table by a function of µ2 and nf and store the result in another table.

w Workspace declared in the calling routine.

70

fun Double precision function fun(iq,nf) declared external in the calling routine.

id1 Input identifier of a weight table in the workspace w, or in internal memory.

id2 Identifier of the output table. It is allowed to have id1 = id2 (in-place modifi-
cation of a table), unless id1 is an internal splitting function table. The table
type of id2 must be such that no information is lost, fatal error otherwise.

iadd Store the result in id2 in case iadd = 0 or add (subtract) the result to (from)
id2 in case iadd = +1 (-1).

The routine loops over iq and nf and calls fun(iq,nf) with the following argument
ranges, depending on the output table type:

type variables iq range nf range
1 x 1–1 3–3
2 x, nf 1–1 3–6
3 x, µ2 1–nq 3–3
4 x, µ2, nf 1–nq 3–6

Qcdnum checks that the output table type matches the µ2 and nf dependence of
both id1 and fun, and will produce a fatal error if this is not the case.

As an example, we give below the code to construct a table corresponding to the com-
bination of convolution kernels (7.6).

external beta0 !beta function

..

call WcrossW (w, idC2Q0, idSpfun(’PPL’,2,1), idC2P21, 0)

call WcrossW (w, idC2P1, idSpfun(’PQQ’,1,1), idC2P21, +1)

call WtimesF (w, beta0 , idC2P1 , idC2P21, -1)

7.5 Coupled DGLAP Evolution

In this section we describe routines to solve n coupled evolution equations

∂fi(x, µ
2)

∂ lnµ2
=

n∑
j=1

[Pij ⊗ fj](x, µ2).

The routines operate on a toolbox workspace w that should contain the n × n weight
tables, tables of expansion coefficients, and also the n pdf tables.

After partitioning the workspace (Section 7.1) and computing the weight tables (Sec-
tion 7.3), look-up tables of perturbative expansion coefficients must be filled with the
routine evfilla below. Such a look-up table (type-6) should contain one of the coeffi-
cients ai versus µ2 of the perturbative expansion

Pij = a0 P
(0)
ij + a1 P

(1)
ij + a2 P

(2)
ij + · · ·

Examples of expansion coefficients are powers αn, αms or products αnαms .

71

call EVFILLA (w, id, func)

Fill a type-6 look-up table with a perturbative expansion coefficient.

w Toolbox workspace with at least one type-6 table.

id Type-6 table identifier, in the global format (7.1).

func User supplied function (see below), declared external in the calling routine.

The function func is called by evfilla in a loop over the µ2 grid points iq, and should
be coded as follows.

double precision function func(iq,nf,ithresh)

implicit double precision (a-h,o-z)

func = value_of_expansion_coefficient_at_iq

return

end

Passed to func are iq, the number of flavours nf, and a threshold indicator ithresh that
is set to 0 if iq is not at a threshold, and to +1 (-1) if iq is at a threshold with the larger
(smaller) number of flavours. Thus, at the charm threshold iqc the function is called
twice, once with nf = 3 and ithresh = -1, and once with nf = 4 and ithresh = +1.
To fill the tables with powers of as(µ

2), properly truncated, you can use the routine
altabn that is described in Section 5.7.

Qcdnum cannot keep track of your coupling constant so that you must yourself update
the tables when it changes (in a fit), when the flavour thresholds change, or when the
relation between the renormalisation and the factorisation scale changes.

alfa = EVGETAA (w, id, iq, *nf, *ithresh)

Returns the value of the expansion coefficient at the µ2 grid point iq, as is stored in the
look-up table id. Also returned are the value nf of the number of flavours at iq, and
the threshold indicator ithresh as described above. By default qcdnum always takes
the larger number of flavors (4, 5, 6) at (µ2

c, µ
2
b, µ

2
t) but you can force the routine to take

the smaller number of flavours by prefixing iq with a minus sign, thus:

alfa = EVGETAA(w,id, iqc,iord,nf,ithresh) !nf = 4, ithresh = 1

alfa = EVGETAA(w,id,-iqc,iord,nf,ithresh) !nf = 3, ithresh = -1

Upon error (non-existing table, iq out of range, etc.) a null value is returned for alfa.

After filling the weight tables (Section 7.3) and the tables of expansion coefficients, a
set of pdfs can be simultaneously evolved with the routine evdglap. This routine can
only evolve with a fixed number of flavours so that in the vfns you have to implement
yourself the loop over the flavour thresholds, as will be explained later.

72

call EVDGLAP (w, idw, ida, idf, !start, m, n, !iqlim, ,*nf, *epsi)

Coupled fixed-flavour n-fold DGLAP evolution of the pdfs fi, i = 1, . . . , n.

w Toolbox workspace, previously filled with weights and expansion coefficients.
The workspace should also contain the pdf tables to be evolved.

idw Integer array that contains in idw(i,j,k) the weight table identifier of Pij at
order k. In the calling routine it must be dimensioned to idw(m,m,nk) with
m ≥ n. The third dimension nk should be at least as large as the maximum
number of perturbative terms in the evdglap evolution (see below).

ida As above, but now ida(i,j,k) contains the identifier of the look-up table of
the expansion coefficient that multiplies Pij at order k.

idf Integer array, with in idf(i) the identifier of the pdf fi to be evolved. The
array must be dimensioned to at least n in the calling routine. It is required
that all pdfs reside in the same table set (fatal error otherwise).41

start Double precision array that in the calling routine should be dimensioned
to start(m,nx) with the second dimension nx at least as large as the number
of x-grid points. On entry, start(i,j) must be filled with the start value
of fi(xj). On exit, the array contains the pdfs at the end point of the evolution.

m First two dimensions of idw and ida and the first dimension of start, as
declared in the calling routine.

n The number of pdfs to evolve simultaneously, n ≤ m.

iqlim Integer array, declared iqlim(2) in the calling routine. On entry, iqlim(1)
must be set to the start point of the evolution and iqlim(2) to the requested
end point. If iqlim(2) ≥ iqlim(1) there is upward evolution, downward
evolution otherwise. On exit, iqlim(2) is set to the actual endpoint of the
evolution that might have been limited by qcdnum to the next threshold.

nf On exit, abs(nf) is set to the number of flavours used in the evolution. See
below for the meaning of a negative nf.

epsi Maximum difference between quadratic and linear interpolation in-between
the grid points, as is described for the routine evolfg.

The order of the evolution (iord), the flavour thresholds (iqc,b,t) and the kinematic
cuts are those set by upstream calls to setord, setcbt and setcut, respectively. All
evolution parameters are stored along with the evolved pdfs.

By default, the number of perturbative terms (nopt) in the evolution is set equal to 1/2/3
at LO/NLO/NNLO. But this may not always be the case: for QCD-QED evolution, for
instance, this may be 2/3/4, depending on the truncation of the αns α

m terms in the
expansion. You can set the number of perturbative terms nopt by call to setint

upstream of evdglap, for instance,

call setint (’nopt’, 234) !2/3/4 terms at LO/NLO/NNLO

41This is because the evolution parameters are stored as an attribute of a set and not of a table.

73

The number of digits of nopt defines the maximum order that evdglap can handle.
Thus if you coded a QCD-QED evolution at LO, the setting of nopt = 2 means that
evdglap can only be run at LO (error message otherwise), with two perturbative terms.

The weight tables must all reside in the toolbox workspace so that internal weight tables
can only be used when they are first copied to the workspace with copywgt. Be aware,
however, that Pqg in qcdnum contains a factor 2nf , see (B.2), which may not be what
you want. It might very well be that splitting functions are missing, either because they
don’t exist like Pqq̄ at LO, or simply because they have never been calculated at higher
orders. In this case you should set the table identifier to zero which causes evdglap to
skip over the entry in the n× n splitting function matrix.

The evdglap routine cannot, like evolfg, transparently handle vfns evolution, simply
because it has no information about the flavour composition of the pdfs to be evolved.
Instead, it automatically restricts the evolution to a fixed number of flavours by, if
necessary, limiting the end point of the evolution to the next flavour threshold, cut, or
grid boundary above (below) µ2

0 in case of upward (downward) evolution.

In the vfns you thus have to chain yourself the evolutions in the different threshold
regions. Several features of the evdglap interface do facilitate such a chaining: after
the evolution the actual endpoint is passed via iqlim(2) and the values of the pdfs at
this endpoint via the start array. The number of flavours is passed via nf, but it is
pre-pended by a minus sign when you hit the limits of the µ2 grid, or cuts, indicating
that no further evolution is possible.

These features make the vfns chaining quite easy as is shown below by code for upward
evolution (for downward evolution set iqlim(2) ≤ 0, also inside the while loop).

iqlim(1) = iq0

iqlim(2) = 99999

call evdglap(w,idw,ida,idf,start,m,n,iqlim,nf,epsi)

do while(nf.gt.0)

iqlim(1) = iqlim(2)

iqlim(2) = 99999

start = start + discontinuity (code not shown)

call evdglap(w,idw,ida,idf,start,m,n,iqlim,nf,epsi)

enddo

This method of carrying the pdfs over the threshold via the start array causes a small
bias when you evolve on multiple grids. This is because the pdfs returned by evdglap at
the end of the evolution are a composite of the pdfs evolved on the individual sub-grids.

The bias is eliminated when you run evdglap in the so-called internal transfer mode
where the pdfs are, subgrid-by-subgrid, carried over the threshold internally. You can
select this mode by setting n negative. On entry, only the discontinuity should be passed
via the start array which, on exit, is set to zero by evdglap.

The vfns code now becomes (note that the first call to evdglap remains the same).

iqlim(1) = iq0

iqlim(2) = 99999

call evdglap(w,idw,ida,idf,start,m,+n,iqlim,nf,epsi)

74

do while(nf.gt.0)

iqlim(1) = iqlim(2)

iqlim(2) = 99999

start = discontinuity (code not shown)

call evdglap(w,idw,ida,idf,start,m,-n,iqlim,nf,epsi)

enddo

The bias is usually quite small (about a permille or less) but it is of course always better
to remove it simply by running evdglap in the internal transfer mode.

7.6 Pdf interpolation

In this section we describe routines to access the pdfs evolved with evdglap. Qcdnum
insists that these pdfs are evolved with the current parameters (fatal error otherwise).
If this is not the case, you may have to first activate the parameters via

call USEPARW (w, iset)

You can also copy the parameters to a local array or ask for the parameter key

call CPYPARW (w, *array, n, iset)

key = KEYPARW (w, iset)

as is described in Section 5.6 for parameters stored in the internal memory.

pdfij = EVPDFIJ (w, id, ix, iq, ichk)

Returns the value of a pdf at the grid point (ix,iq).

w Workspace, with pdfs previously evolved with evdglap.

id Pdf identifier in the global format (7.1). You can also access a (basis) pdf in
internal memory, provided that id is constructed with the function ipdftab.

ix, iq Grid point.

ichk Yes (1) or no (0) check that (ix, iq) is within the grid boundaries or cuts.

You can set iq negative to return at the thresholds (iqc,b,t) the pdf for the lower
number of flavours nf = (3, 4, 5) instead of for nf = (4, 5, 6). This allows you to view
discontinuities at the thresholds, if there are any. For instance,

disc = EvPdfij(w,id,ix,iqc,ichk) - EvPdfij(w,id,ix,-iqc,ichk)

To make the routine run faster in a loop, you can set ichk = -1 to skip the check on
the identifier id. However, you should always check the identifier on entry of the loop:

75

pdf(1) = EvPdfij(w, id, ix(1), iq(1), 1) !check id

do i = 2,n

pdf(i) = EvPdfij(w, id, ix(i), iq(i), -1) !do not check id

enddo

call EVPLIST (w, id, x, qmu2, *pdf, n, ichk)

Generate a list of interpolated pdfs.

w Workspace, with pdfs previously evolved with evdglap.

id Pdf identifier in the global format (7.1). You can also access a (basis) pdf in
internal memory, provided that id is constructed with the function ipdftab.

x, qmu2 Arrays, dimensioned to at least x(n) and qmu2(n) in the calling routine.

pdf Array, dimensioned to at least pdf(n) in the calling routine. On exit the array
is filled with the list of interpolated pdfs.

n Number of interpolation points.

ichk As above (without the option to set ichk = -1).

call EVTABLE (w, id, x, nx, q, nq, *table, ichk)

As above but now fill an nx × nq table of interpolated values. In the calling routine the
arrays must be dimensioned x(nx), q(nq) and table(nx,nq). This routine is about a
factor of two faster than evplist.

call EVPCOPY (w, idf, def, n, iset)

With this routine you can export 13 gluon and (anti)quark tables plus n additional
tables from the toolbox workspace to the qcdnum internal memory.42 Such an export
is useful because you can then use any routine that works with internal pdfs such as the
built-in interpolation routines or the structure function packages zmstf and hqstf.

For this export it is required that you supply the flavour composition of the input quark
densities so that qcdnum can transform them to the singlet/non-singlet basis (5.1).

In the description below, nf is the largest number of flavours encountered in the evdglap
evolution. You do not have to actually enter this number since it is known to qcdnum.

w Workspace, with pdfs previously evolved with evdglap.

idf Integer array, dimensioned to idf(0:12+n) in the calling routine. The gluon
identifier must be stored in idf(0), the 2nf quark identifiers in idf(i),
i = 1, . . . , 2nf and the extra n identifiers in idf(12+i). The identifiers should
be given in the global format (7.1) and all pdfs must be in the same table set.

42You can also use pdfext for this, but evpcopy is more convenient and also faster.

76

def Double precision array, dimensioned def(-6:6,12) in the calling routine.
In def(i,j) should be stored the contribution of flavour i, indexed as given
in (5.2), to the quark density j = 1, . . . , 2nf . The 2nf × 2nf submatrix of
(anti)quark coefficients must be invertible, see also evolfg in Section 5.7 and
the tutorial in Appendix F.5.

n The number of additional pdfs to be exported.

iset Pdf set identifier [5–24] to which the pdfs should be copied. If iset does exist
its contents are overwritten, provided that it can hold 13 + n pdfs (fatal error
if not).43 Otherwise the set is created, provided that there is enough space in
the qcdnum internal memory (fatal error if not).

The evolution parameters associated with the pdfs are also copied to internal memory.

7.7 Transformations

The routines in this section allow you to make pdf transformations from the sin-
glet/nonsinglet basis (5.1) to the flavour basis, and vice versa.

We can write an arbitrary pdf in two ways as

|f〉 =

nf∑
i=1

(αi|qi〉+ βi|q̄i〉) =

nf∑
i=1

(d+
i |e+

i 〉+ d−i |e−i 〉), (7.7)

where the first term on the right-hand side represents the pdf written on the flavour basis
and the second term that on the singlet/non-singlet basis. To translate the coefficients α
and β into d+ and d−, and vice versa, the routines efromqq and qqfrome are provided.

For convenience we show here again the indexing (5.3) of the flavour basis

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

t̄ b̄ c̄ s̄ ū d̄ g d u s c b t
, (7.8)

and the indexing (5.4) of the singlet/non-singlet basis

0 1 2 3 4 5 6 7 8 9 10 11 12

g qs e+
2 e+

3 e+
4 e+

5 e+
6 qv e−2 e−3 e−4 e−5 e−6

. (7.9)

call EFROMQQ (qvec, *evec, nf)

Transform the coefficients of a linear combination of quarks and anti-quarks from the
flavour basis to the singlet/non-singlet basis.

qvec Input array, dimensioned qvec(-6:6), filled with the coefficients α and β of a
linear combination of quarks and antiquarks, indexed according to (7.8).

evec Output array, dimensioned to evec(12), filled with the singlet/non-singlet co-
efficients d+ and d−, indexed according to (7.9).

nf Active number of flavours. This parameter is needed to construct the appropri-
ate 2nf × 2nf transformation matrix that acts on qvec(-nf:nf).

43You can call nptabs(iset) beforehand to check if the pdf set exists and has enough pdf tables.

77

call QQFROME (evec, *qvec, nf)

Transform the coefficients of a linear combination of basis vectors from the singlet/non-
singlet basis to the flavour basis. The arguments are as for efromqq.

7.8 Convolution Tools

With the convolution tools you can calculate convolution integrals like

x[f ⊗K](x) and x[fa ⊗ fb](x),

where f is a parton number density, andK is a convolution kernel; see Section 3.2 for how
convolution integrals are computed and where the factor x in front comes from. Such
convolutions are the building blocks to compute structure functions in deep inelastic
scattering, or parton luminosities in hadron-hadron scattering.

val = FCROSSK (w, idw, idum, idf, ix, iq)

Calculate the convolution x[f ⊗K](x) at a grid point in x and µ2.

w Toolbox workspace.

idw Weight table identifier in the global format (7.1). You can use a weight table
from internal memory, provided its identifier is constructed by a call to idspfun.

idum Not used.

idf Pdf identifier in the global format (7.1). You can use a pdf from internal mem-
ory, provided its identifier is constructed by a call to ipdftab. The input pdf
must have been evolved with the current (active) set of evolution parameters.

ix, iq Indices of an x-µ2 grid point.

val = FCROSSF (w, idw, idum, ida, idb, ix, iq)

Calculate the convolution x[fa ⊗ fb](x) at a grid point in x and µ2.

w Toolbox workspace.

idw Identifier of a weight table in w, previously filled by a call to makewx.

idum Not used.

ida, idb Pdf identifiers in the global format (7.1). You can use a pdf from internal
memory, provided its identifier is constructed by a call to ipdftab. The pdfs
must have been evolved with the current (active) set of evolution parameters.

ix, iq Indices of an x-µ2 grid point.

The convolution routines above can be used to build a structure function or a parton
luminosity at a grid point (ix,iq) in x and µ2. The idea is to pack this calculation into
a function stfun(ix,iq) which is then passed to the routine stfunxq that takes care
of the interpolation to any value of x and µ2.

78

call STFUNXQ (stfun, x, qmu2, stf, n, ichk)

Interpolate a function stfun(ix,iq) to a list of x and µ2 values. Note that any function
of the grid points ix and iq can be interpolated by this routine.

stfun Double precision function, declared external in the calling routine.

x, qmu2 List of interpolation points, dimensioned to at least n in the calling routine.

stf Contains, on exit, the list of interpolated results.

n Number of items in x, qmu2 and stf.

ichk If set to 0 the routine returns a null value if x or µ2 are outside the bound-
aries of the grid (or cuts); if set non-zero it will insist that all interpolation
points are inside the grid boundaries (or cuts).

Note that the interpolation is done in µ2 and not in Q2. Note also that stfunxq should
not be called in a loop over each interpolation point individually but must, instead, be
given the list of points. In this way, the loop is optimised internally leading to large
gains in speed (factor 10 or more, usually).

This scheme of calculating structure functions or parton luminosities is fairly straight-
forward and therefore suitable for prototyping and debugging. However, there is a
considerable amount of overhead so that it is recommended to ultimately move the
computation to a fast calculation scheme that is described in the next section. By this
you will gain at least an order of magnitude in speed.

7.9 Fast Convolution Engine

The convolution routines provided up to now are slow because there is quite a lot of
overhead when the calculation is repeated at more than one interpolation point. In this
section we describe a set of routines that does bulk calculations on selected points in
the x-µ2 grid. In this way, loops are internally optimised, redundant calculations are
eliminated, and user interface checks are reduced to a minimum. This usually leads to
large speed gains of more than an order of magnitude.

The engine works as follows. First, you have to pass a list of interpolation points in x
and µ2 so that the engine can construct an interpolation mesh. Next you should copy
pdfs onto the mesh in one or more scratch buffers. A set of fast routines then allows
you to operate on these buffers. The final result is accumulated in an end-buffer which
is passed to an interpolation routine that produces the list of interpolated structure
functions or parton luminosities (or whatever else you want to calculate with the engine).

One feature of the engine is that the calculations can be chained so that all kind of
convolution integrals can be computed, such as

x[f ⊗K](x), x[f ⊗Ka ⊗Kb](x), x[fa ⊗ fb](x), x[fa ⊗ fb ⊗K](x), etc.

In principle, the output buffer of any fast routine can serve as the input buffer of any
other fast routine. There is, however, a little complication related to the amount of

79

information stored in a buffer. For interpolation purposes, it is sufficient to store results
only at the mesh points; such a buffer is called sparse. A convolution routine, on the
other hand, does not only need the values at the mesh points xi, but also the values at
all points xj > xi. An input buffer with such a storage pattern is called dense; a dense
buffer is of course more expensive to generate than a sparse buffer. Usually you do not
have to worry about sparse and dense buffers, because qcdnum has reasonable defaults
for what kind of buffer is accepted as input, and what kind of buffer is generated on
output. You can always override the output default and force a routine to generate a
dense or a sparse buffer, as needed.

To guarantee internal consistency, the engine does not accept pdfs that were evolved
with other than the current (active) set of parameters nor does it accept a parameter
change after you have initialised (or cleared) the buffers. Thus if you want to activate
your favourite set of parameters (see Section 7.7), then this must be done before the call
to fastini or fastclr(0).

call FASTINI (x, qmu2, n, ichk)

Pass a list of interpolation points and, at the first call, generate the set of scratch buffers.
The routine will also link the engine to the current (active) set of evolution parameters.

x Array, dimensioned to at least n in the calling routine, filled with x values.

qmu2 As above, but for µ2 (not Q2).

n Number of entries in x and qmu2 (< 5000).

ichk If non-zero, fastini insists that all interpolation points are within the grid
boundaries or cuts.

By default, 10 scratch buffers44 (ibuf = 1–10) are generated at the first call (or cleared
if they exist) provided, of course, that there is enough space for the buffers in the
qcdnum internal memory (error message if not). The number of interpolation points is
limited to 5000 which means that longer lists have to be processed in batches of 5000.
Appendix F.6 of the toolbox tutorial and the example program longlist.f show a
compact while-loop that does this.

call FASTCLR (ibuf)

Clear a scratch buffer. Setting ibuf = 0 will clear all buffers and re-link the engine to
the current (active) set of evolution parameters.

call FASTINP (w, idf, coef, ibuf, iadd)

Copy a pdf from the toolbox workspace w or from internal memory into a scratch buffer.

w Workspace with pdfs previously evolved by evdglap.

44This number can be changed by setting mbf0 in qcdnum.inc.

80

idf Pdf identifier in the global format (7.1). You can also read a pdf from
internal memory, provided its identifier is constructed with ipdftab.

coef Array, dimensioned coef(3:6) in the calling routine, containing an nf-
dependent factor by which the pdf will be multiplied.

ibuf Output scratch buffer identifier [1–10].

iadd Store (0), add (1) or subtract (-1) the weighted pdf to ibuf.

By default, fastinp generates a dense buffer; a sparse buffer is generated when you
prefix ibuf with a minus sign.

call FastInp(w, coef, 1502, 1, 0) !1=dense buffer

call FastInp(w, coef, 1502, -1, 0) !1=sparse buffer

Repeated calls to this routine45 allow you to store nf-dependent linear combinations of
pdfs from the workspace or the internal memory.

Alternatively you can use the input routines fastepm, fastsns and fastsum below,
which do work only for pdfs in internal memory. You may find them quite handy but
note that everything you can do with these routines, you can also do with fastinp.

call FASTEPM (idum, idf, ibuf)

Copy the gluon density or one of the basis pdfs |e±〉 to a scratch buffer.

idum Not used

idf Global pdf identifier constructed with ipdftab.

ibuf Output scratch buffer identifier [1–10].

By default, fastepm generates a dense buffer; a sparse buffer is generated when you
prefix ibuf with a minus sign.

call FASTSNS (iset, def, isel, ibuf)

Decompose a given linear combination of quarks and anti-quarks into singlet and non-
singlet components and copy a specific component to a scratch buffer.

iset Identifier of a pdf set in internal memory [1–24].

def Input array, dimensioned to def(-6:6) and filled with the coefficients of a
linear combination of quarks and anti-quarks, indexed according to (7.8).
The value of def(0) corresponds to the gluon and is ignored by this routine.

isel Selection flag [0–7], see below.

ibuf Output scratch buffer identifier [1–10].

45Note that once you have selected a sparse output in one of these calls, the output buffer will remain
flagged as sparse until you start a new accumulation by setting iadd = 0.

81

The isel flag selects the gluon (0), the singlet component qs (1), the non-singlet com-
ponent q+

ns (2), the valence component qv (3), the non-singlet component q−ns (4), the
sum qv + q−ns (5), all non-singlets qv + q−ns + q+

ns (6) or all quarks (7).

It is important to note that the gluon and singlet pdfs transferred by fastsns are
weighted by the value of def averaged over the number of active flavours nf , with
def(0) not included in the average. Take for example the charge-squared weighted sum
of quarks and antiquarks

xq =
∑
nf

e2
i (xqi + xq̄i),

defined by def(i) = 4/9 and 1/9 for up-type and down-type quarks, respectively. Then
for isel = 0 or 1 the fastsns routine will import the components 〈e2〉xg or 〈e2〉xqs into
the buffer, with 〈e2〉 = (2/9, 5/18, 11/45, 5/18) for nf = (3, 4, 5, 6). Setting isel = 0

or 1 in fastsns is thus not the same as calling fastepm for the gluon or the singlet.

By default, fastsns generates a dense buffer; a sparse buffer is generated when you
prefix ibuf with a minus sign.

call FASTSUM (iset, coef, ibuf)

Copy a linear combination of basis pdfs |e±〉 to a scratch buffer.

iset Identifier of a pdf set in internal memory [1–24].

coef Array of coefficients dimensioned coef(0:12,3:6) in the calling routine.

ibuf Output scratch buffer identifier [1–10].

The array coef(i,nf) is indexed according to (7.9). Here is code that fills coef by
transforming a set of quark coefficients from flavour space to singlet/non-singlet space:

dimension qvec(-6:6), coef(0:12,3:6)

do nf = 3,6

coef(0,nf) = 0.D0 !no gluon, thank you

call efromqq(qvec, coef(1,nf), nf) !quark coefficients

enddo

By masking-out coefficients, you can copy the singlet component, or various combina-
tions of non-singlets; this is exactly what fastsns does. To copy the gluon distribution,
you must set all coefficients to zero, except coef(0,nf).

By default, fastsum generates a dense buffer; a sparse buffer is generated when you
prefix ibuf with a minus sign.

call FASTFXK (w, idw, ibuf1, ibuf2)

Calculate the convolution x[f ⊗K](x) at all selected grid points.

w Workspace, previously filled with weights.

82

idw Array of weight table identifiers declared idw(4) in the calling routine.
Identifiers must be given in the global format (7.1) and cannot refer to
those in internal memory. See below for what should be stored in idw(i).

ibuf1 Input buffer, previously filled by fastinp, fastepm, fastsns or fastsum.

ibuf2 Output buffer with ibuf2 6= ibuf1.

You can either convolute with a given weight table or with a perturbative expansion of
weight tables, depending on what you put in the array idw.

• To convolute with a given weight table, set idw(1) to the identifier of that weight
table and set idw(2), (3) and (4) to zero.

• To convolute with a perturbative expansion in αs,

– Store the (LO,NLO,NNLO) weight table identifiers in idw(1), idw(2) and
idw(3). Set the identifier to zero if no such table exists (e.g. for FL at LO);

– Declare in idw(4) the leading power of αs, that is, multiply (LO,NLO,NNLO)
by (1, αs, α

2
s) if idw(4) = 0 and by (αs, α

2
s , α

3
s) if idw(4) = 1.

Note that the expansion is summed up to the current perturbative order. Thus
you do not have to specify the identifiers in idw(2) and (3) when you run in LO.

The routine only accepts a dense buffer as input (otherwise fatal error) and will, by
default, generate a sparse buffer as output. If you prefix ibuf2 with a minus sign, the
output buffer will be dense. The output table can then serve as an input to another
convolution so that you can calculate multiple convolutions in a chain. For example,46

call fastSum(1, coef, 1) ! 1 = f

call fastFxK(w, idK1, 1, -2) ! 2 = f * K1 (dense)

call fastFxK(w, idK2, 2, 3) ! 3 = f * K1 * K2 (sparse)

call FASTFXF (w, idx, ibuf1, ibuf2, ibuf3)

Calculate the convolution x[fa ⊗ fb](x) at all selected grid points.

w Workspace, previously filled with weights.

idx Identifier of a weight table, previously filled by a call to makewtx.

ibuf1, 2 Input buffers, filled with pdfs. It is allowed to have ibuf1 = ibuf2.

ibuf3 Output buffer with ibuf3 6= ibuf1 or ibuf2.

The routine accepts only dense buffers as input, and generates a sparse buffer as output,
unless the ibuf2 is prefixed by a minus sign, thus,

46It is more efficient, however, to first calculate with wcrossw a weight table for K3 = K1⊗K2, and
use that table to convolute f with K3.

83

call fastSum(1, coefa, 1) ! 1 = fa

call fastSum(1, coefb, 2) ! 2 = fb

call fastFxF(w, idwX, 1, 2, -3) ! 3 = fa * fb (dense)

call fastFxK(w, idwK, 3, 4) ! 4 = fa * fb * K (sparse)

call FASTKIN (ibuf, fun)

Multiply the contents of a buffer by a kinematic factor.

ibuf Identifier of the input buffer.

fun Double precision function, declared external in the calling routine, that
should return the kinematic factor.

The routine fastkin loops over the selected grid points and passes these to fun via the
argument list, together with the current number of flavors and a threshold indicator:

double precision function fun (ix, iq, nf, ithresh)

ix,iq Grid point indices.

nf Number of flavors at iq. This number is bi-valued at the thresholds so that
at the charm threshold, for instance, nf can be either 3 or 4.47

ithresh Set to 0 if iq is not at a threshold and to +1 (-1) if iq is at a threshold with
the upper (lower) number of flavours. This variable can be used to take
NNLO discontinuities into account, as is shown in the example function
below which returns αs/2π as the kinematic factor.

double precision function fun(ix,iq,nf,ithresh)

..

if(ithresh.ge.0) then

fun = altabn(0, iq,1,ierr) !alfas/2pi with discontinuity

else

fun = altabn(0,-iq,1,ierr) !without discontinuity

endif

..

call FASTCPY (ibuf1, ibuf2, iadd)

Copy or accumulate a result in an output buffer.

ibuf1 Identifier of the input buffer.

ibuf2 Identifier of the output buffer with ibuf2 6= ibuf1.

iadd Store (0), add (1) or subtract (-1) the result to ibuf2.

The type of output buffer (sparse or dense) is the same as that of the input buffer,
except that once you have used a sparse input buffer, the output buffer is flagged as
sparse and will remain so until you set iadd = 0 to start a new accumulation in ibuf2.

47You may wonder when qcdnum returns the value 3, and when the value 4. This depends on the
interpolation point µ2 to which iq is associated: if µ2 is below (above) µ2

c , then nf = 3 (4).

84

call FASTFXQ (ibuf, *f, n)

Interpolate the contents of ibuf to the list of x and µ2 values that was previously passed
to qcdnum by the call to fastini.

ibuf Identifier of an input buffer.

f Array dimensioned to at least n in the calling routine that will contain, on
exit, the interpolated values.

n Number of interpolations requested.

The routine works through the list of interpolation points given in the call to fastini

and exits when it reaches the end of that list or when the number of interpolations is
equal to n, whatever happens first. Best is to have a sparse input buffer because a dense
buffer, although allowed, contains a lot of mesh points that are not used by fastfxq.

The fast convolution engine is designed for structure function, cross-section or parton
luminosity calculations but can also be used for simple tasks like efficient pdf inter-
polation, as is illustrated by the following code (see also the tutorial Appendix F.6).

dimension xx(150), qq(150), pdf(150)

idg = ipdftab(iset,0) !gluon in internal memory

call fastini(xx,qq,150,ichk) !pass list of interpolation points

call fastepm(idum,idg,-1) !copy gluon to buffer #1 (sparse!)

call fastfxq(1,pdf,150) !interpolate gluon

7.10 Error Messages in Add-On Packages

Qcdnum error messages refer to the qcdnum routine and not to the calling routine.
This may become confusing for the user of an add-on package who expects error messages
to be issued by the package routines and not by what is inside.

One solution would be that a package catches errors before qcdnum does, but this would
duplicate a good checking mechanism which is already in place. An easier solution is to
pass a string to qcdnum which contains the name of the package routine so that it will
be printed together with the error message. For this, the routines setumsg and clrumsg

are provided. For instance one of the first calls in the zmfillw routine of the zmstf
package is

call setUmsg(’ZMFILLW’)

so that, upon error, the user gets additional information:

Error in MAKETAB (W, NW, ITYPES, NP, NEW, ISET, NWDS) ---> STOP

No x-grid available

Please call GXMAKE

85

Error was detected in a call to ZMFILLW

The last call in zmfillw is

call clrUmsg

that wipes the additional message. This is important because downstream qcdnum
errors would otherwise appear to have always come from zmfillw.

8 Acknowledgements

I am of course indebted to the original authors of qcdnum, in particular to M. Virchaux
who introduced me to the program in 1991.48 I thank M. Cooper-Sarkar for using
preliminary versions of qcdnum17 in her QCD fits and providing important feedback
during the development phase of the first release.

I greatly benefited from the many clarifying discussions with A. Vogt and thank him
for the code of the NNLO splitting and coefficient functions. I am grateful to him and
to M. Cooper-Sarkar, E. Laenen and R. Thorne for comments on the manuscript.

The C++ interface would not exist without the help of V. Bertone who wrote the first
version of the interface and got it going.

This work is part of the research programme of the Foundation for Fundamental Re-
search on Matter (FOM), which is financially supported by the Netherlands Organisation
for Scientific Research (NWO).

48It was sad to hear that Marc Virchaux passed away in November 2004.

86

A Space-like and time-like singlet evolution

In this Appendix we specify which splitting functions from ref. [14] enter in the space-like
and time-like singlet evolution. For this purpose (2.9) is written as

∂V

∂ lnµ2
= M ⊗ V with V =

(
F
G

)
and M =

(
Pqq Pqg

Pgq Pgg

)
.

For space-like evolution F and G are the singlet and gluon pdfs while for time-like evo-
lution they stand for the corresponding fragmentation functions. Here we are concerned
with the expansion of the splitting functions up to NLO:

M = as M
(0) + a2

s M
(1) with as ≡

αs

2π
.

The following four functions are defined in [14]

pFF = (1 + x2)/(1− x) pGF = x2 + (1− x)2

pFG = [1 + (1− x)2]/x pGG = 1/(1− x) + 1/x− 2 + x− x2.

The four LO splitting functions are then written as

P
(0)
FF = CF [pFF]+ P

(0)
GF = 2TRnf pGF

P
(0)
FG = CF pFG P

(0)
GG = 2CGx

−1[xpGG]+ − 2
3
TRnf δ(1− x)

with the colour factors and the regularisation prescription given by

CF = 4
3
, CG = 3, TR = 1

2
and [f(x)]+ ≡ f(x)− δ(1− x)

∫ 1

0

f(y)dy.

The NLO splitting functions for space-like (S) and time-like (T) processes are

P
(1,U)
FF = P̂

(1,U)
FF − δ(1− x)

∫ 1

0

dx x
[
P̂

(1,T)
FF + P̂

(1,T)
FG

]
P

(1,U)
GF = P̂

(1,U)
GF

P
(1,U)
FG = P̂

(1,U)
FG

P
(1,U)
GG = P̂

(1,U)
GG − δ(1− x)

∫ 1

0

dx x
[
P̂

(1,T)
GG + P̂

(1,T)
GF

]
,

where U = {S,T}. The functions P̂
(1,U)
AB are given in Eqs. (11) and (12) of [14].

The space-like splitting function matrices in qcdnum are

M (0,S) =

P (0)
FF P

(0)
GF

P
(0)
FG P

(0)
GG

 M (1,S) =

P (1,S)
FF P

(1,S)
GF

P
(1,S)
FG P

(1,S)
GG

 .

The LO time-like matrix is the transpose of the space-like matrix [16]. The NLO matrix
is also transposed [33]. Accounting for factors 2nf , we have

M (0,T) =

 P
(0)
FF 2nfP

(0)
FG

1
2nf
P

(0)
GF P

(0)
GG

 M (1,T) =

 P
(1,T)
FF 2nfP

(1,T)
FG

1
2nf
P

(1,T)
GF P

(1,T)
GG

 .

87

B Singularities

In this appendix we denote by f(x) a parton momentum density and not a number
density. In terms of f the convolution integrals in the evolution equations read

I(x) =

∫ 1

x

dz P (z) f
(x
z

)
. (B.1)

The splitting functions of the LO splitting matrix P
(0)
ij in (2.14) can be written as

P (0)
qq (x) =

4

3

[
1 + x2

(1− x)+

+
3

2
δ(1− x)

]
P (0)

qg (x) = 2nf
1

2

[
x2 + (1− x)2

]
P (0)

gq (x) =
4

3

[
1 + (1− x)2

x

]
P (0)

gg (x) = 6

[
x

(1− x)+

+
1− x
x

+ x(1− x) +

(
11

12
− nf

18

)
δ(1− x)

]
. (B.2)

The ‘+’ prescription in (B.2) is defined by

[f(x)]+ = f(x)− δ(1− x)

∫ 1

0

f(z)dz (B.3)

so that ∫ 1

x

f(z)[g(z)]+ dz =

∫ 1

x

[f(z)− f(1)] g(z) dz − f(1)

∫ x

0

g(z) dz. (B.4)

For reference we give the expressions for Iqq and Igg obtained from (B.2) and (B.3)

I(0)
qq (x) =

4

3

∫ 1

x

dz
1

1− z

[
(1 + z2)f

(x
z

)
− 2f(x)

]
+

4

3
f(x)

[
3

2
+ 2 ln(1− x)

]
I(0)

gg (x) = 6

∫ 1

x

dz
1

1− z

[
zf
(x
z

)
− f(x)

]
+ 6

∫ 1

x

dz

[
1− z
z

+ z(1− z)

]
f
(x
z

)
+

6 f(x)

[
ln(1− x) +

11

12
− nf

18

]
. (B.5)

To write down a generic expression we decompose a splitting (or coefficient) function
into a regular part (A), singular part (B), product of the two (RS) and a delta function

P (x) = A(x) + [B(x)]+ +R(x)[S(x)]+ +K(x)δ(1− x) (B.6)

where, of course, not all terms have to be present. The following functions are defined
in the logarithmic scaling variable y = − ln(x):

h(y) = f(e−y), Q(y) = e−yP (e−y), Ā(y) = e−yA(e−y) (B.7)

88

with similar definitions for B̄ and S̄. Furthermore, R̂(y) = R(e−y) and K̂(y) = K(e−y)
without a factor e−y in front. With these definitions (B.1) can be written as

I(y) =

∫ y

0

du Q(u) h(y − u) = I1(y) + I2(y) + I3(y) + I4(y) with

I1(y) =

∫ y

0

du Ā(u) h(y − u);

I2(y) =

∫ y

0

du B̄(u) [h(y − u)− h(y)]− h(y)

∫ x

0

dz B(z);

I3(y) =

∫ y

0

du S̄(u)
[
R̂(u)h(y − u)− R̂(0)h(y)

]
− R̂(0)h(y)

∫ x

0

dz S(z);

I4(y) = K̂(y)h(y), (B.8)

where the last integrals of I2 and I3 are still expressed in the variable x = exp(−y) to
avoid integration extending to infinity in our expressions. Note that we are free to swap
the arguments u and y − u in (B.8).

The four integrals in (B.8) are tabulated by calls to the toolbox weight routines makewta,
makewtb, makewrs and makewtd, respectively. In these calls the functions (B.6) are
passed as arguments; the transformations (B.7) are done internally in qcdnum.

89

C Triangular Systems in the DGLAP Evolution

For the non-singlet evolution we have to solve the equation (see Section 3.4)

V a = b. (C.1)

The matrix V is a lower triangular Toeplitz matrix, that is, a matrix with the ele-
ments Vij depending only on the difference i− j as is shown in the 4×4 example (3.15).
This matrix is uniquely determined by storing the first column in a one-dimensional
vector v so that Vij = vi−j+1 for i ≥ j, and zero otherwise. Eq. (C.1) is, like any other
lower triangular system, iteratively solved by forward substitution

a1 = b1/v1

ai =
1

v1

[
bi −

i−1∑
j=1

v(i−j+1) aj

]
for i ≥ 2. (C.2)

There is no recursion relation between ai−1 and ai so that in each iteration the sums must
be accumulated, giving an operation count of n(n+ 1)/2 for a system of n equations.
This is as expensive (or cheap) as multiplying the triangular matrix by a vector.

The substitution algorithm can be extended to solve the coupled singlet-gluon equation(
V qq V qg

V gq V gg

)(
f
g

)
≡
(
a b
c d

)(
f
g

)
=

(
r
s

)
, (C.3)

where a is a short-hand notation for V qq, etc. These matrices are all lower triangular
n× n Toeplitz matrices. Writing out this equation in components it is easy to see that
for the first elements f1 and g1 we have to solve the 2× 2 matrix equation(

a1 b1

c1 d1

)(
f1

g1

)
=

(
r1

s1

)
→
(
f1

g1

)
=

1

a1d1 − b1c1

(
d1 −b1

−c1 a1

)(
r1

s1

)
. (C.4)

For i ≥ 2 we have to accumulate the sums

Ri = ri −
i−1∑
j=1

[
a(i+1−j) fj + b(i+1−j) gj

]
Si = si −

i−1∑
j=1

[
c(i+1−j) fj + d(i+1−j) gj

]
(C.5)

and solve, for each i, the equations(
a1 b1

c1 d1

)(
fi
gi

)
=

(
Ri

Si

)
(C.6)

The operation count of this algorithm is four times that of (C.2), plus some little over-
head to solve the 2× 2 matrix equations for each i. It is straight-forward to generalise
the algorithm to n× n coupled equations (Section 7.5).

90

D Zero Mass Structure Functions

D.1 General Formalism

The zero-mass structure functions F2(x,Q2), FL(x,Q2) and xF3(x,Q2) in un-polarised
deep inelastic scattering are calculated from (3.21) with χ = x. The Wilson coefficients
are functions of x (and sometimes nf) only. We set, for the moment, the physical scale Q2

equal to the factorisation and renormalisation scale µ2 and write the singlet/gluon con-
tribution to F2 and FL as (there is no contribution to xF3 since this structure function
is a pure non-singlet)

1

x
F (s)
i (x,Q2) = [Ci,s ⊗ qs](x, µ

2) + [Ci,g ⊗ g](x, µ2) i = 2,L. (D.1)

Likewise, non-singlet contributions to the structure functions are given by

1

x
F (ns)
i (x,Q2) = [Ci,ns ⊗ qns](x, µ

2) i = 2,L, 3 (D.2)

where the label ‘ns’ stands for the non-singlet indices ‘+’, ‘−’ and ‘v’ as defined by (2.11).
To be precise on notation: F2 = F2, FL = FL and F3 = xF3 in (D.1) and (D.2).
A structure function is calculated by adding the singlet/gluon and non-singlet parts,
weighted by the appropriate combination of electroweak couplings; we refer to [32] for
how to compute neutral and charged current cross sections and structure functions in
deep inelastic charged lepton and neutrino scattering.

Like the splitting functions, the coefficient functions are expanded in powers of αs,

CN`LO
i,j =

∑̀
k=0

aks C
(k)
i,j i = 2,L, 3 j = g, s,+,−, v (D.3)

where ` = (0, 1, 2) denotes (LO,NLO,NNLO) and as = αs/2π. The LO coefficient
functions are either zero or trivial delta functions:

C
(0)
2,g = 0 C

(0)
2,s = δ(1− x) C

(0)
2,ns = δ(1− x)

C
(0)
L,g = 0 C

(0)
L,s = 0 C

(0)
L,ns = 0

C
(0)
3,g = 0 C

(0)
3,s = 0 C

(0)
3,ns = δ(1− x).

(D.4)

The NLO coefficient functions can be found in [10]. For those at NNLO we refer to [34,
35, 36, 37] and the parameterisations given in [38] and [39].

The LO coefficient functions for FL are zero so that the longitudinal structure function
vanishes at LO. An alternative, which we call F ′L, is calculated from the expansion

CN`LO
L,j =

`+1∑
k=1

aks C
(k)
L,j . (D.5)

In this way, C
(1)
L,j is used already at LO (giving a non-zero FL) and C

(2)
L,j at NLO. At

NNLO the 3-loop coefficient function C
(3)
L,j is taken from [40]. As stated in [40], this

3-loop calculation applies only to electromagnetic current exchange so that Z0 or W±

contributions to F ′L at NNLO are, at present, not available.

91

D.2 Renormalisation and Factorisation Scale Dependence

To calculate the renormalisation scale dependence (µ2
R 6= µ2

F) we replace, in the expan-
sion of the coefficient functions, the powers of as by the Taylor series given in (2.17). If
the expansion (D.3) is used, the truncation of the right-hand side of (2.17) is to order as

in NLO and a2
s in NNLO. If, for F ′L, the expansion (D.5) is used, the truncation is to

order as in LO, a2
s in NLO and a3

s in NNLO, like for the splitting functions.

To calculate the factorisation scale dependence (Q2 6= µ2
F), the coefficient functions

in (D.3) and (D.5) are replaced by [38, 39]

C
(0)
i,j → C

(0)
i,j and C

(k)
i,j → C

(k)
i,j +

k∑
m=1

C
(k,m)
i,j LmF k ≥ 1, (D.6)

where LF = ln(Q2/µ2
F) and µ2

F = µ2
R. To write compact expressions for the C

(k,m)
i,j ,

we introduce the following vector notation. In the non-singlet sector we have a one-
dimensional vector Ci = Ci,ns and a 1× 1 matrix P = Pns. In the singlet/gluon sector
we have a 2-dimensional row-vector and a 2× 2 matrix that are given by

Ci = (Ci,s Ci,g) and P =

(
Pqq Pqg

Pgq Pgg

)
.

In this vector notation, the functions C
(k,m)
i,j in (D.6) are written as

C
(1,1)
i = C

(0)
i ⊗ P (0)

C
(2,1)
i = C

(0)
i ⊗ P (1) +C

(1)
i ⊗

[
P (0) − β0 I

]
C

(2,2)
i =

1

2
C

(1,1)
i ⊗

[
P (0) − β0 I

]
C

(3,1)
i = C

(0)
i ⊗ P (2) +C

(1)
i ⊗

[
P (1) − β1 I

]
+C

(2)
i ⊗

[
P (0) − 2β0 I

]
C

(3,2)
i =

1

2

{
C

(1,1)
i ⊗

[
P (1) − β1 I

]
+C

(2,1)
i ⊗

[
P (0) − 2β0 I

]}
C

(3,3)
i =

1

3
C

(2,2)
i ⊗

[
P (0) − 2β0 I

]
. (D.7)

For F2, FL and xF3, the coefficients are calculated up to C
(2,2)
i . For F ′L, on the other

hand, all coefficients in (D.7) are computed. Note, however, that quite some convolutions
are trivial because the LO coefficient functions are either zero or δ-functions, see (D.4).

As mentioned above, the expression (D.6) applies only when µ2
F = µ2

R. It is therefore
not possible to vary both scales µ2

R and Q2 at the same time.

D.3 The zmstf Package

The zmstf package is a qcdnum add-on with routines that calculate the structure
functions F2, FL and xF3 in un-polarised deep inelastic scattering. The structure func-
tions are computed as a convolution of the parton densities with zero-mass coefficient
functions, using the fast convolution engine described in Section 7.9.

92

Qcdnum insists that the pdfs used for the structure function calculation are evolved
with the current (active) set of evolution parameters, otherwise a fatal error condition
is raised. If this happens you must first activate the parameters of the pdfs by a call
to usepar(iset), as is described in Section 5.6.

The list of subroutines is given in Table 5. Note that error messages are, in most

Table 5 – Subroutine and function calls in zmstf.

Subroutine or function Description
ZMWORDS (*ntotal, *nused) Words available, used
ZMFILLW (*nused) Fill weight tables
ZMDUMPW (lun, ’filename’) Dump weight tables
ZMREADW (lun, ’filename’, *nused, *ierr) Read weight tables
ZMDEFQ2 (a, b) Define Q2

ZMABVAL (*a, *b) Retrieve a and b coefficients
ZMQFRMU (qmu2) Convert µ2

F to Q2

ZMUFRMQ (Q2) Convert Q2 to µ2
F

ZSWITCH (iset) Switch pdf set
ZMSTFUN (istf, def, x, Q2, *f, n, ichk) Structure functions
Output arguments are prefixed with an asterisk (*).

cases, issued by the underlying qcdnum routines and not by the zmstf routine itself.
However, the calling zmstf routine is mentioned in the error message so that you know
where it came from.

call ZMWORDS (*ntotal, *nused)

ntotal Number of words available in the zmstf workspace (nzmstor in zmstf.inc).

nused Number of words used (set to 0 before the call to zmfillw or zmreadw).

call ZMFILLW (*nused)

Fill the weight tables. The tables are calculated for all flavours 3 ≤ nf ≤ 6 and for all
orders LO, NLO, NNLO. On exit, the number of words occupied by the workspace is
returned in nused. If you get an error message that the internal workspace is too small
to contain the weight tables, you should increase the value of the parameter nzmstor in
the include file zmstf.inc and recompile zmstf.

This routine (or zmreadw below) should be called after an x-µ2 grid is defined in qcdnum
and before the first call to zmstfun. The routine also needs the splitting function weight
tables so that fillwt or readwt must have been called before (fatal error if not).

93

call ZMDUMPW (lun, ’filename’)

Dump the weights in memory via logical unit number lun to a disk file. The dump is
un-formatted so that the weight file cannot be exchanged across machines.

call ZMREADW (lun, ’filename’, *nused, *ierr)

Read weights from a disk file via logical unit number lun. On exit, nused contains the
number of words read into the workspace (fatal error if not enough space, see above)
and the flag ierr is set as follows.

0 Weights are successfully read in.

1 Read error or input file does not exist.

2 Incompatible qcdnum version.

3 Incompatible zmstf version.

4 Incompatible x-µ2 grid definition.

These errors will not generate a program abort so that one should check the value
of ierr, and take the appropriate action if it is non-zero.

call ZMDEFQ2 (a, b)

Define the relation between the factorisation scale µ2
F and Q2

Q2 = aµ2
F + b.

The Q2 scale can only be varied when the renormalisation and factorisation scales are
set equal in qcdnum. The default setting is a = 1 and b = 0. The ranges are limited
to 0.1 ≤ a ≤ 10 and -100 ≤ b ≤ 100.

A call to zmabval(a,b) reads the coefficients back from memory. To convert between
the scales use:

Q2 = zmqfrmu(qmu2)

qmu2 = zmufrmq(Q2)

call ZSWITCH (iset)

By default, the structure functions are calculated from the un-polarised parton densities,
evolved with qcdnum (iset = 1). With this routine you can switch to the custom
evolution (4), or to one of the external pdf sets (5–24). Switching to polarised pdfs
(2) or to fragmentation functions (3) does not make sense and will produce an error
message.

94

call ZMSTFUN (istf, def, x, Q2, *f, n, ichk)

Calculate a structure function for a linear combination of parton densities.

istf Structure function index (1,2,3,4) = (FL, F2, xF3, F
′
L).

def(-6:6) Coefficients of the quark linear combination for which the structure func-
tion is to be calculated. The indexing of def is given in (5.2).

x, Q2 Input arrays containing a list of x and Q2 (not µ2) values.

f Output array containing the list of structure functions.

n Number of items in x, Q2 and f.

ichk If set to zero, zmstfun will return a null value when x or µ2 are outside
the grid boundaries; otherwise you will get a fatal error message. A µ2

point that is close or below the QCD scale Λ2 is considered to be outside
the grid boundary.

To calculate a structure function for more than one interpolation point, it is recom-
mended to not execute zmstfun in a loop but to pass the entire list of interpolation
points in a single call. The loop is then internally optimised for greater speed.

Another way to calculate structure functions is by calling the routine zmslowf, with
the same argument list as zmstfun. This routine was used for prototyping and runs
quite slow but provides the possibility to calculate the quark and gluon contributions
separately, order by order. This is achieved by setting ichk to one of the values given
below; a positive (negative) value switches the boundary check on (off).

Contribution LO NLO NNLO
Quark and gluon ±101 ±102 ±103
Quark only ±201 ±202 ±203
Gluon only ±301 ±302 ±303

95

E Heavy Quark Structure Functions

E.1 General Formalism

A NLO calculation of the heavy quark contributions to the F2 and FL structure functions
in deep inelastic charged lepton-proton scattering is given in [17]. Only electromagnetic
exchange contributions are taken into account. In this calculation, a heavy flavour h
is not taken to be a constituent of the incoming proton but is, instead, assumed to be
exclusively produced in the hard scattering process. Quarks with pole mass m < mh are
taken to be mass-less so that the input light quark densities should have been evolved
in the ffns with nf = (3, 4, 5) for h = (c, b, t) [41].

A heavy flavour contribution to F2 or FL is calculated from

F h
k (x,Q2) =

αs
2π

{
e2
h g ⊗ C

(0)
k,g +

αs
2π

(
e2
h g ⊗ C

(1)
k,g + e2

h qs ⊗ C(1)
k,q + qp ⊗D(1)

k,q

)}
, (E.1)

where eh is the charge of the heavy quark (in units of the positron charge), g is the
gluon density, qs is the singlet density and

qp =

nf∑
i=1

e2
i (qi + q̄i)

is the charge-weighted proton quark distribution for nf light flavours. The first term
in (E.1) is the LO contribution from the photon-gluon fusion process γ∗g → hh̄. The
last three terms correspond to the NLO sub-process γ∗g → hh̄g and γ∗q → hh̄q.49 For
the heavy quark coefficient functions C and D in (E.1) we refer to [17].50

In terms of a number density f(x, µ2), the convolution integrals in (E.1) are defined by

f ⊗ C =

∫ 1

ax

dz

z
zf(z, µ2) C(x/z,Q2, µ2,m2

h) (E.2)

where a = 1+4m2
h/Q

2 and µ2 is the factorisation (equals renormalisation) scale which is
usually set to µ2 = Q2 or µ2 = Q2+4m2

h. The kinematic domain where the heavy quarks
contribute is restricted by the requirement that the square of the γ∗p centre of mass
energy must be sufficient to produce the hh̄ pair: W 2 = M2 +Q2(1−x)/x ≥M2 + 4m2

h

so that the lower integration limit ax ≤ 1 in (E.2). It turns out that the dependence of
the coefficient functions on the relation between Q2 and µ2 cannot be factorised so that
each setting of the scale parameters needs its own set of weight tables. To calculate the
renormalisation scale dependence, the powers of as = αs/2π in (E.1) are replaced by the
Fourier expansion (2.17), truncated to as in LO, and to a2

s in NLO. Note that you can
vary either µ2

R or Q2 with respect to µ2
F, but not both at the same time.

49In the LO and the first two NLO terms the virtual photon couples to the heavy quark, hence the
factor e2h in (E.1). The last NLO term describes the process where the virtual photon couples to a light
quark which subsequently branches into a hh̄ pair via an intermediate gluon: hence the appearance of
the charge weighted sum, qp, of light quark distributions.

50Some of these coefficient functions are given as interpolation tables (taken from code provided by
S. Riemersma) since they are too complex to be cast into analytic form. Note that in [17] the coefficient
functions are convoluted with parton momentum densities and not with number densities [41].

96

The convolution integral (E.2) is not of the general form (3.21): (i) the factor x in front
is missing; (ii) the pdf is xf(x) and not f(x) and (iii) the argument of C is x/z and
not χ/z. This mismatch is cured by presenting to qcdnum the modified kernel

Cmodified(χ, µ2, Q2,m2
h) ≡

a

χ
Cpublished

(χ
a
, µ2, Q2,m2

h

)
, with χ ≡ ax.

To make the heavy quark calculation available in qcdnum17 (as it was in qcdnum16)
we provide the add-on package hqstf described below.

E.2 The hqstf Package

The hqstf package calculates up to NLO the heavy flavour contributions to the F2 or
FL structure functions from pdfs evolved in the ffns scheme with nf light flavours. The
list of subroutines is given in Table 6. We will only describe here the routines hqfillw

Table 6 – Subroutine and function calls in hqstf.

Subroutine or function Description
HQWORDS (*ntotal, *nused) Words available, used
HQFILLW (istf, qmass, aq, bq, *nused) Fill weight tables
HQDUMPW (lun, ’filename’) Dump weight tables
HQREADW (lun, ’filename’, *nused, *ierr) Read weight tables
HQPARMS (*qmass, *aq, *bq) Retrieve parameters
HQQFRMU (qmu2) Convert µ2

F to Q2

HQMUFRQ (Q2) Convert Q2 to µ2
F

HSWITCH (iset) Switch pdf set
HQSTFUN (istf, icbt, def, x, Q2, *f, n, ichk) Structure functions
Output arguments are prefixed with an asterisk (*).

and hqstfun, the other ones being similar to those in the zmstf package.

call HQFILLW (istf, qmass, aq, bq, *nused)

Fill the weight tables. To be called before anything else.

istf Select structure function: 1 = FL, 2 = F2 and 3 = both.

qmass(3) Input array with the c, b, t quark masses in GeV. If a quark mass is set to
mh < 1 GeV, no tables will be generated for that quark.

aq, bq Defines the relation Q2 = aµ2
F + b.

nused Gives, on exit, the number of words used in the workspace.

You will get a fatal error if the workspace is not large enough to hold all tables. In that
case you can increase the value of nhqstor in the include file hqstf.inc and recompile
hqstf. The values of the mass and scale parameters can be retrieved at any time after
the call to hqfillw (or hqreadw) by a call to hqparms(qmass,aq,bq).

97

call HQSTFUN (istf, icbt, def, x, Q2, *f, n, ichk)

Calculate the heavy quark contribution to a structure function.

istf Calculate FL (1) or F2 (2).

icbt Select contribution from charm (1), bottom (2) or top (3).

def(-6:6) Coefficients of the quark linear combination for which the structure func-
tion is to be calculated. The indexing of def is given in (7.8).

x, Q2 Input arrays containing a list of x and Q2 (not µ2) values.

f Output array containing the list of structure functions.

n Number of items in x, Q2 and f.

ichk If set to zero, hqstfun will return a null value when x or µ2 are outside
the grid boundaries;51 otherwise you will get a fatal error message.

The routine checks that for icbt = (1,2,3) = (c,b,t) the pdfs were evolved in the ffns
with nf = (3, 4, 5) and issues an error message if that is not the case. To relax the check
you can prefix icbt by a minus sign: both the ffns and the mfns are then allowed
with any number of fixed flavours. The vfns does not make sense and is not allowed.

Here is a snippet of code that, in combination with zmstf, calculates the d,u,s contri-
bution, the charm contribution and the total F2 (neglecting bottom and top) in charged
lepton-proton scattering (the pdfs should have been evolved with nf = 3 flavours).

dimension x(100),Q2(100),F2dus(100),F2c(100),F2p(100)

dimension proton(-6:6)

data proton /4.,1.,4.,1.,4,.1.,0.,1.,4.,1.,4.,1.,4./ !divide by 9

..

call zmstfun(2, proton, x, Q2, F2dus, 100, ichk)

call hqstfun(2, 1, proton, x, Q2, F2c , 100, ichk)

do i = 1,100

F2p(i) = F2dus(i) + F2c(i)

enddo

51For technical reasons a cut Q2 > 0.5 GeV2 is also imposed.

98

F The Toolbox by Examples

In this tutorial we will show how to write an application program, based on the qcdnum
toolbox, that can evolve polarised and unpolarised pdfs at LO, and hold both of these
pdfs in memory. Of course, qcdnum itself does these evolutions already up to NNLO
but the aim here is not to develop useful software, but to learn how to use the toolbox.

The reader who wants to write code is advised to start from Toolbox00.f which can
be found in the testjobs directory of the qcdnum distribution. This example pro-
gram (see also Section 4.2) provides a basic set-up of qcdnum as is needed by the
toolbox. A kick-start with Toolbox00.f also will enable you to run the evolutions with
qcdnum, and directly compare the results with those from your own code.

F.1 How to partition a workspace

In this section we describe how to set-up the toolbox workspace w(nw) for our evolu-
tion of unpolarised and polarised pdfs at LO. The toolbox routines are described in
Section 7.3.

We set αs common for both type of evolution so that we will need a single αs table.
In addition we need, for each type of evolution, four weight tables (Pqq, Pqg, Pgq, Pgg)
and 13 pdf tables (one gluon and up to 6 flavours of quark and antiquark). Note from
eqs. (??) and (B.2) in Appendix B that there are two splitting functions that depend
only on x (type-1) and two that depend on x and nf (type-2).52

There is of course nothing against putting all these tables into one set:53

parameter (nw = ...)

dimension w(nw)

dimension itypes(6)

data itypes / 4, 4, 0, 0, 26, 1 /

call MAKETAB(w, nw, itypes, 0, 0, iset, nwused) !returns iset = 1

However, the code will become much more flexible if we put the αs, unpolarised and
polarised tables into separate sets. At this point we envisage to dump the weight tables
to disk which implies that they should be separated from the pdfs by storing them in
their own sets. Thus we arrive at a memory layout with five sets, as shown below.

αs︸ ︷︷ ︸
1

unpolarised︷ ︸︸ ︷
weights︸ ︷︷ ︸

2

pdfs︸ ︷︷ ︸
3

polarised︷ ︸︸ ︷
weights︸ ︷︷ ︸

4

pdfs︸ ︷︷ ︸
5

Here is the code that partitions the toolbox workspace in the manner shown above; note
that each call to maketab will generate a new set of tables.

52In fact, you can put all the splitting functions into type-2 tables, or even type-3 or 4 if desired; it
won’t do harm but should be avoided because it is a waste of memory and CPU.

53To find out how much space is needed simply put nw = 1 and let the maketab error message give
you the answer.

99

parameter (nw =)

dimension w(nw)

dimension itypes_alf(6),itypes_pij(6),itypes_pdf(6)

data itypes_alf / 0, 0, 0, 0, 0, 1 /

data itypes_pij / 2, 2, 0, 0, 0, 0 /

data itypes_pdf / 0, 0, 0, 0,13, 0 /

call MAKETAB(w, nw, itypes_alf, 0, 0, iset_alfa, nwused) !set 1

call MAKETAB(w, nw, itypes_pij, 0, 0, iset_piju, nwused) !set 2

call MAKETAB(w, nw, itypes_pdf, 0, 0, iset_pdfu, nwused) !set 3

call MAKETAB(w, nw, itypes_pij, 0, 0, iset_pijp, nwused) !set 4

call MAKETAB(w, nw, itypes_pdf, 0, 0, iset_pdfp, nwused) !set 5

Please bear in mind that the table set identifiers are assigned by qcdnum and returned
in the pointers iset alfa, iset piju, etc. The αs table is simply addressed by

id_alfa = 1000*iset_alfa + 601

while the pdfs can be mapped onto, for instance, the indices (0–12) by the function

id_pdf_unpolarised(i) = 1000*iset_pdfu + 501 + i

To map the splitting function tables onto the indices (1, 2, 3, 4)—see Eq. (F.1) in the
next section—it is best to introduce a little pointer array like that shown below.

dimension ipoint(4)

data ipoint / 101, 201, 102, 202 /

id_pij_unpolarised(i) = 1000*iset_piju + ipoint(i)

The weight tables must be filled before they can be used so that it makes sense to
introduce weight filling routines that also take care of the partitioning:

subroutine FillWtU(w, nw, iset_piju) !iset_piju is out, not in

implicit double precision (a-h,o-z)

dimension w(nw)

dimension itypes(6)

data itypes / 2, 2, 0, 0, 0, 0 /

call MAKETAB(w, nw, itypes, 0, 0, iset_piju, nwused)

..

code to fill the unpolarised weight tables

..

return

end

100

Now we are in a position to maintain up-to-date weight files on disk, as is shown by the
code below. Note that we shuffled the calls to make the code more readable; the table
set identifiers will therefore be different from those above but this does not matter since
they are stored in pointers (in fact, you should never hard-wire them in your code).

parameter (nw =)

dimension w(nw)

dimension itypes_alf(6),itypes_pdf(6)

data itypes_alf / 0, 0, 0, 0, 0, 1/

data itypes_pdf / 0, 0, 0, 0,13, 0/

character*24 key

data key /’MyAddOn v1.0 22-Oct-2014’/

call READTAB(w, nw, lun, ’unp.wt’, key, 0, iset_piju, nwused, ierr)

if(ierr.ne.0) then

call FillWtU(w, nw, iset_piju)

call DUMPTAB(w, iset_piju, lun, ’unp.wt’, key)

endif

call READTAB(w, nw, lun, ’pol.wt’, key, 0, iset_pijp, nwused, ierr)

if(ierr.ne.0) then

call FillWtP(w, nw, iset_pijp)

call DUMPTAB(w, iset_pijp, lun, ’pol.wt’, key)

endif

call MAKETAB(w, nw, itypes_alf, 0, 0, iset_alfa, nwused)

call MAKETAB(w, nw, itypes_pdf, 0, 0, iset_pdfu, nwused)

call MAKETAB(w, nw, itypes_pdf, 0, 0, iset_pdfp, nwused)

By default, the weights are now read from disk, unless qcdnum finds reason to reject
them (read error, change of the x-µ2 grid, new qcdnum version, new memory layout,
etc.), in which case readtab returns ierr 6= 0. This causes a jump into the if-block
and the weights are calculated from scratch, followed by an update of the disk file.

Of course a disk file can also become obsolete if you have made changes in the weight
calculation itself. In this case you can simply change the version number or the date
(or whatever) in the key variable. Such a change will then raise the error flag and force
a weight calculation from scratch followed by a disk dump, with the new key. Needless
to say that this is a very easy and user-friendly way to manage the weight calculations.

In Toolbox01.f you can find the code presented in this section.

F.2 How to calculate weight tables

We will now further develop the routine FillWtU to calculate the weight tables for the
unpolarised splitting functions at LO. The same code will work in the polarised case,
provided that we feed-in the polarised splitting functions.

101

For the singlet-gluon evolution the LO splitting functions can be arranged in a 4 × 4
matrix as follows:

Pij =

(
Pqq Pqg

Pgq Pgg

)
, id =

(
1 2

3 4

)
→
(
101 201

102 202

)
, (F.1)

where in the second matrix we have indicated our choice of Pij identifiers and in the
third matrix the mapping to the table identifiers that we are going to use. The splitting
functions are given by the Eqs. (??) and (B.2) in Appendix B:

Pqq(x) =

[
4

3
(1 + x2)

]
︸ ︷︷ ︸

PQQR

×
[

1

(1− x)+

]
︸ ︷︷ ︸

PQQS

+

[
2

]
︸︷︷︸
PQQD

δ(1− x)

Pqg(x) = nf

[
x2 + (1− x)2

]︸ ︷︷ ︸
PQGA

Pgq(x) =
4

3

[
1 + (1− x)2

x

]
︸ ︷︷ ︸

PGQA

(F.2)

Pgg(x) =

[
6x

]
︸ ︷︷ ︸
PGGR

×
[

1

(1− x)+

]
︸ ︷︷ ︸

PGGS

+ 6

[
1− x
x

+ x(1− x)

]
︸ ︷︷ ︸

PGGA

+

[
11

2
− nf

3

]
︸ ︷︷ ︸

PGGD

δ(1− x).

Here we have separated the regular and singular components, and have indicated the
names of the fortran functions of these components. These functions all have x, µ2

and nf as (dummy) arguments, for instance:

double precision function PQQD(x,qmu2,nf)

implicit double precision (a-h,o-z)

PQQD = 2.D0

return

end

We will not further discuss here the simple task of programming all the splitting function
ingredients in (F.2) and will assume from now on that this has been done.

From (F.2) it is seen that the splitting functions in the second column of the matrix
in (F.1) do depend on nf , while those in the first column do not. This is reflected in the
type-1 and type-2 table identifiers shown in the third matrix.

Apart from properly encoding the splitting functions, we also have to establish the rela-
tion χ = ax between the rescaling variable χ and the Bjorken variable x, see Sections 3.3
and 7.3. In our case χ = x, a = 1 as defined by the function

double precision function ACHI(qmu2)

implicit double precision (a-h,o-z)

ACHI = 1.D0

return

end

102

Now we can write the complete code of the weight filling routine FillWtU which looks
as follows (see Section 7.3 for a description of the toolbox routines used):

subroutine FillWtU(w, nw, iset_piju) !out: iset_piju

implicit double precision (a-h,o-z)

dimension w(nw)

dimension itypes(6)

data itypes / 2, 2, 0, 0, 0, 0 /

external ACHI,PQQR,PQQS,PQQD,PQGA,PGQA,PGGR,PGGS,PGGA,PGGD

call MAKETAB(w, nw, itypes, 0, 0, iset_piju, nwused)

idPQQ = 1000*iset_piju + 101

idPQG = 1000*iset_piju + 201

idPGQ = 1000*iset_piju + 102

idPGG = 1000*iset_piju + 202

call MAKEWRS(w, idPQQ, PQQR, PQQS, ACHI, 0)

call MAKEWTD(w, idPQQ, PQQD, ACHI)

call MAKEWTA(w, idPQG, PQGA, ACHI)

call MAKEWTA(w, idPGQ, PGQA, ACHI)

call MAKEWRS(w, idPGG, PGGR, PGGS, ACHI, 0)

call MAKEWTA(w, idPGG, PGGA, ACHI)

call MAKEWTD(w, idPGG, PGGD, ACHI)

return

end

We leave it as an exercise to dig out the polarised LO splitting functions from the
literature, or from the qcdnum pij library, and write the weight filling routine FillWtP.
The (unpolarised) code of this section you can find in Toolbox02.f.

F.3 How to fill the αs table

At this point we have partitioned the workspace and filled the weight tables. The next
step is to fill the αs table and for this we have to use the toolbox routine evfilla.

external AlfasFun

id_as = 1000*iset_alfa + 601

call EVFILLA(w, id_as, AlfasFun)

Here AlfasFun is a function—provided by us—that should return αs/2π versus iq.54

54If we upgrade to beyond LO, additional tables and functions must be provided to store (αs/2π)n.

103

It would seem that the qcdnum function asfunc (Section 5.7) is a good way to get αs

but this is not so. The reason is that asfunc gives αs at the renormalisation scale µ2
R,

but we will need it at the factorisation scale µ2
F. The relation between αs(µ

2
R) and αs(µ

2
F)

is given by the truncated Taylor expansion described in Section 2.3 and this is taken
care of in internal qcdnum tables. Thus we have to get the αs values stored in these
tables by calling the routine altabn (Section 5.7), instead of using asfunc. As a bonus,
we will now also have the proper renormalisation scale dependence of our evolutions
and, in fact, of any calculation that uses αs. Thus we write

double precision function AlfasFun(iq, nf, ithresh)

implicit double precision (a-h,o-z)

if(ithresh .eq. -1) then

AlfasFun = ALTABN(0, -iq, 1, ierr) !alfas/2pi

else

AlfasFun = ALTABN(0, iq, 1, ierr) !alfas/2pi

endif

return

end

In this code we have used the threshold indicator ithresh to properly take care of
discontinuities in αs at the flavour thresholds. These are of course absent in our LO
calculations but not anymore if we would upgrade the program to NLO or NNLO. Note
also that altabn does not return αs but αs/2π.

The next thing to worry about is how to keep the αs table up to date. It should clearly
be updated when the input value αs(µ

2
0) changes, for instance in the iterations of a fit,

but also when we change the order of the calculations, the flavour threshold settings or
the relation between µ2

R and µ2
F. Here is a routine that checks the current parameter

values returned by calls to getalf(as,r2), getord(io), getcbt(nf,qc,qb,qt) and
getabr(ar,br); the code is quite trivial and not all of it is shown.

logical function AtabInvalid()

implicit double precision (a-h,o-z)

save asL, r2L, ioL, nfL, qcL, qbL, qtL, arL, brL

call GETALF(as, r2)

..

call GETABR(ar, br)

if(as.eq.asL .and. r2.eq.r2Land. br.eq.brL) then

AtabInvalid = .false.

else

AtabInvalid = .true.

asL = as

..

brL = br

endif

return

end

104

Now we can write the first lines of our evolution code.

subroutine EvolSGNS(w, iset_alfa, ...)

implicit double precision (a-h,o-z)

logical AtabInvalid

external AlfasFun

dimension w(*)

id_as = 1000*iset_alfa + 601

if(AtabInvalid()) call EVFILLA(w, id_as, AlfasFun)

..

In this way the αs tables will always be up to date in our evolution routines.

You can find the code we have developed up to now in Toolbox03.f.

F.4 Singlet/gluon and non-singlet evolution

We can use the n × n evdglap routine (Section 7.5) both for the non-singlet and the
singlet/gluon evolution by setting n = 1 or 2, respectively. Because Pqq is shared
between the two evolutions we can compactly wrap everything into one user routine.
Note, however, that this is only possible at LO because at higher orders the non-singlet
splitting functions proliferate, and so will the code.

In what follows we will adopt the same pdf indexing (7.8) and (7.9) as qcdnum. For
convenience we show them here again for the flavour basis

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

t̄ b̄ c̄ s̄ ū d̄ g d u s c b t
, (F.3)

and for the singlet/non-singlet basis

0 1 2 3 4 5 6 7 8 9 10 11 12

g qs e+
2 e+

3 e+
4 e+

5 e+
6 qv e−2 e−3 e−4 e−5 e−6

. (F.4)

The singlet/non-singlet basis functions e± are in qcdnum defined by55
e±1
e±2
e±3
e±4
e±5
e±6

 =


1 1 1 1 1 1
−1 1

1 1 −2
1 1 1 −3
1 1 1 1 −4
1 1 1 1 1 −5




d±

u±

s±

c±

b±

t±

 with q±i ≡ qi ± q̄i. (F.5)

The main purpose of our evolution routine is to hide details like the filling of the αs

table, the setting of the table identifiers, and the threshold loop described in Section 7.5.

55Note that e2 = u − d, instead of d − u. The reason for this is purely cosmetic: d − u is negative
which would make e2 look shocking on a plot.

105

Input to the evolution routine are the table-set identifiers iseta, isetp and isetf, a
pdf table identifier idfin, the starting point iq0 and an array start with start values.
The order of the calculation is not passed as an argument but should, if the code is
upgraded to beyond LO, be taken from qcdnum via a call to getord. The code below
will automatically perform a singlet/gluon evolution when idfin = 1 and a non-singlet
evolution when idfin > 1.56 Note that inside the routine the start array is saved to a
buffer because the start values are not preserved by evdglap.

A robust user routine should of course include checks on the input, like verifying that
idfin is in the range 1–12, that qcdnum runs in LO, and that iq0 is within the grid
boundaries but we will not clutter the code below with such checks.

subroutine EvolSGNS(w, iseta, isetp, isetf, idfin, iq0, start)

implicit double precision (a-h,o-z)

logical AtabInvalid

external AlfasFun

dimension w(*), start(2,*)

parameter (nxmax = 200) !change this when you use a larger xgrid

dimension sbuf(2,nxmax)

dimension idw(2,2,1), ida(2,2,1), idf(2), iqlim(2)

idalf = 1000*iseta + 601

idw(1,1,1) = 1000*isetp + 101 !PQQ

idw(1,2,1) = 1000*isetp + 201 !PQG

idw(2,1,1) = 1000*isetp + 102 !PGQ

idw(2,2,1) = 1000*isetp + 202 !PGG

ida(1,1,1) = idalf

ida(1,2,1) = idalf

ida(2,1,1) = idalf

ida(2,2,1) = idalf

idf(1) = 1000*isetf + 501 + idfin !quark table

idf(2) = 1000*isetf + 501 !gluon table

if(AtabInvalid()) call EVFILLA(w, idalf, AlfasFun)

n = 1 !non-singlet evolution

if(idfin.eq.1) n = 2 !singlet/gluon evolution

call GRPARS(nx, xmi, xma, nq, qmi, qma, iosp)

do i = 1,n

do j = 1,nx

sbuf(i,j) = start(i,j) !copy start array

enddo

enddo

iqlim(2) = iq0

56Note that LO DGLAP only makes a distinction between singlet/gluon and non-singlet evolution;
the evolution routine does not care which non-singlet is evolved.

106

nf = 1

do while(nf.gt.0) !upward evolution

iqlim(1) = iqlim(2)

iqlim(2) = 99999

call EVDGLAP(w, idw, ida, idf, sbuf, 2, n, iqlim, nf, eps)

enddo

do i = 1,n

do j = 1,nx

sbuf(i,j) = start(i,j) !copy start array

enddo

enddo

iqlim(2) = iq0

nf = 1

do while(nf.gt.0) !downward evolution

iqlim(1) = iqlim(2)

iqlim(2) = -99999

call EVDGLAP(w, idw, ida, idf, sbuf, 2, n, iqlim, nf, eps)

enddo

return

end

This routine can be used for both unpolarised and polarised evolution, simply by pro-
viding the correct table-set identifiers for the splitting functions and the pdfs. This
flexibility clearly shows the advantage of organising tables into sets.

To test-run the evolution, you can of course fill the start array with any suitable smooth
function of x but we propose here to take the starting values from an evolution previously
run with the qcdnum. In this way we can directly compare the pdfs from EvolSGNS

with those from evolfg and check that our code is correct. Here is a routine that fills
the start array with qcdnum basis pdfs.

subroutine SetStart(iset, idf, iq0, start)

implicit double precision (a-h,o-z)

dimension start(2,*)

i = 1 !quarks

if(idf.eq.0) i = 2 !gluon

call GRPARS(nx, xmi, xma, nq, qmi, qma, iord)

do ix = 1,nx

start(i,ix) = FSNSIJ(iset, idf, ix, iq0, 1)

enddo

return

end

Here iset = 1 (2) for unpolarised (polarised) evolution and idf is the gluon/singlet/non-
singlet basis pdf identifier as defined by (F.4). The code that runs the singlet/gluon and
the light quark non-singlet evolution now may look as follows.

107

parameter (nxmax = 200) !change this when you use a larger xgrid

dimension start(2,nxmax)

..

iset = 1 !1= unpolarised 2 = polarised

isetp = iset_piju

isetf = iset_pdfu

if(iset.eq.2) then

isetp = iset_pijp

isetf = iset_pdfp

endif

call SetStart(iset, 1, iq0, start) !singlet

call SetStart(iset, 0, iq0, start) !gluon

call EvolSGNS(w, iset_alfa, isetp, isetf, 1, iq0, start)

do idf = 2,3

call SetStart(iset, idf, iq0, start) !nonsinglet e^+

call EvolSGNS(w, iset_alfa, isetp, isetf, idf, iq0, start)

enddo

do idf = 7,9

call SetStart(iset, idf, iq0, start) !nonsinglet e^-

call EvolSGNS(w, iset_alfa, isetp, isetf, idf, iq0, start)

enddo

..

This code correctly evolves the gluon, singlet and the light quark pdfs in the vfns, and
also in the ffns with nf = 3. To handle all flavours 3–6 in the ffns you can simply set
the upper limits in the loops above to nf and nf + 6, respectively, see Toolbox04.f.

The heavy quarks in the vfns evolve only upward from their thresholds, starting from
the singlet pdf for e+

4,5,6 and the valence pdf for e−4,5,6. The code above clearly cannot do
this and we leave it as an exercise to extend the evolution program so that it can fully
handle the ffns and vfns. For this, note that the heavy flavour basis functions are not
evolved below their thresholds or perhaps even not at all, depending on the ffns/vfns
settings. To avoid that the heavy quarks in memory are partially undefined, it is a good
idea to initialise their basis pdfs to the singlet or valence before they are evolved (this
precaution might save you some headaches later). Here is the initialisation code.57

id(i) = 1000*isetf + 501 + i !statement function

.. code to evolve singlet/gluon

do i = 4,6 !loop over c,b,t

call COPYWGT(w, id(1), id(i), 0) !copy singlet

enddo

.. code to evolve valence

do i = 10,12 !loop over c,b,t

call COPYWGT(w, id(7), id(i), 0) !copy valence

enddo

..

57The routine copywgt can copy tables of all types including type-5 (pdfs) and type-6 (αs).

108

A fully generalised evolution routine can be found in the example program Toolbox05.f.
In this program we have packaged the code into three user interface routines

MyWeight(w, nw, iset, key)

MyEvolve(w, iset, iq0, nfmax, idb)

CompareF(w, iset, idf, iq, nprint, dif)

for weight calculation, evolution and comparison of the evolved pdfs with qcdnum,
respectively. In these routines iset = 1 (2) for unpolarised (polarised) evolution; we
refer to the comments in the code for the meaning of the other parameters.

The introduction of a user interface raises several issues. First of all, we have up to now
communicated common variables via parameter lists in brackets, but we cannot do this
anymore for variables that have to be hidden for the user. One solution is to put them
in common blocks but we have, instead, chosen the alternative to pass their values via
setter/getter routines (SetGetI in Toolbox05).

Second, we have now to worry about the robustness of the code. Any sensible user would
call the routines in the order given above—weights-evolution-comparison—but a robust
program must handle, in one way or another, all the possible orderings of these calls. If
you try this out with Toolbox05 then you will find that qcdnum itself is already quite
robust and that we do not need to take action at this point. In the last Section of this
tutorial we will add more robustness to the code, and also make it more user-friendly.

F.5 How to construct the singlet/non-singlet basis pdfs

Input to EvolSGNS are the gluon, singlet and non-singlet pdfs at µ2
0. Up to now we have

taken the start values from basis pdfs previously evolved by qcdnum but ultimately we
would like to take them from user-defined parameterisations. In the quark sector these
parameterisations then represent a set of arbitrary (but independent) linear combina-
tions of quarks and antiquarks. Our task is now to construct the singlet/non-singlet
input basis pdfs from the set of pdfs provided by the user.

For definiteness we write for the set of input quark pdfs

|fi〉 ≡
nf∑
j=1

αij |qj〉+ βij |q̄j〉 =

2nf∑
j=1

dij |ej〉, i = 1, . . . , 2nf . (F.6)

In matrix notation this reads

|f〉 = D |e〉 → |e〉 = D−1 |f〉. (F.7)

We adopt the convention (F.5) for the basis pdfs so that we can use the routine efromqq
(Section 7.7) to build the matrix D, and smb dminv from mbutil to invert this matrix.

This is done in the routine GetDinv below. Input to this routine is the active number of
flavours nf and an array abmat(-6:6,12) where the user should specify in abmat(i,j)

the contribution of (anti)quark flavour (i) to the input pdf (j).

109

subroutine GetDinv(abmat, dinv, nf)

implicit double precision (a-h,o-z)

dimension abmat(-6:6,12), d(12), dmat(12,12), dinv(12,12)

C-- Build dmat

do i = 1,2*nf

call EFROMQQ(abmat(-6,i), d, nf)

do j = 1,12

dmat(i,j) = d(j)

enddo

enddo

C-- Invert dmat

call InvertD(dmat, dinv, nf, ierr)

if(ierr.ne.0) stop ’GetDinv : singular matrix’

return

end

Before inversion by smb dminv, the dmat array must be copied into an 2nf×2nf working
matrix. This is hidden in the routine InvertD (as an exercise, try to write it yourself).

subroutine InvertD(dmat, dinv, nf ,ierr)

implicit double precision (a-h,o-z)

dimension dmat(12,12), dinv(12,12), work(12,12), iw(12)

C-- Indexing e1+ e2+ e3+ e4+ e5+ e6+ e1- e2- e3- e4- e5- e6-

C-- 1 2 3 4 5 6 7 8 9 10 11 12

C-- Initialise dinv to zero (code not shown)

..

C-- Copy dmat to a 2nf x 2nf working matrix

do i = 1,2*nf

do j = 1,nf

work(i,j) = dmat(i,j)

work(i,j+nf) = dmat(i,j+6)

enddo

enddo

C-- Invert working matrix

call SMB_DMINV(2*nf, work, 12, iw, ierr)

if(ierr.ne.0) return

C-- Copy inverted working matrix to dinv

do i = 1,nf

do j = 1,2*nf

dinv(i ,j) = work(i ,j)

dinv(i+6,j) = work(i+nf,j)

enddo

enddo

return

end

110

The input coefficients stored in the array abmat(i,j) are schematically shown below.

i −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
j t̄ b̄ c̄ s̄ ū d̄ g d u s c b t
1 T B C L L L × L L L C B T
2 T B C L L L × L L L C B T
3 T B C L L L × L L L C B T
4 T B C L L L × L L L C B T
5 T B C L L L × L L L C B T
6 T B C L L L × L L L C B T
7 T B C C C C × C C C C B T
8 T B C C C C × C C C C B T
9 T B B B B B × B B B B B T

10 T B B B B B × B B B B B T
11 T T T T T T × T T T T T T
12 T T T T T T × T T T T T T

(F.8)

When nf(µ
2
0) = 3, the 6 × 6 matrix formed by the light quark coefficients L must be

invertible; all other coefficients are ignored. For nf(µ
2
0) = 4, the 8× 8 matrix formed by

the L and C coefficients must likewise be invertible, and so on for nf = 5 and 6.

Now we can put GetDinv into a routine that gets the start values of the gluon and
quark pdfs from a user-given subroutine and transforms the latter into start values for
the quark basis pdfs |e±〉. The result is returned in the array stval(i,ix), with i the
basis pdf identifier, indexed according to (F.4).

subroutine UsrStart(usub, abmat, iq0, stval)

implicit double precision (a-h,o-z)

external usub

dimension abmat(-6:6,12), dinv(12,12), pdfusr(0:12), stval(0:12,*)

nf = NFLAVOR(iq0)

call GetDinv(abmat, dinv, nf)

call GRPARS(nx, xmi, xma, nq, qmi, qma, iord)

do ix = 1,nx

call usub(ix, pdfusr)

stval(0,ix) = pdfusr(0)

do i = 1,nf

stval(i ,ix) = 0.D0

stval(i+6,ix) = 0.D0

do j = 1,2*nf

stval(i ,ix) = stval(i ,ix) + dinv(i ,j)*pdfusr(j)

stval(i+6,ix) = stval(i+6,ix) + dinv(i+6,j)*pdfusr(j)

enddo

enddo

enddo

return

end

111

The user-supplied subroutine usub should, as a function of ix, return the values of the
gluon in pdfusr(0) and those of the 2nf quark densities in pdfusr(1), . . . , pdfusr(2nf).

Note that in UsrStart the transformation matrix dinv is calculated at every call; if we
care about efficiency (yes, of course we do) we could be a bit smarter and calculate the
transformation matrix only when necessary:

save nflast, dinv

data nflast /0/

..

nf = NFLAVOR(iq0)

if(nf.ne.nflast) then

call GetDinv(abmat, dinv, nf)

nflast = nf

endif

The array stval(0:12,nx) filled by UsrStart cannot be directly fed into our evolution
routine EvolSGNS so that we must first make a copy into the start array. Here is the
subroutine that does it.

subroutine CpyStart(idf, stval, start)

implicit double precision (a-h,o-z)

dimension stval(0:12,*), start(2,*)

i = 1 !copy quqarks

if(idf.eq.0) i = 2 !copy gluon

call GRPARS(nx, xmi, xma, nq, qmi, qma, iord)

do ix = 1,nx

start(i,ix) = stval(idf,ix)

enddo

return

end

The upgraded evolution code can be found in Toolbox06.f.

F.6 Your own interpolation routine

The toolbox routines evplist and evtable can be used to interpolate the pdfs stored
in the toolbox workspace. But these routines cannot transform them to the flavour
basis (d,u,s,. . .) simply because the flavour composition of the pdfs in the local memory
is not known to qcdnum. So how can we then get interpolated pdfs in flavour space?

First of all we can copy the pdfs from the toolbox workspace into the qcdnum internal
memory and then call the built-in interpolation routines such as pdflst, etc. For this
we can use pdfext (Section 5.8) or, better, evpcopy (Section 7.5) to import the pdfs as
an external pdf set into qcdnum. An additional advantage of this is that we can then
also use the structure function packages zmstf and hqstf, or any other package that
works with internal pdfs. Note, however, that qcdnum can only store the gluon and 6

112

flavours of quark and antiquark so that other types of pdf, such as that of the photon,
have to remain in the toolbox workspace.

Second, we can provide our own interpolation routine which can be done very easily with
the fast convolution engine described in Section 7.9. This may be attractive because you
can write the code such that it can interpolate any pdf in the toolbox workspace. The
interpolation will also be faster since there is no copy step to qcdnum internal memory.

The idea behind the fast engine is that it constructs an interpolation mesh from a
given list of x-µ2 interpolation points. Calculations are then performed at these mesh
points, and only at these points, followed by an interpolation of the final result. This
mechanism usually leads to very fast code since it can very much reduce redundant
calculations. Please read the introduction part of Section 7.9 to understand the sparse
(for interpolation) and dense (for convolution) storage schemes in the fast engine.

In our code we will use the engine to store the appropriate linear combination of pdfs in
a fast buffer, immediately followed by an interpolation without any kind of calculation
in between. In fact, a basic interpolation routine is quite straight forward:

subroutine Interpolate(w, isetf, id, x, q, f, n, ichk)

implicit double precision (a-h,o-z)

dimension w(*), x(*), q(*), f(*)

dimension coef(3:6)

data coef /4*1.D0/

idf = 1000*isetf + 501 + id !pdf table identifier

call FASTINI(x, q, n, ichk) !create interpolation mesh

call FASTINP(w, idf, coef, -1, 0) !sparse storage in buffer 1

call FASTFXQ(1, f, n) !interpolate buffer 1

return

end

This routine does not (yet) make transformations to the flavour basis but efficiently
interpolates a pdf in w to a list of n points, and returns the result in the array f.

A little drawback is that the number of interpolation points is limited by the parameter
mpt0 (set by default to 5000 in the file qcdnum.inc). Instead of raising this limit it is
better to run through the list of interpolation points in batches of mpt0 points, so that
you will never hit the limit. The wrapper code below can handle an arbitrary long list
of points.

call GETINT(’mpt0’, mpt0)

nlast = 0

ntodo = min(n,mpt0)

do while(ntodo.gt.0)

i1 = nlast+1

call Interpolate(w, iset, id, x(i1), q(i1), f(i1), ntodo, ichk)

nlast = nlast+ntodo

ntodo = min(n-nlast,mpt0)

enddo

113

Let us now modify the routine Interpolate so that it returns the gluon or an (anti)quark
density. To see how this works we again write down the transformation (F.6) as

|f〉 ≡
nf∑
i=1

αi |qi〉+ βi |q̄i〉 =

2nf∑
i=1

di |ei〉, (F.9)

where |f〉 is now a single quark or antiquark pdf. We thus set one coefficient αi or βi
to one, and the rest to zero, and calculate the coefficients di with the routine efromqq.

subroutine getcoefs(idf, coefd) !idf = +-[1,2,3,4,5,6]

implicit double precision (a-h,o-z)

dimension qvec(-6:6), temp(12), coefd(3:6,12)

data qvec /13*0.D0/

qvec(idf) = 1.D0 !select idf (and nothing else)

do nf = 3,6

call EFROMQQ(qvec, temp, nf)

do i = 1,12

coefd(nf,i) = temp(i)

enddo

enddo

qvec(idf) = 0.D0 !deselect idf

return

end

The di depend on nf so that coefd is a 2-dimensional array with nf the first dimension
(which runs fastest in fortran) and the basis pdf identifier [1–12] the second dimension.

Now we have to store the linear combination on the right-hand side of (F.9) into a fast
buffer. This is easy to do with the fastinp routine since it has the capability to multiply
an input pdf with an nf-dependent constant and then to either put or add the result
into the buffer. Thus we build the linear combination

∑
di|ei〉 in a loop:

call FASTINP(w, id(1), coefd(3,1), -1, 0) !0 = store

do i = 2,12

call FASTINP(w, id(i), coefd(3,i), -1, 1) !1 = add

enddo

In this snippet, id(i) is the table identifier of the basis pdf i = 1, . . . ,12.

Putting it all together, and setting the the gluon (idf = 0) coefficients to one for all nf ,
we arrive at the following interpolation routine.

subroutine Interpolate(w, isetf, idf, x, q, f, n, ichk)

implicit double precision (a-h,o-z)

dimension w(*), x(*), q(*), f(*)

dimension coefg(3:6), coefd(3:6,12)

data coefg /4*1.D0/

114

id(i) = 1000*isetf + 501 + i !statement function

call FASTINI(x, q, n, ichk) !interpolation mesh

if(idf.eq.0) then

call FASTINP(w, id(0), coefg, -1, 0) !put gluon in buf1

else

call getcoefs(idf, coefd) !get coefficients

call FASTINP(w, id(1), coefd(3,1), -1, 0) !put c1*id1 in buf1

do i = 2,12

call FASTINP(w, id(i), coefd(3,i), -1, 1) !add ci*idi to buf1

enddo

endif

call FASTFXQ(1, f, n) !interpolate buf1

return

end

The routine Interpolate now returns a list of interpolated gluon or (anti)quark pdfs
for idf = -6, . . . ,0, . . . ,6.

It always is tempting to call an interpolation routine in a loop

do i = 1,100

xi = ...

qi = ...

call Interpolate(w, iset, idf, xi, qi, fi, 1, ichk)

enddo

but note that this is very slow because it completely counteracts the idea of bulk pro-
cessing in the fast engine. Here is the correct way to obtain the same result.

dimension x(100), q(100), f(100)

do i = 1,100

x(i) = ...

q(i) = ...

enddo

call Interpolate(w, iset, idf, x, q, f, 100, ichk)

In toolbox07.f the routine Interpolate is compared to its qcdnum equivalent pdflst.

More to come . . .

F.7 How to compute a structure function

F.8 Make it robust and user-friendly

115

G QCDNUM17 Releases and Updates

Qcdnum17 versions are labelled as qcdnum-17-rr/uu where rr is the release number,
and uu is the update number of a given release.58 Here is an up-to-date list of all releases
and updates.

17-rr/uu dd-mm-yy – Description

17-00/07 26-02-16 – Correct error in the NLO evolution of singlet fragmentation
functions (splitting function matrix was not transposed). Im-
plement NLO matching conditions in the time-like evolution.

17-00/06 10-07-12 – In the mfns, the function asfunc evolved αs in the ffns. The
qcdnum internal αs tables were not affected by this bug.

– hqstf: the routine hqstfun did not accept the mfns. Preced-
ing icbt by a minus sign now allows for both the ffns and the
mfns, with any number of flavours.

17-00/05 10-04-12 – Access to version number and qcdnum.inc parameters (via getint).
– New routine mixfns to set the mixed flavour number scheme.
– New routine set|getcut to set (get) evolution cuts on the grid.
– New function lpassc to check if a point passes the cuts.
– New routines pdflst and pdftab for fast pdf interpolations.
– Remove the mpt0 limit on the number of interpolations in qcdnum,

zmstf and hqstf. In fastini the mpt0 limit still exists.
– Increase storage sizes nwf0, nzmstor and nhqstor.
– zmstf: New routine zmwords gives access to storage size/use.
– zmstf: Possibility to separately calculate gluon or quark contri-

butions to structure functions, order by order (with zmslowf).
– hqstf: New routine hqwords gives access to storage size/use.
– hqstf: When using external pdfs (iset = 5–9), the availability

of unpolarised pdfs (iset = 1) was imposed. Bug now fixed.

17-00/04 18-07-11 – Increase storage sizes nwf0, nzmstor and nhqstor.
– Set Q2 = 0.25 GeV2 in the hqstf coefficient functions when

the input value of Q2 < 0. This avoids problems in hqfillw if
the low end of the µ2 grid maps onto negative Q2.

17-00/03 30-03-11 – Rename splitting/coefficient functions in qcdnum and zmstf
to avoid name clashes with qcdnum16 and—more important—
with lhapdf (which has qcdnum16 inside).

17-00/02 07-10-10 – Comments from the CPC referees included in the write-up.

17-00/01 03-09-10 – Adjust internal cuts on the αs evolution to allow for evolution
to lower Q2. The cuts in the original release were set too tight.

17-00/00 08-05-10 – Initial release.

58Updates are bug fixes or changes in the code that do not require modification of user programs.
Releases, on the other hand, may affect user code by adding extra functionality to existing qcdnum
routines or by replacing an old routine with a new one. In the latter case, a call to the old routine will
always generate an error message pointing to the replacement, the description of which can then be
found in the write-up.

116

References

[1] V.N. Gribov and L.N. Lipatov, Sov. J. Nucl. Phys. 15, 438 (1972);
L.N. Lipatov, Sov. J. Nucl. Phys. 20, 94 (1975);
G. Altarelli and G. Parisi, Nucl. Phys. B126, 298 (1977);
Y. Dokshitzer, Sov. Phys. JETP 46, 641 (1977).

[2] S. Moch, J.A.M. Vermaseren and A. Vogt, Nucl. Phys. B688, 101 (2004),
hep-ph/0403192.

[3] A. Vogt, S. Moch and J.A.M. Vermaseren, Nucl. Phys. B691, 129 (2004),
hep-ph/0404111.

[4] A. Ouraou, Ph. D. Thesis, Université de Paris-XI (1988);
M. Virchaux, Ph. D. Thesis, Université de Paris-VII (1988).

[5] M. Virchaux and A. Milsztajn, Phys. Lett. B274, 221 (1992).

[6] NMC, M. Arneodo et al., Phys. Lett. B309, 222 (1993).

[7] ZEUS Collab., M. Derrick et al., Phys. Lett. B345, 576 (1995);
ZEUS Collab., J. Breitweg et al., Eur. Phys. J. C7, 609 (1999);
ZEUS Collab., S. Chekanov et al., Phys. Rev. D67, 012007 (2003).

[8] M. Botje, Eur. Phys. J. C14, 285 (2000).

[9] V. Bertone and M. Botje, ‘A C++ interface to qcdnum’, arXiv:1712.08162 [hep-ph]
(2017).

[10] W. Furmanski and R. Petronzio, Z. Phys. C11, 293 (1982).

[11] O.V. Tarasov, A.A. Vladimirov and A.Yu Sharkov, Phys. Lett. B93, 429 (1980);
S.A. Larin and J.A.M. Vermaseren, Phys. Lett. B303, 224 (1993).

[12] K.G. Chetyrkin, B.A. Kniehl and M. Steinhauser, Phys. Rev. Lett. 79, 2184 (1997),
hep-ph/9706430.

[13] G. Gurci, W. Furmanski and R. Petronzio, Nucl. Phys. B175, 27 (1980).

[14] W. Furmanski and R. Petronzio, Phys. Lett. 97B, 437 (1980).

[15] R. Mertig and W.L. van Neerven, Z. Phys. C70, 637 (1996) hep-ph/9506451;
W. Vogelsang, Nucl. Phys. B475, 47 (1996), hep-ph/9603366.

[16] P. Nason and B.R. Webber, Nucl. Phys. B421, 473 (1994); Erratum Nucl.
Phys. B480, 755 (1996).

[17] E. Laenen et al., Nucl. Phys. B392, 162 (1993);
S. Riemersma et al., Phys. Lett. B347, 143 (1995).

[18] W.K. Tung et al., J. Phys. G28, 983 (2002);
S. Kretzer et al., Phys. Rev. D69, 114005 (2004).

117

[19] R.S. Thorne, Phys. Rev. D73, 054019 (2006), hep-ph/0601245 and references
therein.

[20] A. Vogt, Comput. Phys. Commun. 170, 65 (2005), hep-ph/0408244.

[21] M. Buza et al., Eur. Phys. J. C1, 301 (1998), hep-ph/9612398.

[22] M. Cacciari, P. Nason and C. Oleari, JHEP 0510, 034 (2005), arXiv:hep-
ph/0504192.

[23] M. Glück, E. Reya and M. Stratmann, Nucl. Phys. B422, 37 (1994).

[24] G.P. Salam and J. Rojo, Comput. Phys. Commun. 180, 120 (2009),
ArXiv:0804.3755.

[25] M. Miyama and S. Kumano, Comput. Phys. Commun. 94, 185 (1996),
hep-ph/9508246;
P.G. Ratcliffe, Phys. Rev. D63, 116004 (2001), hep-ph/0012376;
C. Pascaud and F. Zomer, hep-ph/0104013 (2001);
A. Cafarella and C. Coriano, Comput. Phys. Commun. 160, 213 (2004),
hep-ph/0311313;
A. Cafarella, C. Coriano and M. Guzzi, Comput. Phys. Commun. 179, 665 (2008),
ArXiv:0803.0462.

[26] C. de Boor, ‘A Practical Guide to Splines’, Applied Mathematical Sciences 27,
Springer-Verlag New York Inc. (1978);
L.L. Schumaker, ‘Spline Functions: Basic Theory’, Krieger Publishing Company,
Malabar Florida (1993);
R. Kress, ‘Numerical Analysis’, Springer-Verlag New York Inc. (1998).

[27] E. Eichten et al., Rev. Mod. Phys. 56, 579 (1984).

[28] R.S. Thorne and W.K. Tung, in Proc. workshop ‘HERA and the LHC’, H. Jung
and A. De Roeck eds., DESY-PROC-2009-02, arXiv:0903.3861, pp. 332–351 (2009).

[29] G. Salam and A. Vogt in the QCD/SM working group report of the workshop
‘Physics at TEV Colliders’, Les Houches, May 2001, FERMILAB-CONF-02-410,
hep-ph/0204316.

[30] S. Alekhin et al., in Proc. workshop ‘HERA and the LHC’ Part A, H. Jung and
A. De Roeck eds., DESY-PROC-2005-01, CERN-2005-014, hep-ph/0601012, pp.
119–159 (2006).

[31] C.G. Page ‘Professional Programmer’s Guide to Fortran77’, (1988 updated 2005),
http://www.star.le.ac.uk/∼cgp/prof77.pdf.

[32] D. Roberts, ‘The Structure of the Proton’, Cambridge University Press (1990);
U.F. Katz, ‘Deep Inelastic Positron-Proton Scattering in the High-Momentum-
Transfer-Regime of Hera’, Springer Tracts in Modern Physics (2000);
A.M. Cooper-Sarkar, R.C.E. Devenish and A. De Roeck, Int. J. Mod. Phys. A13,
3385 (1998), hep-ph/9712301.

118

[33] M. Botje, ‘Erratum for the time-like evolution in QCDNUM’, arXiv:1602.08383
(2016).

[34] W.L. van Neerven and E.B. Zijlstra, Phys. Lett. B272, 127 (1991).

[35] E.B. Zijlstra and W.L. van Neerven, Phys. Lett. B273, 476 (1991).

[36] E.B. Zijlstra and W.L. van Neerven, Phys. Lett. B297, 377 (1992).

[37] J. Sanchez Guillen et al., Nucl. Phys. B353, 337 (1991).

[38] W.L. van Neerven and A. Vogt, Nucl. Phys. B568, 263 (2000), hep-ph/9907472.

[39] W.L. van Neerven and A. Vogt, Nucl. Phys. B588, 345 (2000), hep-ph/0006154.

[40] S. Moch, J.A.M. Vermaseren and A. Vogt, Phys. Lett. B606, 123 (2005),
hep-ph/0411112.

[41] E. Laenen, private communication.

List of Tables

1 Recommended limits of multiple x-grids 32

2 Subroutine and function calls in qcdnum. 33

3 Qcdnum predefined keycards. 58

4 Routines in the qcdnum toolbox. 62

5 Subroutine and function calls in zmstf. 93

6 Subroutine and function calls in hqstf. 97

119

Index

B-splines, 17–18
backward evolution, 24–26, 38
beta-functions, 7
Bjorken-x variable, 8

C++ interface, 27, 29, 34–36
convolution integrals, 19
convolution weights, 19
coupled n× n evolution, 71–75
cuts, see evolution cuts

datacard, see keycard
DGLAP evolution equations, 8
discontinuities in αs evolution, 8, 13–14, 30
discontinuities in pdf evolution, 14–15

e± basis, see singlet/non-singlet basis
evolution cuts, 46
evolution of αs, 7–8
evolution of heavy quark pdfs, 15–16
evolution parameters

active, 44
setting of, 44–47

evolution toolbox, 71–77

factorisation scale µ2
F, 9

factorisation scale dependence, 92
fast convolution, 79
F ′L structure function, 91
ffns fixed flavour number scheme, 13, 44
flavour number schemes, 13, 16, 44
flavour thresholds

on the factorisation scale, 10
on the renormalisation scale, 8, 10, 14

forward substitution, 90
Fourier convolution, 19
fragmentation functions, see time-like evo-

lution

Gauss quadrature in qcdnum, 68
accuracy parameter of, 38

global identifier, see identifier

hqstf package, 97–98

identifier, global, 66

indexing of e± basis, 52
indexing of q, q̄ basis, 49, 52
interpolation mesh, 24
interpolation of pdfs, 52–54, 85

ket notation, 11
keycard, 56–61

add or delete, 60
predefined, 58
user-defined, 59

mbutil package, 26
Mellin convolution, 9
mesh point, see interpolation mesh
mfns mixed flavour number scheme, 16, 44
MS scheme, 6
multiple convolution, 19, 20, 70, 83
multiple evolution grid, 24, 31–32, 39

non-singlet evolution, 10
non-singlet quark density, 9, 11
null value, 37
number of active flavours nf , 7

value at threshold, 10, 30, 48, 84

parameters, see evolution parameters
parton density function, pdf, 7

number/momentum density, 8, 9
parton luminosity, 20
pdf sets, 36–37
pdf type, 42
PDG convention, 27
pegasus program, 16, 31
polarised evolution, 10, 42

qcdnum program
example job, 27–30
execution speed, 32
history, 6
list of predefined keycards, 58
list of subroutines, 34
parameters in qcdnum.inc, 26
program hang-up, 34
web site, 26

qcdnum routines
allfij, 54

120

allfxq, 53
altabn, 48
asfunc, 47
bvalij, 54
bvalxq, 53
cpypar, 46
dmpwgt, 43
evolfg, 49
extpdf, 51
fflist, 55
ffromr, 46
fillwt, 42
fsplne, 55
ftable, 56
fvalij, 54
fvalxq, 53
getabr, 45
getalf, 44
getcut, 46
getint, 38
getord, 44
getthr, 45
getval, 37
gqcopy, 42
gqmake, 41
grpars, 41
gxcopy, 42
gxmake, 39
iqfrmq, 41
ixfrmx, 40
keypar, 46
mixfns, 44
nflavs, 45
nptabs, 52
nwused, 43
nxtlun, 37
pdfcpy, 50
pullcp, 47
pushcp, 47
qcards, 58
qcbook, 60
qcinit, 37
qfrmiq, 41
qqatiq, 41
qstore, 39
readwt, 43
rfromf, 46

setabr, 45
setalf, 44
setcut, 46
setint, 38
setlun, 37
setord, 44
setthr, 44
setval, 37
splchk, 55
sumfij, 54
sumfxq, 53
usepar, 47
xfrmix, 40
xxatix, 40

Toolbox convolution
fcrossf, 78
fcrossk, 78
stfunxq, 79

Toolbox evolution
cpyparw, 75
evdglap, 73
evfilla, 72
evgetaa, 72
evpcopy, 76
evpdfij, 75
evplist, 76
evtable, 76
keyparw, 75
useparw, 75

Toolbox fast convolution
fastclr, 80
fastcpy, 84
fastepm, 81
fastfxf, 83
fastfxk, 82
fastfxq, 85
fastini, 80
fastinp, 80
fastkin, 84
fastsns, 81
fastsum, 82

Toolbox utilities
clrumsg, 85
efromqq, 77
idspfun, 66
ipdftab, 66
qqfrome, 78

121

setumsg, 85
Toolbox weight tables

copywgt, 70
makewrs, 69
makewta, 68
makewtb, 69
makewtd, 69
makewtx, 69
scalewt, 70
wcrossw, 70
wtimesf, 70

Toolbox workspace
dumptab, 65
getparw, 65
maketab, 64
readtab, 65
setparw, 64

renormalisation scale µ2
R, 7

renormalisation scale dependence
of pdfs, 10–11
of structure functions, 92, 96

rescaling variable χ, 21

scale parameter Λ, 8
singlet quark density, 9
singlet-gluon evolution, 9
singlet/non-singlet basis e±, 11, 37
spline interpolation, 16–18, 55
spline oscillation, 18, 24–26, 38, 49, 55
splitting functions

at leading order, 88
perturbative expansion of, 10
singularities in, 67, 88–89
symmetries in, 9

structure functions
heavy flavour contributions, 96–97
zero-mass structure functions, 91–92

sum rule integrals, 30

table identifier, see identifier
table set, 64
time-like evolution, 10, 87
Toeplitz matrix, 20
toolbox

list of subroutines, 63
toolbox workspace, 63
truncation prescription, 11, 48, 92

t-variable, 19
types of evolution, 42
types of weight table, 63

un-polarised evolution, 8

vfns variable flavour number scheme, 13,
44

weight table
types of, 63

weights, see convolution weights
Wilson coefficient, 91
workspace, see toolbox workspace

y-variable, 19

zmstf package, 92–95

122

