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QCD in Eight Lectures

1. Review of SU(2) and SU(3) symmetry.

2. Lagrangian formalism and U(1) local gauge invariance.

3. The SU(2) (Yang-Mills) and SU(3) (QCD) invariant Lagrangian.

4. Colour factors.

5. The running coupling constant and asymptotic freedom in QCD.

6. Infrared and collinear singularities.

7. The structure of the proton.

8. The QCD improved parton model and DGLAP evolution.

The lecture notes can be found on

http://www.nikhef.nl/user/h24/qcdcourse



Background material

The lectures are based on the following books:
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Zee A. Zee, Quantum Field Theory in a Nutshell, Second Edition, Princeton Uni-
versity Press, (2010);
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Schiff L.I. Schiff, Quantum Mechanics, Third Edition, McGraw-Hill, (1968);

Jackson J.D. Jackson, Classical Electrodynamics, Second Edition, John Wiley, (1975).



Grading

You may hand-in exercises which will then be graded as follows:

Good → score = 1.0

Reasonable → 0.6

Bad → 0.3

Not made → 0.0

You can only hand-in those (sub-)exercises that have a weight factor

given in square brackets. The exercises marked with a [× ] will help

you to better understand the material but you can not hand them in

and gain bonus points with them. At the end of the course your final

score is calculated as the weighted average of the individual scores.

Bonus points are then added to the grade of your exam in proportion

to your exercise score. As an example, we list below the bonus for an

exercise score of 0.8:

Exam grade 0 – 7 8 9 10

Bonus 1.0 0.8 0.4 0

Note that the bonus is less for high exam grades, to avoid that the

total grade will exceed the maximum of 10 points.1

Because we cannot handle a pile-up of exercises at the end of the course,

we make the rule that you cannot hand-in more than 5 exercises at a

time. At the day of the exam you can bring your last five exercises.

The exam is ‘open book’ so that you may consult the lecture notes and

the books of Griffiths, Halzen & Martin and Aitchison & Hey, but not

the worked-out exercises or any other material.

1The bonus is calculated from B = E × min(5 − 0.5T, 1.25), where 0 ≤ E ≤ 1 is your exercise score, and
0 ≤ T ≤ 10 is your exam grade.
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Preliminary

This section is not part of the lectures, but a small collection of ma-

terial that should be familiar from special relativity, electrodynamics,

quantum mechanics and the lecture series Particle Physics I.

Also included is a summary of group theory, but still very incomplete.





Units and conversion factors

In particle physics, energy is measured in units of GeV = 106 eV,

where 1 eV = 1.6 × 10−19 J is the change in kinetic energy of an

electron when it traverses a potential difference of one volt. From the

relation E2 = p2c2 + m2c4 it follows that the units of momentum

and mass are GeV/c and GeV/c2, respectively. The dimension of ~
is energy×time so that the unit of time is ~/GeV; ~c has dimension

energy×length so that length has unit ~c/GeV.

One often works in a system of units where ~ and c have a numerical

value of one, so that these constants can be omitted in expressions,

as in E2 = p2 + m2. A disadvantage is that the dimensions carried

by ~ (energy×time) and c (length/time) also disappear but these can

always be restored, if necessary, by a dimensional analysis afterward.

Here are some useful conversions.

Conversion ~ = c = 1 units Natural units

Mass 1 kg = 5.61× 1026 GeV GeV/c2

Length 1 m = 5.07× 1015 GeV−1 ~c/GeV

Time 1 s = 1.52× 1024 GeV−1 ~/GeV

Charge e =
√

4πα dimensionless
√
~c

1 TeV = 103 GeV = 106 MeV = 109 KeV = 1012 eV

1 fm = 10−15 m = 10−13 cm = 5.07 GeV−1

1 barn = 10−28 m2 = 10−24 cm2

1 fm2 = 10 mb = 104 µb = 107 nb = 1010 pb

1 GeV−2 = 0.389 mb

~c = 197 MeV fm

(~c)2 = 0.389 GeV2 mb

α = e2/(4π~c) ≈ 1/137
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Covariant notation (c = 1)

• Contravariant space-time coordinate: xµ = (x0, x1, x2, x3) = (t,x)

• Covariant space-time coordinate: xµ = (x0, x1, x2, x3) = (t,−x)

• Contravariant derivative: ∂µ ≡ ∂/∂xµ = (∂t,+∇)

• Covariant derivative: ∂µ ≡ ∂/∂xµ = (∂t,−∇)

• Metric tensor: gµν = gµν = diag(1,−1,−1,−1)

• Index raising/lowering: aµ = gµν a
ν, aµ = gµν aν

• Lorentz boost along x-axis:2 x′µ = Λµ
ν x

ν

Λµ
ν =




γ −γβ 0 0

−γβ γ 0 0

0 0 1 0

0 0 0 1


 γ =

1√
1− β2

We have also: x′µ = Λ ν
µ xν with Λ ν

µ (β) = Λµ
ν(−β) ≡ (Λµ

ν)
−1

• Inproduct (Lorentz scalar): a · b = aµ bµ = a0 b0 − a · b = aµ b
µ

• a2 > 0 time-like 4-vector → possible causal connection

a2 = 0 light-like 4-vector

a2 < 0 space-like 4-vector → no causal connection

• 4-momentum: pµ = (E,p), pµ = (E,−p)

• Invariant mass: p2 = pµ pµ = pµ p
µ = E2 − p2 = m2

• Particle velocity: γ = E/m, β = |p| /E

2This is the relation between the coordinates xµ of an event observed in a system S and the coordinates x′µ

of that same event observed in a system S′ that moves with a velocity +β along the x-axis of S.
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Vector calculus

∇× (∇ψ) = 0

∇ · (∇×A) = 0

∇× (∇×A) = ∇(∇ ·A)−∇2A
∫

V

∇ ·A dV =

∫

S

A · n̂ dS (Divergence theorem)

∫

V

(φ∇2ψ − ψ∇2φ) dV =

∫

S

(φ∇ψ − ψ∇φ) · n̂ dS (Green’s theorem)

∫

S

(∇×A) · n̂ dS =

∮

C

A · dl (Stokes’ theorem)

• In the above, S is a closed surface bounding V , with n̂ the outward

normal unit vector at the surface element dS.

• In Stokes’ theorem, the direction of n̂ is related by the right-hand

rule to the sense of the contour integral around C.
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Maxwell’s equations in vacuum

• Maxwell’s equations

∇ ·E = ρ ∇ ·B = 0

∇×E + ∂B/∂t = 0 ∇×B − ∂E/∂t = j

• Continuity equation

∇ · j = −∂ρ
∂t

• The potentials V andA are defined such that the second and third

of Maxwell’s equations are automatically satisfied

B = ∇×A → ∇ ·B = 0

E = −∂A/∂t−∇V → ∇×E = −∂B/∂t
• Gauge transformations leave the E and B fields invariant

V ′ = V +
∂λ

∂t
and A′ = A−∇λ

• Maxwell’s equations in 4-vector notation

4-vector potential Aµ = (V,A)

4-vector current jµ = (ρ, j)

Electromagnetic tensor F µν = ∂µAν − ∂νAµ

Maxwell’s equations ∂µF
µν = jν

Continuity equation ∂µj
µ = 0

Gauge transformation Aµ → Aµ + ∂µλ

• Lorentz gauge and Coulomb condition

Lorentz gauge ∂µA
µ = 0 → ∂µ∂

µAν = jν

Coulomb condition A0 = 0 or equivalently ∇A = 0
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The Lagrangian in classical mechanics

In classical mechanics, the Lagrangian is the difference between the kinetic and
potential energy: L(q, q̇) ≡ T − V . The coordinates q(t) = {q1(t), . . . , qN(t)}
fully describe the system at any given instant t. The number N of coordinates
is called the number of degrees of freedom of the system.

Let the system move from A(t1) to B(t2) along some given path. The action
S[path] is defined by the integral of the Lagrangian along the path:

S[path] =

∫ t2

t1

dt L(q, q̇)

The action S assigns a number to each path and is thus a function of the path.
In mathematics, S is called a functional.

The principle of least action states that the system will evolve along the
path that minimises the action.

Let q(t) be a path and q(t) + δq(t) be some deviating path between the same
points A(t1) and B(t2). That is, δq(t1) = δq(t2) = 0. The variation in the
action is then given by

δS =

∫ t2

t1

dt δL(q, q̇) =

∫ t2

t1

dt

(
∂L

∂q
δq +

∂L

∂q̇
δq̇

)
=

Iwant
0.

Because
d

dt

(
∂L

∂q̇
δq

)
=

(
d

dt

∂L

∂q̇

)
δq +

(
∂L

∂q̇

)
δq̇,

we find, by partial integration,

δS =

∫ t2

t1

dt

(
∂L

∂q
− d

dt

∂L

∂q̇

)
δq +

∫ t2

t1

d

(
∂L

∂q̇
δq

)
=

Iwant
0.

The second integral vanishes because δq(t1) = δq(t2) = 0.

The first integral vanishes for all δq if and only if the term in brackets vanishes,
leading to the Euler-Lagrange equations, for N degrees of freedom:

δS

δqi
=

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 i = 1, . . . , N

Solving the EL equations for a given Lagrangian lead to the equations of
motion of the system.
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The Hamiltonian in classical mechanics

If L does not explicitly depend on time we have for the time derivative

dL

dt
=
∂L

∂q̇
q̈ +

∂L

∂q
q̇

Substituting ∂L/∂q from the Euler-Lagrange equations gives

dL

dt
=
∂L

∂q̇
q̈ +

d

dt

(
∂L

∂q̇

)
q̇ =

d

dt

(
∂L

∂q̇
q̇

)
→ d

dt

(
∂L

∂q̇
q̇ − L

)
= 0

The term in brackets is the Legendre transform of L and is called the Hamil-
tonian:

H
def
=

∂L

∂q̇
q̇ − L = pq̇ − L with p

def
=

∂L

∂q̇
,

where we have also introduced the canonical momentum p. The Hamiltonian
is identified with the total energy E = T + V which is thus conserved in the
time evolution of the system. This is an example of a conservation law.

In the Lagrangian, the dependence on q̇ resides in the kinetic energy term T
while the dependence on q is contained in the potential energy V . Thus if V = 0
(or a constant) we have in the EL equations

∂L

∂q
= 0 → d

dt

(
∂L

∂q̇

)
=

dp

dt
= 0

Thus the momentum p is conserved in a system that is not under the influence
of an external potential. This is another example of a conservation law.

The Hamiltonian equations of motion are

q̇ =
∂H

∂p
and ṗ = −∂H

∂q

This can be derived as follows. Consider the total differential

dL =
∂L

∂q
dq +

∂L

∂q̇
dq̇

Now
∂L

∂q
= ṗ (from EL),

∂L

∂q̇
= p (by definition),

and thus, using pdq̇ = d(pq̇)− q̇dp, we obtain

dL = ṗdq + d(pq̇)− q̇dp → d(pq̇ − L) = dH = q̇dp− ṗdq,
from which the Hamiltonian equations immediately follow.
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Dirac δ-function

• The Dirac δ-function can be defined by3

δ(x) =

{
0, if x 6= 0

∞, if x = 0
with

∫ ∞

−∞
δ(x)dx = 1

• Generalisation to more dimensions is trivial, like δ(r) ≡ δ(x)δ(y)δ(z).

• For x→ 0 we may write f (x)δ(x) = f (0)δ(x) so that
∫ ∞

−∞
f (x)δ(x)dx = f (0) and

∫ ∞

−∞
f (x)δ(x− a)dx = f (a)

• For a linear transformation y = k(x− a) we have

δ(y) =
1

|k| δ(x− a)

This is straight-forward to prove by showing that δ(y) satisfies the

definition of the δ-function given above.

• Likewise, if {xi} is the set of points for which f (xi) = 0, then it is

easy to show by Taylor expansion around the xi that

δ[f (x)] =
∑

i

1

|f ′(xi)|
δ(x− xi)

• There exist many representations of the δ-function, for instance,

δ(r) =
1

(2π)3

∫
eik·rd3k or δ(x) =

dθ(x)

dx
,

with θ(x) =

{
0, for x < 0

1, for x ≥ 0
(Heaviside step function).

3A more rigorous mathematical definition is usually in terms of a limiting sequence of functions.
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Green functions

• Let Ω be some linear differential operator. A Green function

of the operator Ω is a solution of the differential equation

Ω G(r) = δ(r)

These Green functions can be viewed as some potential caused by

a point source at r.

• Once we have the Green function we can immediately solve the

differential equation for any source density s(r)

Ωψ(r) = s(r)

By substitution it is easy to see that (ψ0 is the solution of Ωψ0 = 0)

ψ(r) = ψ0(r) +

∫
G(r − r′)s(r′) dr′

Here it is clearly seen that G(r−r′) ‘propagates’ the contribution

from the source element s(r′)dr′ to the potential ψ(r).

• A few well-known Green functions are ...

∇2G(r) = δ(r) G(r) = −1/(4πr)

(∇2 + k2)G(r) = δ(r) G±(r) = − exp(±ikr)/(4πr)

(∇2 −m2)G(r) = δ(r) G(r) = − exp(−mr)/(4πr)

• ... and here are their Fourier transforms

G(r) = −1/(4πr) G̃(q) = −1/q2

G+(r) = − exp(ikr)/(4πr) G̃+(q) = 1/(k2 − q2 + iε)

G(r) = − exp(−mr)/(4πr) G̃(q) = −1/(q2 + m2)
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Non-relativistic scattering theory I

• Classical relation E = p2/2m + V with substitution E → i∂/∂t

and p = −i∇ gives the Schroedinger equation

i
∂

∂t
ψ(r, t) = −

[∇2

2m
− V (r, t)

]
ψ(r, t)

• Separate ψ(r, t) = φ(t)ψ(r). Dividing through by φψ gives

i∂tφ(t)

φ(t)
= −[∇2 − 2mV (r, t)]ψ(r)

2mψ(r)

Assume now that V does not depend on t. The left and right-hand

side must then be equal to a constant, say E, and we have

∂φ(t)

∂t
= −iE φ(t) → φ(t) = e−iEt

[∇2 + k2]ψ(r) = 2mV (r)ψ(r)

where we have set k2 = 2mE. Using Green functions we get

ψ(r) = ψ0(r)− m

2π

∫
eik|r−r

′|

|r − r′|V (r′)ψ(r′)dr′

• For large r � r′ we have |r − r′| ≈ r − r̂r′ so that

ψ(r) = ψ0(r)− m

2π

eikr

r

∫
e−ikr̂r

′
V (r′)ψ(r′)dr′

• We set k′ ≡ kr̂ and write, formally,

ψ(r) = ψ0(r)+f (k′)
eikr

r
with f (k′) ≡ −m

2π

∫
e−ik

′r′V (r′)ψ(r′)dr′

The function f (k′) is called the scattering amplitude.
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Non-relativistic scattering theory II

• An incoming plane wave ψin = Beikz describes beam particles

moving along the z axis with momentum k. The wave function

is normalised such that ρ = ψ∗ψ = |B|2 is the particle density

(number of particles per unit volume). The current density is

j in =
1

2mi
(ψ∗∇ψ − ψ∇ψ∗) = |B|2 k

m
= ρ

k

m
= ρv

with v the velocity of the particle. The number of beam particles

passing per second through an area A is Rin = ρvA = |j in|A.

Likewise, the number of scattered particles that pass per second

through an area r2dΩ is Rsc = |jsc|r2dΩ.

• We now imagine a hypothetical area dσ such that the number of

beam particles that pass through that area is equal to the number

of particles that scatter in the solid angle dΩ. We then have, by

definition, |j in| dσ = |jsc| r2dΩ, or

dσ

dΩ
=
r2 |jsc|
|j in|

The quantity dσ/dΩ is called a differential cross section.

• For our scattered wave ψsc = f (k′) eikr/r we find

jsc =
1

2mi

(
ψ∗
∂ψ

∂r
− ψ∂ψ

∗

∂r

)
= |f (k′)|2 k

mr2

and thus
dσ

dΩ
= |f (k′)|2

where we have assumed ρ = 1 and ksc = kin (elastic scattering).
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Non-relativistic scattering theory III

• Recall that for scattering on a potential, the outgoing wave is

ψout(r) = ψ0(r) + f (k′)
eikr

r

with

f (k′) ≡ −m
2π

∫
e−ik

′r′V (r′)ψout(r
′)dr′

Here k′ is the momentum vector of the scattered particle.

• The problem now is that ψout occurs on both sides of the equation

above. A first order approximation is achieved by setting in the

scattering amplitude ψout ≈ ψin = eikz = eikr. This gives

f (k,k′) ≡ −m
2π

∫
ei(k−k

′)r′V (r′)dr′ = −m
2π

∫
e−iqr

′
V (r′)dr′

where we have set the momentum transfer q ≡ k′ − k. In

this so-called Born approximation, the scattering amplitude

f (k,k′) ≡ f (q) is thus the Fourier transform of the potential.

• Example: Yukawa potential V (r) = Q1Q2 e
−ar/r

f (q) = −mQ1Q2

2π

∫
e−ar

′

r′
e−iqr

′
dr′ = · · · = 2mQ1Q2

q2 + a2

dσ

dΩ
= |f (q)|2 =

[
2mQ1Q2

q2 + a2

]2

• Example: Coulomb potential V (r) = Q1Q2/r set a = 0 above:

dσ

dΩ
=

[
2mQ1Q2

q2

]2

=

[
Q1Q2

2mv2 sin2(θ/2)

]2

This is the famous formula for Rutherford scattering.
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Dirac’s bra-ket notation I

• A state vector ψα can be represented by a column vector of complex

numbers in a Hilbert space and is denoted by the ket |α〉. To each

ket is associated a bra vector 〈α| in a dual Hilbert space. This

bra is represented by the conjugate transpose ψ†α, that is, by the

row vector of complex conjugates. The operation of Hermitian

conjugation turns a bra into a ket and vice versa

|α〉† = 〈α| and (c|α〉)† = 〈α|c∗ (c any complex number)

Note that the Hermitian conjugate of a c-number is the complex

conjugate. The inproduct ψ†α · ψβ is denoted by 〈α|β〉 and is a

c-number so that

〈β|α〉 ≡ 〈α|β〉† = c† = c∗ = 〈α|β〉∗

• An operator O transforms a ket |α〉 into another ket, say |γ〉. The

operator and its Hermitian conjugate are then defined by

O|α〉 = |γ〉 and 〈α|O† = 〈γ|
Multiplying from the left with 〈β| and from the right with |β〉 we

find the relation between the matrix elements of O and O†

Oβα ≡ 〈β|O|α〉 = 〈β|γ〉
O†αβ ≡ 〈α|O†|β〉 = 〈γ|β〉 = 〈β|γ〉∗ = 〈β|O|α〉∗ = O∗βα

• An operator for which O = O† is called self-adjoint or Hermi-

tian. Observable quantities are always represented by Hermitian

operators. Indeed, the expectation value 〈α|O|α〉 is then real,

as it should be, since

〈α|O|α〉 ≡ 〈α|O†|α〉 = 〈α|O|α〉∗

0–14



Dirac’s bra-ket notation II

• An orthonormal basis is written as |ei〉 with 〈ei|ej〉 = δij. On this

basis, a state |α〉 is given by the linear combination

|α〉 =
∑

i

|ei〉〈ei|α〉

The operator |ei〉〈ei| is called a projection operator, for obvi-

ous reasons. The closure relation reads
∑

i |ei〉〈ei| = 1

• We denote the wave function ψα(r) by 〈r|α〉 and its Hermitian

conjugate ψ†α(r) by 〈α|r〉. In particular, the wave function of a

momentum eigenstate is 〈r|k〉 ∝ eikr.

• For the complete set of states |r〉 the closure relation reads
∫
|r〉〈r| dr = 1

From this, we nicely recover the expression for the inproduct of

two wave functions

〈α|β〉 =

∫
〈α|r〉〈r|β〉 dr =

∫
ψ∗α(r)ψβ(r) dr

that of the delta function

δ(k − k′) = 〈k′|k〉 =

∫
〈k′|r〉〈r|k〉dr ∝ 1

(2π)3

∫
ei(k−k

′)rdr

and also that of Fourier transforms

ψ(k) = 〈k|ψ〉 =

∫
〈k|r〉〈r|ψ〉dr ∝

∫
e−ikrψ(r)dr
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Dirac equation

• Dirac equation:

iγµ∂µψ −mψ = 0

(/p−m)u = 0
︸ ︷︷ ︸

particle in

, ū(/p−m) = 0
︸ ︷︷ ︸

particle out

, (/p + m)v = 0
︸ ︷︷ ︸

antiparticle out

, v̄(/p + m) = 0
︸ ︷︷ ︸

antiparticle in

ψ = ψ†γ0, /a = γµaµ

• Pauli matrices:

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

)

σiσj = δij + iεijkσk, σ†i = σi = σ−1
i , [σi, σj] = 2εijkσk

(a · σ)(b · σ) = a · b + iσ · (a× b)

exp(iθ · σ) = cos |θ| + i(θ̂ · σ) sin |θ|

• Dirac matrices:

γ0 =

(
1 0

0 −1

)
, γi =

(
0 σi
−σi 0

)
, γ5 = iγ0γ1γ2γ3 =

(
0 1

1 0

)

γ0† = γ0, γi
†

= −γi, γ0γµ†γ0 = γµ

{γµ, γν} = 2gµν, {γµ, γ5} = 0,
(
γ5
)2

= 1
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Elements of Group Theory

Michiel Botje
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June 5, 2013

This section gives a brief overview of some group theoretical concepts

and terminology that is often used in the particle physics literature.

[This section is still incomplete]





Definition of a group

A group G is a collection of elements {a, b, c, . . .} with a composition rule ab,
often called the multiplication of a and b, that satisfies:

1. For every element a and b of G, the product ab is also an element of G;

2. The multiplication is associative (ab)c = a(bc);

3. There is a unique unit element e, with ea = ae = a, for all elements a;

4. Each element a has a unique inverse a−1 in G, with aa−1 = a−1a = e.

This is of course quite an abstract definition4 since it is not specified what
these group elements are, and what the group multiplication stands for. In
physics, we can think of a group as a set of transformations of some kind,
such as translations or rotations in Euclidian space, Lorentz transformations in
space-time, or—more abstract—transformations in quark flavour or color space.

A group can be discrete, with the group elements labeled by a set of indices, or
continuous, with the elements labeled by a set of continuous parameters.

An example of a discrete group is the set of integers, with addition as the group
multiplication. The number zero is then the unit element and the negative
integers are the inverse of the positive integers (and vice versa). This group
obviously has an infinite number of elements. An example of a continuous group
is that of rotations in two dimensions, with each element labeled by a rotation
angle. Here the group operation is the addition of rotation angles. The unit
element is a rotation over zero angle, and the inverse element is a rotation with
the angle reversed.

Another distinction is that of Abelian groups where the group operation
commutes (ab = ba for all elements a and b) and non-Abelian groups where the
group operation does not always commute. For instance, the group of rotations
in two dimensions is Abelian, but that of rotations in three dimensions is not.

We will now use the finite discrete cyclic group to illustrate some basic ideas.

4The definition, as stated here, is somewhat redundant because e and a−1 must be unique by virtue of their
definitions and the requirements (1) and (2). We leave it as an exercise to prove this.
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The cyclic group

As an example of a finite group, take the set

G = {1, i,−1,−i}, (0.1)

with ordinary complex multiplication as the group operation. The number of
elements of a discrete group is called the order of the group, sometimes denoted
by [G]. Thus, the group above is of order four.

A finite group is completely specified by its multiplication table which for
our group G = {e, a, b, c} is given by

G e a b c

e e a b c
a a b c e
b b c e a

c c e a b

A multiplication table usually is not very instructive but some characteristic
features can easily be spotted: (i) Each element of the group occurs only once
in each row or column. This is because ab and ac cannot map onto the same
element. Indeed, if ab = ac we find, multiplying from the left with a−1, that
b = c; (ii) The table above is symmetric around the diagonal which shows that
the group G is Abelian; (iii) Elements with e on the diagonal are its own inverse.

We can also write (0.1) as

G = {1, eiπ/2, eiπ, ei3π/2},
which shows that G can be realised by rotations over {0, 90, 180, 270} degrees.
In this realisation, the group operation is the addition of rotation angles. A
rotation of a 2-dimensional coordinate system over an angle θ, measured coun-
terclockwise from the x-axis, is described by the rotation matrix5

(
x′

y′

)
=

(
cos θ sin θ
− sin θ cos θ

)(
x
y

)
. (0.2)

Setting θ = {0, 1
2π, π,

3
2π}, we can represent the group G by the matrices

G =

{(
1 0
0 1

)
,

(
0 1
−1 0

)
,

(
−1 0

0 −1

)
,

(
0 −1
1 0

)}
, (0.3)

5Note that this is a passive rotation of the coordinate system where the same vector is described in the
primed and unprimed systems. An active transformation rotates the vector and is related to the passive
transformation by inverting the sign of θ.
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with matrix multiplication as the group operation. This is called a 2-dimensional
representation of G.

I An n-dimensional representation of a group G is a mapping of each element
gi onto a non-singular n× n matrix Mi that preserves the group multiplication

gigj = gk → MiMj = Mk.

Don’t confuse the dimension of a representation of G with the order of G. J

It is clear that rotations by multiples of 90◦ leave a square invariant. If we label
the corners of the square {1, 2, 3, 4} then we see that G can also be realised by
the following four permutations :

G =

{(
1 2 3 4
1 2 3 4

)
,

(
1 2 3 4
2 3 4 1

)
,

(
1 2 3 4
3 4 1 2

)
,

(
1 2 3 4
4 1 2 3

)}
. (0.4)

I Every element of a finite group of order n corresponds to a permutation
of n objects. J

When we arrange the objects in an n-dimensional vector, the permutations can
be expressed as n×n matrices, thus yielding a regular representation of the
group (i.e. a representation with a dimension equal to the order of the group):

G =








1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 ,




0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0


 ,




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


 ,




0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0







. (0.5)

If we introduce complex matrices, we can say that (0.1) is a 1 × 1 complex
representation of G. In this somewhat un-systematic fashion we have thus
found a 1-, 2- and 4-dimensional representation of G. It is an important (and
nontrivial) task of group theory to find all representations of a group or, to be
more precise, all so-called irreducible representations since these serve as
basic building blocks to construct all others.

Taking powers of a we see that G can be written as

G = {e, a, a2, a3} with a4 = e. (0.6)

Thus a generates all elements of the group and is called the generator of G.
For obvious reasons, G is called the cyclic group of order four, denoted by Z4.

I The cyclic group Zn of order n is generated by a 2-dimensional rotation
over the angle 2π/n. The group leaves an n-sided regular polygon invariant. J
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Some basic concepts

I A subgroup H ⊂ G is a set of elements of G that satisfy the group conditions.
The unit element e is obviously shared by G and all its subgroups. J

I The left coset gH is obtained by multiplying all elements of H from the left
by an element g which is not in H. Likewise we define the right coset Hg. Note
that the left and right cosets are of the same order as H but are not subgroups
of G since they do not contain the unit element. J

I A subgroup H and its left (or right) coset have no element in common. J

This can easily been seen as follows: Let gh1 = h2 ∈ H. Then g = h2h
−1
1 ∈ H

which leads to a contradiction since g is, by definition, not in H. Let us now
take another element g′ which is not in H and also not in gH. It is easy to show
(homework) that g′H has no element in common with gH (and H). Now we can
pick another element g′′ not in H or in any of the two cosets to build another
completely disjunct coset g′′H. In this way we can continue till we have divided
the entire group G into H and cosets gH which all have the same number of
elements, and no elements in common. We just have proven

I Lagrange’s theorem: The order m of a subgroup H ⊂ G is an integer
division of the order n of G. The ratio k = m/n is called the index of H in G.
It directly follows that groups of prime order cannot have any subgroups. J

Another very important operation is that of conjugation.

I The conjugate of any element a with respect to any other element g is
defined by a so-called similarity transformation

ã = gag−1. (0.7)

When ab = c then ãb̃ = c̃, that is, conjugation preserves the group multiplica-
tion. Clearly, the elements a and ã are each other’s conjugate since a = g−1ãg.
Note that the elements of an Abelian group are their own conjugate ã = a. J

Conjugation is an example of a one-to-one mapping of group elements onto
another set of elements that have the same multiplication table. Such a mapping
is called an isomorphism: G ∼= F. A homomorphism (G ∼ F) is a mapping
of G to F that is not one-to-one, but still preserves the multiplication table.

Conjugation splits a group G into disjunct classes :

I A class Ca is the set of conjugates ã with respect to every element g of G:

Ca = {gag−1 ∀g ∈ G}.
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It is easy to show (homework) that if b is not an element of Ca then Ca and Cb
have no element in common. Note that a class is not a subgroup, except when
a = e. The classes of an Abelian group contain exactly one element Ca = a. J

A normal or invariant subgroup H ⊂ G maps onto itself by conjugation with
respect to any element g:6

ghg−1 ∈ H, ∀h ∈ H, ∀g ∈ G.

Because gh1g
−1 = h2 it follows that for each element h1 of a normal subgroup

another element h2 can be found such that gh1 = h2g. From this it is clear that

I The left and right cosets of a normal subgroup are identical: gH = Hg. J

When G contains a normal subgroup H, we can set-up a correspondence G 7→ G′

by mapping all elements of H onto e′ and all elements of a coset gH = Hg onto
the element g′. We now multiply elements of H and its cosets with each other
and see what happens to the images in G′.

h1h2 = h3 7→ e′e′ = e′,
h1(ah2) = h1(h3a) = (h1h3)a = h4a 7→ e′a′ = a′,
(h1a)(h2b) = h1(ah2)b = h1(h3a)b = (h1h3)(ab) = h4c 7→ a′b′ = c′,

where we have set ah2 = h3a, h1h3 = h4 and ab = c. Thus G and G′ have the
same multiplication table so that G′ is a homomorphic image of G, called the
factor group G/H. The normal subgroup H maps onto the unit element of
G/H and is called the kernel of the mapping. From the above it is easy to see
that the following statement is true.

I The kernel H of a homomorphic mapping G 7→ G′ is a normal subgroup of G.
The factor group G/H is then isomorphic to G′. Note that the factor group is
not a subgroup of G but an image of G. J

Can a factor group also have a normal subgroup so that it can be factorised
further? Yes, this is certainly possible but it can be shown that (homework):

I If H ⊂ G is the largest normal subgroup of G then the factor group G/H has
no normal subgroup (except e). Because H has the largest possible order it
follows that G/H has the smallest possible order. J

A group that has no normal subgroup other than e is called simple and the
above gives a prescription to map any non-simple group onto a simple group

6The additive group of integers, for example, contains the normal subgroup of even integers. What about
the set of odd integers? (homework).
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(of lower order). This is the reason why mathematicians only consider simple
groups to be of fundamental interest.

Above we have encountered several ways to dissect a group so let us now intro-
duce the direct product (also called Kronecker product) to enlarge a group.

I The direct product F× G is the set of pairs

(a, b), a ∈ F, b ∈ G with (a, b)(c, d) ≡ (ac, bd). (0.8)

With the multiplication thus defined, it is easy to see that F× G is a group. J

Finally, let us repeatedly multiply an element by itself. Suppose we make a list

a, a2, a3, . . .

of powers of some element a 6= e of a finite group G. Clearly the length of such
a list has no bound but since the number of elements of G is finite we must have
it occur twice at some point in the list, that is, for some n > m we have

an = am → an−m = ak = e.

The power k is called the order of a and the set {an} is called the orbit of a.
The above implies that:

I Every element a 6= e of a finite group G of order n generates a cyclic subgroup
Zk ⊆ G with 2 ≤ k ≤ n. An element that is its own inverse generates Z2. J

Now because Lagrange’s theorem tells us that groups of prime order cannot
have any subgroup it follows that we must have k = n when n is prime:

I The only possible finite group of prime order n is the cyclic group Zn. J

The SO(3) group of rotations in three dimensions

Rotations in three dimensions form a continuous group, represented by the
special orthogonal group SO(3) of 3 × 3 unimodular (unit determinant)
orthogonal matrices R. The study of this group is of interest because rotation
is a very common transformation, and also because several important concepts
related to continuous groups can be nicely introduced.

We take the convention to rotate the coordinate system so that a vector r
with coordinates x = (x1, x2, x3) in a reference system O, has coordinates x′ =
(x′1, x

′
2, x
′
3) in the rotated system O′. Here and in the following we will use the
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summation convention of summing over repeated indices so that we may
write for x′ = Rx

x′i = Rij xj.

The orthogonality condition reads RTR = RRT = I, in components,

RjiRjk = δik RijRkj = δik.

It follows that a rotation preserves the inproduct x · y of two 3-vectors,

x′iy
′
i = Rijxj Rikyk = δjk xjyk = xjyj.

The orthogonality condition implies R−1 = RT so that each rotation indeed has
an inverse. The unit element is a rotation over zero angle. Furthermore, the
product R3 = R2R1 of two rotations is again a rotation because

RT
3 = RT

1R
T
2 = R−1

1 R−1
2 = R−1

3 and det(R3) = det(R2) det(R1) = 1.

We conclude that 3-dimensional rotations form a group.

Three-dimensional rotations are determined by a rotation axis û (unit vector)
and a rotation angle α about this axis. We write α ≡ αû, specified by three
parameters (α1, α2, α3). If we rotate the system O counterclockwise by an angle
α about the z axis to the system O′ we have for the relation between x and x′



x′

y′

z′


 =




cosα sinα 0
− sinα cosα 0

0 0 1





x

y

z


 . (0.9)

For small angles α/n the rotation matrix can be written as

R(α/n) = I +
α

n




0 1 0
−1 0 0

0 0 0


+ O

(
α2

n2

)
≡ I +

α

n
T + O

(
α2

n2

)
.

The matrix T is called the generator of the rotations about the z axis. Ignoring
terms O(α2) this gives for a finite rotation

R(α) = lim
n→∞

(
I +

α

n
T
)n

= exp(αT ). (0.10)

Here the exponent eA of a matrix should be understood as the series expansion

eA
def
=

∞∑

n=0

An

n!
.
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Note that the familiar expression eA eB = e(A+B) is only true when A and B
commute. Because 3-dimensional rotations about different axes do not com-
mute, it is not obvious that we can write the generator of a rotation about an
arbitrary axis as the sum of generators of rotations about the x, y and z axis:

R(α) = eα1T1 eα2T3 eα3T3 ?
= eα1T1+α2T2+α3T3.

However, for an infinitesimal rotation of a vector r about α we can write

r′ = r +α× r = r − r ×α.

Our convention is that we do not rotate the vector but the coordinate system
(over an angle −α) so that the coordinate transformation is

x′ = x+ x×α.

Introducing the antisymmetric tensor εijk,
7 this reads in components

x′i = xi + εijkxjαk = [ δij + αkεijk ]xj = [ δij + αk(Tk)ij ]xj.

From this we identify the three generators (Tk)ij = εijk :

T1 =




0 0 0
0 0 1
0 −1 0


 , T2 =




0 0 −1
0 0 0
1 0 0


 , T3 =




0 1 0
−1 0 0
0 0 0


 , (0.11)

and write R(α) = exp(α · T ). Note that the generators are traceless and
anti-orthogonal: TT = −T . Dividing by i makes the generators Hermitian8

(L† = L) and the defining equation for the generators becomes

R(α) = exp(iα ·L), (0.12)

with, for SO(3),

L1 =




0 0 0
0 0 −i
0 i 0


 , L2 =




0 0 i

0 0 0
−i 0 0


 , L3 =




0 −i 0
i 0 0
0 0 0


 . (0.13)

Note that

(Li)jk = −iεijk (0.14)

7The tensor εijk is +1 for even permutations of (123), −1 for even permutations of (231) and zero otherwise.
8The Hermitian conjugate of a matrix is defined by H† = (H∗)T. A matrix is called Hermitian when H† = H.
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Let us at this point make a few remarks.

I A continuous group whose elements are continuously connected to the iden-
tity is called a Lie group. The elements of a Lie group are related to the
generators of the group by the limiting equation (0.10). J

The rotation group SO(3) is obviously a Lie group, but the group O(3), that
includes orthogonal matrices with determinant −1 (reflections) is not a Lie
group since reflections are not connected to the identity (there is no such thing
as an infinitesimal reflection).

I The number of generators of a Lie group is equal to the number of parameters
of that group. J

The group SO(3) has three parameters and therefore three generators. The
number of generators has nothing to do with the dimension of the defining
SO(3) matrices, which happens to be three also.

Is is seen from (0.13) that the generators Li are Hermitian and traceless.
They are Hermitian because R is orthogonal (homework) and traceless because
det(R) = 1. The latter follows from a theorem of linear algebra:

I For matrices U = exp(A) that can be brought into diagonal form, the deter-
minant is given by det(U) = exp(TrA). J

For a rotation sα, with s a real number, we find

R(sα) = exp(isα ·L) = R(α)s so that R(sα)R(tα) = R[(s+ t)α].

I Rotations about a fixed axis define a commuting subgroup of SO(3). J

Because the product of two rotations is again a rotation it follows that

R(α)R(β) = R(γ) (0.15)

where γ(α,β) is a (non-trivial) function of α and β. From the fact that such a
function must exist it can be shown that the commutator of any two generators
must be a linear combination of the generators

[Li, Lj] = ckijLk. (0.16)

For SO(3) the commutation relations are, from (0.13),

[Li, Lj] = iεijkLk. (0.17)

The ckij are called the structure constants of the group. Note from (0.14) that
the SO(3) structure constants are also matrix elements of the representation of
the generators and this is no coincidence, as we will see below.
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Eq. (0.15) can be written as

exp(iγ ·L) = exp(iα ·L) exp(iβ ·L) = exp[i(α+ β) ·L+ f(L)],

where f(L) is a function of repeated commutators like [Li, Lj], [[Li, Lj], Lk], etc.
From this it can be shown that f(L) depends only on the structure constants.

I Structure constants determine the multiplication structure of a Lie group.
The commutation relations (0.16) thereby define a so-called Lie algebra. J

For any triplet of n× n matrices A, B and C, the Jacobi identity states that

[[A,B], C] + [[B,C], A] + [[C,A], B] = 0

which is easy to prove by writing out the commutators, and enjoying the can-
cellations. In terms of the structure constants, the Jacobi identity reads

cmij c
n
mk + cmjk c

n
mi + cmki c

n
mj = 0.

Now define the matrices Ci with elements

(Ci)
k
j = −ckij. (0.18)

From (0.16) it is seen that ckij = −ckji, and the Jacobi identity becomes

cmij c
n
mk − cmjk cnim + cmik c

n
jm = −cmij (Cm)nk − (Cj)

m
k (Ci)

n
m + (Ci)

m
k (Cj)

n
m

= −cmij (Cm)nk − (Cj Ci)
n
k + (CiCj)

n
k = 0

or
[Ci, Cj] = ckijCk

which is the same commutation relation as (0.16). Thus the matrices Ci are a
representation, called the adjoint representation, that has a dimension equal
to the number of generators. This is in contrast to the so-called fundamental
representation (0.13), that has the dimension of the defining linear space
which is the 3-dimensional Euclidian space in case of SO(3). From (0.14) it is
clear that for SO(3) the fundamental and the adjoint representations coincide,
but this is certainly not true in general.

Let us give, at this point, two useful relations for the ε tensors (the first is
the Jacobi identity, the second can trivially be shown to be true by giving the
values (1,2,3) to two of the indices).

εijm εmkn + εjkm εmin + εkim εmjn = 0 (0.19)

εijm εmkl = δik δjl − δil δjk (0.20)
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SO(3) transformations in higher dimensions

In this section we take two 3-vectors x and y and use these to build objects
of dimensions larger than three. Their transformation under rotations will
then yield higher-dimensional representations D(R) of SO(3), other than the
fundamental (R) and adjoint representations that we have found up to now.

The simplest composite object we can build has 6 components and is defined by

v = x ⊕ y def
= (x1, x2, x3, y1, y2, y3) = (v1, v2, v3, v4, v5, v6). It transforms under

rotations as

v′ =

(
x′

y′

)
=

(
R 0
0 R

)(
x
y

)
= D(R)v. (0.21)

Clearly D(R1)D(R2) = D(R1R2), so that D is indeed is a representation
of SO(3). It is also clear that the components v1, v2 and v3 will never mix
with the components v4, v5 and v6 and we say that D(R) is reducible into a
direct sum of two 3-dimensional transformations: 6 = 3⊕3. A block-diagonal
representation like (0.21) is the hallmark of reducibility but if we would have
defined v = (x1, y1, x2, y2, x3, y3), for instance, then D(R) would not be block-
diagonal but of course still be reducible into 3 ⊕ 3 since v1, v3 and v5 will not
mix with v2, v4 and v6.

I A representation that cannot be brought into block-diagonal form by a sim-
ilarity transformation (change of basis) is called irreducible. J

We can build another object by taking the outer product of x and y,

Tij = (x⊗ y)ij
def
= xiyj with T ′ij = x′iy

′
j = RikxkRjlxl = RikRjlTkl.

This tensor T has 3× 3 = 9 components and the transformation RikRjl can be
arranged into a 9× 9 matrix D(R) with, again, D(R1)D(R2) = D(R1R2). The
representation D is reducible because some linear combinations of the tensor
elements have specific behaviour under rotations, as we will now show. For
instance the trace of T is just the inproduct of x and y,

Tr(T ) = δijTij = Tii = xiyi = x · y,

and is therefore invariant under rotations. The antisymmetric sum

ai = εijkTjk = εijkxjyk = (x× y)i

is a component of the cross product of x and y and thus transforms as the
component of a vector: a′i = Rijaj. Having identified one scalar component
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and three vector components there remain 9− 1− 3 = 5 components of T that
transform as a proper tensor. This suggests that we may write the decompo-
sition of the tensor product as 3 ⊗ 3 = 1 ⊕ 3 ⊕ 5 where, by construction, the
vector component 3 is antisymmetric in the tensor indices.

Note, in this respect, that any tensor Tij can be decomposed into a symmetric
part Sij = Sji and an antisymmetric part Aij = −Aji as follows

Sij = 1
2(Tij + Tji), Aij = 1

2(Tij − Tji).
Now the (anti)symmetric components transform into (anti)symmetric compo-
nents as is easy to show: If we denote by T̃ the transpose of T then we have,
by definition, S − S̃ = 0 and A+ Ã = 0. Because the transformation D(R) is
linear we can write

S′ − S̃′ = D(S)−D(S̃) = D(S − S̃) = D(0) = 0

A′ + Ã
′

= D(A) +D(Ã) = D(A+ Ã) = D(0) = 0

so that, indeed, S′ = S̃
′

and A′ = −Ã′. The representation D(R) thus de-
composes into 3 ⊗ 3 = {6} ⊕ [3], where we have introduced the notation {n}
and [m] to indicate a representation that transforms as a symmeteric or as an
antisymmetric tensor.9

We have seen above that the trace is invariant so that the symmetric component
is still reducible into {6} = {5}⊕1. It thus makes sense to formally isolate the
trace and write the expansion of a tensor as

Tij = 1
2 εijk(εklmTlm)︸ ︷︷ ︸

Tij−Tji

+1
2(Tij + Tji − 2

3δijTkk) + 1
3δijTkk, (0.22)

where use of (0.20) has been made to express the antisymmetric component in
terms of ε-tensors. This component is traceless by definition, and by using the
identity δii = 3 it is immediately clear that the second term is traceless, too.
The decomposition (0.22) shows that the 9-dimensional tensor representation
of SO(3) splits into three irreducible representations

3⊗ 3 = [3]⊕ {5} ⊕ 1.

To summarize, we can write the decomposition of our tensor T = x⊗ y as

T →





T = 1
3(x · y) (scalar, one component)

Ti = 1
2(x× y)i (vector, three components)

Tij = 1
2(xiyj + xjyi)− 1

3δij(x · y) (tensor, five componenents)

9This is the same notation as that of anticommutation {A,B} ≡ AB + BA (symmetric) and commutation
[A,B] ≡ AB −BA (antisymmetric). Of course 1 = {1}, so there we do not put brackets.
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where the first term transforms as a scalar (invariant under rotations), the
second term as a vector

T ′i = RijTj,

and the third term as a tensor, according to

T ′ij = 1
2

(
RikRjl +RilRjk − 2

3δijδkl
)
Tkl.

The number of indices is called the rank or order of a tensor; apart from
rank-2 tensors we thus have also encountered tensors of rank zero (scalars) and
one (vectors). Note that tensors are defined by their SO(3) transformation
properties so that a rank-2 tensor not necessarily is an outer product, but
behaves as an outer product of two vectors.

A scalar is, by definition, invariant under SO(3) transformations but there exist
also higher order tensors that are invariant. For instance,

δ′ij = RikRjlδkl = RikRjk = (RRT)ij = δij

and10

ε′ijk = RilRjmRknεlmn = εijk det(R) = εijk.

Quite some more to come . . .

10We denote the first row of a 3×3 matrix A by the vector a1 ≡ (A11, A12, A13), and similar for the second (a2)
and third row and (a3). The determinant is then given by the volume det(A) = a1 ·(a2×a3) = εlmnA1lA2mA3n.
The determinant changes sign under the interchange of two row-indices while no two row-indices can be equal.
This can be encoded by setting the indices {1, 2, 3} to {i, j, k} and writing εlmnAilAjmAkn = εijk det(A).
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The quest for elementary particles and forces

• Particle physics is the search for the fundamental constituents of

matter and their interactions.

• The idea that matter is built from indivisible constituents dates

back to the Greek philosopher Demokritos (400 BC) but it took

a long time to prove him right: the proof that chemical elements

are indeed made of atoms came only at the beginning of the last

century, together with the development of statistical mechanics

and quantum theory.

• The discovery of radioactivity indicated, however, that atoms could

not be the fundamental constituents of matter and, indeed, after

the experiments of Rutherford (1909) it was realised that atoms

are complex objects with electrons orbiting a small heavy nucleus.

• The discovery of the neutron by Chadwick (1932) showed that

atomic nuclei are made up of protons and neutrons. It was also

clear that, in addition to gravitation and the electromagnetic force,

there should exist two short-range forces in nature: a strong force

which binds the nucleons together and a weak force which is respon-

sible for radioactive β-decay. These forces had to be short-range

because they were not felt at atomic scales.

• So nowadays four types of interaction are known: the strong in-

teraction (∼1), the electromagnetic interaction (∼10−2),

the weak interaction (∼ 10−6) and gravity (∼ 10−38), where

we have indicated the relative strength in brackets.
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Interactions

• Today we know that nucleons are made up of quarks and that

the strong force between the nucleons in an atomic nucleus is a

van-der-Waals type residual force of a more fundamental strong

interaction between quarks. The field theory of this interaction

between quarks is called Quantum Chromodynamics (QCD).

• QCD is a so-called gauge theory, like quantum electrodynam-

ics (QED) and the theory of the weak interactions. In such a the-

ory, the constituent fields are described by representations of a sym-

metry group while the interaction between the fields is described

by the exchange of so-called gauge bosons. These interactions

follow from the requirement that the Lagrangian is invariant under

arbitrary local symmetry transformations of the constituent fields.

• The underlying U(1) symmetry of QED gives rise to the photon γ

as the gauge boson. The weak interaction is governed by an SU(2)

symmetry and is mediated by the three vector bosons W± and Z0.

The SU(3) symmetry of QCD generates generates eight types ga
of gluon as the quanta of the gauge field. Here are the properties

of these so-called intermediate vector bosons (spin 1).

Interaction Boson Spin Q A L Mass

Electromagnetic γ 1 0 0 0 0

Weak (CC) W± 1 ±1 0 0 80.4 GeV

Weak (NC) Z0 1 0 0 0 91.2 GeV

Strong g1, . . . , g8 1 0 0 0 0

• Note that all particles participate in the weak interaction, all charged

particles in the electromagnetic interaction and that only the quarks

participate in the strong interaction. Gravity is so weak that it can

be neglected at subatomic scales.
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Elementary particles

• The elementary particles can be classified into leptons (without

strong interaction) and quarks (with strong interaction):

Lepton Spin Q Le Lµ Lτ Mass Lifetime

e 1
2 –1 1 0 0 0.5 MeV

νe
1
2 0 1 0 0 ∼ 0

µ 1
2 –1 0 1 0 106 MeV 2× 10−6

νµ
1
2 0 0 1 0 ∼ 0

τ 1
2 –1 0 0 1 1.8 GeV 3× 10−13

ντ
1
2 0 0 0 1 ∼ 0

Quark Spin Q A I3 S C B T Mass

d 1
2 –1

3
1
3 –1

2 0 0 0 0 ∼ 7 MeV

u 1
2

2
3

1
3

1
2 0 0 0 0 ∼ 3 MeV

s 1
2 –1

3
1
3 0 –1 0 0 0 ∼ 120 MeV

c 1
2

2
3

1
3 0 0 1 0 0 ∼ 1.2 GeV

b 1
2 –1

3
1
3 0 0 0 –1 0 ∼ 4.3 GeV

t 1
2

2
3

1
3 0 0 0 0 1 ∼ 172 GeV

• The additive quantum numbers Q,L,A, I3, S, C,B, T all change

sign under charge conjugation (particle → antiparticle).11

• The charge (Q), lepton number (Le,ν,τ ) and baryon number (A)

are aways conserved in every type of interaction (electromagnetic,

weak, strong).

11Note that the flavour quantum numbers I3, S, C,B, T have, by convention, the same sign as the charge.
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Colour charge

• Free quarks have never been observed because their coupling is so

strong that with increasing separation it becomes easier to produce

a quark-antiquark pair than to isolate the quark.

• Quarks therefore bind permanently into hadrons which can be

classified as mesons (qq̄) and baryons (qqq).

• A problem with this is that there exist baryons such as the spin 3
2

resonance ∆++ = u ↑ u ↑ u ↑ with a ground state wave func-

tion that is fully symmetric under the exchange of two quarks.

But for fermions (half-integer spin) the wave function should be

antisymmetric.

• A way-out is provided by the colour hypothesis which states

that each quark comes in one of three colours red (r) , green (g) or

blue (b). Antiquarks are anticoloured: r̄, ḡ and b̄. The hypothesis

furthermore states that hadrons are colour singlets (‘white’),

that is, they are invariant under rotations in colour space. The

colour hypothesis thus naturally explains the existence of qq̄ and

qqq hadronic states12 and also that of particles like the ∆++ since

its colour wave function can always be made fully antisymmetric.

• In QCD, colour plays the role of charge, and gluons are the quanta

of the colour gauge field that binds the quarks into hadrons. Unlike

the photons in QED, the gluons themselves carry a colour charge,

so that self-coupling 3- and 4-gluon vertices do exist (→ fig).

• As we will see later, this self-coupling of gluons has dramatic im-

plications for the effect of charge screening in QCD, which turns

out to be completely different from that in QED.

12It also allows for qq̄[qq̄]n and qqq[qq̄]n exotic states. It is controversial if such states actually exist.
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Basic diagrams of QED and QCD

( a )

( b )

( c )

(a) Electromagnetic interaction of a quark and an antiquark through

photon exchange (left). Strong interaction of a quark and an anti-

quark through gluon exchange (right).

(b) Two possible colour flows in the qq̄ strong interaction.

(c) Gluon interaction (left) and a possible colour flow through the 3-

gluon vertex (right). Note that gluons always carry one unit of

colour and one unit of anticolour.
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Two paradoxes

• To explain the short range of the nuclear force, Yukawa (1934) pro-

posed that this force is mediated by the exchange of massive field

quanta which he called mesons (→ fig). In his theory, the range of

the force is inversely proportional to the mass of the intermediate

vector boson. He estimated a mass of about 140 MeV and indeed

a candidate (the π meson) was later found in cosmic rays (1937).

• But, as we will see later, massive gauge field quanta break the

gauge symmetry so that the exchanged boson must necessarily be

massless. For instance, the U(1) symmetry of the QED Lagrangian

forces the photon to be massless, which indeed it is. As a conse-

quence the electromagnetic interaction has an infinite range.

• It follows that the SU(3) gauge symmetry of the QCD Lagrangian

forces the gluons to be also massless, like the photon. But if these

gluons are massless, how can the strong force then be short-range?

• Another puzzle came with a series of high-energy electron-proton

scattering experiments at SLAC (∼ 1970) which proved the exis-

tence of quarks but also showed that they seemed to behave like

free particles, in spite of the fact that they are strongly bound

inside the proton.

• The solution to both these paradoxes was found by Gross, Politzer

and Wilczek by their discovery of asymptotic freedom. They

could explain why, as Wilczek put it in his Nobel lecture, ‘Quarks

are Born Free, but Everywhere They are in Chains’.

• As we will see in these lectures, the phenomena of asymptotic free-

dom and confinement are caused by the self-interaction of gluons

which, in turn, is a consequence of the non-abelian nature of SU(3).
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Old and modern views of pion exchange

	
  

In the lower diagram π0 exchange in a proton-proton interaction is

described in terms of constituent quarks by the exchange of an uū pair.
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Are quarks real?

e+

e−

e

e�

γ∗
γ∗

jet

jet jet

q

q̄

proton

• If quarks cannot be observed in isolation, how do we know that

they actually exist and are not mere theoretical constructs?

• One way is to resolve quarks by illuminating protons with photons

of large momentum Q and therefore small Compton wavelength

1/Q. These very short wavelength photons are radiated off highly

energetic electrons when they scatter on protons (right-hand dia-

gram above). This process is called deep inelastic scattering

which indeed acts as a microscope to reveal the internal quark

structure of the proton. How this actually works, will be the sub-

ject of the last two lectures in this course.

• Furthermore it turns out that highly energetic quarks produced in

hard e+e−, p̄p and pp scattering hadronise into collimated sprays

of particles, known as jets (left-hand diagram above). Thus we

can more or less directly probe the dynamics of quarks by mea-

suring jets in experiments at high energy colliders (→ fig). Jet

production is clearly a very important tool to confront QCD with

experiment and can certainly produce spectacular events in parti-

cle colliders (→ fig) but, unfortunately, we cannot cover the large

field of jet physics in these eight lectures.
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Two-jet event in a e+e− collision at LEP

Two back-to-back jets observed by the DELPI experiment at LEP in

an e+e− collision at 90 GeV centre-of-mass energy.
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Six-jet event in a proton-proton collision at the LHC

Candidate six-jet event recorded by the Atlas experiment in a 7 TeV

proton-proton collision at the LHC.
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About this course

• QCD, and strong interaction physics in general, is a huge subject,

so no two courses on QCD are the same since they necessarily

reflect the choices made by the lecturer.

• My first choice is to devote ample time (three lectures) to build

the QCD Lagragian, much based on Chapter 10 of Griffiths. Here

a good understanding is important because QCD lectures which

you may attend later (e.g. at the CERN summer school) often

start from the Lagrangian, without much further ado (→ fig). Of

course there will be some overlap with PP-I but I prefer to tell the

full story instead of relying on what you presumably know already.

• QCD calculations quickly become technically complicated so we

have to limit ourselves to some simple colour factor calculations

which, however, nicely explain why the colour force is attractive

for meson and baryon quark states and repulsive for others.

• Of course, asymptotic freedom is a crucial property of QCD and

we will devote a full lecture to the running coupling constant and

its implications. Here we will encounter ultraviolet singularities

which will be dealt with by a simple cut-off regularisation.

• Infrared singularities are the subject of the another lecture where

we will explain how they are related to long-distance physics, as

opposed to short-distance perturbative QCD.

• The last two lectures are devoted to the structure of the proton,

the quark-parton model, and the so-called QCD improved quark-

parton model. This subject is not covered in Griffiths but exten-

sively treated in Halzen and Martin.
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First page of a QCD course at CERN

●

●

●

Flying start on the first page of the course ‘Introduction to QCD’ in the

CERN postdoc lecture series, given by Bryan Webber in October 2003.
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Symmetry in (particle) physics

• If the Lagrangian of the world would be fully known we could derive

the equations of motion from it, and the symmetries of nature and

the conservation laws would automatically follow.

• For instance the Maxwell Lagrangian yields, via the Maxwell equa-

tions, all the symmetries and conservation laws of electrodynamics.

• In subatomic physics the Lagrangians are not so obvious, and sym-

metry considerations provide essential clues to construct them.

• It can be shown that an invariance of the Lagrangian under a

symmetry operation leads to a conserved quantity (Noether’s the-

orem). Thus, if a symmetry is found, the hunt is open for the

related conservation law, and if a conservation law is found, the

hunt is open for the related symmetry. For instance we know that

electric charge is conserved in all reactions of elementary particles,

but what symmetry is responsible for this charge conservation?

(The answer will be given in the next lecture.)

• As will become clear later, it turns out that discrete symmetries

lead to multiplicative conserved quantum numbers (e.g. reflec-

tion symmetry→ parity conservation→multiplication of parities)

while continuous symmetries lead to additive conserved quantum

numbers (e.g. rotation invariance → angular momentum conser-

vation → addition of angular momentum quantum numbers).

• We will now use some elementary non-relativistic quantum me-

chanics to establish the relation between symmetries and constants

of motion.
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When is an observable conserved?

• The expectation value of a quantum mechanical operator F is

〈F 〉 ≡ 〈ψ|F |ψ〉 with Hermitian conjugate 〈F 〉∗ ≡ 〈ψ|F †|ψ〉

• The expectation value of an observable is a real number so that

the operator of an observable should be Hermitian

F = F † if 〈F 〉 is observable

• Because energy is an observable the Hamiltonian H is Hermitian.

We have for the Schrödinger equation and its Hermitian conjugate

i
∂|ψ〉
∂t

= H|ψ〉 and − i∂〈ψ|
∂t

= 〈ψ|H† = 〈ψ|H

• This immediately leads to

∂〈F 〉
∂t

= i 〈ψ|HF − FH|ψ〉 = 0 ⇔ HF − FH = 0

An observable constant of motion F is

Hermitian and commutes with the Hamiltonian

• When H is known, we can find observable constants of motion by

searching for Hermitian operators that commute with H .

• However, when H is not fully known, it is sufficient to establish

(or postulate) the invariance of H , or the Lagrangian, under a

symmetry operation, as we will now show.
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Symmetry operators

• A transformation operator U transforms one wave function

into another

|ψ′〉 = U |ψ〉

• Wave functions are always normalized so that we must have

〈ψ′|ψ′〉 = 〈ψ|U †U |ψ〉 = 1

• It follows that the transformation operator must be unitary

U †U = UU † = I

• We call U a symmetry operator when |ψ′〉 obeys the same

Schrödinger equation as |ψ〉. Then, with U time independent,

i
∂U |ψ〉
∂t

= HU |ψ〉 → i
∂|ψ〉
∂t

= U−1HU |ψ〉 =
Iwant

H|ψ〉

and thus

U−1HU = H or [H,U ] = 0

A symmetry operator U is unitary and

commutes with the Hamiltonian

• Thus U commutes with the Hamiltonian, as does a constant of

motion. However, we cannot identify U with an observable since

it is unitary, and not necessarily Hermitian.
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Discrete symmetries

• There is a class of unitary transformations with the property

U 2 = I

Multiplying from the right with U † and using UU † = I we find

that U = U †: the operator is both unitary and Hermitian.

• Thus if U is a symmetry of (commutes with) the Hamiltonian we

can directly conclude that it is an observable constant of motion.

• Examples of this the are the charge conjugation operator C (ex-

change of particles and antiparticles) and the parity operator P

(reflection of the spatial coordinates).13

• Remark: C and P are not the only operators that are both unitary

and Hermitian. This is, for instance, also true for the Pauli spin

matrices, as is straight-forward to check.

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

)

• If |ψ〉 is an eigenvector of both U1 and U2 then

U1,2|ψ〉 = λ1,2|ψ〉 and U1U2|ψ〉 = U2U1|ψ〉 = λ1λ2|ψ〉
The quantum numbers of a discrete symmetry are multiplicative.

• In these lectures we are not so much interested in discrete trans-

formations (like C, P , T ) but, instead, in continuous transfor-

mations. These transformations are unitary (by definition), but

not necessarily Hermitian. But the generator of a unitary con-

tinuous transformation is Hermitian, as we will see.

13The time reversal operator T also has T 2 = I but it is antiunitary, and not unitary.
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Continuous transformations

• There is a large class of continuous transformations that

depend on one or more continuous parameters, say α

|ψ′〉 = U(α)|ψ〉
An example is the transformation induced by a rotation over an

angle α of the coordinate system (passive rotation), or of the wave

function (active rotation).

• Such transformations have the property that they can be written

as a succession of infinitesimal deviations from the identity

U(α) = lim
n→∞

(
I +

iα

n
F

)n
= exp(iαF )

The factor ‘i’ is a matter of definition but important (see below).

In the above, F is called the generator of U .14

• Now if U is unitary we have, to first order in α,

U †U = (I − iαF †) (I + iαF ) = I + iα(F − F †) = I

so that F = F †. In other words,

The generator of a unitary operator is Hermitian

• Now we also understand the factor ‘i’ in the definition of a genera-

tor: without it the generator G ≡ iF of a unitary operator would

not be Hermitian but anti-Hermitian:

G = −G†
14Exponentiation of an operator F should be interpreted as exp(iαF ) = I + iαF + 1

2! (iαF )2 + · · · But watch
out, the familiar relation eAeB = eA+B is only true when A and B commute.

2–7



Generators as conserved observables

• We have seen that a symmetry operator U commutes with the

Hamiltonian so it remains to show that its generator will then also

commute with H . The proof is very simple:

• First, if U(α) is a symmetry operator then the infinitesimal trans-

formation U(ε) will also be a symmetry operator. Expanding to

the first order in ε obtains

[H,U ]
.

= [H, I + iεF ] = [H, I ]︸ ︷︷ ︸
0

+iε [H,F ] = 0 → [H,F ] = 0

If U is a unitary operator that commutes with the

Hamiltonian then its generator F is a Hermitian

operator that also commutes with the Hamiltonian

• We now have the work plan to find the relation between a contin-

uous symmetry of H and the corresponding conserved observable:

1. Find the generator F of the symmetry transformation U .

2. The expectation value of F is a constant of motion

• Clearly a multiplication of continuous symmetry operators corre-

sponds to the addition of their generators in the exponent. The

conserved quantum numbers, which are related to F and not to U ,

are therefore additive.

• We will now proceed with the introduction of some concepts of

group theory which is the mathematical framework to system-

atically describe and classify symmetry operations.
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Exercise 2.1:

Show that (consult a quantum mechanics book if necessary)

(a) [0.5] Invariance for translations in space leads to the conservation

of momentum.

(b) [0.5] Invariance for translations in time leads to the conservation

of energy.

(c) [0.5] Rotational invariance leads to the conservation of angular

momentum.
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Group theory

• It is clear that a combination of two symmetry operations—that

each leaves the system unchanged—is again a symmetry operation.

And there is of course the trivial symmetry operation, namely, ‘do

nothing’. Furthermore, we can assume that each symmetry oper-

ation can be undone. We say, in fact, that symmetry operations

form a group.

• What is a group? It is a set of elements {gi},
– with a composition law gi · gj = gk

– that is associative (gi · gj) · gk = gi · (gj · gk)
– with a unit element e such that e · gi = gi · e = gi

– and with an inverse g−1
i such that gi · g−1

i = g−1
i · gi = e

• Examples:

The set {1, i,−1,−i} under multiplication (discrete, 4 elements)

The set of integers under addition (discrete, infinite # elements)

Rotations in 3 dimensions (continuous, 3 parameters)

Lorentz transformations (continuous, 6 parameters: which ones?)

• A group is called Abelian when the group operation is commu-

tative gi · gj = gj · gi (e.g. 2-dim rotations). Non-commutative

groups are called non-Abelian (e.g. 3-dim rotations).

• A systematic study of symmetries is provided by a branch of math-

ematics called group theory. We will not present group theory

in these lectures, but only a few basic concepts.15

15A nice summary of group theory can be found in A&H-II, Appendix M.

2–10



Representation of a group

• In these lectures, we will be concerned with groups of matrices.

• It may be the case, of course, that the group ‘is ’ a set of matrices.

For instance, the group SO(2) of orthogonal 2 × 2 matrices with

determinant 1, that describe 2-dimensional rotations.

• But a matrix representation may also come from mapping each

element gi of some group to an n×n matrix Mi (why must M be

square?), such that the multiplication structure is preserved

g1 · g2 = g3 → M1M2 = M3

This is called an n-dimensional representation of the group {g}.
Thus, SO(2) is defined by 2×2 matrices, (the fundamental rep-

resentation) but it has also representations in higher dimensions.

• Two groups with the same multiplication structure are said to be

isomorphic (∼=) if the elements map one-to-one. If the mapping

is not one-to-one, they are called homomorphic (∼).

• Exercise 2.2: [0.5] Show that

{1, i,−1,−i} ∼=
{(

1 0

0 1

)
,

(
0 1

−1 0

)
,

(
−1 0

0 −1

)
,

(
0 −1

1 0

)}

• From an n and an m-dimensional representation we can always

construct an (n + m)-dimensional representation through

M
(n+m)
i =

[
M

(n)
i 0

0 M
(m)
i

]
≡ n⊕m

but this does not classify as a new representation. The relevant

representations are the so-called irreducible ones which cannot

be decomposed in block diagonal form. It is a (non-trivial) task of

group theory to find all the irreducible representations of a group.
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Lie groups

• On page 2–10 we have encountered discrete groups (elements la-

belled by an index, or a set of indices) and continuous groups

where the elements are labelled by a set of continuous parameters

α = (α1, α2, . . . , αm). Important groups of transformations U(α)

are those which can be written as a succession of infinitesimal de-

viations from the identity transformation (see also page 2–7):

U(α) = lim
n→∞

[ 1 + i(α/n) · T ]n = exp(iα · T )

Such a group is called a Lie group,16 and the matrices T are

called the generators of the group.17 The number of generators

is equal to the number of parameters that label the group elements.

Example: Rotations are a Lie group but reflections are not since

these are not continuously connected to the identity.

• There is a theorem which states that the commutator of two gen-

erators is always a linear combination of the generators

[Ti, Tj] = f kij Tk (summation over k implied)

These commutation relations are called the algebra, and the

(complex) numbers f kij are called the structure constants of

the group. It can be shown that these structure constants fully

characterise the multiplication structure of a Lie group.

• On page 2–7 we have shown that if U is unitary then Ti = T †i . In

other words, the generators of a unitary operator are Hermitian.

16The formal definition of a Lie group states first of all that the number of parameters is finite, and furthermore
that U(α1) · U(α2) = U(α3), with α3 an analytic function of α1 and α2.

17Discrete groups also have generators: e.g. repeated rotation over 2π/n generates the cyclic group Zn.
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The 2-state nucleon system

• After the discovery of the neutron by Chadwick in 1932, the near

equality of its mass (939.5 MeV) to that of the proton (938.3 MeV)

suggested to Heisenberg that, as far as the strong interactions are

concerned, these are two nearly degenerate states of one particle:

the nucleon.

• This ‘isospin symmetry’ of the strong force is further supported

by, for instance, the observation of very similar energy levels in

mirror nuclei (the number of protons in one, is equal to number

of neutrons in the other, and vice versa, like in 13
7N and 13

6C).

• In addition, apart from the p-n doublet, there are other particles

that are nearly degenerate in mass, like the pion triplet (∼140 MeV)

and the quadruplet of ∆ resonances (∼1.23 GeV) → Fig. This

looks like the doublet, triplet and quadruplet structure of spin-1
2,

spin-1 and spin-3
2 systems built from spin-1

2 states, and is thus

strongly suggestive of hadronic substructure.

• We know today that hadrons are built up from quarks and we can

explain isospin symmetry from the fact that the strong interaction

is insensitive to the quark flavour. The mass differences within the

nucleon, π and ∆ multiplets are, after electromagnetic correction,

believed to be due to the difference in the u and d quark masses.

• The invariance for p to n transitions obeys the mathematics of

ordinary spin, hence the term ‘isospin’. The reason is that tran-

sitions in any 2-state quantum mechanical system are described

by the special unitary group SU(2), as will become clear next.
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Isospin symmetry

• We work in a 2-dim Hilbert space spanned by the basis vectors18

|p〉 =

(
1

0

)
and |n〉 =

(
0

1

)

The Hermitian conjugates are 〈p| = (1, 0) and 〈n| = (0, 1). An

arbitrary state is written as the linear combination

|ψ〉 = α |p〉 + β |n〉
Because |α|2 is the probability to find the system in a |p〉 state and

|β|2 the same for the |n〉 state we must have, for any state |ψ〉,
〈ψ|ψ〉 = |α|2 + |β|2 = 1

• We have seen already that a transformation |ψ′〉 = U |ψ〉 must

preserve the norm so that U must be unitary: U †U = 1.

• Taking determinants we find

det(U †U) = det(U †) det(U) = det(U)∗ det(U) = 1

Therefore det(U) = eiφ with φ some arbitrary phase factor.

• So we may set U = eiφV with det(V ) = 1. Invariance for phase

shifts is called a U(1) invariance and leads to charge conservation,

as we will see later. The charge conserved in the p-n case here is

not electrical charge, but baryon number

A = (Np −Np̄) + (Nn −Nn̄)

• Putting U(1) invariance aside, we have to deal with unitary 2× 2

matrices V with unit determinant, that is, with the group SU(2).

18When we talk about quarks we will use the notation |u〉 and |d〉 instead.
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The group SU(2)

• The mathematics of SU(2) is well known from the treatment of

ordinary spin in quantum mechanics. A transformation can be

written as U = exp(iα · I) with the three generators I ≡ τ/2

given by the Pauli matrices

τ1 =

(
0 1

1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0

0 −1

)

These generators are clearly Hermitian (τ †i = τi), as they should

be, since U is unitary. It can be shown (Exercise 2.3) that, quite

in general, det[exp(A)] = exp[Tr(A)] so that the traces of the τi
vanish because the SU(2) transformations have unit determinant.

The generators of a unitary matrix group with unit

determinant are Hermitian and traceless

• By matrix multiplication you may check the commutation relations

[Ii, Ij] = i εijkIk

with εijk the antisymmetric tensor (+1 for cyclic permutations of

123 and −1 for cyclic permutations of 213, zero otherwise).

• SU(2) has one so-called Casimir operator that commutes with

all the generators, and is always some non-linear function of the

generators. For SU(2) this is the total isospin operator:

I2 = I2
1 + I2

2 + I2
3

A state can then be a simultaneous eigenstate19 of I2 with eigen-

value i(i + 1), i = 1
2, 1,

3
2, . . . and of I3 with eigenvalue m =

−i, . . . ,+i. The eigenvalues label the state, like |ψ〉 = |i,m〉.
19A Hermitian matrix has the property that it can always be diagonalised by a unitary transformation.

Hermitian matrices can be simultaneously diagonalised by a single transformation if they commute.
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Exercise 2.3:

In this exercise we will review a few easy-to-prove properties of matrices

and of matrix transforms (also called similarity transforms)

defined by

A′ = SAS−1,

where S is a non-singular transformation matrix. Such transforms

can come in very handy in a calculation because they allow you to

transform matrices to convenient forms, such as a transformation to

diagonal form which is used for the proof in (e) below.

(a) [0.1] Show that Tr(AB) = Tr(BA).

(b) [0.2] Show that a matrix transform preserves the algebra of a Lie

group. Representations that are related by similarity transforma-

tions are therefore called equivalent.

(c) [0.2] Show that a matrix transform preserves the product, deter-

minant and trace, that is,

(AB)′ = A′B′, det(A′) = det(A) and Tr(A′) = Tr(A).

What about Hermitian conjugation: (A′)†
?
= (A†)′.

(d) [0.2] Show that a matrix transform preserves the terms in a power

series, that is,

(An)′ = (A′)n → (expA)′ = exp(A′).

(e) [0.3] Now show that

det[exp(A)] = exp[Tr(A)]

for all matrices A that can be brought into diagonal form.
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Exercise 2.4:

(a) [0.5] Show that τiτj = δij + iεijkτk. Together with the fact that

the τ are Hermitian, we thus have τ †i = τi = τ−1
i .

(b) [0.5] Now show that (a · τ )(b · τ ) = a · b+ iτ · (a× b) and, from

this, that (θ · τ )2 = |θ|2.

(c) [0.5] Use the above, and the Taylor expansions of exp(), sin() and

cos(), to show that exp(iθ · τ ) = cos |θ| + i(θ̂ · τ ) sin |θ|. Here θ̂

is the unit vector along θ.

(d) [0.25] Instead of |p〉 and |n〉 we will write |u〉 and |d〉 to reflect

isospin symmetry on the quark level. Verify that

I3 |u〉 = 1
2|u〉, I3 |d〉 = −1

2|d〉

and that the Casimir operator I2 = I2
1 + I2

2 + I2
3 is a multiple of

the unit operator, with

I2 |u〉 = 3
4 |u〉, I2 |d〉 = 3

4 |d〉

(e) [0.25] Define the step operators I± = I1 ± i I2 and verify that

I+|u〉 = 0, I+|d〉 = |u〉, I−|u〉 = |d〉, I−|d〉 = 0

We can now draw a, kind of trivial, weight diagram like

y y - I3

−1
2 +1

2

d u
I+−−−−→

←−−−−
I−
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Composite states

• The rules for addition of angular momenta from quantum mechan-

ics carry straight over to the addition of isospins. We will not derive

here the mathematics but will only indicate how it works.

• Addition of two states |i1,m1〉 and |i2,m2〉, results in (2i1 + 1)×
(2i2 + 1) different states which can be classified according to the

eigenvalue label i of the Casimir operator I2 which ranges from

|i1−i2| to i1+i2, and the eigenvalues m of the I3 operator that, for

each state i, range from −i to +i. Here m = m1 +m2. Formally,

the combined state can be written as

|i,m〉 =
∑
〈i1, i2,m1,m2|i,m〉|i1,m1〉|i2,m2〉

The Clebsch-Gordan coefficients 〈·|·〉 can be found in the Particle

Data Book → Fig. For a nucleon-nucleon system we get

|I, I3〉 = |0, 0〉 = (pn− np)/
√

2

= |1, 1〉 = pp

= |1, 0〉 = (pn + np)/
√

2

= |1,−1〉 = nn

• Exercise 2.5: [1.0] Use exchange symmetry arguments or the

step operators I± ≡ I
(1)
± +I

(2)
± to justify the decomposition above.20

Hint: See H&M Exercise 2.1.

• This splitting of the combination of two 2-component states into

a singlet and a triplet state is often written as 2 ⊗ 2 = 1 ⊕ 3.

The significance of such a decomposition is that under a SU(2)

transformation the substates of the 1 and 3 representation will

transform among themselves.

20In full, the step operator is defined by I±|i,m〉 =
√
i(i+ 1)−m(m± 1) |i,m± 1〉.
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Clebsch-Gordan coefficients from the Particle Data Book. Given in the tables is the square of
the coefficients, so you should take the square root.
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SU(2)f for antiquarks

• If |ψ〉 is a particle state then the complex conjugate is identified

with the corresponding antiparticle state:21 |ψ̄〉 ≡ |ψ〉∗. An anti-

quark state therefore transforms in the complex conjugate repre-

sentation of SU(2), denoted by 2∗ or 2̄.

|ψ̄′〉 = U ∗|ψ̄〉 = exp(−iα · τ ∗/2) |ψ̄〉 ≡ exp(iα · τ̄/2) |ψ̄〉
The two representations are thus related by τ̄ = −τ ∗.
• To combine a quark with an antiquark we could calculate from

scratch the Clebsch-Gordan coefficients of 2 ⊗ 2̄ but we can save

us the effort by using a trick that, by the way, only works for SU(2).

• Just replace ū by −d̄ and d̄ by ū in |ψ̄〉, that is, define

|ψ̃〉 ≡ C|ψ̄〉 =

(
0 −1

1 0

) (
ū

d̄

)
=

(
−d̄

ū

)

It is now straight-forward to show (Exercise 2.7) that |ψ̃〉 trans-

forms as a quark state |ψ̃′〉 = U |ψ̃〉 so that we just can use the

Clebsch-Gordans of the 2 representation.22

• Exercise 2.6: [× ] Take the |qq〉 states given on page 2–19 (sub-

stitute u for p and d for n), to arrive at |qq̄〉 meson states that

properly transform under SU(2):

ω = |0, 0〉 = (uū + dd̄)/
√

2

π+ = |1, 1〉 = −ud̄

π0 = |1, 0〉 = (uū− dd̄)/
√

2

π− = |1,−1〉 = dū

21We use here |ψ̄〉 to indicate an antiparticle; please do not confuse it with a conjugate Dirac spinor ψ.
22In fact, for SU(2) the generators τ̄i and τi are related by the similarity transformation τ̄i = C−1τiC so that

they are equivalent, that is, they are not regarded as different representations, see also Exercise 2.3.
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Exercise 2.7:

(a) [1.0] Use isospin invariance to show that the ratio

σ(pp→ π+d)

σ(pn→ π0d)
= 2

Here the deuteron has isospin I = 0 and the pion isospin I = 1.

You may assume that the cross section is

σ ∼ |amplitude|2 =
∑

I

|〈I ′, I ′3|A|I, I3〉|2 = A2
∑

I

|〈I ′, I ′3|I, I3〉|2 .

Hint: See H&M Exercise 2.3.

(b) [0.2] Show that the generators τ̄ are a representation of SU(2).

(c) [× ] Verify that I3(ū) = −1
2 and I3(d̄) = +1

2.

(d) [0.3] Show that

|ψ̃〉 = C|ψ̄〉 =

(
0 −1

1 0

) (
ū

d̄

)

transforms as a particle state.
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The group SU(3)f I

• To accommodate strange quarks, our space has to be extended

from

(
u

d

)
to




u

d

s




• Like in the (iso)spin case we can write a unitary transformation as

|ψ′〉 = U |ψ〉 = exp(ia · λ/2) |ψ〉 ≡ exp(ia · T ) |ψ〉

but the generators λ are now Hermitian 3×3 matrices. A complex

3 × 3 matrix is characterised by 18 numbers but only 8 are inde-

pendent because the matrices are Hermitian, and traceless since

detU = 1. Thus there are 8 independent generators.

• The 8 Gell-Mann matrices (with Pauli matrices inside!) are




0 1 0

1 0 0

0 0 0




︸ ︷︷ ︸
λ1




0 −i 0

i 0 0

0 0 0




︸ ︷︷ ︸
λ2




1 0 0

0 −1 0

0 0 0




︸ ︷︷ ︸
λ3




0 0 1

0 0 0

1 0 0




︸ ︷︷ ︸
λ4




0 0 −i
0 0 0

i 0 0




︸ ︷︷ ︸
λ5




0 0 0

0 0 1

0 1 0




︸ ︷︷ ︸
λ6




0 0 0

0 0 −i
0 i 0




︸ ︷︷ ︸
λ7

1√
3




1 0 0

0 1 0

0 0 −2




︸ ︷︷ ︸
λ8

• The algebra of the SU(3) group is given by the commutation rela-

tion of the matrices Ta = λa/2: [Ta, Tb] = if cabTc
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The group SU(3)f II

• The structure constants f cab are antisymmetric in the exchange of

two indices (see Exercise 2.8); the non-zero ones are

f 3
12 = 1

f 7
14 = f 5

16 = f 6
24 = f 7

25 = f 5
34 = f 6

37 = 1
2

f 8
45 = f 8

67 = 1
2

√
3

• It is seen that λ3 and λ8 are simultaneously diagonal so that

we can label quark states by the simultaneous eigenvalues of the

isospin operator T3 = λ3/2 and the hypercharge operator

Y = 2T8/
√

3 = λ8/
√

3. This gives rise to following weight di-

agram for the quark states (see Exercise 2.8 for antiquarks):

J
J
J
J
J
J
JJ















y

y y1
2 (λ1 ± iλ2)

1
2 (λ4 ± iλ5)1

2 (λ6 ± iλ7)

s

d u

I3

Y

−2
3

+1
3

−1
2 0 +1

2

-

6

• As mentioned on page 2–16 there is one Casimir operator for SU(2),

but there are two Casimirs for SU(3). By definition, these commute

with all the λi. One of them is is the total ‘isospin’ operator
∑
λ2
i

while the other is a rather complicated trilinear function of the λi
which can be found in A&H-II, Appendix M.5.
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Exercise 2.8:

(a) [0.5] The λ matrices are normalised such that Tr(λaλb) = 2δab.

Check this for a few matrices λa and λb.

(b) [0.5] Show that Tr(λc[λa, λb]) = 4if cab. By changing the order

of the λ, and using Tr(AB) = Tr(BA), show that the structure

constants f cab are antisymmetric in the exchange of two indices.

(c) [0.5] Plot the eigenvalues of the isospin and hypercharge operator

for the u, d and s quarks in an I3-Y diagram. Check the Gell-Mann

Nishijima formula Q = I3 + 1
2Y and also that Y = S+B. Repeat

the exercise for antiquarks in the 3̄ representation.

(d) [0.5] Write down the matrices for the step operators 1
2(λ1 ± iλ2),

1
2(λ4± iλ5) and 1

2(λ6± iλ7) and justify their position in the weight

diagram on page 2–24.
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Exercise 2.9: The adjoint representation of SU(3)

• We have encountered the algebra of the groups SU(2) and SU(3)

in terms of the two-dimensional Pauli matrices and the three-

dimensional Gell-Mann matrices, respectively. These matrices are,

together with the 2- or 3-dim vectors on which they act, called the

fundamental representation of SU(2) or SU(3).

• However, the structure constants of a Lie group automatically gen-

erate a representation with a dimension that is equal to the number

of generators, e.g. 8×8 for SU(3). This is called the adjoint rep-

resentation. Below we let you find out how this works.

(a) [× ] Verify the Jacobi identity for matrices A, B and C:

[[A,B], C] + [[B,C], A] + [[C,A], B] = 0

(b) [× ] Now show that in terms of the SU(3) structure constants the

Jacobi identity reads

fmij f
n
mk + fmjk f

n
mi + fmki f

n
mj = 0

(c) [× ] Verify that f kij = −f kji
(d) [1.0] Define the 8× 8 matrices Ci with elements

(Ci)
k
j = −f kij

and show that the Ci obey the SU(3) algebra

[Ci, Cj] = f kijCk

In this way, we have constructed the adjoint representation of SU(3)

from its structure constants. We will see later that coloured quarks are

described by the fundamental representation of SU(3), of dimension 3,

and gluons by the adjoint representation, of dimension 8.
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The Eightfold Way

• Because our interest in SU(3) lies in the fact that it is an exact

(colour) symmetry of QCD, we will not present here how SU(3)f is

used to classify the hadrons (the Eightfold Way). This is treated

in great detail in H&M Chapter 2, and also in Griffiths Chapter 5.

• We just mention that the mesons |qq̄〉 can be grouped into octets

and singlets (3 ⊗ 3̄ = 8 ⊕ 1) and baryons |qqq〉 can be grouped

into decuplets, octets and singlets (3⊗ 3⊗ 3 = 10⊕ 8⊕ 8⊕ 1).

• Nevertheless, let us have a look at the spin 3/2 baryon decuplet,

because it provides us with an argument to introduce the colour

quantum number.

2–27



The need for a colour quantum number

u u u u
u u u

u u
u

∆− ∆0 ∆+ ∆++

ddd udd uud uuu

Σ∗− Σ∗0 Σ∗+

dds uds uus

Ξ∗− Ξ∗0

dss uss

Ω−

sss

− 3
2 − 1

2 + 1
2 + 3

2

I3

S

0

−1

−2

−3

-

6

• In this spin 3/2 baryon decuplet, the flavour wave functions at the

corners are obviously symmetric under the exchange of two quarks.

Although this is not apparent from the labels, all wave functions of

the decuplet are symmetric, as you will discover in Exercise 2.10.

• But now we have a problem: the total wave function

ψ = ψspace(L = 0) × ψspin(↑↑↑) × ψflavour(q1q2q3)

is symmetric under the exchange of two quarks, while it should be

anti-symmetric, since baryons are fermions (half-integer spin).

• The solution is to assign a ‘colour’ quantum number (r, g, b) to each

quark so that the quarks can be distinguished by their colour, pro-

vided, of course, that we do not allow two quarks in a baryon to

have the same colour. Thus the three colours are always present

and we say that baryons are ‘white’, or colour singlets (= invari-

ant under SU(3)c transformations). By anti-symmetrising the wave

function in colour space, over-all anti-symmetry is established.
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Exercise 2.10:

(a) [0.5] Use the step operators defined in the weight diagram on

page 2–24 (and also in Exercise 2.8d) to generate all quark states of

the baryon decuplet, starting from one of the corner states (ddd),

(uuu) or (sss). You will not obtain the correct normalisation in

this way, but that is not so important here (you can always nor-

malise the wave functions afterwards, if you wish). The point of

this exercise is to note that all wave functions that you obtain by

stepping through the diagram are symmetric in the exchange of

two quarks.

(b) [0.5] Construct a wave function ψcolour(c1, c2, c3) that is fully anti-

symmetric in the exchange of two colours.

2–29



Experimental evidence for colour I

( a ) ( b )

e−

e+ µ+

µ− q

q̄

e−

e+

• The cross section for the left diagram is given in PP-I section 8.3:

σ(e+e− → µ+µ−) =
4πα2

3s

Here particle masses are neglected and if we do the same for the

right diagram, we obtain the cross section for qq̄ production simply

by putting the correct charge at the γqq̄ vertex

σ(e+e− → qi q̄i) =
4πα2e2

i

3s

• Because quarks fragment with 100% probability into hadrons, we

can sum over all available quark species to get the observable

σ(e+e− → hadrons) = Nc

∑

i

4πα2e2
i

3s

• Here the sum runs over all quark flavours that can be produced at a

given energy
√
s, and Nc counts the number of coloured duplicates

of each quark. Thus Nc = 3 for the quark colours qr, qg and qb.
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Experimental evidence for colour II

• This plot shows, as a function of
√
s, measurements of the ratio

R =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
= Nc

∑

i

e2
i = 3

∑

i

e2
i

• The data are consistent with Nc = 3 and certainly exclude Nc = 1.

• Remark: There is quite some structure in this plot, in particular

around the thresholds of heavy quark production where qq̄ pairs

are produced with little relative momentum so that they can form

bound states, like the J/ψ family (cc̄) at about 3 GeV, and the Υ

family (bb̄) at about 10 GeV.
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Electric charge conservation

• In subatomic physics it is customary to express electric charge in

units of the elementary charge e = 1.6× 10−19 Coulomb. The

electron then has charge −1, the positron +1, the up quark +2
3,

the down quark −1
3, etc., see the table on Page 1–5.

• As far as we know, total electric charge is the same in the ini-

tial and final state of any elementary reaction, and this charge

conservation is experimentally verified to great accuracy.

• For instance electron decay

e→ γ νe

is allowed by all known conservation laws but is forbidden by charge

conservation and it indeed has never been observed. In fact, the

life time of the electron is measured to be larger than 5×1026 years.

• We have seen that conserved quantities are related to symmetries

in the Hamiltonian, or the Lagrangian, so the question is now which

symmetry causes this charge conservation. Charge is obviously an

additive conserved quantity so that the symmetry transformation

must be continuous.

• The answer, as we will see, is that a so-called gauge symmetry

is responsible for the charge conservation. Gauge transformations

enter when interactions are described in terms of potentials, instead

of forces. A well known example is from classical electrodynamics

where we can transform the scalar and vector potentials in such a

way that the E and B fields are unaffected.
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Gauge transformation in electrodynamics

• In electrodynamics the E and B fields are related to the scalar

and vector potentials V and A by

E = −∂A/∂t−∇V B = ∇×A

• A gauge transformation leaves the E and B fields invariant

V ′ = V − ∂Λ/∂t A′ = A +∇Λ

Here Λ(x, t) is an arbitrary function of x and t.

• To this gauge transformation corresponds a unitary operator that

transforms the wave function of a particle in an electromagnetic

field. We can write this transformation as (see page 2–7)

|ψ〉′ = exp(iεG)|ψ〉
where the generator G is to be identified later. Since Λ is an

arbitrary function of x and t we require that ε is also an arbitrary

function of x and t. Because ε can vary in space-time, we speak

of a local gauge transformation.

• Now consider the Schrödinger equation of a particle in a static

electric field before and after our gauge transformation

i
∂|ψ〉
∂t

=

(
−∇

2

2m
+ q V

)
|ψ〉

i
∂|ψ〉′
∂t

=

(
−∇

2

2m
+ q V ′

)
|ψ〉′

Here q is the charge of the particle.

• Because of gauge invariance, both equations should apply and

this fixes the generator G, as we will now show.
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From local gauge invariance to charge conservation

• Let us work out the transformed Schrödinger equation (for clarity

we write ψ instead of |ψ〉). To simplify the mathematics we will

take ε to be a function of t only, instead of x and t:

i
∂

∂t

(
eiεG ψ

)
=

(
−∇

2

2m
+ q V − q∂ε

∂t

)
eiεG ψ

ieiεG
(
iGψ

∂ε

∂t
+
∂ψ

∂t

)
= eiεG

(
−∇

2

2m
+ q V

)
ψ − eiεG q ψ ∂ε

∂t

−eiεGGψ ∂ε
∂t

+ ieiεG
∂ψ

∂t
= ieiεG

∂ψ

∂t
− eiεG q ψ ∂ε

∂t

−eiεGGψ ∂ε
∂t

= −eiεG q ψ ∂ε
∂t

Gψ = q ψ

• We find that G is the charge operator Q! This is due to the

cancellations that occur because ε is local (i.e. a function of t in

our derivation); all this would not work if ε would be a constant.

• Clearly if H and Q commute, then it follows that the expectation

value 〈Q〉 is conserved, in other words, charge is conserved.

• It is straight-forward to extend the derivation above to local trans-

formations that depend on both x and t, instead of on t alone, but

we will not do this here since it brings a lot of additional algebra

and is not very illuminating.

• The family of phase transformations U(α) ≡ eiα, with real α,

forms a unitary Abelian group called U(1). Phase invariance is

therefore also known as U(1) invariance.
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Lagrangian formalism

• Gauge theories, or field theories in general, are usually defined

in terms of a Lagrangian. This is a well-known concept from

classical mechanics; a brief summary can be found on page 0–7.

• In classical mechanics the Lagrangian is the difference between the

kinetic and potential energy and is written as the function L(q, q̇)

of a set of N coordinates qi and velocities q̇i that fully describe

the system at any instant t. N is called the number of degrees of

freedom of the system.

• The action is defined by

S[path] =

∫ t2

t1

dt L(q, q̇)

where the integral is taken along some path from q(t1) to q(t2).

• The principle of least action states that the system will evolve

along the path that minimises the action. The equations of motion

then follow from the Euler-Lagrange equations

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 i = 1, . . . , N

• Example: Mass m in a central potential V (r)

L(r, ṙ) = 1
2mṙ

2 − V (r) → mr̈ = −∇V (r)

• Example: Harmonic oscillator

L(x, ẋ) = 1
2mẋ

2 − 1
2kx

2 → mẍ = −kx
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Infinite number of degrees of freedom

• Consider small transverse vibrations of a system of N masses m

connected by springs.

~ ~ ~ ~ ~QPPPPPPR QPPPPPPR QPPPPPPR QPPPPPPR QPPPPPPR QPPPPPPR

-

6

q

x

The state of this system is described by the vertical deviations

q1(t), . . . , qN(t) from the equilibrium position.

• We can let N → ∞ in such a way that we obtain a vibrating

string that can be described by a function q(x, t).

• Such a function is called a field, a displacement field in this case.

• For our field, the Lagrangian is a function of q, q̇, and the gradient

dq/dx, and is written as the integral of a Lagrangian density

L(q, q̇, dq/dx) =

∫
dx L(q, q̇, dq/dx)

Generalising to 3 dimensions, the action integral reads

S[path] =

∫ t2

t1

dt

∫
d3x L(q, q̇,∇q)

• In 4-vector notation this gives for the action integral of a field φ(xµ)

S[path] =

∫
d4x L(φ, ∂µφ)

• In this notation the Euler-Lagrange equation reads

∂µ

(
∂L

∂ (∂µφ)

)
− ∂L
∂φ

= 0
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Exercise 3.1:

The Lagrangian of a vibrating string is:

L = (∂φ/∂t)2 − (∂φ/∂x)2.

(a) [0.25] Write this Lagrangian in 4-vector notation.

(b) [0.25] Now use the Euler-Lagrange equation

∂µ

(
∂L

∂ (∂µφ)

)
− ∂L
∂φ

= 0

to derive the wave equation of a vibrating string.

Remark: When you have to derive a field equation from a Lagrangian

but do not feel confident in manipulating upper and lower Lorentz

indices to keep track of the signs, you can always resort to writing it

all out into the components (t, x, y, z). This is elaborate, but it works.

Here is the conversion of the derivative indices

(∂0, ∂1, ∂2, ∂3) = (∂0,−∂1,−∂2,−∂3) = (∂t, ∂x, ∂y, ∂z)

And here is that of four-vector fields A, if present

(A0, A1, A2, A3) = (A0,−A1,−A2,−A3) = (At, Ax, Ay, Az)

You may find it useful to also make conversion tables for F µν and Fµν.
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A few Lagrangians ...

• Here are a few well-known Lagrangians that yield—via the E-L

equations—several field equations of interest.

• Klein-Gordon Lagrangian for a real scalar field (spin 0).

L = 1
2(∂µφ)(∂µφ)− 1

2m
2φ2 →

E−L
∂µ∂

µφ + m2φ = 0

• KG for a complex scalar field (take φ and φ∗ as independent).

L = (∂µφ
∗)(∂µφ)−m2φ∗φ →

E−L

{
∂µ∂

µφ + m2φ = 0

∂µ∂
µφ∗ + m2φ∗ = 0

• Dirac Lagrangian for a spin 1
2 spinor field (ψ and ψ independent).

L = iψγµ∂µψ −mψψ →
E−L

{
(iγµ∂µ −m)ψ = 0

(iγµ∂µ + m)ψ = 0

• Proca Lagrangian for a vector field (spin 1).

L = −1
4(F µν)(Fµν) + 1

2m
2AνAν →

E−L
∂µF

µν + m2Aν = 0,

where F µν ≡ ∂µAν − ∂νAµ.

For massless fields we recover the Maxwell equations in empty

space (no sources or currents)

∂µF
µν = 0.
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Exercise 3.2:

(a) [1.0] Derive the field equations from the KG, complex and Dirac

Lagrangians given on page 3–9.

(b) [1.0] The Proca Lagrangian is

L = −1
4(F µν)(Fµν) + 1

2m
2AνAν

The field tensor is defined by F µν ≡ ∂µAν − ∂νAµ.

• Show that

∂L
∂(∂µAν)

= −(∂µAν − ∂νAµ) = −F µν

Hint: Work this out for two components, (µ = 0, ν = 1) and

(µ = 1, ν = 2), for instance, and then generalise to the result

above.23 Remember that ∂µ = (∂t,−∇) and ∂µ = (∂t,+∇).

• Show that
∂L
∂Aν

= m2Aν

• Now write down the field equation.

(c) [0.5] The Maxwell Lagrangian is

L = −1
4F

µνFµν − jµAµ

• Show that the Euler-Lagrangian equation leads to the Maxwell

equations (see page 0–6 for the Maxwell equations in 4-vector

notation):

∂µF
µν = jν

• Show that the current is conserved: ∂µj
µ = 0.

23For a shorter (but more tricky) derivation see H&M, comment on Exercise 14.3 and 14.4, page 374.
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Global phase invariance of the Dirac Lagrangian

• The Dirac Lagrangian iψγµ∂µψ − mψψ is manifestly invariant

under a global phase change ψ′ = eiα ψ and ψ
′
= e−iα ψ.

• According to Noether’s theorem this implies the existence of a

conserved quantity. To find out what this is, consider the infinites-

imal transformation

ψ′ = (1 + iα)ψ → δψ = +iα ψ

ψ
′
= (1− iα)ψ → δψ = −iα ψ

• The variation in L is

δL = ∂L
∂ψ δψ + ∂L

∂∂µψ
δ∂µψ + ∂L

∂ψ
δψ + ∂L

∂∂µψ
δ∂µψ

= iα
[
∂L
∂ψ ψ + ∂L

∂∂µψ
∂µψ − ∂L

∂ψ
ψ − ∂L

∂∂µψ
∂µψ

]

= iα
[(

∂L
∂ψ − ∂µ ∂L

∂∂µψ

)
ψ +

(
∂µ

∂L
∂∂µψ

)
ψ + ∂L

∂∂µψ
∂µψ − · · ·

]

Now the first term in brackets is zero (Euler-Lagrange) and the

next two terms combine into
(
∂µ

∂L
∂∂µψ

)
ψ + ∂L

∂∂µψ
∂µψ = ∂µ

(
∂L
∂∂µψ

ψ
)

The same is true for the ψ terms so that we obtain

δL = iα ∂µ

(
∂L
∂∂µψ

ψ − ψ ∂L
∂∂µψ

)
∝ ∂µ

(
ψγµψ

)
=

Iwant
0

• Phase invariance leads to (electric) current conservation!

∂µj
µ = 0 with jµ = q ψγµψ (q is the electric charge)

3–11



Local charge conservation

• We have seen that global phase invariance leads to the continuity

equation ∂µj
µ = 0 which reads in 3-vector notation

∂ρ

∂t
= −∇j

• The meaning of this continuity equation becomes clear after inte-

gration over a volume V

dQ

dt
=

d

dt

∫

V

ρ dV = −
∫

V

∇j dV = −
∫

S

j · n̂ dS

which tells us that the change of charge in some volume should be

accounted for by the net flow of charge in or out of that volume.

However, we can make this volume as small as we please because

we know that charge is really locally conserved. Indeed, as we

have already mentioned on page 3–3, the decay

e→ γ νe

has never been observed since it violates charge conservation. The

electron is a point charge, so we cannot get more local than this!

• Local charge conservation suggests that the Lagrangian should not

only be invariant under global phase transformations but also un-

der local ones:

ψ′ = eiα(x) ψ

• On Page 3–4 we have already investigated local phase invariance

of the Schrödinger equation of a particle in a static electric field,

but let us now investigate what happens when this local invariance

is imposed on the Dirac Lagrangian.
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Local phase invariance

• Take the Dirac Lagrangian

L = iψγµ∂µψ −mψψ
and consider a local transformation

ψ′(x) = e−igeα(x) ψ(x)

where we have introduced a strength parameter ge (the electro-

magnetic coupling constant).

• The second term in L is clearly invariant but not the first term.

This is because ∂µψ depends on the infinitesimal neighbourhood of

x where, by construction, ψ transforms differently than at x itself.

• This effect is seen in

∂µψ
′ = ∂µe

−igeαψ = e−igeα [∂µ − ige(∂µα)]ψ 6= e−igeα ∂µψ

• To restore local gauge invariance we can construct a covariant

derivative which has the desired transformation property

Dµψ → D′µψ
′ =

Iwant
e−igeα Dµψ

• We can get this by introducing a gauge field Aµ such that

Dµψ = (∂µ + igeAµ) ψ.

• Indeed, provided that Aµ transforms as

A′µ = Aµ + ∂µα

we find that, as you can easily check,

D′µψ
′ = (∂µ+igeA

′
µ) e−igeα ψ = e−igeα (∂µ+igeAµ) ψ = e−igeα Dµψ

Exercise 3.3: [× ] Well, please check it.
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Locally invariant Dirac Lagrangian

• So we can now propose, as a first step, the Lagrangian

L = iψγµDµψ −mψψ = iψγµ∂µψ −mψψ︸ ︷︷ ︸
free term

− ge(ψγ
µψ)Aµ︸ ︷︷ ︸

interaction term

which is invariant under local phase transformations and has ac-

quired an interaction term jµAµ in addition to the free Lagrangian.

• We have a free term for the Dirac field, which suggests that we

should add a free term (Proca Lagrangian) for the gauge field Aµ

L = −1
4(F µν)(Fµν) + 1

2m
2AνAν

• Exercise 3.4: [0.5] Check that the first term is invariant under

the gauge transformation A′µ = Aµ+∂µα but not the second term.

• To maintain gauge invariance we are thus forced to set m = 0 and

consider only a massless gauge field which, of course, turns out to

be the electromagnetic (photon) field.

• We have, in fact, found here a restriction that also applies to

the SU(2) and SU(3) gauge invariant Lagrangians that we will

consider later on:

To maintain gauge invariance, the gauge field

must be massless
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The Lagrangian of QED

• We now can write-down the QED Lagrangian describing the inter-

action of Dirac particles with the electromagnetic field

LQED = ψ(iD/−m)ψ − 1
4(F µν)(Fµν)

= ψ(i∂/−m)ψ − ge(ψγ
µψ)Aµ − 1

4(F µν)(Fµν)

In the expression above, we have introduced the usual shorthands

∂/ ≡ γµ∂µ = γµ∂
µ and D/ ≡ γµDµ = γµD

µ.

• Note that the last two terms in the QED Lagrangian correspond

to Maxwell Lagrangian

LMaxwell = −1
4F

µνFµν − jµAµ

• This Lagrangian leads to the Maxwell equations (see Exercise 3.2)

∂µF
µν = jν

with jµ the Dirac current ge(ψγ
µψ).
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From Lagrangian to Feynman rules

• The Lagrangians we have thus far considered may describe clas-

sical as well as quantum fields. Field quantisation is the realm of

quantum field theory which is outside the scope of these lec-

tures. In QFT, particles emerge as quanta of the associated fields;

photons are then the quanta of the electromagnetic field Aµ, lep-

tons and quarks are the quanta of the Dirac field ψ, and gluons

are the quanta of an SU(3)c gauge field, as we will see. Field quan-

tisation does not require a modification of the Lagrangian or the

field equations, which stay formally the same.

• To each Lagrangian corresponds a particular set of Feynman

rules. The derivation of these rules is part of QFT and beyond

the scope of these lectures. We just mention at this point that the

QED Lagrangian contains two types of terms, as we have seen: free

terms for the participating fields, and interaction terms that were

generated through local gauge invariance. In general, we have the

following correspondence:

Free Lagrangian → propagator

Interaction term → vertex factor

• For the Feynman rules of QED, you can have a look at PP-I sec-

tion 8, Griffiths section 7.5 and appendix D, or H&M section 6.17

(reproduced on the next page).
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Feynman rules for QED
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A hypothetical 2-component Dirac field

• Consider two fields ψ1 and ψ2 that obey the Dirac equations

(i∂/−m1)ψ1 = 0 and (i∂/−m2)ψ2 = 0

• The total Lagrangian is then simply the sum

L = ψ1(i∂/−m1)ψ1︸ ︷︷ ︸
L1

+ ψ2(i∂/−m2)ψ2︸ ︷︷ ︸
L2

• We introduce the compact notation

ψ =

(
ψ1

ψ2

)
, ψ = (ψ1, ψ2), M =

(
m1 0

0 m2

)

and set m1 = m2 so that M = mI , and write

L = ψ(i∂/−m)ψ

but we have to remember that ψ and ψ are now 2-component

objects, each component being itself a 4-component spinor.24

• We immediately see that L is invariant under a global unitary

transformation ψ′ = Uψ in our 2-dimensional space because

ψ
′
∂/ψ′ = ψU †∂/Uψ = ψ∂/ψ, and ψ

′
ψ′ = ψU †Uψ = ψψ

Note that for m1 6= m2 the term ψMψ would not be invariant

because then U †MU 6= MU †U .

• We will now follow the original idea of Yang and Mills (1954),

and investigate what happens if this global invariance for unitary

transformations is made local.

24The notation ∂/ψ should here be understood as

(
∂/ψ1

∂/ψ2

)
.
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Yang-Mills theory

• The Yang-Mills theory describes pairs of spin-1
2 particles of equal

mass, and Yang and Mills originally had the proton and neutron

in mind as such a pair. A problem, however, is that the quanta

of the Yang-Mills field must be massless in order to maintain

gauge invariance (we have seen this already for the photon field on

page 3–14). The massless quanta should have long-range effects,

like the photon, and for this reason the theory was abandoned as

a candidate theory of the strong interaction, which is short-range.

• However, the Yang-Mills theory is still important because it serves

as a prototype of non-Abelian gauge theories, that is, the-

ories for which the generators of the underlying symmetry group

do not commute.

• Indeed, like SU(3) is a generalisation of SU(2), we will see that

QCD is a generalisation of Yang-Mills.

• So we will first present the nuts and bolts of Yang-Mills as an

important step towards building the QCD Lagrangian. We may

summarise this in the road map below where we will follow, of

course, the branch leading to QCD.

eiφ eiα·τ = U(1)× SU(2)

U(1)×SU(2)





U(1) → QED

SU(2) → Yang-Mills

{
→ Electroweak theory

→ SU(3) → QCD
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Recap of SU(2)

• We will use several SU(2) formula which were presented earlier in

these lectures, or derived in exercises. Here is a summary:

• Unitary SU(2) matrix U = exp(iα ·τ/2) with U †U = UU † = 1

• Here α = (α1, α2, α3) and τ = (τ1, τ2, τ3) are the Pauli matrices:

τ1 =

(
0 1

1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0

0 −1

)

τ †i = τi = τ−1

Tr(τi) = 0

τiτj = δij + εijkτk

(a · τ )(b · τ ) = a · b + iτ · (a× b)

exp(iθ · τ ) = cos |θ| + i(θ̂ · τ ) sin |θ|

• Commutation relations for T = τ/2: [Ti, Tj] = iεijkTk.
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Local SU(2) invariance

• We want to make the Lagrangian

L = ψ(i∂/−m)ψ with ψ =

(
ψ1

ψ2

)
and ψ = (ψ1, ψ2)

invariant under local SU(2) transformations

U(x) = exp[−igw τ ·α(x)]

Here gw is some strength parameter (coupling constant).

• As in the U(1) case, we replace ∂µ by a covariant derivative Dµ

and require that the Lagrangian is invariant:

L′ = ψ U † (iD/ ′ −m)U ψ =
Iwant

ψ(iD/−m)ψ = L,

which is the case if U †D′µU = Dµ, or D′µU = UDµ.

• In analogy with the U(1) case we set

Dµ = ∂µ + igw τ ·Aµ

which introduces three gauge fields Aµ = [(A1)µ, (A2)µ, (A3)µ].

• The transformation property of A we find from the requirement

D′µU = UDµ:

(∂µ + igwτ ·A′µ)Uψ =
Iwant

U(∂µ + igwτ ·Aµ)ψ

Exercise 4.1: [1.0] Show that this gives the transformation rule:

τ ·A′µ = U(τ ·Aµ)U−1 +
i

gw
(∂µU)U−1
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Exercise 4.2:

(a) [0.4] The transformation rule for the gauge fields is

τ ·A′µ = U(τ ·Aµ)U−1 +
i

gw
(∂µU)U−1.

Expand to first order U ≈ 1− igw τ ·α and show that the trans-

formation rule can be approximated by

τ ·A′µ ≈ τ ·Aµ + igw [τ ·Aµ , τ ·α] + τ · ∂µα

(b) [0.4] Use the expression for (a · τ )(b · τ ) on page 4–5 to evaluate

the commutator

[τ ·Aµ , τ ·α] = −2iτ (α×Aµ)

(c) [0.2] Now substitute the commutator and multiply with τ−1 to get

A′µ ≈ Aµ + ∂µα + 2gw (α×Aµ)
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The SU(2) invariant Lagrangian

• Substituting Dµ = ∂µ + igw τ ·Aµ, we get for our SU(2) invariant

Lagrangian

L = ψ(iD/−m)ψ = ψ(i∂/−m)ψ︸ ︷︷ ︸
free term

− (gw ψγ
µτψ) ·Aµ︸ ︷︷ ︸

interaction term

• But we still have to add a free term for the gauge fields Aµ

Lfree = −1
4 [(F1)µν(F1)µν + (F2)µν(F2)µν + (F3)µν(F3)µν]

= −1
4F

µν · F µν

• Now we have to look for a definition of F µν that makes Lfree in-

variant under the (infinitesimal) gauge transformation

A′µ ≈ Aµ + ∂µα + 2gw (α×Aµ)

It can be shown (elaborate, but straight forward algebra) that the

sought-after gauge field tensor is

F µν ≡ ∂µAν − ∂νAµ − 2gw (Aµ ×Aν)

• The SU(2) invariant Lagrangian is now25

LYM = ψ(i∂/−m)ψ − 1
4F

µν · F µν − (gw ψγ
µτψ) ·Aµ

• Note that the last two terms are like a Maxwell Lagrangian

L = −1
4F

µν · F µν − jµ ·Aµ

but now with three Dirac currents jµ = gw ψγ
µτψ and with three

gauge fields Aµ.

25Here we have talked only about infinitesimal gauge transformations but it can be shown that L is also
invariant for finite transformations.
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Global SU(3)c invariance

• We have seen on page 2–28 the need to introduce the quark colour

quantum number and, on page 2–31, how this shows up experimen-

tally in the ratio R = σ(e+e− → hadrons) / σ(e+e− → µ+µ−).

• So we have now three spin-1
2 Dirac fields

ψ =



ψr

ψg

ψb


 and ψ = (ψr, ψg, ψb)

• The free Lagrangian is, again,

L = ψ(i∂/−m)ψ

but we have to remember that ψ and ψ represent 3-component

objects, with colour index (r, g, b), and that each component is by

itself a 4-component Dirac spinor.26

• This Lagrangian is manifestly invariant under U(3) = U(1)×SU(3)

global transformations. The U(1) phase invariance was already

explored so we only investigate here SU(3) invariance

ψ′ = Uψ and ψ
′
= ψ U †

• To make L invariant under local SU(3) transformations is now

a relatively easy task since we just can replace the 2 × 2 SU(2)

matrices in the Yang-Mills theory by 3× 3 SU(3) matrices.

26We assume here that quarks of all flavours are identical by having the same mass. This is not true, of
course, and we should introduce a flavour index f = (d,u, s, c,b, t), and different masses mf . We will not do
that here to keep the notation simple.
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Local SU(3)c invariance

• We want to make the Lagrangian invariant under local SU(3) trans-

formations (gs is the strong coupling constant)

U(x) = exp[igsλ ·α(x)]

Here we have eight angles α = (α1, . . . , α8) and the eight Gell-

Mann matrices λ = (λ1, . . . , λ8) that are given on page 2–23.

• We can now simply repeat the steps made in the Yang-Mills theory

and define the covariant derivative

Dµ = ∂µ + igsλ ·Aµ

where we have now 8 gauge fields A = (A1, . . . , A8).

• For infinitesimal transformations, the gauge fields transform as

A′µ ≈ Aµ + ∂µα + 2gs (α×Aµ)

but here we have to use the general expression for the cross product

(a× b)i = fijk aj bk (summation over j and k implied)

with fijk the structure constants of SU(3), see page 2–23.27

• The gauge field tensor is given by

F µν ≡ ∂µAν − ∂νAµ − 2gs (Aµ ×Aν)

where we have to take the SU(3) cross product for the last term.

• Now we can write down the Lagrangian of QCD.

27You may check that for 3-vectors (a× b)i = εijk aj bk.
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The QCD Lagrangian

• The QCD Lagrangian is

LQCD = ψ(i∂/−m)ψ − 1
4F

µν · F µν − (gs ψγ
µλψ) ·Aµ + · · ·

• We have now eight colour fields Aµ (gluon fields) and eight colour

currents jµ = gs ψγ
µλψ that act as sources for the colour fields,

like the electric current is the source for the electromagnetic field.

• In the first term we recognise the free Dirac Lagrangian, just like

in QED. It will give rise to quark propagators.

• The last term also looks familiar: it is an interaction term that

gives rise to the quark-gluon vertex.

• The second term is the free Lagrangian of the gluon fields, which

also looks familiar from QED, but has a much richer structure. As

we will see, it gives rise to the gluon propagator, like the photon

propagator in QED, but also to 3- and 4-gluon vertices, which is

something that does not exist in QED. We will see in Section 6

that these gluon self-interactions are responsible for a characteristic

feature of QCD interactions: asymptotic freedom.

• Note that the QCD Lagrangian given above is not complete and

so-called gauge-fixing terms and ghost fields must be intro-

duced to make the theory consistent. This is highly technical and

way beyond the scope of these lectures.

• Up to now we have expressed Lagrangians in some kind of vector

notation which is compact, but not commonly used. So let us now

first present the QCD Lagrangian in (colour) index notation.
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Colour space indices

• We have seen that quarks come in three colours i = (r, g, b) so

that the wave function can be written as

ψi =





ci u
(s)
f (pµ) incoming quark

c†i ū
(s)
f (pµ) outgoing quark

c†i v̄
(s)
f (pµ) incoming antiquark

ci v
(s)
f (pµ) outgoing antiquark

Expressions for the 4-component spinors u and v can be found in

Griffiths p.233–4. We have here explicitly indicated the Lorentz

index µ = (0, 1, 2, 3), the spin index s = (1, 2) = (up, down)

and the flavour index f = (d, u, s, c, b, t). To not overburden the

notation we will suppress these indices in the following.

• The colour index i = (1, 2, 3) = (r, g, b) is taken care of by defining

the following basis vectors in colour space

c1 =




1

0

0


 , c2 =




0

1

0


 , c3 =




0

0

1


 ,

for red, green and blue, respectively. The Hermitian conjugates c†i
are just the corresponding row vectors.

• A colour transition like ψr → ψg can now be described as an

SU(3) matrix operation in colour space. Recalling the SU(3) step

operators (page 2–24 and Exercise 2.8d) we may write

ψg = (λ1−iλ2)ψr or, in colour space,




0

1

0


 =




0 0 0

1 0 0

0 0 0






1

0

0



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The QCD Lagrangian in colour index notation

• Here is QCD Lagrangian with all colour indices shown.28

LQCD = ψi(iγ
µ∂µ −m)ψi − 1

4F
µν
a F a

µν − gs ψiλ
a
ijψj γ

µAa
µ

F µν
a = ∂µAν

a − ∂νAµ
a − 2gs fabcA

µ
bA

ν
c

The colour index i = (1, 2, 3) labels the quark fields, while the

colour index a = (1, . . . , 8) labels the gluon fields and the corre-

sponding generators.

• Here are all the propagators and vertices of a QCD Feynman dia-

gram; the ones for the gluon become visible when you multiply-out

the field tensor contraction F µν
a F a

µν in the Lagrangian:

ψ̄i(iγ
µ∂µ −m)ψi quark propagator

(∂µAν
a − ∂νAµ

a)(∂µAa
ν − ∂νAa

µ) gluon propagator

gs ψ̄iλ
a
ijψjγ

µAa
µ quark-gluon vertex

gs (∂µAν
a − ∂νAµ

a)fabcA
b
µAc

ν 3-gluon vertex

g2
s fabcA

µ
b Aν

c fadeA
d
µAe

ν 4-gluon vertex

28Summation over repeated indices is implied, irrespective of their position (upper or lower); the colour indices
are just placed wherever the Lorentz indices leaves room for them.
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Probing the strong quark interactions

• Of course all hard scattering phenomena involving hadrons probe,

in one way or another, the constituent quarks. In the introduction

we have mentioned that energetic quarks tend to fragment into jets

of particles. The study of those jets is indeed an important part of

the experimental programmes at high energy p̄p and pp colliders.

• The largest centre of mass energies are reached at the Tevatron

2 TeV p̄p collider (Fermilab, Chicago, 1985–2011) and the pp

collider LHC at CERN, Geneva, which came into operation in

November 2009 and is presently upgraded from 8 TeV to 14 TeV

centre-of-mass energy.

• The advantage of these machines is the high collision energies that

can be reached but a disadvantage is that the (anti)proton beams

at these energies can be regarded as complicated streams of quarks

and gluons, so that the initial state of the collision is non-trivial.

• A clean initial state is provided by e+e− collisions, like at the

CERN LEP collider (1989–2000) with centre of mass energies of

up to 200 GeV. The figure on page 4–15 shows an e+e− → qq̄

event, where the quarks fragment into two back-to-back jets. Here

we can really ‘see’ the quark and antiquark flying apart.
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Two-jet event in e+e−

Here we see quarks, but can we also see gluons?

Yes!

4–15



Here they are (the gluons)

jet

jet

jete+

e−

Three-jet event in an e+e− collision, recorded by L3 at LEP.
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From the Lagrangian to Feynman graphs

• We show here once more the QCD Lagrangian with the colour in-

dices i = (1, 2, 3) = (r, g, b) that label the quarks fields ψi and ψi,

and the index a = (1, . . . , 8) that label the eight gluon fields Aa
µ.

In the expression below, gs is the strong coupling constant, and

the fabc are the structure constants of SU(3).

LQCD = ψi(iγ
µ∂µ −m)ψi − 1

4F
µν
a F a

µν − gs ψiλ
a
ijψj γ

µAa
µ

F µν
a = ∂µAν

a − ∂νAµ
a − 2gs fabcA

µ
bA

ν
c

• And here are again the propagators and vertices in the Lagrangian.

ψ̄i(iγ
µ∂µ −m)ψi quark propagator

(∂µAν
a − ∂νAµ

a)(∂µAa
ν − ∂νAa

µ) gluon propagator

gs ψ̄iλ
a
ijψjγ

µAa
µ quark-gluon vertex

gs (∂µAν
a − ∂νAµ

a)fabcA
b
µAc

ν 3-gluon vertex

g2
s fabcA

µ
b Aν

c fadeA
d
µAe

ν 4-gluon vertex
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Feynman rules of QCD

• To each element of a Feynman diagram corresponds a mathemati-

cal expression which, together with the prescription how to assem-

ble a scattering amplitude, make up the set of Feynman rules.

Deriving these rules is the subject of Quantum Field Theory and is

beyond the scope of these lectures. It was already said before that

our QCD Lagrangian is not complete and that so-called ghost

fields must be introduced to make the theory consistent, but this

is also beyond the scope of these lectures. The full set of QCD

Feynman rules (without ghosts) can be found in Griffiths p.287–8.

• In the following we will calculate so-called colour factors for

the leading order qq̄ → qq̄ and qq → qq diagrams. Here is the

dictionary that we will need for that calculation:

u c incoming quark

ū c† outgoing quark

v̄ c† incoming antiquark

v c outgoing antiquark

−i
gµνδ

ab

q2 gluon propagator

−igs
λa

2 γ
µ quark-gluon vertex
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Colour factor for qq̄ → qq̄

v̄2 c†
2

ū3 c†
3

v4 c4

u1 c1

−igs
λb

2
γµ

−igs
λa

2
γν

−i
gµνδ

ab

q2

−iM = ū3c
†
3

�
−igs

λa

2
γν

�
u1c1

×
�
−i

gµνδ
ab

q2

�

× v̄2c
†
2

�
−igs

λb

2
γµ

�
v4c4

M = −g2
s

q2
(ū3γ

µu1) (v̄2γµv4)

× 1

4

�
c†
3 λ

ac1

��
c†
2 λ

ac4

�

� �� �
colour factor
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Colour factor for qq → qq

u2 c2

u1 c1 ū3 c†
3

ū4 c†
4

−igs
λb

2
γµ

−igs
λa

2
γν

−i
gµνδ

ab

q2

−iM = ū3c
†
3

�
−igs

λa

2
γν

�
u1c1

×
�
−i

gµνδ
ab

q2

�

× ū4c
†
4

�
−igs

λb

2
γµ

�
u2c2

M = −g2
s

q2
(ū3γ

µu1) (ū4γµu2)

× 1

4

�
c†
3 λ

ac1

��
c†
4 λ

ac2

�

� �� �
colour factor
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Colour factors

• We see that the leading order QCD amplitudes for qq̄ → qq̄ and

qq → qq scattering can be written as (αs ≡ g2
s/4π)

MQCD = αs × colourfactor×MQED

This means that we can take the QED result (from PP-I for in-

stance), provided that we replace the fine structure constant α by

the strong coupling constant αs, and multiply by the colour factor.

• This correspondence does not only hold for tree diagrams (di-

agrams without loops) but for any diagram where photons can be

replaced by gluons.

• However, it is not true that QCD ≡ colourfactor× QED because

there are QCD diagrams which do not exist in QED.
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Colour transition operators

• Instead of working with the matrices λa it is sometimes handy to

express them in terms of colour transition operators as follows.

• Consider an N -dimensional Hilbert space spanned by the kets |i〉.
In this space live the transition operators Oi→j = |j〉〈i| that trans-

form the state |i〉 to the state |j〉. Indeed,

Oi→j|i〉 = |j〉〈i|i〉 = |j〉

A constraint is imposed by the closure relation
∑

i

|i〉〈i| = 1

so that there are N 2 − 1 independent transition operators.

• In our 3-dimensional colour space we then have transition operators

like Or→g = |G〉〈R| and it is straight-forward to express the Gell-

Mann matrices given on Page 2–23 in terms of these operators

λ1 = |G〉〈R| + |R〉〈G|
λ2 = i ( |G〉〈R| − |R〉〈G| )
λ3 = |R〉〈R| − |G〉〈G|
λ4 = |B〉〈R| + |R〉〈B|
λ5 = i ( |B〉〈R| − |R〉〈B| )
λ6 = |B〉〈G| + |G〉〈B|
λ7 = i ( |B〉〈G| − |G〉〈B| )
λ8 =

1√
3

( |R〉〈R| + |G〉〈G| − 2|B〉〈B| )
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Bookkeeping I

• We will write c†iλ
acj as 〈i|λa|j〉 which is, of course, just the matrix

element λaij.

• The colour factors on Page 5–5 and 5–6 can be calculated from

1
4

∑

a

〈i|λa|j〉〈k|λa|l〉 = 1
4

∑

a

λaijλ
a
kl = 1

2 δilδjk− 1
6 δijδkl ≡ f (ijkl)

• The colour factor f (ijkl) thus depends on whether pairs of colours

are the same or not and we get, from the identity above,

f (ijkl) =





−1
6 if i = j and k = l
1
2 if i = l and j = k
1
3 if i = j = k = l

0 otherwise

For the three non-zero colour factors we will also use the generic

notation f (xxyy), f (xyyx) and f (xxxx), respectively.

• Exercise 5.1: [1.0] Use the λ matrices on page 2–23 or the oper-

ator representation on page 5–8 to check the colour factor f (ijkl).

Hint: Restrict yourself to two colours (red and green, say) so that

i, j, k, l can only take the values 1 and 2. After this it is easy to

generalise to the other combinations red-blue and green-blue.

5–9



Bookkeeping II

qq̄ ! qq̄ qq ! qq

j j ii

k kl l

1
4�

a
ij�

a
kl

1
4�

a
ij�

a
kl

f(ijkl)

• The colour factors 1
4λ

a
ijλ

a
kl = f (ijkl) are the same in both diagrams

above, but note that the indices l and k in the upper legs are

swapped. Thus for a given f (ijkl) the indices i, j, k, l are assigned

differently to the incoming and outgoing particles in qq̄ → qq̄ and

qq → qq scattering.

• Now we can list all allowed combinations of colour ‘x’ and ‘y’:

q q̄ → q q̄ q q → q q

j k → i l j l → i k f ( ijkl )

x x → x x x x → x x f (xxxx) = 1
3

x x → y y x y → y x f (yxxy) = 1
2

x y → x y x y → x y f (xxyy) = −1
6

x y → y x x x → y y f (yxyx) = 0

• In fact, the table above reflects colour flow through the diagram,

as is shown on the next page for the combination red and green.
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Colour flow

• qq̄ → qq̄ and qq → qq diagrams showing colour exchange and the

possible cc̄ combinations carried by the exchanged gluon.

r̄ ḡ

r g

r̄r̄

r

r r

r r

r

r

r r r

r r

ḡ ḡ

g

g

g g

rr̄, gḡ, bb̄ rḡ, r̄g

rr̄, gḡ, bb̄ rḡ, r̄g

rr̄, gḡ, bb̄

rr̄, gḡ, bb̄

• Here are some colour flow diagrams for (a) qq̄ → qq̄ and (b) qq →
qq interactions.
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Gluon colour states

• The gluon carries one unit of colour and one unit of anticolour and

because 3⊗ 3̄ = 8⊕ 1 (see page 2–27) we can take the singlet as

our principal axis in colour-anticolour space and then construct a

basis by orthogonalisation. The invariant singlet state is obviously

|0〉 ≡
√

1
3 (rr̄ + gḡ + bb̄).

By simple orthogonalisation we find a fully orthonormal basis as29

rḡ rb̄ gr̄ gb̄ br̄ bḡ rr̄ gḡ bb̄

|0〉 =
√

1
3
| 0 0 0 0 0 0 1 1 1 >

|1〉 = | 1 0 0 0 0 0 0 0 0 >

|2〉 = | 0 1 0 0 0 0 0 0 0 >

|3〉 = | 0 0 1 0 0 0 0 0 0 >

|4〉 = | 0 0 0 1 0 0 0 0 0 >

|5〉 = | 0 0 0 0 1 0 0 0 0 >

|6〉 = | 0 0 0 0 0 1 0 0 0 >

|7〉 =
√

1
2
| 0 0 0 0 0 0 1 −1 0 >

|8〉 =
√

1
6
| 0 0 0 0 0 0 1 1 −2 >

• According to the colour hypothesis (page 1–6) a singlet gluon could

exist as a free (unconfined) particle. Such a gluon would then

behave as a strongly interacting photon and be able to transmit

the strong force over (infinitely) large distances. A singlet gluon is

excluded from the list since it has never been observed in isolation,

and also because we know that the strong force is short-ranged.30

• The quarks transform according to the 3 × 3 fundamental repre-

sentation of SU(3) (the λ matrices), while the gluons transform

according to the 8× 8 adjoint representation.

29H&M use this basis in Eq(2.93); Griffiths uses another orthonormal basis for the octet state, Eq(8.29).
30Remember also that QCD is based on the SU(3) colour symmetry which has eight generators and therefore

eight (not nine) gauge field quanta: there is no room for a singlet gluon in an SU(3) gauge theory.
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Colour interaction

• QCD is formally very reminiscent of QED but there are impor-

tant differences because, unlike photons, the gluons interact among

themselves.

• In QED, the electric field of two oppositely charged particles per-

meates all space and diminishes quickly when the charges are sep-

arated (→ Fig a). On the other hand, when one tries to separate

a colour charge the gluon self-interaction causes the colour field

between these charges to organise itself into a so-called flux tube

or colour string (→ Fig a,b). When stretched, the behaviour

of such a string is very much like that of a rubber band.

• This behaviour of the gluon field leads to a force which is con-

stant between the colour charges, regardless of their distance. The

strength of this force is huge, about 16× 104 N, or 16 tons.

• It follows that the colour charges cannot be fully separated since

that would cost an infinite amount of energy. Instead, it will be

energetically more favourable to pull a quark-antiquark pair out of

the vacuum and this causes the string to break (→ Fig c).

• EM-like behaviour at small distance, and string behaviour at large

distance leads to a QCD potential that behaves roughly as:

V (r) ∼ α

r
+ kr
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Colour strings

(a)	
  
(c)	
  

(b)	
  

(a) Lines of force do spread over the entire space in the electrostatic

attraction of two opposite charges (left) but in QCD the gluon

self-interactions squeeze the lines of force into a flux tube (right).

(b) Result of a Lattice QCD simulation31 showing a quark and an

antiquark (red colour) bound together into a meson by a string-

like gluon field configuration (green colour).32

(c) Schematic view of the colour-string breaking when an ud̄ quark

pair is pulled apart.

31In Lattice QCD the field equations are solved numerically on a discrete space-time grid. This technique
allows to explore the non-perturbative regime of QCD.

32M. Cardoso et al., Phys. Rev. D 81, 034504 (2010).
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Is colour exchange attractive or repulsive?

• We have seen that the 2→ 2 colour interaction at lowest order is

the same as the electromagnetic interaction, provided we replace

α by αs, and multiply by the QCD colour factor f .

• Now for unlike-sign charges the EM force is attractive and the

Coulomb potential is given by V ∼ −α/r so that we set for qq̄

colour interactions, at short distance,

Vqq̄(r) ∼ −f
αs

r
Likewise, the Coulomb potential is repulsive for like-sign charges

so that we set

Vqq(r) ∼ +f
αs

r

• Thus we have

qq̄ → qq̄ =

{
attractive when f > 0

repulsive when f < 0

qq → qq =

{
attractive when f < 0

repulsive when f > 0

• Note that this correspondence is based on lowest order perturba-

tion theory which is only valid at short distance where the coupling

constant is small (asymptotic freedom, see next lecture). At large

distance we do not know how the colour interaction exactly be-

haves because it is not perturbatively calculable.33

• Nevertheless, let us calculate the colour factors for different qq̄ and

qq colour configurations, and see if we can get some understanding

whether the colour force is attractive or repulsive at short distance.

33Lattice QCD tries to access the non-perturbative regime by numerically solving the field equations on a
discrete space-time lattice. This is notoriously difficult and requires large-scale computing, sometimes with
dedicated computers engineered for this purpose.
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qq̄ in an octet state

• Here the qq̄ pair is in one of the octet states (page 5–12), say rḡ.

• From the flow diagrams on page 5–11 it is seen that, if they are

different, an incoming quark colour can only be carried away by

an outgoing quark while an incoming anti-quark colour can only

be carried away by an outgoing anti-quark. This can also be seen

from the table on page 5–10.

• So we have to consider only the transition rg → rg or, more in

general, xy → xy with, as can be seen from the table, a colour

factor of f (xxyy) = −1
6.

• To finalise the calculation we have to sum over all possible output

states and average over the input states. Since there is only one

output state for each input state, and the colour factor is the same

for each of the eight members of the octet (see the exercise below),

we find that f = −1
6 < 0.

• We conclude that the colour force between a quark and an anti-

quark in an octet state is repulsive.

• Exercise 5.2:

(a) [0.5] The qq̄ pair is in the octet state |8〉 ≡ |rr̄+gḡ−2bb̄〉/
√

6,

Calculate the color factor of the transition |8〉 → |8〉.
(b) [0.5] Argue why all transitions within an SU(3)c multiplet must

have the same colour factor.
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qq̄ in a singlet state

• The qq̄ singlet state is

1√
3

(rr̄ + gḡ + bb̄)

• From the diagrams on page 5–11 or from the table on page 5–10 it

is seen that an initial state where the quark and anti-quark colours

are equal always will give rise to a final state where the quark and

anti-quark colours are also equal, for example,

rr̄→ rr̄ or rr̄→ gḡ or rr̄→ bb̄

• Thus we always have c1 = c2 and c3 = c4 with, as can be seen

from the table,

f = 1
3 if x x → x x (3 combinations)

f = 1
2 if x x → y y (6 combinations)

• Summing over all possible output states, and taking into account

the normalisation factor
√

3 we find, since there is only one input

state,

f = 1
3 (3× 1

3 + 6× 1
2) = 4

3 > 0

• Because f > 0 we conclude that the colour force is attractive for

a qq̄ pair in a singlet state.

• To summarise, we have found that, at least at short distance, the

colour force is repulsive for qq̄ pairs in the octet state and attractive

in the singlet state. So now we understand why bound qq̄ states

(mesons) would prefer to be colour singlets.
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qqq in a singlet state

• We have seen (page 2–28) that baryons are colour singlet qqq states

with an antisymmetric wave function in colour space

ψ(c1c2c3) = rgb + brg + gbr− grb− bgr− rbg

= (rg − gr)b + (br− rb)g + (gb− bg)r

Each pair of quarks in the singlet 3-quark system is thus in a

triplet state which are just the antisymmetric combinations

Colour triplet 3̄ =





(rg − gr)/
√

2

(br− rb)/
√

2

(gb− bg)/
√

2

• For each triplet state we have c1 6= c2 with, as can be seen from the

table on page 5–10, xy → xy and xy → yx as the only possible

transitions: each triplet state transforms into (minus) itself.

• To calculate the colour factor for a triplet state let us first introduce

some shorthand and write the matrix element for qaqb → qcqd as

〈c|λa|a〉〈d|λa|b〉 ≡ 〈cd||ab〉
Taking only into account the transition xy → xy, we have

〈xy− yx||xy− yx〉 = 〈xy||xy〉− 〈xy||yx〉− 〈yx||xy〉+ 〈yx||yx〉
• Looking up in the table the colour factor of each term, and taking

into account the normalisation factor
√

2 we get

f = 1
2 × (−1

6 − 1
2 − 1

2 − 1
6) = −2

3 < 0

We find that the 2-quark colour interaction in a hadron is attractive.

• Exercise 5.3: [1.0] What is the color factor for the transition

xy → yx, and why did we not consider this transition?

• We refer to Griffiths Section 8.4.2 for other (qq)q colour states.
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SU(N) group invariants

i jk

�a
ik �a

kj

• Results of colour algebra are often expressed in terms of group

invariants. Below we will not use the Gell-Mann matrices λa but,

instead, the SU(N) generators ta ≡ λa/2. The first invariant is

called TF and is used to fix the normalisation

Tr(tatb) = TFδab with, by convention, TF = 1
2

• The colour factor of the quark self-energy diagram above intro-

duces another invariant, CF ,∑

a

taikt
a
kj =

∑

a

(tata)ij ≡ CF δij

where the right-hand side simply expresses the fact that the colours i

and j must be the same, because of colour conservation. Taking

the trace of the left-hand side gives

Tr(tata) = δabTr(tatb) = TFδabδab = TFδaa = TF (N 2 − 1)

since δaa (summation over a) just gives the number of generators,

which is N 2−1 for SU(N). The δij on the right-hand side is simply

the N ×N unit matrix which has trace N . Thus we find

CFN = TF (N 2 − 1) or CF = TF
N 2 − 1

N

For SU(3), CF = 4
3.

• A third invariant shows up in the relation∑

a,b

fabcfabd = CA δcd with CA = N

5–19





Lecture notes Particle Physics II

Quantum Chromo Dynamics

6. Asymptotic Freedom

Michiel Botje
Nikhef, Science Park, Amsterdam

December 2, 2013





Charge screening in QED

• In QED, a charged particle like the electron is surrounded by a

cloud of virtual photons and e+e− pairs continuously popping in

and out of existence. Because of the attraction of opposite charges,

the virtual positrons tend to be closer to the electron and screen the

electron charge, as is indicated in the figure. This is analogous to

the polarisation of a dielectric medium in the presence of a charge

and is called vacuum polarisation.

• This gives rise to the notion of an effective charge e(r) that becomes

smaller with larger distance.

• One says that the beta function

β(r) ≡ −d e(r)

d ln r
is positive in QED.

6–3



Charge screening in QCD

• Likewise, the QCD vacuum consists of virtual qq̄ pairs, and if this

would be all, the charge screening mechanism would be the same

as in QED, with a positive beta function.

• However, due to the gluon self coupling, the vacuum will also be

filled with virtual gluon pairs as is indicated in the figure. Because

the gluon cloud carries colour charge, it turns out that the effective

charge becomes larger with larger distance; the beta function is

negative. This effect is called antiscreening.34

• It turns out that the negative contribution wins over the positive

contribution, so that the QCD beta function is negative, and the

effective strong coupling becomes small a short distances.

34Antiscreening follows from the calculation of vacuum polarisation in QCD, which is non-trivial and beyond
the scope of these lectures; unfortunately it is not so easy to intuitively understand the antiscreening effect.
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The running coupling constant in QED and QCD

• Charge screening in QED (screening) and QCD (antiscreening)

leads to the concept of a running coupling. In QED the cou-

pling becomes large at (very) short distance but its effect is small.

• In QCD, the antiscreening effect causes the strong coupling to be-

come small at short distance (large momentum transfer). This

causes the quarks inside hadrons to behave more or less as free

particles, when probed at large enough energies. This property of

the strong interaction is called asymptotic freedom. Asymp-

totic freedom allows us to use perturbation theory, and by this

arrive at quantitative predictions for hard scattering cross sections

in hadronic interactions.

• On the other hand, at increasing distance the coupling becomes so

strong that it is impossible to isolate a quark from a hadron (it be-

comes cheaper to create a quark-antiquark pair). This mechanism

is called confinement. Confinement is verified in Lattice QCD

calculations but, since it is nonperturbative, not mathematically

proven from first principles.35

• The discovery of asymptotic freedom (1973) was a major break-

through for QCD as the theory of the strong interaction, and was

awarded the Nobel prize in 2004 to Gross, Politzer and Wilczek.36

• To get a more quantitative insight into asymptotic freedom, we

will now first discuss the running coupling in QED.

35A mathematical proof will gain you a $1M millennium prize from the Clay Mathematics Institute.
36The Nobel lecture of Frank Wilczek can be downloaded from http://www.nobelprize.org and makes

highly recommended reading, both as an exposé of the basic ideas, and as a record of the hard struggle.
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Propagator loop correction in QED I

• Consider the two electron-muon scattering diagrams below

t
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q

q

k q − k

• The matrix element of the left diagram is (q = p1− p3 = p4− p2)

M = −g2
e [ū3γ

µu1]
gµν
q2

[ū4γ
νu2]

• The right diagram has a virtual e+e− loop in the propagator:37

M = −g2
e [ū3γ

µu1]
−iIµν
q4

[ū4γ
νu2]

with38

Iµν = −g2
e

∫
d4k

2π4

Tr [ γµ (/k + me) γν (/k − /q + me) ]

[k2 −m2
e] [(k − q)2 −m2

e]
.

• Addition of this loop diagram is thus effectively a modification of

the photon propagator

gµν
q2

→ gµν
q2
− iIµν

q4
.

• Unfortunately the integral Iµν is divergent.

37The matrix element M∝ g4e but this does not show because we assign a factor g2e to the propagator Iµν .
38In this lecture we will skip over much mathematical detail, most of which can be found in H&M Chapter 7.
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Propagator loop correction in QED II

Iµν = −g2
e

∫
d4k

2π4

Tr [ γµ (/k + me) γν (/k − /q + me) ]

[k2 −m2
e] [(k − q)2 −m2

e]

• Because, after integration, the tensor Iµν only depends on qµ it

must be some linear combination of gµν and qµqν, since these are

the only tensors at our disposal. We can thus parameterise Iµν as,

Iµν = −igµν q2I(q2) + qµqνJ(q2),

where I(q2) and J(q2) are some functions of q2, see below.39

• Exercise 6.1: [1.0] Show that the term qµqνJ(q2) does not con-

tribute to the matrix element M. Hint: Use the Dirac equation,

page 0–16.

• Thus only the first term needs to be considered, and the function

I(q2) is found to be, after a lengthy calculation,

I(q2) =
g2

e

12π2

{∫ ∞

m2
e

dz

z
− 6

∫ 1

0

dz z(1− z) ln

[
1− q2

m2
e

z(1− z)

]}
.

Indeed, the first integral is logarithmically divergent, while all non-

divergent contributions are collected in the second integral.

• The first step to handle the infinity is to regularise the integral.

39The factor −iq2 in the first term is just there for convenience.
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Propagator loop correction in QED III

• Because q2 < 0 (Exercise 6.2) we define Q2 ≡ −q2 and write

I(q2) =
g2

e

12π2

[∫ ∞

m2
e

dz

z
− f

(
Q2

m2
e

)]

f

(
Q2

m2
e

)
≡ 6

∫ 1

0

dz z(1− z) ln

[
1 +

Q2

m2
e

z(1− z)

]

• We now impose a cutoff M so that first integral becomes finite

∫ ∞

m2
e

dz

z
→

∫ M2

m2
e

dz

z
= ln

(
M 2

m2
e

)

so that we obtain

I(q2) =
g2

e

12π2

{
ln

(
M 2

m2
e

)
− f

(
Q2

m2
e

)}
.

• The modification of the propagator on page 6–6 can be written as

gµν
q2

→ gµν
q2
− iIµν

q4
=
gµν
q2

[
1− I(q2)

]

• Because the propagator is always accompanied by the factor g2
e

(seeM on page 6–6), its modification can be interpreted as a loop

correction to the ‘bare’ electron charge ge:

g2
e → g2

e

[
1− I(q2)

]
= g2

e

{
1− g2

e

12π2

[
ln

(
M 2

m2
e

)
− f

(
Q2

m2
e

)]}
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Exercise 6.2:

f

(
Q2

m2
e

)
= 6

∫ 1

0

dz z(1− z) ln

[
1 +

Q2

m2
e

z(1− z)

]

(a) [0.5] Show that q2 = (p1 − p3)2 = (p4 − p2)2 < 0.

(b) [0.5] Show that,40 for small and large Q2,

f

(
Q2

m2
e

)
=





1
5
Q2

m2
e

for Q2 � m2
e

ln
(
Q2

m2
e

)
for Q2 � m2

e

Note from this that f is an increasing function ofQ2, with f (0) = 0.

Here is a sketch of f .

Q2/m2

f(Q2/m2)

40For this, I give you the integrals
∫ 1

0
dz z(1− z) = 1

6 and
∫ 1

0
dz z2(1− z)2 = 1

30 .
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The QED running coupling constant I

• The Q2 evolution of the bare coupling constant is thus given by

g2
e → g2

e

{
1− g2

e

12π2

[
ln

(
M 2

m2
e

)
− f

(
Q2

m2
e

)]}

• The first term is called the renormalised coupling constant

g2
0 = g2

e

[
1− g2

e

12π2
ln

(
M 2

m2
e

)]

so that we may write

g2
e → g2

0 +
g4

e

12π2
f

(
Q2

m2
e

)
= g2

0

{
1 +

1

12π2

g4
e

g2
0

f

(
Q2

m2
e

)}

• Up to terms O(g4
e) we may set g4

e = g4
0 inside the braces, so that

g2
e → g2

0

{
1 +

g2
0

12π2
f

(
Q2

m2
e

)
+ O(g4

0)

}
≡ g2

R(Q2)

Here g2
R(Q2) is called the running coupling constant.

• Because f (0) = 0 (Exercise 6.2) we can set g2
0 = g2

R(0) and thus

g2
R(Q2) = g2

R(0)

{
1 +

g2
R(0)

12π2
f

(
Q2

m2
e

)
+ O(g4

R)

}

• The cutoff M has now disappeared from view since it is absorbed

in g2
R(0) which becomes infinitely large when we let M →∞. The

mathematical technique to isolate the singularities in a perturba-

tive calculation is called regularisation, cut-off regularisation in

our case.
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The QED running coupling constant II

• In terms of α = g2
e/4π, the running coupling becomes

α(Q2) = α(0)

{
1 +

α(0)

3π
f

(
Q2

m2
e

)
+ O(α2)

}

• The next step is to admit that our theory cannot describe physics at

asymptotically small distances so that we must replace the singu-

lar part of the calculation by measurement. This is called renor-

malisation.41 In QED it means that α(0) is replaced by the fine

structure constant α = 1/137, as measured at ‘large’ distances of

the order of the nuclear scale.

• There remains a finite correction term f (Q2) which causes the cou-

pling to run withQ2. This is a consequence of vacuum polarisation,

as we have already discussed on page 6–3.

• It turns out that the effect of the running QED coupling constant

is really small and can safely be neglected at atomic or nuclear

scales. Even at large momentum transfers of Q2 ∼ 1000 GeV2 at

the HERA collider, the correction to α is only about 1–2%.

Exercise 6.3: [0.5] Calculate α(Q2) for Q2 = 1000 GeV2.

41’t Hooft and Veltman showed that this can be done consistently to all orders, without spoiling gauge
invariance: they proved in general that gauge theories are renormalisable. They received for this work the
Nobel prize in 1999.
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More O(α2) graphs

( a ) ( b )

( c )

• Apart from the vacuum polarisation graph (a) there are three more

divergent graphs to consider. The vertex correction (b) modifies

the electron magnetic moment (see H&M Section 7.4) while the

graphs (c) renormalise the electron mass.

• The three graphs (b) and (c) also contribute to the renormalisation

of the electron charge. However, it turns out that these contribu-

tions cancel each other so that our previous calculation, based on

diagram (a) alone, remains valid.

• This cancellation is called a Ward identity and is quite fortu-

nate: without it, the graphs (c) would cause the coupling constant

to be dependent on the lepton mass, and we would have different

renormalisation for the electron and the muon electric charge.
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The leading log approximation

• For Q2 � m2
e the one-loop corrected coupling constant is given by

α(Q2) = α(0)

{
1 +

α(0)

3π
ln

(
Q2

m2
e

)
+ O(α2)

}
.

• Because of the Ward identities, only propagator loops will con-

tribute at higher orders:

This induces a series

1 + X + X2 + X3 + · · · = 1

1−X
and indeed, from a full calculation one gets42

α(Q2) =
α(0)

1− [α(0)/3π] ln(Q2/m2
e)

for m2
e � Q2 < Q2

max

The expression blows up when ln(Q2/m2
e) = 3π/α(0), which oc-

curs at an astronomical scale of Q2
max = 10280 MeV2.

• Although the loops are summed to all orders, there are still more

complicated propagator diagrams (like multi-photon exchange be-

tween loops), which are ignored. The result given above is thus

not exact, and is known as the leading log approximation.

42This is an example of resummation where terms in a perturbative calculation are arranged in a geometric
series which is then summed up to all orders.
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The renormalisation scale

• We have seen that the running QED coupling constant decreases

with decreasing Q2 (increasing distance) to the asymptotic value

α(0) = 1/137 at Q2 = 0. However, we could also have specified

an input value α(µ2) at some arbitrary reference scale µ2. We will

now derive the formula for the coupling constant running from

Q2 = µ2, instead of from Q2 = 0. This is useful because, as we

will see, the reference scale Q2 = 0 cannot be used in QCD.

• From

α(Q2) =
α(0)

1− [α(0)/3π] ln(Q2/m2
e)

we have
1

α(Q2)
=

1

α0
− 1

3π
ln

(
Q2

m2
e

)

and
1

α(µ2)
=

1

α0
− 1

3π
ln

(
µ2

m2
e

)
.

Subtraction gives

1

α(Q2)
− 1

α(µ2)
= − 1

3π

[
ln

(
Q2

m2
e

)
− ln

(
µ2

m2
e

)]
= − 1

3π
ln

(
Q2

µ2

)

and thus

α(Q2) =
α(µ2)

1− [α(µ2)/3π] ln(Q2/µ2)
for m2

e � Q2 < Q2
max

• The reference scale µ2 where we wish to specify our input value of

α is called the renormalisation scale. Obviously, the value of

α(Q2) does not depend on what renormalisation scale µ2 we chose.
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The beta function

• The running coupling can be written as

1

α(Q2)
=

1

α(µ2)
− 1

3π
ln

(
Q2

µ2

)

Differentiation to t = lnQ2 gives

d

dt

(
1

α

)
= − 1

α2

dα

dt
= − 1

3π
or

dα

dt
≡ β(α) =

1

3π
α2

• In the above, we have introduced the so-called beta function:

dα(Q2)

d ln(Q2)
≡ β(α) = −(β0α

2 + β1α
3 + β2α

4 + · · · )

Here we have written this function as a series expansion in powers

of the coupling constant,43 where the first term corresponds to the

leading log approximation. It is an important task of perturbative

QED and QCD to calculate the coefficients in this expansion.44

• The QED one-loop beta function is β = α2/3π > 0. This means

that the coupling constant increases with increasingQ2 (decreasing

distance). For QCD it turns out that β < 0, as we will see.

• The one-loop QED coupling constant can now be written as

α(Q2) =
α(µ2)

1 + β0 α(µ2) ln(Q2/µ2)
with β0 = − 1

3π

43The minus sign in front of the series expansion is a matter of convention.
44This is an explosive business: for QCD the 4-loop coefficient β3 has been calculated (at Nikhef!) by

evaluating 50.000 Feynman diagrams, using sophisticated symbolic algebra programs (also developed at Nikhef).
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The running strong coupling constant αs

( a ) ( b )

• To calculate the propagator loop correction in QCD, we do not

only have to consider quark loops (a), like electron loops in QED,

but also gluon loops (b). The quark loop will give rise to a positive

contribution to the beta function (screening) while the gluon loop

contribution will be negative (antiscreening), see also the discussion

on charge screening on page 6–4.

• The formula for the one-loop running coupling constant in QCD is

αs(Q
2) =

αs(µ
2)

1 + β0 αs(µ2) ln(Q2/µ2)
with β0 =

11Nc − 2nf
12π

Here Nc is the number of colours (3) and nf is the number of

flavours (6 in the standard model).

• The second factor −2nf/12π in β0 comes from diagram (a). It is

the same (modulo a colour factor) as the coefficient β0 = −1/3π

in QED and causes screening. The first factor 11Nc/12π comes

from diagram (b) and causes anti-screening.

• Clearly with Nc = 3 and nf = 6, the antiscreening wins over the

screening, with β0 > 0 and a slope β(αs) = −β0α
2
s < 0. This

means that αs decreases with Q2 (→ fig).
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The running strong coupling constant

QCD   (   ) = 0.1184 ± 0.0007s Z

0.1

0.2

0.3

0.4

0.5

s (Q)

1 10 100Q [GeV]

Heavy Quarkonia
e+e–  Annihilation
Deep Inelastic Scattering

July 2009

1. Note that αs is large, compared to the electromagnetic coupling

constant α = 1/137: strong interactions are strong.

2. The running is also strong, compared to a few percent effect at

large Q2 in QED.

3. The running of αs is beautifully confirmed by experiment.

4. For Q2 ∼ 1, αs ∼ 1 and perturbative QCD breaks down. Usually

Q2 ∼ 5–10 GeV2 is considered to be reasonable lower bound for

perturbation theory to apply.
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The QCD scale parameter Λ

αs(Q
2) =

αs(µ
2)

1 + β0 αs(µ2) ln(Q2/µ2)
with β0 =

11Nc − 2nf
12π

• Because β0 > 0 we find that αs → 0 for Q2 →∞. This vanishing

coupling is called asymptotic freedom and is responsible for the

fact that quarks behave like free particles at short distances (large

momentum transfers) as is observed in deep inelastic scattering

experiments.

• The expression for the running coupling constant can be simplified

when we define the QCD scale parameter Λ as follows

1

αs(Q2)
=

1

αs(µ2)
+ β0 ln

(
Q2

µ2

)
≡ β0 ln

(
Q2

Λ2

)

The parameter Λ is thus equal to the scale where the first term

on the right-hand side vanishes, that is, the scale where αs(µ
2)

becomes infinite. Now we may write

αs(Q
2) =

1

β0 ln(Q2/Λ2)

• Experimentally, the value of Λ is found to be about 300 MeV, but

the scale parameter is nowadays out of fashion because it cannot

be defined unambiguously beyond 1-loop order. Instead, it is now

common practise to not quote a value for Λ, but a value for αs at

the mass of the Z (→ fig). This is unambiguous at all orders.

• At Q2 values close to Λ, the coupling constant becomes large and

perturbative QCD breaks down.
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The strong coupling constant αs at m2
Z

0.11 0.12 0.13
  (   )s Z

Quarkonia (lattice)

DIS  F2 (N3LO) 

-decays (N3LO)

DIS  jets (NLO)

e+e– jets & shps (NNLO) 

electroweak fits (N3LO) 

e+e– jets & shapes (NNLO) 

 decays (NLO)

Today’s average: αs(m
2
Z) = 0.1184± 0.0007 (0.6% accuracy)
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Renormalisation scale dependence

αs(Q
2) =

αs(µ
2)

1 + β0 αs(µ2) ln(Q2/µ2)

• We have seen that apart from our physical scale Q2 we have intro-

duced the renormalisation scale µ2 where we wish to specify our

input value of αs.

• Clearly it should not matter which scale µ2 we chose so that any

perturbatively calculated observable Σ should satisfy

∂Σ(Q2, µ2, . . .)

∂ lnµ2
= 0,

which is called the renormalisation group equation.

• In practice, the renormalisation group equation will not be satisfied

since it holds only if we calculate our observable to all orders, which

is never the case of course. However, the renormalisation scale

dependence can be used to judge the accuracy of the calculation

because a vanishing µ2 dependence is a sign that enough terms are

being included in the perturbative expansion (→ fig.)

• Please be aware of the distinction between the Q2 dependence,45

which is physical (caused by vacuum polarisation, for instance),

and the µ2 dependence, which is an artefact of our incomplete

perturbative expansion.

45The relevant physical scale depends on the process under study and is usually taken to be momentum
transfer, centre of mass energy, or transverse momentum.
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Squark production at the LHC

This plot shows the renormalisation scale dependence of the squark

production cross-section at the LHC. As expected, this dependence

becomes weaker as more terms are included in the perturbative expan-

sion (LO and NLO label leading and next-to-leading order in αs, while

NLL and NNLL label two re-summation prescriptions).
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Can perturbative QCD predict anything?

• We have seen that asymptotic freedom allows us to use pertur-

bation theory to calculate quark and gluon interactions at short

distances. But is this enough to arrive at predictions for experi-

mental observables?

• The answer is ‘no’, because the detectors in an experiment can

only observe hadrons and not the constituent quarks and gluons.

• We will see that we need two more things, if we want to make the

connection between theory and experiment:

1. either infrared safety,

2. or factorisation.

• These concepts are intimately related to the separation of the short

and long distance aspects of the strong interaction.

– Infrared Safety: There is a class of observables that do not

depend on long distance physics and are therefore calculable in

perturbative QCD.

– Factorisation: There is a wide class of processes that can be

factorised in a universal long distance piece (nonperturbative,

but process independent) and a short distance piece that is

calculable in perturbative QCD.

• To understand these ideas we will, in this section, study the lowest

order QCD correction to the process e+e− → qq̄.
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The process e+e− → qq̄g

p1

p2

q

k1, x1

k2, x2

k3, x3

• Consider the process e+e− → qq̄g. We have the following kine-

matic variables:

1. The four-momentum q = p1 + p2 of the virtual photon. The

square of the centre-of-mass energy is s = q2 = qµqµ.

2. The outgoing four-momenta k1, k2 and k3. The energies of the

outgoing partons46 in the centre-of-mass frame are Ei = k0
i .

• We define the energy fractions by

xi =
Ei√
s/2

=
2q · ki
s

Exercise 7.1: [0.5] Show that q ·ki = Ei

√
s and that

∑
i xi = 2.

From
∑

i xi = 2 it follows that only two of the xi are independent.

46We use the name ‘parton’ for both quark and gluon.
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Singularities in the cross section

+

• To calculate the cross section σ(e+e− → qq̄g) two Feynman graphs

have to be taken into account, one where the gluon is radiated from

the quark and another where it is radiated from the antiquark. The

calculation of the cross section is rather lengthy so we will not give

it here; you can find it in H&M Section 11.5.

• The result is

d2σ

dx1dx2
= σ0

2αs

3π

x2
1 + x2

2

(1− x1)(1− x2)

Here σ0 = σ(e+e− → hadrons) = (4πα2/s)
∑
e2
i , see page 2–30.

• There are three singularities in this cross section

1. (1− x1) = 0

2. (1− x2) = 0

3. (1− x1) = (1− x2) = 0

We will now have a look where these singularities come from.
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More kinematics

p1

p2

q

k1, x1

k2, x2

k3, x3

• In the following we will neglect the quark masses (k2
i = 0) so that

(ki + kj)
2 = k2

i + k2
j + 2ki · kj = 2ki · kj

• Denote by θij the angle between the momenta of partons i and j.

Then we can relate these angles to the energy fractions as follows

2k1 · k2 = (k1 + k2)2 = (q − k3)2 = s− 2q · k3 →

2E1E2(1− cos θ12) = s(1− x3)

Exercise 7.2: [× ] Show that ki · kj = EiEj(1− cos θij).

• Dividing by s/2 and repeating the above for the angles between

other pairs of particles gives

x1x2(1− cos θ12) = 2(1− x3)

x2x3(1− cos θ23) = 2(1− x1)

x3x1(1− cos θ31) = 2(1− x2)
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Phase space

• From the above it follows that 0 ≤ x ≤ 1. Together with the

constraint x3 = 2 − x1 − x2 this implies that the allowed region

for (x1, x2) is the triangle shown below.

x1

x2

1

1

x
3 =

0

x
3 =

1

2

2

0

• From

x1x2(1− cos θ12) = 2(1− x3)

x2x3(1− cos θ23) = 2(1− x1)

x3x1(1− cos θ31) = 2(1− x2)

we find that the collinear configurations are related to the xi by

θ12 → 0 ⇔ x3 → 1

θ23 → 0 ⇔ x1 → 1

θ31 → 0 ⇔ x2 → 1

Thus when xi → 1 then θjk → 0, that is, j and k are collinear.

Exercise 7.3: [0.5] Show that when xi → 1 then i is back-to-back

with both j and k. Also show that xi → 0 impliesEi → 0: particle

i becomes soft. What can you say about the relative directions of

the particles j and k in this case?
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Three-parton configurations

• This plot shows the three-parton configurations at the boundaries

of phase space.

• Edges: two partons collinear: θij → 0 ⇔ xk → 1.

• Corners: one parton soft xi → 0 ⇔ Ei → 0 (other two partons

are back-to-back).

• Note that at the boundaries of phase space 2→ 3 kinematics goes

over to 2→ 2 kinematics.
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Origin of the singularities

q

k1

k2

k3

k1 + k3

• Where do the singularities actually come from? This is easy to

see by noting that internal quark momentum is (k1 + k3), giving a

propagator term ∼ 1/(k1 + k3)2 in the cross section. Now

(k1 + k3)2 = 2k1 · k3 = 2E1E3 (1− cos θ31)

so that the propagator term evidently is singular when θ31 → 0

and when E3 → 0.

• The collinear singularity at θ31 → 0 and E3 → 0 can be made

explicit by rewriting the cross section as

dσ

dE3 d cos θ31
= σ0

2αs

3π

f (E3, θ31)

E3 (1− cos θ31)
.

Here f (E3, θ31) is a rather complicated function that turns out to

be finite when E3 → 0 or θ31 → 0.

• Clearly we get a logarithmic divergence when we attempt to inte-

grate over θ31 with E3 kept fixed or over E3 with θ31 kept fixed.
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Infrared singularities

• Are we seeing here a breakdown of perturbative QCD? The answer

is no: the problem is that we are trying to work with cross sections

on the parton level that are not infrared safe.

• These infrared problems always show up when 2 → 3 kinematics

becomes 2 → 2 kinematics. We have seen that this happens at

the edges of phase space when two partons become collinear or

one parton becomes soft. Another way of stating this is that the

internal propagator goes on shell: (k1 + k3)2 → 0.

• Please note that infrared divergences are omnipresent in QCD (and

also in QED) and are by no means limited to e+e− → qq̄g.

• It is useful to get a space-time picture with the help of light cone

coordinates. We will then see that the divergences are caused

by long distance interactions.
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Intermezzo: light cone coordinates

• The light cone components of a four-vector a are defined by

a± = (a0 ± a3)/
√

2

The vector is then be written as a = (a+, a−, a1, a2) = (a+, a−,aT).47

• Exercise 7.4: [1.0] Show that

a · b = a+b− + a−b+ − aT · bT, and a2 = 2a+a− − a2
T

Show that the vector transforms under boosts along the z axis like

a′+ = a+eψ, a′− = a−e−ψ, a′T = aT

with ψ = 1
2 ln[(1− β)/(1 + β)]. How does a transform under two

successive boosts β1 and β2?

• One often chooses the z axis such that, perhaps after a boost, a

particle or a group of particles have large momenta along that axis.

For these particles p+ is large and (since they are on the mass shell)

p− =
m2 + p2

T

2p+
is small.

47Note that a+ and a− are not 4-vector components.
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Space-time picture of the singularities

p1

p2

q

k1

k2

k3

k = k1 + k3

k

p1 p2

k2

x+ x�

• To see what happens when k2 = (k1 + k3)2 becomes small (goes

on-shell), we choose the z axis along k with k+ large and kT = 0.

Thus k2 = 2k+k− → 0 when k− becomes small.

• In QFT, the Green functions (propagators) in momentum space

are related to those in coordinate space by a Fourier transform:

SF (x) =

∫
d4k exp(−ikx)SF (k)

=

∫
d4x exp[−i(k+x− + k−x+ − kT · xT)]SF (k)

Because k+ is large and k− is small, the contributing values of x

have small x− and large x+. This means that the quark propagates

a long distance in the x+ direction before decaying in a quark-gluon

pair, as is indicated in the space-time diagram above.

• It follows that the singularities that can lead to divergent perturba-

tive cross-sections arise from interactions that happen a long time

after the creation of a quark-antiquark pair.
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Infrared safe observables

• We have seen that soft/collinear singularities arise from interac-

tions that happen a long time after the creation of the quark-

antiquark pair and that perturbation theory cannot handle this

long-time physics. But a detector is a long distance away from

the interaction so we must somehow take long-time physics into

account in our theory.

• Fortunately there are measurements that are insensitive to long-

time physics. These are called infrared safe observables. We

have seen that soft/collinear singularities appear when 2→3 kine-

matics reduces to 2→2 kinematics at the boundaries of phase

space. Therefore a meaningful infrared safe observable must be

insensitive to the indistinguishable 2→2, 2→3 origin of the long-

distance interactions.

• The most well known example of an infrared safe observable is the

total cross section σ(e+e− → hadrons), see page 2–30. This cross

section is infrared safe because it is a totally inclusive quantity

(we sum over all particles in the final state and don’t care how

many there are) and the transition from partons to the hadronic

final state in a given event always occurs with unit probability,

whatever the details of the long-time hadronisation process.

• As an example of another infrared safe variable used in the analysis

of e+e− collisions, we mention the thrust event shape variable.
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Thrust

• Thrust is an event shape variable, used to discriminate between

pencil-like and spherical events.

• Thrust is defined by

T = max
û

∑
i |pi · û|∑
i |pi|

Here the sum runs over all particles i in the event, and the unit

vector û is varied to maximise the sum of the projections of the

3-momenta pi on û.

• So why is thrust infrared safe?

1. Zero-momentum particles do not contribute to T .

2. A collinear splitting does not change the trust:

|(1− λ)pi · û| + |λpi · û| = |pi · û|

|(1− λ)pi| + |λpi| = |pi|
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IR safe observables used in e+e− physics

Here is a list of more infrared safe observables.
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QCD as a predictive theory

• We have seen that perturbative QCD suffers from collinear and

soft singularities but that so-called infrared-safe observables are

insensitive to the number of partons in the final state which means

that they are insensitive to the collinear merging of two daughter

partons or the disappearance of one daughter parton in the soft

limit. It can be shown that for infrared-safe observables there is

a precise cancellation of the soft and collinear divergences in the

contributing Feynman diagrams at all orders.48

• However, it is clear that if QCD predictions would be restricted to

infrared-safe observables only, it would not be a very useful theory.

Fortunately, there is a large class of cross-sections that factorises

into a perturbatively calculable infrared-safe short-distance (hard)

part, and a long-distance (soft) part which is infrared-singular but

has the virtue of being universal, that is, process-independent.

• An example is the deep-inelastic scattering (DIS) cross-section

σ(` p→ `′X)

where a lepton ` (electron, muon or neutrino) scatters on a proton

which breaks-up into the (uspecified) system X . The DIS cross-

section can be factorised in a hard lepton-quark cross-section and

a so-called parton distribution which is process independent,

but non-perturbative and infrared-singular. However, it can be

replaced by a measurement, like we did for the running coupling

where ultraviolet divergences were replaced by a measured value

of the coupling constant at some renormalisation scale (Section 6).

• In this section we will study DIS in more detail and see how it

leads to the famous quark-parton model of the proton.

48So-called Bloch-Nordsieck and Kinoshita-Lee-Lauenberg theorems.
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Inward bound

• One way to probe the internal structure of matter is to bombard

it with high energy particles, and then see what happens. For in-

stance, in the Rutherford experiment (1911), alpha particles (he-

lium nuclei) were deflected on a thin gold foil. Rutherford found

that the deflections followed his famous inverse sin4(θ/2) law (see

page 0–13), and concluded that the alpha particles were scattered

from electrically charged point-like nuclei inside the gold atoms.

• Experiments using probes of higher energy later revealed that the

point-like scattering distributions were damped by form factors

which are essentially the Fourier transform of a charge distribu-

tion. This clearly showed that nuclei are not point-like and indeed,

after the discovery of the neutron by Chadwick (1932), it became

clear that nuclei are bound states of protons and neutrons.

• Also the protons and neutrons were found not to be point-like and a

real breakthrough came with a series of deep inelastic scattering

experiments in the 1960’s at SLAC, where electron beams were

scattered on proton targets at energies of about 20 GeV, large

enough to reveal the proton’s internal structure.

• The SLAC experiments showed that the electrons were scattering

off quasi-free point-like constituents inside the proton which were

soon identified with quarks. This was the first time that quarks

were shown to be dynamical entities, instead of bookkeeping de-

vices to classify the hadrons (Gell-Mann’s eightfold way). The

Nobel prize was awarded in 1990 for this spectacular discovery,

and the lectures of Friedman, Kendall and Taylor are a fascinating

record of the struggle to understand what these data did tell us.
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Deep inelastic scattering (DIS)

• The pioneering SLAC experiments were followed by a series of

other fixed-target experiments49 with larger energies at CERN

(Geneva) and at Fermilab (Chicago), using electrons, muons, neu-

trino’s and anti-neutrinos as probes.

• The largest centre-of-mass energies were reached at the HERA

collider in Hamburg (1992–2007) with counter-rotating beams of

27 GeV electrons and 800 GeV protons.

Exercise 8.1: [1.0] Calculate the centre-of-mass energies at SLAC

(20 GeV electrons on stationary protons) and at HERA (27 GeV

electrons on 800 GeV protons). You can neglect the electron mass

and, at HERA, also the proton mass.

• Deep inelastic scattering (DIS) data are very important since they

provide detailed information on the momentum distributions of

the partons (quarks and gluons) inside the proton.

• Parton distributions are crucial ingredients in theoretical predic-

tions of scattering cross-sections at hadron colliders like the Teva-

tron (Fermilab, proton-antiproton at 2 TeV) or the LHC (CERN,

proton-proton at 8–14 TeV). The reason for this is simple: the col-

liding (anti)protons have a fixed centre-of-mass energy but not the

colliding partons, since their momenta are distributed inside the

(anti)proton. Clearly one has to fold-in this momentum spread to

compare theoretical predictions with the data.

• Apart from providing parton distributions, DIS is also an impor-

tant testing ground for perturbative QCD, as we will see.

49In a fixed-target experiment, beam particles interact with a stationary target in the laboratory, and the
debris is recorded in a downstream detector. In a collider experiment, on the other hand, counter-rotating
beams collide in the centre of a detector, which is built around the interaction region.
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DIS kinematics I

k

k�

q = k − k�

p
X

• The graph above shows the kinematics of deep inelastic scattering:

k = incoming lepton k′ = outgoing lepton

p = incoming proton X = hadronic final state

q = k − k′ momentum transfer

• The interaction between the exchanged photon (or W in case of

νp → `X neutrino scattering) and the proton depends on p and

q, from which we can build the two Lorentz scalars:

Q2 = −q2 and x =
Q2

2p · q
• Other scalars that are often used to characterise the event are

M 2 = p2 Proton mass squared

s = (p + k)2 Centre of mass energy squared

W 2 = (p + q)2 Invariant mass of X squared

y = (p · q)/(p · k) Fractional energy transfer in the lab

ν = (p · q)/M Energy transfer in the lab system
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DIS kinematics II

• In case of elastic scattering, the proton leaves the collision

without breaking-up or being in an excited state. Thus we have,

for elastic scattering, ep → e′p′ with50

p2 = p′ 2 = (p + q)2 = W 2 = M 2.

• Here are a few useful relations, which we will prove below

1. q2 < 0 (hence the minus sign in the definition of Q2)

2. 0 ≤ x ≤ 1

3. 0 ≤ y < 1

4. W 2 = M 2 + Q2(1− x)/x ≥M 2

• Proof

Since all kinematic variables are Lorentz invariants, it is often useful to calculate them in
frames which are convenient.

1. In the rest frame of the incoming electron with the outgoing electron along the z
axis we have k = (m, 0, 0, 0) and k′ = (E ′, 0, 0, k′) so that

q2 = (m−E ′, 0, 0,−k′)2 = m2−2mE ′+E ′2−k′2 = m2−2mE ′+m2 = 2m(m−E ′) < 0.

2. Obviously x = 0 when Q2 = 0. For the other limit set W 2 = M2. This gives

W 2 = (p+q)2 = p2+2p·q+q2 = M2+2p·q−Q2 = M2 → Q2 = 2p·q → x = 1.

3. For the limits on y it is easiest to work in the lab frame where the proton is at
rest and the electron comes in at the z direction. We then have k = (E, 0, 0, k),
p = (M, 0, 0, 0) and q = (E−E ′, qx, qy, qz) so that p ·k = ME and p ·q = M(E−E ′).
Therefore

y =
p · q
p · k =

E − E ′
E

with me ≤ E ′ ≤ E.

From this it immediately follows that 0 ≤ y < 1.

4. With x = Q2/(2p · q) we find

W 2 = (p+ q)2 = p2 + 2p · q + q2 = M2 +Q2/x−Q2 = M2 +Q2(1− x)/x.

50From relation (4) below it follows that the elastic scattering limit is also given by x = 1.
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Exercise 8.2:

(a) [0.5] Show thatQ2 ≈ xys for large s�M 2 (so that we can neglect

the proton mass). What is, in this approximation, the largest Q2

that can be reached at the SLAC experiments (
√
s = 6.4 GeV)

and at HERA (
√
s = 294 GeV).51

(b) [1.5] All DIS kinematic variables can be determined from a mea-

surement of the scattered electron energy E ′ and angle θ with

respect to the incident beam. In particular, show that for fixed-

target experiments (proton at rest and the electron coming in from

the z direction) we have the relations

Q2 = 4EE ′ sin2(θ/2)

ν = E − E ′

x = Q2/(2Mν)

y = ν/E

W 2 = M 2 −Q2 + 2Mν

s = M(M + 2E) ≈ 2ME

Hint: For the expression of Q2 use the half-angle formula

cos θ = 1− 2 sin2(θ/2).

• It is convenient to plot the allowed kinematical region in the y-Q2

plane (→ Fig.)

51We will see later that the cross-section drops like Q−4 so that DIS events at very large Q2 are rare. It is
thus difficult to collect data in this kinematic region.
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DIS kinematic plane

y

Q2

x = con
st θ =

const

W
2 =

co
ns

tx
=

1,
W

2 =
M

2

10

Q2 = 2MEy + M2 −W 2

= 2MExy

= 4(1− y)E2 sin2 θ/2
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DIS kinematics in real life
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The quark-parton model

P

xP

Q2

E

E�



W 2

θ

• To explain the DIS measurements at SLAC, Feynman, Bjorken,

and others (1969) proposed the so-called parton model which

states that

Assumption I: A fast moving hadron appears as a jet of par-

tons (quarks and gluons) moving in more or less the same

direction as the parent hadron and sharing its 3-momentum.

Assumption II: The reaction cross-section is the incoherent sum

of partonic cross-sections, as calculated with free partons.52

• We will now use the quark-parton model and results from the PP-I

course to derive the DIS cross-section. The kinematics is best

understood in the so-called Breit-, or infinite-momentum frame.

52By ‘incoherent sum’ we mean that cross-sections are added, instead of amplitudes.
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The Breit frame I

p = (E, 0, 0, �p)

p� = (E, 0, 0, p�)

q = (0, 0, 0,�Q)

k

k�

p̂ = (E, 0, 0, ⇠p)

p̂0 = (E, 0, 0, p0)

• Because the virtual photon is space-like (q2 < 0) it follows that

we can boost the photon along its direction of propagation (which

points to the proton) such that q0 vanishes. This frame is called the

Breit frame or infinite momentum frame since the proton

then moves with very large momentum towards the virtual photon.

• In this frame the incoming quark moves with a 3-momentum ξpz
along the z axis, where ξ is the fraction of the proton 3-momentum

pz. The virtual photon moves with a 3-momentum Q along −z.

• We take the incoming quark to be point-like, so that the scattering

is necessarily elastic:53

p̂2 = (p̂ + q)2 → p̂2 = p̂2 + 2p̂ · q −Q2 → Q2 = 2p̂ · q

• If we denote the proton 4-momentum by p then, in the Breit frame,

p̂ · q = (E, 0, 0, ξpz) · (0, 0, 0,−Q) = ξpzQ

ξp · q = ξ(Ep, 0, 0, pz) · (0, 0, 0,−Q) = ξpzQ

Thus p̂ ·q = ξ p ·q but remember that this is only true in the Breit

frame where the virtual photon does not transfer energy.

53We indicate the unobservable partonic kinematic variables by a hat, like p̂ for a partonic 4-momentum.
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The Breit frame II

p = (E, 0, 0, �p)

p� = (E, 0, 0, p�)

q = (0, 0, 0,�Q)

k

k�

p̂ = (E, 0, 0, ⇠p)

p̂0 = (E, 0, 0, p0)

• The elastic scattering condition now becomes

Q2 = 2 p̂ · q = 2ξ p · q → ξ =
Q2

2 p · q = x

• So we can identify the Bjorken-x variable as the 3-momentum frac-

tion of the struck quark in the Breit frame.

• Let us at this point introduce the notion of a quark distribution

fi(x)dx, which gives the number of quarks of flavour i which carry

a 3-momentum fraction (in the Breit frame) between x and x+dx.

• Remark: note that in the Breit frame the proton moves very fast

towards the photon, and is therefore Lorentz contracted to a kind

of pancake. The interaction then takes place on the very short time

scale when the photon passes that pancake. On the other hand, in

the rest frame of the proton, the inter-quark interactions take place

on time scales of the order of rp/c but because of time dilatation

these interactions are like ‘frozen’ the Breit frame. During the short

interaction time, the struck quark thus does not interact with the

spectator quarks and can be regarded as a free parton.
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Intermezzo: Mandelstam variables

&%
'$

�
�
��
��

@
@
@R
@@

@
@R@
@
@

�
���
�
�

p1 = k

p2 = p

p3 = k′

p4 = X

s = (p1 + p2)2 ≈ 2p1 · p2

t = (p1 − p3)2 = (p4 − p2)2 ≈ −2 p1 · p3 ≈ −2 p2 · p4

u = (p1 − p4)2 = (p3 − p2)2 ≈ −2 p1 · p4 ≈ −2 p3 · p2

• Exercise 8.3: [0.5] Show that s + t + u = m2
1 + m2

2 + m2
3 + m2

4

• Exercise 8.4: [0.5] Show that, if we neglect the electron and

proton mass,

Q2 = −t
x = −t/(s + u)

y = (s + u)/s

W 2 = s + t + u

Note that we immediately get Q2 = xys (if we ignore the masses).
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Parton density

• On page 8–13 we have introduced the parton density func-

tion fi(x) dx which gives the number of quarks of flavour i =

d, u, s, . . . , d̄, ū, s̄, . . . between momentum fraction x and x + dx.

• Huh? But does not the proton consist of three quarks? No, not

in a dynamical picture: inside the proton there are also gluons

from the QCD splitting q → qg and quark-antiquark pairs from

the splitting g → qq̄ (→fig). What is true is that there is a net

excess of three quarks that carry the quantum numbers of the

proton.

• Now we use the second assumption of the parton model and write

the cross section as an incoherent sum of partonic cross sections

dσ =
∑

i

dσ̂(ŝ, t̂, û) fi(x)dx

Here we have introduced the parton kinematic variables

ŝ ≈ 2xp · k = xs, t̂ = (k − k′)2 = t, û ≈ −2xp · k′ = xu

• For the partonic cross section we just take σ(eµ → eµ) as calcu-

lated in PP-I (lecture 8), with the muon charge replaced by the

quark charge.

Exercise 8.5: [0.5] Why do we take the cross section for eµ→ eµ

as our reference, and not that of ee→ ee ?
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Dynamical picture of the proton

u

u

d

q

q̄

g

u

d

q

q̄

u
g

g

q

q̄

Schematic picture of the QCD proton structure. The uud valence

quarks that carry the quantum numbers of the proton enter the dia-

gram on the left. This corresponds to a low-resolution 3-quark picture

of the proton that only accounts for its quantum numbers. At the right

of the diagram we see a high-resolution picture (at large Q2) of the pro-

ton where the valence quarks are dressed with gluons and a sea of qq̄

pairs. Note that the valence quarks can zig-zag through the diagram

but will never disappear so that the proton quantum numbers are the

same in both the low- and high-resolution pictures.
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Cross section for e-µ scattering

ieγµ

ieγν

−igµν

q2

e− : ū(k3)

µ− : ū(k4)µ− : u(k2)

e− : u(k1)

• In PP-I Section 8.2 the e-µ cross section is calculated as
(

dσ

dΩ

)

com

=
α2

2s

(
s2 + u2

t2

)

• COM frame with momentum k1 along x and scattering angle θ

k1 = (k, k, 0, 0) k3 = (k, k cos θ, k sin θ, 0)

k2 = (k,−k, 0, 0) k4 = (k,−k cos θ,−k sin θ, 0)

s = 4k2, t = −2k2(1− cos θ), u = −2k2(1 + cos θ)

• Cross section

dσ

dΩ
=

dσ

sin θdθdφ
=

dσ

sin θdφdt

∣∣∣∣
dt

dθ

∣∣∣∣ = 2k2 dσ

dφdt
=
s

2

dσ

dφdt

• Integrating over φ then gives

dσ

dt
=

4π

s

dσ

dΩ
=

2πα2

s2

(
s2 + u2

t2

)
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DIS cross section

• Using the partonic variables, and multiplying the charge at the

muon vertex by the fractional quark charge ei, we get the partonic

cross section
dσ̂i

dt̂
=

2πα2e2
i

ŝ2

(
ŝ2 + û2

t̂2

)

It is a simple matter to re-write this in terms of the DIS kinematic

variables (see page 8–14).

• Exercise 8.6: [1.0] Show that

dσ̂i

dt̂
→ dσ̂i

dQ2
=

2πα2e2
i

Q4
[1 + (1− y)2]

• Now we can put this result in our master formula on page 8–15

dσ

dQ2
=
∑

i

2πα2e2
i

Q4
[1 + (1− y)2] fi(x)dx

or
d2σ

dxdQ2
=

2πα2

Q4
[1 + (1− y)2]

∑

i

e2
ifi(x)

• The F2 structure function is defined as the charge weighted

sum of the parton momentum densities xfi(x)

F2(x) =
∑

i

e2
ixfi(x)

so that the DIS cross section can be written as54

d2σ

dxdQ2
=

4πα2

Q4

[1 + (1− y)2]

2x
F2(x)

54One can think of the y dependence as being an angular dependence through the relation 1−y = 1
2 (1+cos θ∗).
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The Gallan-Gross relation

• We have given a rather simple derivation of the parton model cross

section and established the relation between parton density func-

tions and the F2 structure function.

• However, a more formal derivation (see H&M Section 8), which

does not use the parton model, leads to the result

d2σ

dxdQ2
=

4πα2

xQ4

[
(1− y)F2(x,Q2) + xy2F1(x,Q2)

]

Here another structure function shows up, which turns out to be

proportional to the absorption cross-section of transversely po-

larised photons: 2xF1 ∝ σT. Because the exchanged photon is

virtual, is also has a longitudinally polarised component. The F2

structure function is proportional to the sum of the transverse and

longitudinal absorption cross sections: F2 ∝ σT + σL.

• In the Breit frame, where the quarks are highly relativistic without

transverse momenta, the quark spins will be aligned parallel or

antiparallel to the direction of motion (z axis) so that it can absorb

a head-on photon with helicity ±1, just by flipping the spin.

• However the quarks cannot absorb a longitudinally polarised pho-

ton because for this the quark spin must have a non-vanishing

transverse component. Thus, in the parton model, σL = 0 and

F2 = 2xF1. This is called the Gallan-Gross relation. Setting

F2 = 2xF1 above, we recover the formula on page 8–18.55

• In the QCD improved parton model, gluon radiation imparts small

transverse momenta to the quarks so that now σL 6= 0 and another

(small) structure function shows up, FL ≡ F2−2xF1, with its own

characteristic y-dependence.

55Historically, experimental verification of the Gallan-Gross relation was a proof that quarks carry spin 1
2 .
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Bjorken scaling

• In principle, the structure functions depend on two variables, x

and Q2 say, but in the parton model derivation on page 8–18 we

have defined

F2(x) =
∑

i

e2
ixfi(x)

which depends on x only. ThisQ2 independence is called Bjorken

scaling and is formally stated as follows (in terms of lab variables):

If
Q2 →∞
ν →∞

}
with x =

Q2

2Mν
finite, then F2(x,Q2)→ F2(x)

• This scaling behaviour is easy to understand by noticing that the

wavelength of the virtual photon λ ∼ 1/Q. But the resolving

power is irrelevant when we scatter on point-like objects, hence

the independence on Q2. In short, scaling→ point-like scattering.

( a ) ( b )

e e

e '

e '

P P

• Indeed, measurements of F2 at different Q2 values seem to fall on a

universal curve (→ fig) but close inspection reveals a characteristic

scale-breaking pattern. This Q2 dependence is caused by the QCD

processes of gluon radiation and qq̄ formation, as we will see later.
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Neutrino scattering

d, s, ū, c̄
- tW+

-

u, c, d̄, s̄ u, c, d̄, s̄
- tW−

-

d, s, ū, c̄

ν - t - e− ν̄ - t - e+

• Much information on the proton structure comes from (anti-)neutrino

deep inelastic scattering. We will not derive here the expressions

for the cross-sections (see H&M) but simply list the result for

νp→ e−X scattering and for ν̄p→ e+X scattering56

d2σνp

dxdQ2
= σ0

{[
1 + (1− y)2

]
F νp

2 +
[
1− (1− y)2

]
xF νp

3

}

d2σν̄p

dxdQ2
= σ0

{[
1 + (1− y)2

]
F ν̄p

2 −
[
1− (1− y)2

]
xF ν̄p

3

}

• Here we encounter a new structure function, xF3, which is sensitive

to the difference of quark and anti-quark distributions.

• In the parton model, the neutrino structure functions are

F νp
2 = 2x(d + s + ū + c̄)

xF νp
3 = 2x(d + s− ū− c̄)

F ν̄p
2 = 2x(u + c + d̄ + s̄)

xF ν̄p
3 = 2x(u + c− d̄− s̄)

56

The factor in front is σ0 =
G2

F

4πx

(
M2

W

Q2 +M2
W

)2
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Valence and momentum sum rules

• We have introduced the quark number distributions fi(x) which we

will write as u(x), ū(x), d(x), d̄(x), etc. It is convenient to define

the valence and sea distributions by

uv = u− ū, dv = d− d̄, sv = s− s̄ = 0, · · ·
us = 2 ū, ds = 2 d̄, ss = 2 s̄, · · ·

so that u + ū = uv + us, etc. See also the diagram on page 8–16.

• Because the quantum numbers of the proton must be carried by

the surplus of quarks over antiquarks, we get the counting rules
∫ 1

0

uv(x) dx = 2 and

∫ 1

0

dv(x) dx = 1

• The momentum distributions xfi(x)dx give the probability that

a quark carries a momentum fraction between x and x+dx.57 Thus

if all quarks carry the momentum of the proton we should have
∑

i

∫ 1

0

xfi(x)dx = 1

• But integration of the quark distributions obtained from deep in-

elastic charged lepton and neutrino scattering gives
∑

i

∫ 1

0

xfi(x)dx ≈ 0.5

• Where is the missing momentum? The answer is that it is carried

by gluons. Introducing a gluon momentum distribution xg(x), the

correct momentum sum rule is
∑

i

∫ 1

0

xfi(x)dx +

∫ 1

0

xg(x)dx = 1

57If f(x)dx is the number of quarks carrying a fraction x of the proton momentum P , then the total momentum
carried by these partons is p = xPf(x)dx. The probability to carry a fraction x is thus p/P = xf(x)dx.
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Example of a pdf set

Remark: The widely used abbreviation ‘pdf’ stands for ‘parton density

function’. Usually, but not always, it is clear from the context or

notation (xf or f ) if a momentum or a number density is meant.
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Exercise 8.7: Universality of pdfs

• The isospin symmetry assumption says that the u (anti)quark

distribution in the proton is equal to the d (anti)quark distribution

in the neutron, and vice versa. Thus we have

F ep
2 = 1

9x(d + d̄) + 4
9x(u + ū) + 1

9x(s + s̄) + · · ·
F en

2 = 1
9x(u + ū) + 4

9x(d + d̄) + 1
9x(s + s̄) + · · ·

The same applies to (anti)neutrino scattering: F νn
2 = F νp

2 (u↔ d).

Note that the parton distributions, by convention, always refer to

those of the proton.

(a) [0.5] Use isospin symmetry to write down the parton model

expressions for F νn
2 and F ν̄n

2 (F ep
2 and F en

2 are already given

above). Define the nucleon structure function F eN
2 by aver-

aging the proton and neutron F2. Likewise define F νN
2 by

averaging over proton and neutron and also over ν and ν̄.

(b) [0.5] Neglect charm and assume 3 flavours (d, u, s). Show that

F eN
2

F νN
2

=
5

18

[
1− 3

5

(s + s̄)∑
(q + q̄)

]
≈ 5

18

Because the (anti)strangeness content of the nucleon turns out

to be small, it follows that the strangeness correction term

above is also small; correction for charm would be even smaller.

• The plot on the next page shows an early experimental verifica-

tion of F νN
2 ≈ 18

5 F
eN
2 . This not only tests the (fractional) quark

charges, but also that electron and neutrino DIS probe the same

parton distribution: parton distributions are a process independent

property of the nucleon (universality of pdfs).
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Early verification that F νN
2 ≈ 18

5 F
eN
2 . Figure taken from Jerome

Friedman Nobel lecture, Rev. Mod. Phys. 63(1991)615.
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The QCD factorisation theorem

• In Section 7 we have seen that QCD suffers from infrared singular-

ities when two daughter partons cannot be resolved because they

become collinear, or because one of them becomes soft. We have

also seen that these singularities are associated with ‘long-distance’

physics which takes place a long time after the initial hard scat-

tering. So-called infrared-safe observables are still calculable in

perturbative QCD, but since this is quite restrictive we have to

look for ways to extend the predictive power of the theory. This

way-out is provided by the QCD factorisation theorem.

• For hadron-hadron scattering the factorisation theorem states that

the singular long-distance pieces can be removed from the partonic

cross section and factored into the parton distributions of the in-

coming hadrons, and that this can be done consistently at all orders

in the perturbative expansion.

• The partonic cross section is then calculable in perturbation theory,

and does not depend on the type of incoming hadron.

• The parton distributions, on the other hand, are a property of the

incoming hadrons but are universal in the sense that they do not

depend on the hard scattering process.58 Parton distributions are

nonperturbative and have to be obtained from experiment.

• Factorisation is a fundamental property of QCD. It turns pertur-

bative QCD into a reliable calculation tool, unlike the naive parton

model that does not take the parton dynamics into account.

58See also Exercise 8.7.
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Hadron-hadron cross sections I

• Schematically, a hadron-hadron cross section can be written as

σh-h =
∑

i,j

∫
dx1dx2 fi(x1, µ

2)fj(x2, µ
2) σ̂ij(x1, x2, Q

2/µ2, · · · )

and can be depicted by (left diagram):

p2

x2p2

-

&%
'$
fj(x2)

�
�
�

H
HH

HH
H

�
��

&%
'$
σ̂ij

@
@R

�
����
�

@
@
@

fi(x1)&%
'$

-

Hadron-hadron

p1

x1p1

p

xp

-

&%
'$
fj(x)

�
�
�

H
HH

HH
H

�
��

&%
'$
σ̂γ∗j

::::

��
��

�
�

��
��*t-

Deep inelastic

k

k′

γ∗

• Here the (arbitrary) factorisation scale µ can be thought of

as the scale which separates the long and short-distance physics.

Roughly speaking, a parton with a transverse momentum less

than µ is then considered to be part of the hadron structure and

is absorbed in the parton distribution. Partons with larger trans-

verse momenta participate in the hard scattering process with a

short-distance partonic cross-section σ̂.
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Hadron-hadron cross sections II

• What is taken for the hard scale Q2 depends on the scattering

process we are interested in. In jet production, for instance, one

usually takes the transverse momentum of the jet as the hard scale,

in deep inelastic scattering one takes the square of the four mo-

mentum transfer from the electron to the proton, and in e+e−

scattering one takes the centre-of-mass energy, and so on. Often

the simplifying assumption is made that the factorisation scale is

equal to the hard scale: µ2 = Q2.

• The factorisation theorem also applies to deep inelastic scattering,

with one of the parton distributions replaced by an ee′γ∗ vertex as

is shown in the right-hand side diagram on page 9–4:

σDIS =
∑

j

∫
dx fj(x, µ

2) σ̂γ∗j(x,Q
2/µ2, · · · )

• We will use DIS to show how the infrared singularities are ab-

sorbed in the parton distributions. The QCD evolution equations

of the parton densities are then derived from the renormalisa-

tion group equation.
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Recap of the F2 structure function

• We have seen that the F2 structure function measured in deep

inelastic electron-proton scattering is, to first order, independent

of Q2, the negative square of the momentum transfer from the

electron to the proton. This implies that DIS does not depend

on the resolution 1/Q with which the proton is probed. This is

explained in the naive parton model by assuming that the electron

scatters incoherently off pointlike quarks in the proton. The F2

structure function can then be written as the charge weighted sum

of quark momentum distributions

F ep
2 (x) =

∑

i

e2
ixfi(x).

Here ei is the charge of the quark, and fi(x)dx is the number of

quarks that carry a fraction between x and x + dx of the proton

momentum. The probability that the parton carries a momentum

fraction x is then given by xfi(x). The index i denotes the quark

flavour d, u, s, . . . , d̄, ū, s̄, . . .

• Although gluons show up in the naive parton model as missing

momentum, they are not treated as dynamical entities. We will

now incorporate the effect of gluon radiation by quarks, which

leads to the so-called QCD improved parton model.
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Scaling violation I

-

&%
'$

-
-
- tQPPPPPPR

�
�
�
�

�
���

:::: t -

P

proton

yP zyP ≡ xP

Pqq(z)
(1− z)yP

γ∗

Q2

• Consider a quark that carries a fraction y of the proton momentum

and radiates a gluon with a fraction 1− z of its momentum. After

radiating the gluon, the quark with momentum fraction zy scatters

off the virtual photon. The momentum fraction seen by the photon

is thus x = zy which implies that z = x/y.

• Taking gluon radiation into account, the F2 structure function is

found to be (see H&M Section 10.1–5 for a lengthy derivation):

F2(x,Q2)

x
=
∑

i

e2
i

∫ 1

x

dy

y
fi(y)

[
δ

(
1− x

y

)
+
αs

2π
Pqq

(
x

y

)
ln
Q2

m2

]

Here m2 is a lower transverse momentum cut-off to regularise the

divergence when the gluon becomes collinear with the quark.

• In the above, the splitting function Pqq is given by

Pqq(z) =
4

3

(
1 + z2

1− z

)
.

It represents the probability that a parent quark emits a gluon with

the daughter quark retaining a fraction z of the parent momentum.

Note that an infrared divergence shows up when (1 − z) → 0

where the gluon becomes soft so that daughter and parent cannot

be resolved anymore.
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Scaling violation II

F2(x,Q2)

x
= e2

∫ 1

x

dy

y
f (y)

[
δ

(
1− x

y

)
+
αs

2π
Pqq

(
x

y

)
ln
Q2

m2

]

• Exercise 9.1: [1.0] Carry out the integral on the first term and

check that it corresponds to the parton model expression for F2,

as is given on page 8–18 (note that for clarity we have suppressed

the flavour index i and the summation over flavours).

• The expression above depends on the cutoff parameter m and di-

verges when m→ 0. To simplify the notation we set

Iqq(x) =
αs

2π

∫ 1

x

dy

y
f (y)Pqq

(
x

y

)

and write

F2(x,Q2)

x
= e2


 f (x) + Iqq(x) ln

µ2

m2︸ ︷︷ ︸
f(x,µ2)

+Iqq(x) ln
Q2

µ2




︸ ︷︷ ︸
f(x,Q2)

• Here we have defined the renormalised quark distribution f (x, µ2)

at the so-called factorisation scale µ where we separate the

singular factor, which depends on m but not on Q2, from the

calculable factor which depends on Q2 but not on m.

• If we substitute the renormalised distribution for the bare distri-

bution in Iqq we obtain, neglecting terms beyond O(αs),

f (x,Q2) = f (x, µ2) +
αs

2π

∫ 1

x

dy

y
f (y, µ2)Pqq

(
x

y

)
ln
Q2

µ2
+ O(α2

s )
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DGLAP evolution

• The expression for F2 now becomes, up to O(α2
s ),

F2(x,Q2)

x
= e2

[
f (x, µ2) +

αs

2π

∫ 1

x

dy

y
f (y, µ2)Pqq

(
x

y

)
ln
Q2

µ2

]

• Clearly F2 should not depend on the choice of factorisation scale

which leads to the following renormalisation group equation:

1

e2x

∂F2(x,Q2)

∂ lnµ2
=
∂f (x, µ2)

∂ lnµ2
+

αs

2π

∫ 1

x

dy

y

[
∂f (y, µ2)

∂ lnµ2
ln

(
Q2

µ2

)
− f (y, µ2)

]
Pqq

(
x

y

)
= 0

• From this equation it is seen that (∂f/∂ lnµ2) is of order αs so that

the first term in the integral above is of order α2
s . Neglecting this

term we obtain an evolution equation for the quark distribution59

∂f (x, µ2)

∂ lnµ2
=
αs

2π

∫ 1

x

dy

y
f (y, µ2)Pqq

(
x

y

)
+ O(α2

s )

This is, together with the evolution equation for αs (page 6–16), the

most famous equation in QCD. It describes the evolution of a quark

distribution due to gluon radiation and is called the DGLAP

evolution equation after several authors who claim eternal

fame: Dokshitzer, Gribov, Lipatov, Altarelli and Parisi.

• This equation can be solved (numerically) once f (x, µ2
0) is given as

an input at some starting scale µ2
0. This is similar to the running

coupling constant αs where also an input has to be given at some

scale (usually taken to be m2
Z, as we have seen).

59In our derivation we have assumed that αs is a constant. Taking the running of αs into account is somewhat
subtle, but leads to the same evolution equation; see the comment in H&M exercise 10.7 on page 218.
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Quark and gluon evolution

∂f (x, µ2)

∂ lnµ2
=
αs

2π

∫ 1

x

dy

y
f (y, µ2)Pqq

(
x

y

)
+ O(α2

s )

• We have seen the DGLAP evolution of quark distributions with

splitting function Pqq but when we introduce the gluon distribu-

tion, more splitting graphs have to be included.

z

Pqq Pqg Pgq Pgg

(a) (b) (c) (d)

z z z

(a) A daughter quark from the splitting of a parent quark into a

quark and a gluon. When the gluon becomes soft (1− z)→ 0,

the distinction between daughter and parent vanishes, and a

singularity develops.

(b) A daughter quark from a parent gluon which splits into a

quark-antiquark pair. Here no singularity develops since daugh-

ter and parent can always be distinguished.

(c) A daughter gluon from a quark parent. Also here no singularity.

(d) A daughter gluon from a parent gluon. Like in q → qg a

singularity develops in the soft limit (1− z)→ 0.
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The leading order splitting functions

• Here are the leading order splitting functions

Pqq
- t -QPPPPPPR

Pqg
QPPPPPPR t -

@
@@@I

Pgq
- t

@
@

@@R
QPPPPPPR

Pgg
QPPPPPPR tQPPPPPPRQPPPPPPR

P (0)
qq (z) =

4

3

[
1 + z2

(1− z)+
+

3

2
δ(1− z)

]

P (0)
qg (z) =

1

2

[
z2 + (1− z)2

]

P (0)
gq (z) =

4

3

[
1 + (1− z)2

z

]

P (0)
gg (z) = 6

[
z

(1− z)+
+

1− z
z

+ z(1− z) +

(
11

12
− nf

18

)
δ(1− z)

]

• The singularities showing up in Pqq and Pgg at (1−z)→ 0 are reg-

ulated by a so-called ‘plus’ prescription which guarantees that the

integral
∫ 1

x exists of the splitting function multiplied by a parton

density function (provided that the pdf → 0 when x→ 1).

• For reference, we give here the definition of the plus prescription

[f (x)]+ = f (x)− δ(1− x)

∫ 1

0

f (z) dz

or, equivalently,
∫ 1

x

f (z)[g(z)]+ dz =

∫ 1

x

[f (z)− f (1)] g(z) dz − f (1)

∫ x

0

g(z) dz.
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The coupled DGLAP equations

• The qq, qg, gq and gg transitions lead to a set of 2nf + 1 coupled

evolution equations that can be written as60

∂fi(x, µ
2)

∂ lnµ2
=

nf∑

j=−nf

αs

2π

∫ 1

x

dy

y
Pij

(
x

y

)
fj(y, µ

2),

where the splitting function Pij(z) represents the probability that

a daughter parton i with momentum fraction z splits from a parent

parton j.61 Here the indexing is as follows

i, j =




−1 , . . . ,−nf antiquarks

0 gluon

1 , . . . , nf quarks

• To simplify the expressions for the evolution equations we write

the Mellin convolution in short-hand notation as

P ⊗ f ≡
∫ 1

x

dy

y
P

(
x

y

)
f (y, µ2)

With this notation the set of coupled equations reads

∂fi
∂ lnµ2

=

nf∑

j=−nf

αs

2π
Pij ⊗ fj

• In leading order QCD we can write for the splitting functions:62

Pq̄iq̄j = Pqiqj ≡ Pqq δij, Pq̄ig = Pqig ≡ Pqg, Pgq̄i = Pgqi ≡ Pgq

60Here nf is the number of ‘active’ quark flavours. Usually a quark species is considered to be active (i.e. it
participates in the QCD dynamics) when its mass m < µ.

61The conventional index notation for splitting functions is thus Pdaughter-parent.
62The splitting functions are flavour independent since the strong interaction is flavour independent. Fur-

thermore, leading order splitting cannot change the flavour of a quark, as is expressed by the delta function.
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Singlet/gluon and non-singlet evolution

• Exploiting the symmetries in the splitting functions (previous page),

the set of 2nf +1 coupled equations can to a large extent be decou-

pled by defining the singlet distribution qs, which is the sum

over all flavours of the quark and antiquark distributions,

qs ≡
nf∑

i=1

(qi + q̄i)

• It is easy to show that the evolution of this distribution is coupled

to that of the gluon

∂qs

∂ lnµ2
=

αs

2π
[Pqq ⊗ qs + 2nfPqg ⊗ g]

∂g

∂ lnµ2
=

αs

2π
[Pgq ⊗ qs + Pgg ⊗ g]

In compact matrix notation, this is often written as

∂

∂ lnµ2

(
qs

g

)
=
αs

2π

(
Pqq 2nfPqg

Pgq Pgg

)
⊗
(
qs

g

)

• Likewise it is easy to show that non-singlet distributions

qns ≡
nf∑

i=1

(Ci qi + Di q̄i) with

nf∑

i=1

(Ci + Di) = 0

evolve independent from the gluon and from each other:

∂qns

∂ lnµ2
=
αs

2π
Pqq ⊗ qns

An example of a non-singlet is the valence distribution qi − q̄i.
• Thus, in practice we do not evolve the quark distributions u, ū, d,

d̄, . . . but, instead, the singlet distribution (coupled to the gluon)

and a well chosen set of 2nf − 1 non-singlet distributions.
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Higher orders ...

	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  

• The LO splitting functions presented on page 9–11 can be seen as

the first term of a power series in αs

Pij = P
(0)
ij + (αs/2π)P

(1)
ij + (αs/2π)2P

(2)
ij + · · ·

Presently the splitting functions are known up to next-to-next-

to-leading order (NNLO), that is, up to P
(2)
ij . Such a calculation

(done at Nikhef) in no sinecure as the expression above shows. It

goes on for many more pages...63

63A. Vogt, S. Moch and J.A.M. Vermaseren, Nucl. Phys. B691, 129 (2004), hep-ph/0404111.
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Intuitive picture

• The gross features of the evolution can be easily understood as

follows. In the left plot above we indicate by the blob the resolution

1/Q of a photon with virtuality Q2. Increasing Q2 will resolve a

quark into a quark-gluon pair of lower momentum (right plot).

Thus when Q2 increases, more and more quarks are seen that have

split into low momentum quarks. As a consequence, the quark

distribution will shift to lower values of x with increasing Q2. This

results in the characteristic scale breaking pattern of F2, when

plotted versus Q2 for several values of x (→ fig.)

- lnQ2

6

F2
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Scale breaking pattern of the F2 structure function

As expected!
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Comparison of the F2 data with the QCD prediction
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• This plot shows a recent QCD analysis (up to third order) of HERA

F2 structure function data. In such an analysis the quark and the

gluon distributions are parameterised at an input scale of about

2 GeV2 and evolved over the whole Q2 range. The parameters of

the input distributions are then obtained from a least squares fit.

There is an impressive agreement between data and theory.
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The pdf set from the HERA QCD analysis
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• Parton distributions obtained from the HERA QCD analysis. The

sea (xS = 2xq̄(x), see page 8–24) and the gluon are divided by

a factor of 20. The parton distributions are parameterised at an

input scale of µ2
0 = 1.9 GeV2 and evolved to 10 GeV2 for this plot.

The bands indicate various sources of uncertainty.

• In DIS the electrons only scatter off the charged quarks in the pro-

ton and not off the gluons. However, we still have indirect access

to the gluon distribution via the coupled singlet/gluon evolution.
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Scale dependence

• At this point we have introduced three different scales:

1. The factorization scale µ2
F where we have separated the short

and long distance physics, and on which the pdfs evolve.

2. The renormalisation scale µ2
R (called Q2 in Section 6) on which

the strong coupling constant αs evolves.

3. The hard scattering scale Q2 which, in DIS, is the square of

the 4-momentum transfer from the electron to the proton.

• Exposing the different scales, we write the (non-singlet) evolution

equation, and the leading order expression for F2 as

∂qns(x, µ
2
F)

∂ lnµ2
F

=
αs(µ

2
R)

2π

∫ 1

x

dy

y
Pqq

(
x

y

)
qns(y, µ

2
F)

F2(x,Q2) =

nf∑

i=1

e2
ix
[
qi(x, µ

2
F) + q̄i(x, µ

2
F)
]

+ O(αs)

• Usually one sets µ2
R = µ2

F = Q2. The sensitivity to this choice is

then quantified by varying the scales in the range, typically,
1
4µ

2
F ≤ µ2

R ≤ 4µ2
F and 1

4Q
2 ≤ µ2

F ≤ 4Q2

• But note, however, that F2(x,Q2) above depends only on µ2
F

which, for a given Q2, is arbitrary. It follows that the leading order

perturbative stability is poor, and that LO perturbative QCD has

little predictive power. This defect is remedied when higher order

terms are included that are functions of both Q2 and µ2
F.

• Fortunately, the scale dependence rapidly decreases when higher

order corrections are included, and this is of course the motiva-

tion behind that huge effort, at Nikhef, to calculate the splitting

functions and the F2 correction terms up to NNLO.
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