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QCD in Eight Lectures

Review of SU(2) and SU(3) symmetry.

Lagrangian formalism and U(1) local gauge invariance.

The SU(2) (Yang-Mills) and SU(3) (QCD) invariant Lagrangian.
Colour factors.

The running coupling constant and asymptotic freedom in QCD.
Infrared and collinear singularities.

The structure of the proton.

. The QCD improved parton model and DGLAP evolution.

The lecture notes can be found on

http://www.nikhef .nl/user/h24/qcdcourse



Background material'

The lectures are based on the following books:

Griffiths D. Griffiths, Introduction to Elementary Particles, Second Revised Edition,
WILEY-VCH, (2008);
H&M F. Halzen and A.D. Martin, Quarks and Leptons, John Wiley & Sons, (1984).

You will need these books to supplement the lecture notes, and to
successfully complete the exercises.

Some reference is also made to

PP-1 W. Hulsbergen and M. Merk, Lecture notes Particle Physics 1.

The following references were used in the preparation of these notes:

A&H [.J.R. Aitchison and A.J.G. Hey, Gauge Theories in Particle Physics, IOP
Publishing Ltd, Volumes I and II, (2003);

DKS G. Dissertori, I. Knowles and M. Schmelling, Quantum Chromodynamics, Ox-
ford University Press, (2003);

ESW R.K. Ellis, W.J. Stirling and B.R. Webber, QCD and Collider Physics, Cam-
bridge Univeristy Press, (1996);

CTEQ CTEQ Collab. G. Sterman et al., Handbook of Perturbative QCD, Version 1.0
(2000), obtainable from http://www.phys.psu.edu/~cteq;

Soper D.E. Soper, Basics of QCD Perturbation Theory, hep-ph/9702203, (1997);

deWit B. de Wit and J. Smith, Field Theory in Particle Physics, Volume 1, North
Holland, (1986);

Zee A. Zee, Quantum Field Theory in a Nutshell, Second Edition, Princeton Uni-
versity Press, (2010);

Ramond P. Ramond, Group Theory, Cambridge University Press, (2010);

Veltman M. Veltman, B. de Wit and G. 't Hooft, Lie Groups in Physics, Lecture notes,
http://www.staff.science.uu.nl/~hooft101/lectures/1lieg07.pdf;

Schiff L.I. Schiff, Quantum Mechanics, Third Edition, McGraw-Hill, (1968);

Jackson J.D. Jackson, Classical Electrodynamics, Second Edition, John Wiley, (1975).



Grading'

You may hand-in exercises which will then be graded as follows:

Good — score = 1.0
Reasonable — 0.6
Bad — 0.3
Not made — 0.0

You can only hand-in those (sub-)exercises that have a weight factor
given in square brackets. The exercises marked with a | x | will help
you to better understand the material but you can not hand them in
and gain bonus points with them. At the end of the course your final
score is calculated as the weighted average of the individual scores.
Bonus points are then added to the grade of your exam in proportion
to your exercise score. As an example, we list below the bonus for an
exercise score of 0.8:

Exam grade 07 8 9 10
Bonus 1.0 0.8 0.4 0

Note that the bonus is less for high exam grades, to avoid that the
total grade will exceed the maximum of 10 points.!

Because we cannot handle a pile-up of exercises at the end of the course,
we make the rule that you cannot hand-in more than 5 exercises at a
time. At the day of the exam you can bring your last five exercises.

The exam is ‘open book’ so that you may consult the lecture notes and
the books of Griffiths, Halzen & Martin and Aitchison & Hey, but not
the worked-out exercises or any other material.

!The bonus is calculated from B = E x min(5 — 0.57,1.25), where 0 < E < 1 is your exercise score, and
0 < T <10 is your exam grade.
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Preliminary

This section is not part of the lectures, but a small collection of ma-
terial that should be familiar from special relativity, electrodynamics,
quantum mechanics and the lecture series Particle Physics 1.

Also included is a summary of group theory, but still very incomplete.






Units and conversion factors'

In particle physics, energy is measured in units of GeV = 10° eV,
where 1 eV = 1.6 x 107 J is the change in kinetic energy of an
electron when it traverses a potential difference of one volt. From the
relation E? = p?c? + m?c* it follows that the units of momentum
and mass are GeV/c and GeV/c?, respectively. The dimension of h
is energy X time so that the unit of time is A/GeV; hc has dimension
energy xlength so that length has unit hc/GeV.

One often works in a system of units where h and ¢ have a numerical
value of one, so that these constants can be omitted in expressions,

2. A disadvantage is that the dimensions carried

as in B2 = p* +m
by h (energy xtime) and ¢ (length/time) also disappear but these can

always be restored, if necessary, by a dimensional analysis afterward.

Here are some useful conversions.

Conversion h = c =1 units Natural units
Mass 1 kg = 5.61 x 10% GeV GeV/c?
Length 1 m = 5.07 x 10% GeV™1 he/GeV
Time 1s=1.52x 10% GeV™1 h/GeV
Charge e = v/4ra dimensionless Ve

1 TeV = 10% GeV = 105 MeV = 10? KeV = 102 eV
1fm=10"%m=10"" cm = 5.07 GeV~!
1 barn = 1072 m? = 10~** cm?
1 fm? = 10 mb = 10* b = 107" nb = 10'° pb
1 GeV—2 = 0.389 mb
hc = 197 MeV fm
(he)? = 0.389 GeV? mb
o = e?/(4rhc) ~ 1/137
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Covariant notation (¢ = 1)'

e Contravariant space-time coordinate: z# = (2°, 2, 2%, 2%) = (¢, )
e Covariant space-time coordinate: z, = (xg, 1, x2, z3) = (t, —)
e Contravariant derivative: 0, = 9/0x" = (0, +V)
o Covariant derivative: 0O = 9/0x,, = (0}, —V)
e Metric tensor: g, = ¢g" = diag(1, —1,—1, —1)

v

e Index raising/lowering:  a, = g a”, a'=g"a,

e Lorentz boost along z-axis:®> z'* = A ¥

vy =8 0 0
A | Ty 00 y = 1
v 0 0 1 0 JI— 3
0 0 0 1

. _ v ; v _ — —1
We have also: 2/, = A/ x, with A /(8) = A, (=8) = (M)
e Inproduct (Lorentz scalar): a-b=a"b, =a"by—a-b=a,b"

e o’ > 0 time-like 4-vector — possible causal connection
a? = 0 light-like 4-vector
a? < 0 space-like 4-vector — no causal connection

e 4-momentum: p* = (E,p), p,=(E,—p)

e Invariant mass: p? = Pp,=p.pt = E? —p? =m?

e Particle velocity: v = FE/m, [ =|p|/E

2This is the relation between the coordinates z* of an event observed in a system S and the coordinates z'#
of that same event observed in a system S’ that moves with a velocity +/3 along the x-axis of S.
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Vector calculus I

Vx(Vy) =0
V- (VxA) =0
Vx(VxA) =V(V-A) -V?A
/ V-AdV = / A-ndS (Divergence theorem)
Vv
/(¢V2¢ —YV?p) dV = / oV —YVo) - n (Green’s theorem)
.
/(V xA)-ndS = 7{ A-dl (Stokes” theorem)
s C

e In the above, S is a closed surface bounding V', with n the outward
normal unit vector at the surface element dS.

e [n Stokes’ theorem, the direction of m is related by the right-hand
rule to the sense of the contour integral around C'.
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Maxwell’s equations in Vacuuml

e Maxwell’s equations
V-E=p V-B=10(
VxE+0B/ot=0 VxB—-0E/0t=j

e Continuity equation
dp
ot
e The potentials V and A are defined such that the second and third
of Maxwell’s equations are automatically satisfied

B=VxA —~  V-B=0
E=-0A/0t—-VV = VxE=-0B/ot

e Gauge transformations leave the EZ and B fields invariant

V’:V—F@ and A'=A—-V)\
ot
e Maxwell’s equations in 4-vector notation

4-vector potential At = (V, A)
4-vector current 7 =(p,7)
Electromagnetic tensor Frm = 0orAY — " A+
Maxwell’s equations O " = g¥
Continuity equation Ot =10
Gauge transformation AF— AR+ OF N

e Lorentz gauge and Coulomb condition
Lorentz gauge oA =0 —  0,0r'AY =3
Coulomb condition A" =0 or equivalently VA =0
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The Lagrangian in classical mechanics'

In classical mechanics, the Lagrangian is the difference between the kinetic and
potential energy: L(q,q) =T — V. The coordinates q(t) = {qi(t),...,qn (1)}
fully describe the system at any given instant ¢. The number N of coordinates
is called the number of degrees of freedom of the system.

Let the system move from A(t1) to B(t2) along some given path. The action
S[path] is defined by the integral of the Lagrangian along the path:

ta
Slpath] = / dt L(q,q)
t

The action .S assigns a number to each path and is thus a function of the path.
In mathematics, S is called a functional.

The principle of least action states that the system will evolve along the
path that minimises the action.

Let ¢g(t) be a path and ¢(t) + d¢(t) be some deviating path between the same
points A(t;) and B(ty). That is, dq(t1) = dq(ts) = 0. The variation in the
action is then given by

t2 t2 OL OL
6S = [ dtsL(q.¢)= [ dt| =6g+ —85) =
S /t (¢,4) /t ( 97 q+ 9 q) =0

A (OLs N _ (ALY s o (OLY 5,
a\ag'?) ~\araq )1 \ag) "

we find, by partial integration,

b 7oL  d oL b /9]
= /tl A (a_q B &8_Q> 5(] +/tl d (8_q§q> Twant 0

The second integral vanishes because dq(t1) = dq(t2) = 0.

Because

The first integral vanishes for all dq if and only if the term in brackets vanishes,
leading to the Euler-Lagrange equations, for N degrees of freedom:

oS d /0L oL
00 _ S (9h) 9% — 1, .. N
0¢; dt(%z‘) 0g; 0 T

Solving the EL equations for a given Lagrangian lead to the equations of
motion of the system.
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The Hamiltonian in classical mechanics'

If L does not explicitly depend on time we have for the time derivative
dL oL . OL .
ar o1 oy

Substituting dL/0q from the Euler-Lagrange equations gives

db oL d (oL . _d (oL .\ - d (oL N\ _,
at a1 T a\ag) T @t \ag ! ar \ g 1 -

The term in brackets is the Legendre transform of L and is called the Hamil-
tonian:
g O gL with p 9

dq dq
where we have also introduced the canonical momentum p. The Hamiltonian
is identified with the total energy E = T + V which is thus conserved in the
time evolution of the system. This is an example of a conservation law.

In the Lagrangian, the dependence on ¢ resides in the kinetic energy term T'
while the dependence on ¢ is contained in the potential energy V. Thusif V =0
(or a constant) we have in the EL equations

oL d [OL d

dq dt \ 0q dt
Thus the momentum p is conserved in a system that is not under the influence
of an external potential. This is another example of a conservation law.

0

The Hamiltonian equations of motion are

. O0H d ) OH
e — an —_
This can be derived as follows. Consider the total differential
oL oL
dL = —d —d
aq q+ ac_} q
Now
oL ) oL

97 = p (from EL), 9 = p (by definition),

and thus, using pdg¢ = d(pq) — ¢dp, we obtain
dL = pdg+d(pq) —qdp — d(p¢— L) =dH = qdp — pdq,
from which the Hamiltonian equations immediately follow.
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Dirac 5—function'

e The Dirac d-function can be defined by?

[0, ifx#£0 . > B
5(:6){00’ PO with /_ d(z)dx =1

e Generalisation to more dimensions is trivial, like 6(r) = d(z)d(y)d(2).

e For x — 0 we may write f(x)d(x) = f(0)d(x) so that

/ F@)(a)ds = £(0) and / F(2)6(z — a)dz = f(a)

e For a linear transformation y = k(z — a) we have

5(y) = — 6(z — a)

This is straight-forward to prove by showing that d(y) satisfies the
definition of the ¢-function given above.

o Likewise, if {z;} is the set of points for which f(x;) = 0, then it is
easy to show by Taylor expansion around the x; that

1
V=2 Ty =

e There exist many representations of the d-function, for instance,

o(r) = (2;)3 /eik'rd?’k or  dx)= di(;>,

with  0(z) = { (1)’ Ei i i 8 (Heaviside step function).

3 A more rigorous mathematical definition is usually in terms of a limiting sequence of functions.
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Green functions'

e Let () be some linear differential operator. A Green function
of the operator € is a solution of the differential equation

QG(r)=4(r)

These Green functions can be viewed as some potential caused by
a point source at 7.

e Once we have the Green function we can immediately solve the
differential equation for any source density s(r)

Qu(r) = s(r)
By substitution it is easy to see that (1 is the solution of Q ¢y = 0)
() = balr) + [ Glr = o')slr) ar

Here it is clearly seen that G(r — 7') ‘propagates’ the contribution
from the source element s(7')dr’ to the potential ¥ (7).

e A few well-known Green functions are ...

ViG(r) = 4(r) G(r) = —1/(4nr)
(V2 4+ k%) G(r) = 6(r) GE(r) = — exp(dikr)/(4mr)
(V2 —m?) G(r) =d(r) G(r) = —exp(—mr)/(4nr)

e ... and here are their Fourier transforms
G(r) = —1/(4mr) Glq) = ~1/¢’
GT(r) = —exp(ikr)/(4nr) G*t(q) = 1/(k* — ¢* + ie)
G(r) = —exp(—mr)/(4nr)  Glq) = ~1/(¢* +m’)
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Non-relativistic scattering theory II

e Classical relation £ = p*/2m + V with substitution £ — i9/0t
and p = —iV gives the Schroedinger equation

0 V?

gt = = |5~ Vi vt

e Separate Y (r,t) = ¢(t)(r). Dividing through by ¢ gives
i0,0(t) _  [V?—2mV(r,t)]3(r)

oty 2my(r)
Assume now that V' does not depend on ¢. The left and right-hand

side must then be equal to a constant, say E, and we have

09(t)
ot

——iEg(t) — olt)=ec "
(V2 + 1) o(r) = 2mV (r)(r)

where we have set k> = 2mE. Using Green functions we get

zkh‘ /|

U(r) = J(r')dr’

\r—r

e For large r > 1’ we have |r — r/| =~ r — 77’ so that

/eik%r/V(’Pl)@b(’Pl)d’Pl

m e tkr

(r) = vo(r) —

27r7"

o We set k' = k7 and write, formally,
1kr

b(r) = do(r)+f (k)=

with  f(k') = —— [ e ® TV () (r')dr

27

The function f(k') is called the scattering amplitude.
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Non-relativistic scattering theory III

e An incoming plane wave vy, = Be** describes beam particles
moving along the z axis with momentum k. The wave function
is normalised such that p = *¢ = |B|? is the particle density
(number of particles per unit volume). The current density is

, 1, ., § k k
Jin =5 (VY = VYY) = [BI' = = p— = pv
mi m m
with v the velocity of the particle. The number of beam particles
passing per second through an area A is Ry, = pvA = |7;,|A.

Likewise, the number of scattered particles that pass per second
through an area r*dQ is Ry, = |7..|r?d.

e We now imagine a hypothetical area do such that the number of
beam particles that pass through that area is equal to the number
of particles that scatter in the solid angle d€2. We then have, by
definition, |7,,| do = |7..|r*dQ, or

dO—__ T2|jsJ
(igz Ljin‘

The quantity do/d€2 is called a differential cross section.
e For our scattered wave ¢, = f(k') e*" /r we find

(e e\
o= g (V50 05 ) = 178

mrQ

and thus

do ,
=P

where we have assumed p = 1 and kg, = ki, (elastic scattering).
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Non-relativistic scattering theory IIII

e Recall that for scattering on a potential, the outgoing wave is

eikr
You(r) = o(r) + F(k) =
with
FK) = _g e H TV (1 hous ()’

Here k' is the momentum vector of the scattered particle.

e The problem now is that 1., occurs on both sides of the equation
above. A first order approximation is achieved by setting in the

scattering amplitude 1oy ~ Vi, = €'** = *". This gives
m . AW, m <
kE)=—— [ d*Fryedr = —— [ eV (r))dr!
flho, k) = 2 (r)r = 2" (')
where we have set the momentum transfer ¢ = k' — k. In

this so-called Born approximation, the scattering amplitude
f(k,k') = f(q) is thus the Fourier transform of the potential.

e Example: Yukawa potential V' (r) = Q1Q2e™ " /r
leQQ / e—ar' —igr’ 3.0 _ 2mQ1Q2
_ el |y = ... = oLl
27 T Q> + a?

do ) [2mQ1Q0]”
- flq)]" = [m]

e Example: Coulomb potential V(r) = Q1Q2/r set a = 0 above:
do _ [2mQi@:]" [ Qi@ ]
d(2 q° 2mu? sin?(0/2)

This is the famous formula for Rutherford scattering.

fla) =
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Dirac’s bra-ket notation II

e A state vector 1, can be represented by a column vector of complex
numbers in a Hilbert space and is denoted by the ket |a)). To each
ket is associated a bra vector (| in a dual Hilbert space. This
bra is represented by the conjugate transpose 1!, that is, by the
row vector of complex conjugates. The operation of Hermitian
conjugation turns a bra into a ket and wvice versa

o)t = (o] and (c|a))' = (alc*  (c any complex number)

Note that the Hermitian conjugate of a c-number is the complex
conjugate. The inproduct 9! - 15 is denoted by (a|3) and is a
c-number so that

(Blay = {alp)! = ¢ = ¢ = (alB)*

e An operator O transforms a ket |a) into another ket, say |v). The
operator and its Hermitian conjugate are then defined by
Olay =1ly) and  (a]O" = (v

Multiplying from the left with (5| and from the right with |5) we
find the relation between the matrix elements of O and O

Opa = (BlO]a) = (Bl7)
Ols = (alO|8) = (418) = (8l)* = (BlOla)* = O3,
e An operator for which O = O' is called self-adjoint or Hermi-
tian. Observable quantities are always represented by Hermitian

operators. Indeed, the expectation value («|O|a) is then real,
as it should be, since

(alOla) = (a|0'|a) = (a|Ola)*
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Dirac’s bra-ket notation III

e An orthonormal basis is written as |e;) with (e;|e;) = d;;. On this
basis, a state |a) is given by the linear combination

o) = Z lei) {eila)

The operator |e;)(e;| is called a projection operator, for obvi-
ous reasons. The closure relation reads ) . |e;)(e;| =1

e We denote the wave function ¢, (r) by (r|a) and its Hermitian

conjugate ! (r) by (a|r). In particular, the wave function of a

momentum eigenstate is (r|k) oc e’*"

e For the complete set of states |r) the closure relation reads

/|r)<'r| dr = 1

From this, we nicely recover the expression for the inproduct of
two wave functions

(al) = [talr)rigyar = [ vy ar
that of the delta function
1 , /
5k — k') = (k' |k) = / ki o / kK7 g
and also that of Fourier transforms

b(k) = (kJ) = / (i) (rl)dr o / e (r)dr
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Dirac equation'

e Dirac equation:

iy O —map =0

P spm = prm=d om0

particle in particle out antiparticle out antiparticle in

@ = QN”YO; ¢ = VMau

e Pauli matrices:

(o (o= (10
o) TG oo) T \0 -1

o . T | _
0i0; = 5@' -+ ZEijkO'k, o, =0, =0, , [Uia Uj] — 2€¢jk0'k

(@a-o)b-oc)=a-b+io-(axb)
exp(i0 - o) = cos |0] + (6 - o) sin |6)|

e Dirac matrices:

I 0 : 0 o 0 1
0 _ v __ t O _ sA0~1-2-3

AT =70 4T = i A Opty0 = e

14 14 2
(=29, {2t =0, (v°) =1
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Elements of Group Theory

Michiel Botje
Nikhef, Science Park, Amsterdam

June 5, 2013

This section gives a brief overview of some group theoretical concepts
and terminology that is often used in the particle physics literature.

[This section is still incomplete]






Definition of a group

A group G is a collection of elements {a,b,c, ...} with a composition rule ab,
often called the multiplication of a and b, that satisfies:

1. For every element a and b of G, the product ab is also an element of G;
2. The multiplication is associative (ab)c = a(bc);
3. There is a unique unit element e, with ea = ae = a, for all elements a;

4. Each element a has a unique inverse ¢! in G, with aa™! =a la =e.

This is of course quite an abstract definition* since it is not specified what
these group elements are, and what the group multiplication stands for. In
physics, we can think of a group as a set of transformations of some kind,
such as translations or rotations in Euclidian space, Lorentz transformations in
space-time, or—more abstract—transformations in quark flavour or color space.

A group can be discrete, with the group elements labeled by a set of indices, or
continuous, with the elements labeled by a set of continuous parameters.

An example of a discrete group is the set of integers, with addition as the group
multiplication. The number zero is then the unit element and the negative
integers are the inverse of the positive integers (and wice versa). This group
obviously has an infinite number of elements. An example of a continuous group
is that of rotations in two dimensions, with each element labeled by a rotation
angle. Here the group operation is the addition of rotation angles. The unit
element is a rotation over zero angle, and the inverse element is a rotation with
the angle reversed.

Another distinction is that of Abelian groups where the group operation
commutes (ab = ba for all elements a and b) and non-Abelian groups where the
group operation does not always commute. For instance, the group of rotations
in two dimensions is Abelian, but that of rotations in three dimensions is not.

We will now use the finite discrete cyclic group to illustrate some basic ideas.

4The definition, as stated here, is somewhat redundant because e and a~! must be unique by virtue of their
definitions and the requirements (1) and (2). We leave it as an exercise to prove this.
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The cyclic group

As an example of a finite group, take the set
G={1,i,—1,—i}, (0.1)

with ordinary complex multiplication as the group operation. The number of
elements of a discrete group is called the order of the group, sometimes denoted
by [G]. Thus, the group above is of order four.

A finite group is completely specified by its multiplication table which for
our group G = {e, a, b, c} is given by

Gle a b ¢
ele a b c
ala b c e
b|b ¢c e a
clc e a b

A multiplication table usually is not very instructive but some characteristic
features can easily be spotted: (i) Each element of the group occurs only once
in each row or column. This is because ab and ac cannot map onto the same
element. Indeed, if ab = ac we find, multiplying from the left with ¢!, that
b = ¢; (ii) The table above is symmetric around the diagonal which shows that
the group G is Abelian; (iii) Elements with e on the diagonal are its own inverse.

We can also write (0.1) as
G = {1’62'7r/27 62'77’ €i37r/2}’

which shows that G can be realised by rotations over {0, 90, 180,270} degrees.
In this realisation, the group operation is the addition of rotation angles. A
rotation of a 2-dimensional coordinate system over an angle #, measured coun-
terclockwise from the x-axis, is described by the rotation matrix®

x cosf sinf x
<y’) N (—sinﬁ COSQ) <y> ' (0.2)

Setting 0 = {0, %7‘(’, T, %ﬂ'}, we can represent the group G by the matrices

{0 1) () (o) G g)y oo

5Note that this is a passive rotation of the coordinate system where the same vector is described in the
primed and unprimed systems. An active transformation rotates the vector and is related to the passive
transformation by inverting the sign of 6.
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with matrix multiplication as the group operation. This is called a 2-dimensional
representation of G.

» An n-dimensional representation of a group G is a mapping of each element
g; onto a non-singular n x n matrix M; that preserves the group multiplication

9i9; = g —  M;M; = M.
Don’t confuse the dimension of a representation of G with the order of G. <«

It is clear that rotations by multiples of 90° leave a square invariant. If we label
the corners of the square {1,2,3,4} then we see that G can also be realised by
the following four permutations:

1 234 1 2 3 4 1 2 3 4 1 2 3 4
G_{<1234)’(2341)’(3412)’(4123)}' (0-4)
» Every element of a finite group of order n corresponds to a permutation
of n objects. «

When we arrange the objects in an n-dimensional vector, the permutations can
be expressed as n X n matrices, thus yielding a regular representation of the
group (i.e. a representation with a dimension equal to the order of the group):

1 000 0001 0010 0100

G — 010071000’0001,0010 (0.5)
0010 0100 1000 0001
0001 0010 0100 1000

If we introduce compler matrices, we can say that (0.1) is a 1 x 1 complex
representation of G. In this somewhat un-systematic fashion we have thus
found a 1-, 2- and 4-dimensional representation of G. It is an important (and
nontrivial) task of group theory to find all representations of a group or, to be
more precise, all so-called irreducible representations since these serve as
basic building blocks to construct all others.

Taking powers of a we see that G can be written as

G={e,a,a®>,a’} with a*=e. (0.6)
Thus a generates all elements of the group and is called the generator of G.
For obvious reasons, G is called the cyclic group of order four, denoted by Zj.

» The cyclic group Z, of order n is generated by a 2-dimensional rotation
over the angle 27 /n. The group leaves an n-sided regular polygon invariant. «
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Some basic concepts

» A subgroup H C G is a set of elements of G that satisfy the group conditions.
The unit element e is obviously shared by G and all its subgroups. «

» The left coset gH is obtained by multiplying all elements of H from the left
by an element g which is not in H. Likewise we define the right coset Hg. Note
that the left and right cosets are of the same order as H but are not subgroups
of G since they do not contain the unit element. <«

» A subgroup H and its left (or right) coset have no element in common. <«

This can easily been seen as follows: Let ghy = hy € H. Then g = hzhl_l e H
which leads to a contradiction since g is, by definition, not in H. Let us now
take another element ¢’ which is not in H and also not in gH. It is easy to show
(homework) that ¢’"H has no element in common with gH (and H). Now we can
pick another element ¢” not in H or in any of the two cosets to build another
completely disjunct coset ¢”H. In this way we can continue till we have divided
the entire group G into H and cosets gH which all have the same number of
elements, and no elements in common. We just have proven

» Lagrange’s theorem: The order m of a subgroup H C G is an integer
division of the order n of G. The ratio k = m/n is called the index of H in G.
It directly follows that groups of prime order cannot have any subgroups. <«

Another very important operation is that of conjugation.

» The conjugate of any element a with respect to any other element g is
defined by a so-called similarity transformation

a = gag " (0.7)

When ab = ¢ then ab = ¢, that is, conjugation preserves the group multiplica-
tion. Clearly, the elements a and @ are each other’s conjugate since a = g~ 'ag.
Note that the elements of an Abelian group are their own conjugate a = a. <

Conjugation is an example of a one-to-one mapping of group elements onto
another set of elements that have the same multiplication table. Such a mapping
is called an isomorphism: G = F. A homomorphism (G ~ F) is a mapping
of G to F that is not one-to-one, but still preserves the multiplication table.

Conjugation splits a group G into disjunct classes:
» A class (), is the set of conjugates a with respect to every element g of G:
C, = {gag™* Vg € G}.
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It is easy to show (homework) that if b is not an element of C, then C, and C,
have no element in common. Note that a class is not a subgroup, except when
a = e. The classes of an Abelian group contain exactly one element C, = a. «

A normal or invariant subgroup H C G maps onto itself by conjugation with
respect to any element ¢:°

ghg™' €H, VheH, Vge.

Because ghig~! = hy it follows that for each element h; of a normal subgroup
another element hy can be found such that gh; = hog. From this it is clear that

» The left and right cosets of a normal subgroup are identical: gH = Hg. «

When G contains a normal subgroup H, we can set-up a correspondence G — G’
by mapping all elements of H onto ¢’ and all elements of a coset gH = Hg onto
the element ¢’. We now multiply elements of H and its cosets with each other
and see what happens to the images in G'.

hlhg = hg — e = 6/,
hi(ahs) = hi(hsa) = (h1hs)a = hya —  ead =d,
(hya)(hab) = hi(ahy)b = hi(hsa)b = (hihs)(ab) = hye — d'V/ =,

where we have set ahy = hsa, hihs = hy and ab = ¢. Thus G and G’ have the
same multiplication table so that G’ is a homomorphic image of G, called the
factor group G/H. The normal subgroup H maps onto the unit element of
G/H and is called the kernel of the mapping. From the above it is easy to see
that the following statement is true.

» The kernel H of a homomorphic mapping G + G’ is a normal subgroup of G.
The factor group G/H is then isomorphic to G'. Note that the factor group is
not a subgroup of G but an image of G. «

Can a factor group also have a normal subgroup so that it can be factorised
further? Yes, this is certainly possible but it can be shown that (homework):

» If H C G is the largest normal subgroup of G then the factor group G/H has
no normal subgroup (except e). Because H has the largest possible order it
follows that G/H has the smallest possible order. <

A group that has no normal subgroup other than e is called simple and the
above gives a prescription to map any non-simple group onto a simple group

5The additive group of integers, for example, contains the normal subgroup of even integers. What about
the set of odd integers? (homework).
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(of lower order). This is the reason why mathematicians only consider simple
groups to be of fundamental interest.

Above we have encountered several ways to dissect a group so let us now intro-
duce the direct product (also called Kronecker product) to enlarge a group.

» The direct product F x G is the set of pairs
(a,b), a€F, beG with (a,b)(c,d) = (ac,bd). (0.8)

With the multiplication thus defined, it is easy to see that F x G is a group. <«

Finally, let us repeatedly multiply an element by itself. Suppose we make a list
a,a”,a’, ...

of powers of some element a # e of a finite group G. Clearly the length of such
a list has no bound but since the number of elements of G is finite we must have
it occur twice at some point in the list, that is, for some n > m we have

a'=a" — "™ =d" =e

The power k is called the order of a and the set {a"} is called the orbit of a.
The above implies that:

» Every element a # e of a finite group G of order n generates a cyclic subgroup
Zr € G with 2 <k <n. An element that is its own inverse generates Z,. <«

Now because Lagrange’s theorem tells us that groups of prime order cannot
have any subgroup it follows that we must have £k = n when n is prime:

» The only possible finite group of prime order n is the cyclic group Z,. <«

The SO(3) group of rotations in three dimensions

Rotations in three dimensions form a continuous group, represented by the
special orthogonal group SO(3) of 3 x 3 unimodular (unit determinant)
orthogonal matrices R. The study of this group is of interest because rotation
is a very common transformation, and also because several important concepts
related to continuous groups can be nicely introduced.

We take the convention to rotate the coordinate system so that a vector r
with coordinates * = (x1, T2, x3) in a reference system O, has coordinates o’ =
(x], 5, %) in the rotated system O’. Here and in the following we will use the
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summation convention of summing over repeated indices so that we may
write for ' = Rx
l’; = Rij L.
The orthogonality condition reads R*R = RR' = I, in components,
RjiRjj, = 0y, RijRy; = 0.
It follows that a rotation preserves the inproduct @ - y of two 3-vectors,
Tiyp = Rijr; Rigyr = Ojk Ty = 2595

The orthogonality condition implies R~' = RT so that each rotation indeed has
an inverse. The unit element is a rotation over zero angle. Furthermore, the
product R3 = RyR; of two rotations is again a rotation because

R; = RITR; = R{'R;' = Ry and  det(R3) = det(Ry) det(Ry) = 1.

We conclude that 3-dimensional rotations form a group.

Three-dimensional rotations are determined by a rotation axis @ (unit vector)
and a rotation angle a about this axis. We write & = au, specified by three
parameters (aq, ag, ag). If we rotate the system O counterclockwise by an angle
a about the z axis to the system O’ we have for the relation between & and '’

' cosa sina 0 T
y | = —sina cosa 0 |y]. (0.9)
2 0 0 1 z

For small angles o/n the rotation matrix can be written as

of VL0 a? o o?
R(a/n)=1+—1-1 00 +O(—2>EI+—T+O<—2>.
"\ 40 0 n n n

The matrix 7' is called the generator of the rotations about the z axis. Ignoring
terms O(a?) this gives for a finite rotation

R(a) = lim (I + %T)n = exp(aT). (0.10)

n—o00
Here the exponent e? of a matrix should be understood as the series expansion

(0.¢]
A def ZAH
(& = —.
n!

n=0
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Note that the familiar expression ede? = e(4*+5) is only true when A and B

commute. Because 3-dimensional rotations about different axes do not com-
mute, it is not obvious that we can write the generator of a rotation about an
arbitrary axis as the sum of generators of rotations about the x, y and z axis:

R(a) — T paoTs jasTs ; e TitasTlrt+asTs
However, for an infinitesimal rotation of a vector » about @ we can write
r=r+axr=r—rxa.

Our convention is that we do not rotate the vector but the coordinate system
(over an angle —a) so that the coordinate transformation is

r=z+xxa.
Introducing the antisymmetric tensor €;;x," this reads in components
x; = X; + €jTjQ = [(5” + ozkeijk] x; = [513 + Oék(Tk)ij ] Xj.

From this we identify the three generators (13);; = €iji:

0 0 0 00 —1 0 10
=10 0 1], m=|00 0], Ts=(-100], (0.11)
0 —10 10 0 0 00

and write R(a) = exp(a - T'). Note that the generators are traceless and
anti-orthogonal: TT = —T. Dividing by 7 makes the generators Hermitian®
(LT = L) and the defining equation for the generators becomes

R(a) = exp(iac - L), (0.12)
with, for SO(3),
00 O 0 0 2 0 —2 0
Li=[0o0 =], ZLo=[0 00, Ly=[i 0 0 (0.13)
02 O -1 0 0 0 0 O
Note that
(Li)jk = —t€ijn (0.14)

"The tensor €;;, is 41 for even permutations of (123), —1 for even permutations of (231) and zero otherwise.
8The Hermitian conjugate of a matrix is defined by HT = (H*)T. A matrix is called Hermitian when HT = H.
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Let us at this point make a few remarks.

» A continuous group whose elements are continuously connected to the iden-
tity is called a Lie group. The elements of a Lie group are related to the
generators of the group by the limiting equation (0.10). <

The rotation group SO(3) is obviously a Lie group, but the group O(3), that
includes orthogonal matrices with determinant —1 (reflections) is not a Lie
group since reflections are not connected to the identity (there is no such thing
as an infinitesimal reflection).

» The number of generators of a Lie group is equal to the number of parameters
of that group. «

The group SO(3) has three parameters and therefore three generators. The
number of generators has nothing to do with the dimension of the defining
SO(3) matrices, which happens to be three also.

Is is seen from (0.13) that the generators L; are Hermitian and traceless.
They are Hermitian because R is orthogonal (homework) and traceless because
det(R) = 1. The latter follows from a theorem of linear algebra:

» For matrices U = exp(A) that can be brought into diagonal form, the deter-
minant is given by det(U) = exp(TrA). «

For a rotation sa, with s a real number, we find
R(sa) = exp(isa - L) = R(ax)® so that R(sa)R(ta) = R[(s +t)a].
» Rotations about a fixed axis define a commuting subgroup of SO(3). «
Because the product of two rotations is again a rotation it follows that
R(a)R(B) = R(v) (0.15)

where v(a, 3) is a (non-trivial) function of e and 3. From the fact that such a
function must exist it can be shown that the commutator of any two generators
must be a linear combination of the generators

[Li, L;] = ¢} Ly. (0.16)
For SO(3) the commutation relations are, from (0.13),
[Li, Lj] = i€iji Ly (0.17)

The cfj are called the structure constants of the group. Note from (0.14) that
the SO(3) structure constants are also matrix elements of the representation of
the generators and this is no coincidence, as we will see below.
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Eq. (0.15) can be written as

exp(iv - L) = exp(ia - L) exp(iB - L) = exp[i(a + B) - L + f(L)],

where f(L) is a function of repeated commutators like [L;, L;], [[L:, L;], Li], etc.
From this it can be shown that f(L) depends only on the structure constants.

» Structure constants determine the multiplication structure of a Lie group.
The commutation relations (0.16) thereby define a so-called Lie algebra. <«

For any triplet of n x n matrices A, B and C, the Jacobi identity states that
[A, B],C]+ [[B,C], Al + [[C, A], B] = 0

which is easy to prove by writing out the commutators, and enjoying the can-
cellations. In terms of the structure constants, the Jacobi identity reads

m .n m n m .n
Cij Cmk T Cjk Cpi + Cpii €y = 0.

Now define the matrices C; with elements

(C)h = —=d. (0.18)
From (0.16) it is seen that ¢j; = —cJ;, and the Jacobi identity becomes
Cij Conke = Cjk Cim + Cite G = =€ (Cm)f; = (C3)i (Ci)y + (G (C )
—cij(Cm)i — (C; Ci)i + (Ci Gy =0

or
[Ci, CJ] = CZC].C

which is the same commutation relation as (0.16). Thus the matrices C; are a
representation, called the adjoint representation, that has a dimension equal
to the number of generators. This is in contrast to the so-called fundamental
representation (0.13), that has the dimension of the defining linear space
which is the 3-dimensional Euclidian space in case of SO(3). From (0.14) it is
clear that for SO(3) the fundamental and the adjoint representations coincide,
but this is certainly not true in general.

Let us give, at this point, two useful relations for the e tensors (the first is
the Jacobi identity, the second can trivially be shown to be true by giving the
values (1,2,3) to two of the indices).

€ijm €mkn T €jkm €Emin T €kim Emjn = 0 (019)
€ijm Emkl = Oik 0j1 — Ojt Ojk (0.20)
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SO(3) transformations in higher dimensions

In this section we take two 3-vectors & and y and use these to build objects
of dimensions larger than three. Their transformation under rotations will
then yield higher-dimensional representations D(R) of SO(3), other than the
fundamental (R) and adjoint representations that we have found up to now.

The simplest composite object we can build has 6 components and is defined by

def
v=x Dy = (r1,%2,T3,Y1,Y2,Yy3) = (v1,V2,V3,04,05,0). 1t transforms under

rotations as o (;) B (gz %) <Z> — D(R)w. (0.21)

Clearly D(R1)D(R2) = D(R1Rs), so that D is indeed is a representation
of SO(3). It is also clear that the components vy, vy and v3 will never mix
with the components v4, v5 and vg and we say that D(R) is reducible into a
direct sum of two 3-dimensional transformations: 6 = 3®3. A block-diagonal
representation like (0.21) is the hallmark of reducibility but if we would have
defined v = (x1, y1, T2, Yo, T3,y3), for instance, then D(R) would not be block-
diagonal but of course still be reducible into 3 & 3 since vy, v3 and v5 will not
mix with ve, v4 and vg.

» A representation that cannot be brought into block-diagonal form by a sim-
ilarity transformation (change of basis) is called irreducible. <«

We can build another object by taking the outer product of x and y,

def .
Tj=(x®y); = zy;  with  Tj; = 2jy; = Ripwp Ry = R Ry

This tensor T' has 3 x 3 = 9 components and the transformation R;;R;; can be
arranged into a 9 x 9 matrix D(R) with, again, D(R;)D(R2) = D(R1R2). The
representation D is reducible because some linear combinations of the tensor

elements have specific behaviour under rotations, as we will now show. For
instance the trace of T is just the inproduct of & and y,

Te(T) = ;5T = Tii = vy = T - Y,
and is therefore invariant under rotations. The antisymmetric sum
a; = €Lk = €jxTiyr = (T X Y);

is a component of the cross product of x and y and thus transforms as the

component of a vector: a; = R;ja;. Having identified one scalar component
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and three vector components there remain 9 — 1 — 3 = 5 components of T' that
transform as a proper tensor. This suggests that we may write the decompo-
sition of the tensor product as 3 ® 3 =1 & 3 & 5 where, by construction, the
vector component 3 is antisymmetric in the tensor indices.

Note, in this respect, that any tensor 7;; can be decomposed into a symmetric
part S;; = S; and an antisymmetric part A;; = —Aj; as follows

Sij = 5(Tyy + Tji), Ay = 5(T; — o).

Now the (anti)symmetric components transform into (anti)symmetric compo-
nents as is easy to show: If we denote by T' the transpose of T' then we have,
by definition, § — S =0 and A + A = 0. Because the transformation D(R) is

linear we can write
~/ ~

S-S = D(S)-D(S)=D(S—-8) =D(0) =0
A +A = D(A)+D(A) =D(A+A) =D(0)=0
so that, indeed, S’ = § and A’ = —A’. The representation D(R) thus de-

composes into 3 ® 3 = {6} @ [3], where we have introduced the notation {n}

and [m] to indicate a representation that transforms as a symmeteric or as an

antisymmetric tensor.”

We have seen above that the trace is invariant so that the symmetric component
is still reducible into {6} = {5} ® 1. It thus makes sense to formally isolate the
trace and write the expansion of a tensor as

Tij = % €iji(erimTim) +5(Tij + Tji — 36 Th) + 364 Tk, (0.22)
where use of (0.20) has been made to express the antisymmetric component in
terms of e-tensors. This component is traceless by definition, and by using the
identity d;; = 3 it is immediately clear that the second term is traceless, too.
The decomposition (0.22) shows that the 9-dimensional tensor representation
of SO(3) splits into three irreducible representations

3©3=[3a{5 a1

To summarize, we can write the decomposition of our tensor T' = x ® y as

T = 3(z-y) (scalar, one component)
T— T, = 3(zxxy), (vector, three components)
T;; = 3(zy; + xjy) — 50;(x - y) (tensor, five componenents)

9This is the same notation as that of anticommutation {4, B} = AB + BA (symmetric) and commutation
[A, B] = AB — BA (antisymmetric). Of course 1 = {1}, so there we do not put brackets.
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where the first term transforms as a scalar (invariant under rotations), the
second term as a vector

T; = Ry;Tj,
and the third term as a tensor, according to

T . = % (Rikle + RiRjr — édij(skl) .

2

The number of indices is called the rank or order of a tensor; apart from
rank-2 tensors we thus have also encountered tensors of rank zero (scalars) and
one (vectors). Note that tensors are defined by their SO(3) transformation
properties so that a rank-2 tensor not necessarily is an outer product, but
behaves as an outer product of two vectors.

A scalar is, by definition, invariant under SO(3) transformations but there exist
also higher order tensors that are invariant. For instance,

8i; = RixRjbr = RaRjr = (RR");; = 6y
and!’

/
€. .

ijk = RilemRknelmn = Cijk det(R) = Cijk-

Quite some more to come ...

10We denote the first row of a 3 x 3 matrix A by the vector a; = (A;1, A12, A13), and similar for the second (as)
and third row and (a3). The determinant is then given by the volume det(A) = a1 (a2 X a3) = €mnA11Aam Asn.
The determinant changes sign under the interchange of two row-indices while no two row-indices can be equal.
This can be encoded by setting the indices {1,2,3} to {4, j, k} and writing €jmnAitAjmArn = €55 det(A).
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The quest for elementary particles and forces'

e Particle physics is the search for the fundamental constituents of
matter and their interactions.

e The idea that matter is built from indivisible constituents dates
back to the Greek philosopher Demokritos (400 BC) but it took
a long time to prove him right: the proof that chemical elements
are indeed made of atoms came only at the beginning of the last
century, together with the development of statistical mechanics
and quantum theory.

e The discovery of radioactivity indicated, however, that atoms could
not be the fundamental constituents of matter and, indeed, after
the experiments of Rutherford (1909) it was realised that atoms
are complex objects with electrons orbiting a small heavy nucleus.

e The discovery of the neutron by Chadwick (1932) showed that
atomic nuclei are made up of protons and neutrons. It was also
clear that, in addition to gravitation and the electromagnetic force,
there should exist two short-range forces in nature: a strong force
which binds the nucleons together and a weak force which is respon-
sible for radioactive S-decay. These forces had to be short-range
because they were not felt at atomic scales.

e So nowadays four types of interaction are known: the strong in-
teraction (~1), the electromagnetic interaction (~107%),
the weak interaction (~ 107%) and gravity (~ 107°%), where
we have indicated the relative strength in brackets.
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Interactions I

e Today we know that nucleons are made up of quarks and that
the strong force between the nucleons in an atomic nucleus is a
van-der-Waals type residual force of a more fundamental strong
interaction between quarks. The field theory of this interaction
between quarks is called Quantum Chromodynamics (QCD).

e QCD is a so-called gauge theory, like quantum electrodynam-
ics (QED) and the theory of the weak interactions. In such a the-
ory, the constituent fields are described by representations of a sym-
metry group while the interaction between the fields is described
by the exchange of so-called gauge bosons. These interactions
follow from the requirement that the Lagrangian is invariant under
arbitrary local symmetry transformations of the constituent fields.

e The underlying U(1) symmetry of QED gives rise to the photon
as the gauge boson. The weak interaction is governed by an SU(2)
symmetry and is mediated by the three vector bosons W+ and Z°.
The SU(3) symmetry of QCD generates generates eight types g,
of gluon as the quanta of the gauge field. Here are the properties
of these so-called intermediate vector bosons (spin 1).

Interaction Boson Spin (Q A L  Mass
Electromagnetic -y 1 0 0 O 0
Weak (CC) W= 1 +£1 0 0 804 GeV
Weak (NC) Z° I 0 0 0 91.2GeV
Strong gi,...,gs 1 0O 0 0 0

e Note that all particles participate in the weak interaction, all charged
particles in the electromagnetic interaction and that only the quarks
participate in the strong interaction. Gravity is so weak that it can
be neglected at subatomic scales.

1-4



Elementary particles'

e The elementary particles can be classified into leptons (without
strong interaction) and quarks (with strong interaction):

Lepton Spin ¢ L. L, L, Mass Lifetime

0 5 -1 1 0 0 05MeV
Ve 5 0 1 0 0 ~0
I 5 -1 0 1 0 106MeV 2x10°
v, : 0 0 1 0 ~0
T 5 -1 0 0 1 18GeV 3x107"
vy 5 0 0 0 1 ~0
Quark Spin Q@ A I3 S C B T Mass

1 1 1 1

1 2 1 1
S 5 3 5 0 -1 0 0 0 ~120MeV
c 5 2 5 0 01 0 0 ~12GeV
b 5 5 s 0 0 -1 0 ~43GeV
t 5 = 5 0 0 0 1 ~172GeV

e The additive quantum numbers Q, L, A, I3, S,C, B, T all change
sign under charge conjugation (particle — antiparticle).!!

e The charge (@), lepton number (L., ;) and baryon number (A)
are aways conserved in every type of interaction (electromagnetic,
weak, strong).

"Note that the flavour quantum numbers I3, S, C, B, T have, by convention, the same sign as the charge.
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Colour charge I

e Free quarks have never been observed because their coupling is so
strong that with increasing separation it becomes easier to produce
a quark-antiquark pair than to isolate the quark.

e Quarks therefore bind permanently into hadrons which can be
classified as mesons (¢¢) and baryons (qqq).

e A problem with this is that there exist baryons such as the spin %
resonance AT = u T u 1 u T with a ground state wave func-
tion that is fully symmetric under the exchange of two quarks.
But for fermions (half-integer spin) the wave function should be
antisymmetric,

e A way-out is provided by the colour hypothesis which states
that each quark comes in one of three colours red (r) , green (g) or
blue (b). Antiquarks are anticoloured: T, g and b. The hypothesis
furthermore states that hadrons are colour singlets (‘white’),
that is, they are invariant under rotations in colour space. The
colour hypothesis thus naturally explains the existence of ¢g and
qqq hadronic states'? and also that of particles like the A" since
its colour wave function can always be made fully antisymmetric.

e In QCD, colour plays the role of charge, and gluons are the quanta
of the colour gauge field that binds the quarks into hadrons. Unlike
the photons in QED, the gluons themselves carry a colour charge,
so that self-coupling 3- and 4-gluon vertices do exist (— fig).

e As we will see later, this self-coupling of gluons has dramatic im-
plications for the effect of charge screening in QCD, which turns
out to be completely different from that in QED.

121t also allows for q@[qq]™ and qqq[qq]™ exotic states. It is controversial if such states actually exist.
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Basic diagrams of QED and QCDI

< < < <

> ® > > >
(b) YA

< ® < < <

(a) Electromagnetic interaction of a quark and an antiquark through
photon exchange (left). Strong interaction of a quark and an anti-
quark through gluon exchange (right).

(b) Two possible colour flows in the qg strong interaction.

(¢) Gluon interaction (left) and a possible colour flow through the 3-
gluon vertex (right). Note that gluons always carry one unit of
colour and one unit of anticolour.
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Two paradoxes I

e To explain the short range of the nuclear force, Yukawa (1934) pro-
posed that this force is mediated by the exchange of massive field
quanta which he called mesons (— fig). In his theory, the range of
the force is inversely proportional to the mass of the intermediate
vector boson. He estimated a mass of about 140 MeV and indeed
a candidate (the m meson) was later found in cosmic rays (1937).

e But, as we will see later, massive gauge field quanta break the
gauge symmetry so that the exchanged boson must necessarily be
massless. For instance, the U(1) symmetry of the QED Lagrangian
forces the photon to be massless, which indeed it is. As a conse-
quence the electromagnetic interaction has an infinite range.

e It follows that the SU(3) gauge symmetry of the QCD Lagrangian
forces the gluons to be also massless, like the photon. But if these
gluons are massless, how can the strong force then be short-range?

e Another puzzle came with a series of high-energy electron-proton
scattering experiments at SLAC (~ 1970) which proved the exis-
tence of quarks but also showed that they seemed to behave like
free particles, in spite of the fact that they are strongly bound
inside the proton.

e The solution to both these paradoxes was found by Gross, Politzer
and Wilczek by their discovery of asymptotic freedom. They
could explain why, as Wilczek put it in his Nobel lecture, ‘Quarks
are Born Free, but Everywhere They are in Chains’.

e As we will see in these lectures, the phenomena of asymptotic free-
dom and confinement are caused by the self-interaction of gluons
which, in turn, is a consequence of the non-abelian nature of SU(3).
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Old and modern views of pion exchange'
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In the lower diagram 7 exchange in a proton-proton interaction is
described in terms of constituent quarks by the exchange of an uu pair.
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Are quarks real? I

jet

~* proton

]|

jet jet

e If quarks cannot be observed in isolation, how do we know that
they actually exist and are not mere theoretical constructs?

e One way is to resolve quarks by illuminating protons with photons
of large momentum () and therefore small Compton wavelength
1/@Q. These very short wavelength photons are radiated off highly
energetic electrons when they scatter on protons (right-hand dia-
gram above). This process is called deep inelastic scattering
which indeed acts as a microscope to reveal the internal quark
structure of the proton. How this actually works, will be the sub-
ject of the last two lectures in this course.

e Furthermore it turns out that highly energetic quarks produced in
hard eTe™, pp and pp scattering hadronise into collimated sprays
of particles, known as jets (left-hand diagram above). Thus we
can more or less directly probe the dynamics of quarks by mea-
suring jets in experiments at high energy colliders (— fig). Jet
production is clearly a very important tool to confront QCD with
experiment and can certainly produce spectacular events in parti-
cle colliders (— fig) but, unfortunately, we cannot cover the large
field of jet physics in these eight lectures.
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Two-jet event in a e"e~ collision at LEP
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Two back-to-back jets observed by the DELPI experiment at LEP in
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an e"e” collision at 90 GeV centre-of-mass energy.
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Six-jet event in a proton-proton collision at the LHCI
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Candidate six-jet event recorded by the Atlas experiment in a 7 TeV
proton-proton collision at the LHC.
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About this course'

e QCD, and strong interaction physics in general, is a huge subject,
so no two courses on QCD are the same since they necessarily
reflect the choices made by the lecturer.

e My first choice is to devote ample time (three lectures) to build
the QCD Lagragian, much based on Chapter 10 of Griffiths. Here
a good understanding is important because QQCD lectures which
you may attend later (e.g. at the CERN summer school) often
start from the Lagrangian, without much further ado (— fig). Of
course there will be some overlap with PP-I but I prefer to tell the
full story instead of relying on what you presumably know already:.

e QCD calculations quickly become technically complicated so we
have to limit ourselves to some simple colour factor calculations
which, however, nicely explain why the colour force is attractive
for meson and baryon quark states and repulsive for others.

e Of course, asymptotic freedom is a crucial property of QCD and
we will devote a full lecture to the running coupling constant and
its implications. Here we will encounter ultraviolet singularities
which will be dealt with by a simple cut-oft regularisation.

e Infrared singularities are the subject of the another lecture where
we will explain how they are related to long-distance physics, as
opposed to short-distance perturbative QCD.

e The last two lectures are devoted to the structure of the proton,
the quark-parton model, and the so-called QCD improved quark-
parton model. This subject is not covered in Griffiths but exten-
sively treated in Halzen and Martin.
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First page of a QCD course at CERNI

Feynman rules of QCD

® Feynman rules follow from QCD Lagrangian

1 o -
L= _ZFfﬁFAﬂ T Z qa(lp - mQ)abe + Egaugefﬁxing

flavours

F(fﬁ is field strength tensor for spin-1 gluon field A%,
Fap = 00 A5 — 0p A% — gf "PC A AG

Capital indices A, B, C run over 8 colour degrees of freedom of the gluon field.
Third ‘non-Abelian’ term distinguishes QCD from QED, giving rise to triplet
and quartic gluon self-interactions and ultimately to asymptotic freedom.

® QCD coupling strength is o. = ¢%/47. Numbers f4B¢ (A, B,C =1,...,8) are
structure constants of the SU(3) colour group. Quark fields ¢, (a =1,2,3) are in
triplet colour representation, while gluon fields A2 are in adjoint representation.

® D is covariant derivative:

(Da)gy = Oabas +ig (t°AS),,
(Da)AB = aa‘sAB"‘ig(TcAg)AB

Flying start on the first page of the course ‘Introduction to QCD’ in the
CERN postdoc lecture series, given by Bryan Webber in October 2003.
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Symmetry in (particle) physics'

e [f the Lagrangian of the world would be fully known we could derive
the equations of motion from it, and the symmetries of nature and
the conservation laws would automatically follow.

e For instance the Maxwell Lagrangian yields, via the Maxwell equa-
tions, all the symmetries and conservation laws of electrodynamics.

e In subatomic physics the Lagrangians are not so obvious, and sym-
metry considerations provide essential clues to construct them.

e [t can be shown that an invariance of the Lagrangian under a
symmetry operation leads to a conserved quantity (Noether’s the-
orem). Thus, if a symmetry is found, the hunt is open for the
related conservation law, and if a conservation law is found, the
hunt is open for the related symmetry. For instance we know that
electric charge is conserved in all reactions of elementary particles,
but what symmetry is responsible for this charge conservation?
(The answer will be given in the next lecture.)

e As will become clear later, it turns out that discrete symmetries
lead to multiplicative conserved quantum numbers (e.g. reflec-
tion symmetry — parity conservation — multiplication of parities)
while continuous symmetries lead to additive conserved quantum
numbers (e.g. rotation invariance — angular momentum conser-
vation — addition of angular momentum quantum numbers).

e We will now use some elementary non-relativistic quantum me-
chanics to establish the relation between symmetries and constants
of motion.
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When is an observable conserved?'

e The expectation value of a quantum mechanical operator F’ is
(F) = (¢|F|¢)  with Hermitian conjugate (F)* = (¢|F|)

e The expectation value of an observable is a real number so that
the operator of an observable should be Hermitian

F=F' if (F) is observable

e Because energy is an observable the Hamiltonian H is Hermitian.
We have for the Schrodinger equation and its Hermitian conjugate

) O] P

S ) ad =S = i = (|
e This immediately leads to

O(F)

w:i<¢]HF—FH\¢>:0 & HFEF—-FH =0

An observable constant of motion F' is
Hermitian and commutes with the Hamiltonian

e When H is known, we can find observable constants of motion by
searching for Hermitian operators that commute with H.

e However, when H is not fully known, it is sufficient to establish
(or postulate) the invariance of H, or the Lagrangian, under a
symmetry operation, as we will now show.
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Symmetry operatorsl

e A transformation operator U transforms one wave function
into another

[¥") = Uly)
e Wave functions are always normalized so that we must have
(W) = WUTT) =1
e [t follows that the transformation operator must be unitary

UlU=0U"=1

e We call U a symmetry operator when [¢)') obeys the same
Schrodinger equation as |¢). Then, with U time independent,

AUy o) _
‘ ot N HU|¢> - ZW =v HU|¢> Twant H‘¢>
and thus

U'HU=H o [HU =0

A symmetry operator U is unitary and
commutes with the Hamiltonian

e Thus U commutes with the Hamiltonian, as does a constant of
motion. However, we cannot identify U with an observable since
it is unitary, and not necessarily Hermitian.
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Discrete symmetries I

e There is a class of unitary transformations with the property
U*=1
Multiplying from the right with UT and using UUT = I we find
that U = UT: the operator is both unitary and Hermitian.

e Thus if U is a symmetry of (commutes with) the Hamiltonian we
can directly conclude that it is an observable constant of motion.

e Examples of this the are the charge conjugation operator C' (ex-
change of particles and antiparticles) and the parity operator P
(reflection of the spatial coordinates).!?

e Remark: C' and P are not the only operators that are both unitary
and Hermitian. This is, for instance, also true for the Pauli spin
matrices, as is straight-forward to check.

(o (o= (10
o) G o0) T \o -1

e If |¢)) is an eigenvector of both Uy and Uj then
Upl) = Mipolt)  and  Uils|y) = UaUr|9) = Mide|y)

The quantum numbers of a discrete symmetry are multiplicative.

e In these lectures we are not so much interested in discrete trans-
formations (like C, P, T') but, instead, in continuous transfor-
mations. These transformations are unitary (by definition), but
not necessarily Hermitian. But the generator of a unitary con-
tinuous transformation is Hermitian, as we will see.

3The time reversal operator T also has T2 = I but it is antiunitary, and not unitary.
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Continuous transformations'

e There is a large class of continuous transformations that
depend on one or more continuous parameters, say «

[¥") = Ula)ly)

An example is the transformation induced by a rotation over an
angle a of the coordinate system (passive rotation), or of the wave
function (active rotation).

e Such transformations have the property that they can be written
as a succession of infinitesimal deviations from the identity

U(a) = lim (I+ EF) = exp(iaF)
n

n—o0

The factor ‘4" is a matter of definition but important (see below).
In the above, F is called the generator of U.!4

e Now if U is unitary we have, to first order in «,
U'U = (I —iaF")(I4+iaF)=1+ia(F —F) =1
so that F' = FT. In other words,

The generator of a unitary operator is Hermitian

e Now we also understand the factor ‘¢’ in the definition of a genera-
tor: without it the generator G = ¢F' of a unitary operator would
not be Hermitian but anti-Hermitian:

G=-G"

4 Exponentiation of an operator F should be interpreted as exp(iaF) = I +iaF + % (iaF)? + - - But watch

out, the familiar relation e4e? = eA1P is only true when A and B commute.
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Generators as conserved observables'

e We have seen that a symmetry operator U commutes with the
Hamiltonian so it remains to show that its generator will then also
commute with H. The proof is very simple:

e First, if U(«) is a symmetry operator then the infinitesimal trans-
formation U(e) will also be a symmetry operator. Expanding to
the first order in € obtains
\H,U|=[H,I +ieF| =[H,I|+ie|[H,F|=0 — [H,F]=0

0

I[f U is a unitary operator that commutes with the
Hamiltonian then its generator F'is a Hermitian
operator that also commutes with the Hamiltonian

e We now have the work plan to find the relation between a contin-
uous symmetry of H and the corresponding conserved observable:

1. Find the generator F' of the symmetry transformation U.
2. The expectation value of F'is a constant of motion
e Clearly a multiplication of continuous symmetry operators corre-
sponds to the addition of their generators in the exponent. The

conserved quantum numbers, which are related to F' and not to U,
are therefore additive.

e We will now proceed with the introduction of some concepts of
group theory which is the mathematical framework to system-
atically describe and classify symmetry operations.
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Exercise 2.1: I

Show that (consult a quantum mechanics book if necessary)

(a) [0.5] Invariance for translations in space leads to the conservation
of momentum.

(b) [0.5] Invariance for translations in time leads to the conservation
of energy.

(c) [0.5] Rotational invariance leads to the conservation of angular
momentum.
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Group theory I

e [t is clear that a combination of two symmetry operations—that
each leaves the system unchanged—is again a symmetry operation.
And there is of course the trivial symmetry operation, namely, ‘do
nothing’. Furthermore, we can assume that each symmetry oper-
ation can be undone. We say, in fact, that symmetry operations
form a group.

e What is a group? It is a set of elements {g;},

— with a composition law g; - g; = gi
— that is associative (g; - gj) ‘g = g; - (gj - k)
— with a unit element e such thate-g;, =g, -e = g;

— and with an inverse g; L such that ¢; - g; e g; Logi=e

e Examples:
The set {1,4, —1, —i} under multiplication (discrete, 4 elements)
The set of integers under addition (discrete, infinite # elements)
Rotations in 3 dimensions (continuous, 3 parameters)
Lorentz transformations (continuous, 6 parameters: which ones?)
e A group is called Abelian when the group operation is commu-

tative g; - g; = g; - gi (e.g. 2-dim rotations). Non-commutative
groups are called non-Abelian (e.g. 3-dim rotations).

e A systematic study of symmetries is provided by a branch of math-
ematics called group theory. We will not present group theory
in these lectures, but only a few basic concepts.!?

15 A nice summary of group theory can be found in A&H-II, Appendix M.
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Representation of a group'

e In these lectures, we will be concerned with groups of matrices.

e [t may be the case, of course, that the group ‘2s’ a set of matrices.
For instance, the group SO(2) of orthogonal 2 x 2 matrices with
determinant 1, that describe 2-dimensional rotations.

e But a matrix representation may also come from mapping each
element g; of some group to an n x n matrix M; (why must M be
square?), such that the multiplication structure is preserved

91 92 = g3 — My My = M;

This is called an n-dimensional representation of the group {g}.
Thus, SO(2) is defined by 2x 2 matrices, (the fundamental rep-
resentation) but it has also representations in higher dimensions.

e T'wo groups with the same multiplication structure are said to be
isomorphic (=) if the elements map one-to-one. If the mapping
is not one-to-one, they are called homomorphic (~).

e Exercise 2.2: [0.5] Show that

ce={( (029 )

e From an n and an m-dimensional representation we can always

construct an (n + m)-dimensional representation through

M
AJQan):: i
’ [ 0 M

m) ] =ndm

]

but this does not classify as a new representation. The relevant
representations are the so-called irreducible ones which cannot
be decomposed in block diagonal form. It is a (non-trivial) task of

group theory to find all the irreducible representations of a group.
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Lie groups I

e On page 2-10 we have encountered discrete groups (elements la-
belled by an index, or a set of indices) and continuous groups
where the elements are labelled by a set of continuous parameters
a = (a1, ag,. .., qy). Important groups of transformations U ()
are those which can be written as a succession of infinitesimal de-
viations from the identity transformation (see also page 2-7):

Ula)= lim [1+i(a/n) - T]" =explia - T)
n—0o0
Such a group is called a Lie group,'® and the matrices T' are
called the generators of the group.!” The number of generators
is equal to the number of parameters that label the group elements.

Example: Rotations are a Lie group but reflections are not since
these are not continuously connected to the identity:.

e There is a theorem which states that the commutator of two gen-
erators is always a linear combination of the generators

1, T;] = Z]j T (summation over k implied)

These commutation relations are called the algebra, and the
k
ij
the group. It can be shown that these structure constants fully

(complex) numbers f are called the structure constants of

characterise the multiplication structure of a Lie group.

e On page 2-7 we have shown that if U is unitary then 7T; = T;. In
other words, the generators of a unitary operator are Hermitian.

16The formal definition of a Lie group states first of all that the number of parameters is finite, and furthermore
that U(aq) - U(ae) = Ulag), with as an analytic function of oy and as.
"Discrete groups also have generators: e.g. repeated rotation over 27 /n generates the cyclic group Z,.
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The 2-state nucleon system'

e After the discovery of the neutron by Chadwick in 1932, the near
equality of its mass (939.5 MeV) to that of the proton (938.3 MeV)
suggested to Heisenberg that, as far as the strong interactions are
concerned, these are two nearly degenerate states of one particle:
the nucleon.

e This ‘isospin symmetry’ of the strong force is further supported
by, for instance, the observation of very similar energy levels in
mirror nuclei (the number of protons in one, is equal to number
of neutrons in the other, and wvice versa, like in 2N and 12C).

e In addition, apart from the p-n doublet, there are other particles
that are nearly degenerate in mass, like the pion triplet (~140 MeV)
and the quadruplet of A resonances (~1.23 GeV) — Fig. This
looks like the doublet, triplet and quadruplet structure of Spin—%,
spin-1 and Spil’l—% systems built from Spil’l—% states, and is thus
strongly suggestive of hadronic substructure.

e We know today that hadrons are built up from quarks and we can
explain isospin symmetry from the fact that the strong interaction
is insensitive to the quark flavour. The mass differences within the
nucleon, m and A multiplets are, after electromagnetic correction,
believed to be due to the difference in the u and d quark masses.

e The invariance for p to n transitions obeys the mathematics of
ordinary spin, hence the term ‘isospin’. The reason is that tran-
sitions in any 2-state quantum mechanical system are described
by the special unitary group SU(2), as will become clear next.
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1.2 LEVELS OF STRUCTURE: FROM ATOMS TO QUARKS
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Figure 1.10. Baryon energy levels: (a) doublets (IN); (b) quartets (A).
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Figure 1.11. Meson triplets.

2-14



Isospin symmetry'

e We work in a 2-dim Hilbert space spanned by the basis vectors'®

=) -0

The Hermitian conjugates are (p| = (1,0) and (n| = (0,1). An
arbitrary state is written as the linear combination

[¥) = alp) + 5w

Because ||? is the probability to find the system in a |p) state and
3|7 the same for the |n) state we must have, for any state [¢),

() = la + |8 =1

e We have seen already that a transformation [¢") = Uly) must
preserve the norm so that U must be unitary: UTU = 1.

e Taking determinants we find
det(UTU) = det(UT) det(U) = det(U)* det(U) =1
Therefore det(U) = €'® with ¢ some arbitrary phase factor.

e So we may set U = ¢V with det(V) = 1. Invariance for phase
shifts is called a U(1) invariance and leads to charge conservation,
as we will see later. The charge conserved in the p-n case here is
not electrical charge, but baryon number

A= (N, — Np) + (Ny — Ng)

e Putting U(1) invariance aside, we have to deal with unitary 2 x 2
matrices V' with unit determinant, that is, with the group SU(2).

18When we talk about quarks we will use the notation |u) and |d) instead.
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The group SU(Z)I

e The mathematics of SU(2) is well known from the treatment of
ordinary spin in quantum mechanics. A transformation can be
written as U = exp(ia - I) with the three generators I = 7/2
given by the Pauli matrices

(01 (0 —i (10
=1 0/ 27\ o) BT\ -1

These generators are clearly Hermitian (TZ-T = 7;), as they should

be, since U is unitary. It can be shown (Exercise 2.3) that, quite
in general, detlexp(A)] = exp|Tr(A)] so that the traces of the 7
vanish because the SU(2) transformations have unit determinant.

The generators of a unitary matrix group with unit
determinant are Hermitian and traceless

e By matrix multiplication you may check the commutation relations
i, I;] = i ejidy
with €;;;, the antisymmetric tensor (41 for cyclic permutations of
123 and —1 for cyclic permutations of 213, zero otherwise).

e SU(2) has one so-called Casimir operator that commutes with
all the generators, and is always some non-linear function of the
generators. For SU(2) this is the total isospin operator:

P=L+I+1

A state can then be a simultancous eigenstate!® of I? with eigen-

value i(i + 1), i = %,1,%,... and of I3 with eigenvalue m =

—i,...,+i. The eigenvalues label the state, like |¢) = |i, m).

9A Hermitian matrix has the property that it can always be diagonalised by a unitary transformation.
Hermitian matrices can be simultaneously diagonalised by a single transformation if they commute.
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Exercise 2.3: I

In this exercise we will review a few easy-to-prove properties of matrices
and of matrix transforms (also called similarity transforms)
defined by

A= SAS™,
where S is a non-singular transformation matrix. Such transforms
can come in very handy in a calculation because they allow you to

transform matrices to convenient forms, such as a transformation to
diagonal form which is used for the proof in (e) below.

(a) [0.1] Show that Tr(AB) = Tr(BA).

(b) [0.2] Show that a matrix transform preserves the algebra of a Lie
group. Representations that are related by similarity transforma-
tions are therefore called equivalent.

(c) [0.2] Show that a matrix transform preserves the product, deter-
minant and trace, that is,

(AB) = A'B’, det(A") =det(A) and Tr(A") = Tr(A).
What about Hermitian conjugation: (A’)' s (ATY.

(d) [0.2] Show that a matrix transform preserves the terms in a power
series, that is,

(A") = (A)" = (expA)' = exp(4).
(e) [0.3] Now show that
detlexp(A)] = exp[Tr(A)]

for all matrices A that can be brought into diagonal form.
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Exercise 2.4: I

(a) [0.5] Show that 7;7; = d;; + t€;j57,. Together with the fact that

the 7 are Hermitian, we thus have 7';[ =T, = 7‘[1.

(b) [0.5] Now show that (a-7)(b-T) =a-b+iT-(a x b) and, from
this, that (6 - 7)2 = |0|".

(¢) [0.5] Use the above, and the Taylor expansions of exp(), sin() and
cos(), to show that exp(i@ - T) = cos |@| + i(0 - T)sin |@|. Here 0
is the unit vector along 6.

(d) [0.25] Instead of |p) and |n) we will write |u) and |d) to reflect
isospin symmetry on the quark level. Verify that

Ifu) = 3u), I3|d) = —3]d)

and that the Casimir operator I? = I? + I3 + I3 is a multiple of
the unit operator, with

Pl =3,  If|d)=$d)
(e) [0.25] Define the step operators I, = I; i I5 and verify that

Lly=0, L=, L=, Lld)=0

We can now draw a, kind of trivial, weight diagram like

I
d ____f___> u
L @ - I3
1 1
5 T
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Composite states'

e The rules for addition of angular momenta from quantum mechan-
ics carry straight over to the addition of isospins. We will not derive
here the mathematics but will only indicate how it works.

e Addition of two states |i;, m1) and |is, mo), results in (27 + 1) X
(2i5 + 1) different states which can be classified according to the
eigenvalue label 4 of the Casimir operator I? which ranges from
|91 —i2| to i1 +12, and the eigenvalues m of the I3 operator that, for
each state 7, range from —z to +i. Here m = my + mo. Formally,
the combined state can be written as

‘7;7 m> - Z<i17 7;27 my, mQ‘ia m>’i17 m1>‘7;27 m2>

The Clebsch-Gordan coefficients (-|-) can be found in the Particle
Data Book — Fig. For a nucleon-nucleon system we get

‘]>]3> - ‘07 O> - (pn—np)/\/i

= |1, 1) = pp
= [1, 0) = (pn+np)/Vv2
= [1,—1) = nn

e Exercise 2.5: [1.0] Use exchange symmetry arguments or the

step operators I = 1 j(cl)—i—l f) to justify the decomposition above.?”

Hint: See H&M Exercise 2.1.

e This splitting of the combination of two 2-component states into
a singlet and a triplet state is often written as 2 ® 2 = 1 ¢ 3.
The significance of such a decomposition is that under a SU(2)
transformation the substates of the 1 and 3 representation will
transform among themselves.

20In full, the step operator is defined by Ii|i,m) = \/i(i + 1) — m(m £ 1) |i,m £ 1).
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36. CLEBSCH-GORDAN CO
AN

Note: A square-root sign 1s to be understood over every cos

1 J J
1/2x1/2 +1] 1 3 Notation: v oM
[+172+172] 1] ©

+1/2 -1/211/2 1/2) 1 m, my
-1/2 +1/2|1/2-1/2}-1

[-172-172] 1 m,; my | Coefficients

1x1/2| 3

+1 +1/2 1RW1/2 4172
w1172 173 273] 372 122 8x

0+172| 273 -173|-172-172 , 1 [i
0-172[ 273 13| 32| Y2 =7\ 35 ©

-1 +1/2| 1/3-2/3}-3/2

3 -1-172| 1 y
2x1 +3] 3 2 I 3/2x1 +§‘
+2+1 1142 +2 372 11

+2 ojizz 23] 3 2 1 ~3/2
+1 +1|12/3-1/73] +1 +1  +1 +1/2 -

+2-1(1/15 /3 3/5
+1 0|8/15 1/6-3/10} 3 2 1
0+1| 2/S-1/2 1/10| O 0 0

+1-1|(1/5 172 3/10
0 0|3/5 0 -2/5

2
1x1 2 2 1
+1+#11 1141 A

+1 0O)1/2 1/2) 2 1 ©
o+«<1n/2-1/2 0 0 O -1 +1|1/5 -1/2 310

+1-1|1/6 1/2 1/3 0-1
I.-. ) P N I. Al

[

Clebsch-Gordan coefficients from the Particle Data Book. Given in the tables is the square of
the coefficients, so you should take the square root.
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SU(2); for antiquarks I

e If |¢)) is a particle state then the complex conjugate is identified
with the corresponding antiparticle state:?! [1)) = |¢)*. An anti-
quark state therefore transforms in the complex conjugate repre-
sentation of SU(2), denoted by 2* or 2.

[0) = U[¢)) = exp(—ia - 7°/2) [)) = explioe - 7/2) |1))

The two representations are thus related by 7 = —7*.

e To combine a quark with an antiquark we could calculate from
scratch the Clebsch-Gordan coefficients of 2 ® 2 but we can save
us the effort by using a trick that, by the way, only works for SU(2).

e Just replace ii by —d and d by 1 in |¢), that is, define

w=cii=(3 %) (1) = (%)

It is now straight-forward to show (Exercise 2.7) that |¢)) trans-
forms as a quark state [¢)') = U|y) so that we just can use the
Clebsch-Gordans of the 2 representation.??

e Exercise 2.6: [ x | Take the |qq) states given on page 2-19 (sub-
stitute u for p and d for n), to arrive at |qq) meson states that

properly transform under SU(2):

w =10, 0) = (ui+dd)/v?2
=1, 1) = —ud
o =11, 0) = (ui—dd)/v2
™ = |l,—-1) = du

21We use here [1)) to indicate an antiparticle; please do not confuse it with a conjugate Dirac spinor 1.
21n fact, for SU(2) the generators 7; and 7; are related by the similarity transformation 7; = C~17;C so that
they are equivalent, that is, they are not regarded as different representations, see also Exercise 2.3.
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Exercise 2.7: I

(a) [1.0] Use isospin invariance to show that the ratio

o(pp = 7td)

=2
o(pn — 70d)

Here the deuteron has isospin I = 0 and the pion isospin [ = 1.
You may assume that the cross section is

o ~ |amplitude|* =Y~ [(I', I A|1, I)|" = A " [{I', |, L) [
1 I

Hint: See H&M Exercise 2.3.

(b) [0.2] Show that the generators T are a representation of SU(2).
(c) [ x] Verify that I3(u) = —1 and I3(d) = +3.

(d) [0.3] Show that
o =cii= (7 ) (

transforms as a particle state.

)

ol cl
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The group SU(3)¢ II

e To accommodate strange quarks, our space has to be extended

u
from (3) to d

S

e Like in the (iso)spin case we can write a unitary transformation as
[9) = Ulp) = explia - A/2) [¢)) = exp(ia - T) [¢))

but the generators A are now Hermitian 3 X 3 matrices. A complex
3 X 3 matrix is characterised by 18 numbers but only 8 are inde-
pendent because the matrices are Hermitian, and traceless since
det U = 1. Thus there are 8 independent generators.

e The 8 Gell-Mann matrices (with Pauli matrices inside!) are

0 1 0 0 —¢ 0 1 0 0 0 0 1

1 0 0 0 0 0 —1 0 0 0 O

0 0 O 0 0 0 0 0 1 0 0
X X X3 X

0 0 —2 0 0 0 0 0 1 0 0

: 1

0 0 0 0 1 0 0 —2 7 01 0

t 0 0 1 0 0 ¢« 0 0 0 =2
X5 X X7 Xs

e The algebra of the SU(3) group is given by the commutation rela-

tion of the matrices T, = \,/2:
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The group SU(3); III

e The structure constants f{; are antisymmetric in the exchange of
two indices (see Exercise 2.8); the non-zero ones are

f132:1
f174:f156:f264:f275:f354:f§7:%

f§5 — f687 - %\/g

e It is seen that A3 and Ag are simultanecously diagonal so that
we can label quark states by the simultaneous eigenvalues of the
isospin operator T3 = A3/2 and the hypercharge operator
Y = 2T3/+v/3 = Ag/+/3. This gives rise to following weight di-
agram for the quark states (see Exercise 2.8 for antiquarks):

Y
A
1 .
*(/\1:|:7,/\2)
11 d i u
%_3
%(/\6 + l/\7) %(/\4 + Z/\5)
_2 1
3
S
| | | - I3
1 1
—5 0 +35

e As mentioned on page 2-16 there is one Casimir operator for SU(2),
but there are two Casimirs for SU(3). By definition, these commute
with all the A;. One of them is is the total ‘isospin’ operator Y \?

while the other is a rather complicated trilinear function of the A,
which can be found in A&H-II, Appendix M.5.
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Exercise 2.8: I

(a) [0.5] The A matrices are normalised such that Tr(AA\y) = 204.
Check this for a few matrices A, and Ap.

(b) [0.5] Show that Tr(A[As As]) = 4ifS,. By changing the order
of the A, and using Tr(AB) = Tr(BA), show that the structure
constants f7, are antisymmetric in the exchange of two indices.

(c) [0.5] Plot the eigenvalues of the isospin and hypercharge operator
for the u, d and s quarks in an I3-Y diagram. Check the Gell-Mann
Nishijima formula Q) = I3+ %Y and also that Y = S+ B. Repeat
the exercise for antiquarks in the 3 representation.

(d) [0.5] Write down the matrices for the step operators 1(A; & i)s),
2(AyiX5) and £(Ag£4A7) and justify their position in the weight
diagram on page 2-24.
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Exercise 2.9: The adjoint representation of SU(3)

e We have encountered the algebra of the groups SU(2) and SU(3)
in terms of the two-dimensional Pauli matrices and the three-
dimensional Gell-Mann matrices, respectively. These matrices are,
together with the 2- or 3-dim vectors on which they act, called the
fundamental representation of SU(2) or SU(3).

e However, the structure constants of a Lie group automatically gen-
erate a representation with a dimension that is equal to the number
of generators, e.g. 8 x 8 for SU(3). This is called the adjoint rep-
resentation. Below we let you find out how this works.

(a) [ x ] Verify the Jacobi identity for matrices A, B and C":
[A, B],C]+[[B,C], A+ [[C, A], B] = 0

(b) [ x ] Now show that in terms of the SU(3) structure constants the
Jacobi identity reads

S Sk T Sk i T S =0

- _ sk
(c) [x] Verify that fi = —fF

(d) [1.0] Define the 8 x 8 matrices C; with elements
(C)} =~ 1

J ]

and show that the C; obey the SU(3) algebra
[CZH Cj] - fka

In this way, we have constructed the adjoint representation of SU(3)
from its structure constants. We will see later that coloured quarks are
described by the fundamental representation of SU(3), of dimension 3,
and gluons by the adjoint representation, of dimension 8.
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The Eightfold Way I

e Because our interest in SU(3) lies in the fact that it is an exact
(colour) symmetry of QCD, we will not present here how SU(3)s is
used to classify the hadrons (the Eightfold Way). This is treated
in great detail in H&M Chapter 2, and also in Griffiths Chapter 5.

e We just mention that the mesons |gg) can be grouped into octets
and singlets (3 ® 3 = 8 @ 1) and baryons |gqq) can be grouped
into decuplets, octets and singlets (3®3®3 =108 ® 8D 1).

e Nevertheless, let us have a look at the spin 3/2 baryon decuplet,
because it provides us with an argument to introduce the colour
quantum number.
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The need for a colour quantum number'

S
A
A~ A0 AT ATt
0 -T- [ J [ ] [ ] [ ]
ddd udd uud uuu
Y- »*0 pIknn
—1 -+ [ ] (] [ J
dds uds uus
ok E*O
—2 -1 [ [ ]
dss uss
O-
-3 + ®
SSs
1 1 1 — 5
3 3
3 —3 +3 T3

e In this spin 3/2 baryon decuplet, the flavour wave functions at the
corners are obviously symmetric under the exchange of two quarks.
Although this is not apparent from the labels, all wave functions of
the decuplet are symmetric, as you will discover in Exercise 2.10.

e But now we have a problem: the total wave function

19 — 7#Space([/ = O) X wspin(TTT) X ¢ﬂavour(QIQZQB)

is symmetric under the exchange of two quarks, while it should be
anti-symmetric, since baryons are fermions (half-integer spin).

e The solution is to assign a ‘colour’ quantum number (r, g, b) to each
quark so that the quarks can be distinguished by their colour, pro-
vided, of course, that we do not allow two quarks in a baryon to
have the same colour. Thus the three colours are always present
and we say that baryons are ‘white’, or colour singlets (= invari-
ant under SU(3).. transformations). By anti-symmetrising the wave
function in colour space, over-all anti-symmetry is established.
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Exercise 2.10: I

(a) [0.5] Use the step operators defined in the weight diagram on
page 2-24 (and also in Exercise 2.8d) to generate all quark states of
the baryon decuplet, starting from one of the corner states (ddd),
(uuu) or (sss). You will not obtain the correct normalisation in
this way, but that is not so important here (you can always nor-
malise the wave functions afterwards, if you wish). The point of
this exercise is to note that all wave functions that you obtain by
stepping through the diagram are symmetric in the exchange of
two quarks.

(b) [0.5] Construct a wave function teolour(c1, €2, ¢3) that is fully anti-
symmetric in the exchange of two colours.
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Experimental evidence for colour II

e The cross section for the left diagram is given in PP-I section 8.3:

Ao
3S

Here particle masses are neglected and if we do the same for the
right diagram, we obtain the cross section for qg production simply
by putting the correct charge at the vqq vertex

+

olete” —» p'p") =

2

dra’es

3S

_|_

0'(6 e — (; q‘l) =

e Because quarks fragment with 100% probability into hadrons, we
can sum over all available quark species to get the observable

o(e"e” — hadrons) = N, Z i

e Here the sum runs over all quark flavours that can be produced at a
given energy /s, and N, counts the number of coloured duplicates
of each quark. Thus N, = 3 for the quark colours ¢, g, and g



Experimental evidence for colour III
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1 resonances just below or near the flavor thresholds.)
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e This plot shows, as a function of y/s, measurements of the ratio

o(ete™ — hadrons) 5 5
R - = NC . = 3 .
e ) eI

e The data are consistent with N. = 3 and certainly exclude N, = 1.

e Remark: There is quite some structure in this plot, in particular
around the thresholds of heavy quark production where gq pairs
are produced with little relative momentum so that they can form
bound states, like the J/v family (cc) at about 3 GeV, and the T
family (bb) at about 10 GeV.
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Electric charge conservation'

e In subatomic physics it is customary to express electric charge in
units of the elementary charge e = 1.6 x 107 Coulomb. The
electron then has charge —1, the positron +1, the up quark —|—§,

1

the down quark —z, etc., see the table on Page 1-5.

e As far as we know, total electric charge is the same in the ini-

tial and final state of any elementary reaction, and this charge
conservation is experimentally verified to great accuracy.

e For instance electron decay
e — Y Ve

is allowed by all known conservation laws but is forbidden by charge
conservation and it indeed has never been observed. In fact, the
life time of the electron is measured to be larger than 5x 10?0 vears.

e We have seen that conserved quantities are related to symmetries
in the Hamiltonian, or the Lagrangian, so the question is now which
symmetry causes this charge conservation. Charge is obviously an
additive conserved quantity so that the symmetry transformation
must be continuous.

e The answer, as we will see, is that a so-called gauge symmetry
is responsible for the charge conservation. Gauge transformations
enter when interactions are described in terms of potentials, instead
of forces. A well known example is from classical electrodynamics
where we can transform the scalar and vector potentials in such a
way that the E and B fields are unaffected.
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Gauge transformation in electrodynamics'

e [n electrodynamics the E and B fields are related to the scalar
and vector potentials V' and A by

E=-0A/0t—VV B=VxA

e A gauge transformation leaves the E and B fields invariant
V=V —-0ANot A=A+ VA
Here A(a,t) is an arbitrary function of @ and ¢.

e 'To this gauge transformation corresponds a unitary operator that
transforms the wave function of a particle in an electromagnetic
field. We can write this transformation as (see page 2-7)

[¥)" = exp(ieG)[)

where the generator G is to be identified later. Since A is an
arbitrary function of & and ¢ we require that € is also an arbitrary
function of  and t. Because € can vary in space-time, we speak
of a local gauge transformation.

e Now consider the Schrodinger equation of a particle in a static
electric field before and after our gauge transformation

2 (—Z;ﬂzv) [¥)

ot 2
o) [V AN
o T (—%‘qu) |¥)

Here ¢ is the charge of the particle.

e Because of gauge invariance, both equations should apply and
this fixes the generator GG, as we will now show.
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From local gauge invariance to charge conservation'

e Let us work out the transformed Schrodinger equation (for clarity
we write ¢ instead of |¢)). To simplify the mathematics we will
take € to be a function of ¢ only, instead of & and ¢:

Z% (eieGlp) = <—2V—2+C_IV—qg§) G
e <ZG¢—€+%—1§> _ G <—%+QV>¢—ei€Gq¢%
—6iEGG¢%+Z‘6iEGZ_Qf _ ieieG%_zf _ eieGq¢%
_eieGG¢% _ leGq¢_
Gy = qv

e We find that G is the charge operator Q! This is due to the
cancellations that occur because € is local (i.e. a function of ¢ in
our derivation); all this would not work if € would be a constant.

e Clearly if H and () commute, then it follows that the expectation
value (@) is conserved, in other words, charge is conserved.

e [t is straight-forward to extend the derivation above to local trans-
formations that depend on both @ and ¢, instead of on ¢ alone, but
we will not do this here since it brings a lot of additional algebra
and is not very illuminating.

e The family of phase transformations U(a) = €', with real «,
forms a unitary Abelian group called U(1). Phase invariance is
therefore also known as U(1) invariance.
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Lagrangian formalism'

e Gauge theories, or field theories in general, are usually defined
in terms of a Lagrangian. This is a well-known concept from
classical mechanics; a brief summary can be found on page 0-7.

e In classical mechanics the Lagrangian is the difference between the
kinetic and potential energy and is written as the function L(q, q)
of a set of NV coordinates ¢; and velocities ¢; that fully describe
the system at any instant ¢. IV is called the number of degrees of
freedom of the system.

e The action is defined by
12
S[path] = / dt L(q, q)
i1

where the integral is taken along some path from q(¢1) to g(t2).

e The principle of least action states that the system will evolve
along the path that minimises the action. The equations of motion
then follow from the Euler-Lagrange equations

d [OL OL
— (=) == =1,...,N
dt(@qz) 6?qz ! ! 7 ’

e Fxample: Mass m in a central potential V' (r)

L(r,7) =imr*=V(r) — mi=-VV(r)

e Example: Harmonic oscillator

L(z, &) = tmi® — 1ka® — mi=—kx
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Infinite number of degrees of freedom

e Consider small transverse vibrations of a system of N masses m
connected by springs.

q

X

The state of this system is described by the vertical deviations
q1(t), ..., qn(t) from the equilibrium position.

e We can let N — oo in such a way that we obtain a vibrating
string that can be described by a function q(z, t).

e Such a function is called a field, a displacement field in this case.

e For our field, the Lagrangian is a function of ¢, ¢, and the gradient
dg/dx, and is written as the integral of a Lagrangian density

L(q,q,dq/dx) = /d«% L(q,q,dg/dx)

Generalising to 3 dimensions, the action integral reads
t2
Sipatt] = [t [ &% Lig.q.Va)
11
e In 4-vector notation this gives for the action integral of a field ¢(z#)
Slpath] = /d4:c L(},0,0)

e In this notation the Euler-Lagrange equation reads

oL oL
O (8 <aﬂ¢>> “ 96"
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Exercise 3.1: I

The Lagrangian of a vibrating string is:
L= (0¢/0t)* — (0¢/0x)*.

(a) [0.25] Write this Lagrangian in 4-vector notation.
(b) [0.25] Now use the Euler-Lagrange equation

oL oL
O (8 @qﬁ)) “op "

to derive the wave equation of a vibrating string.

Remark: When you have to derive a field equation from a Lagrangian
but do not feel confident in manipulating upper and lower Lorentz
indices to keep track of the signs, you can always resort to writing it
all out into the components (¢, z,y, z). This is elaborate, but it works.

Here is the conversion of the derivative indices

(807 817 827 83) — (807 _ala _827 _83) - (ata 8:(:7 aya az)

And here is that of four-vector fields A, if present
(A()? A17 A27 A3) - (A07 _A17 _A27 _A3) — (At7 Al‘) Aya Az)

You may find it useful to also make conversion tables for F'*" and F),,.
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A few Lagrangians I

e Here are a few well-known Lagrangians that yield—via the E-L
equations—several field equations of interest.

e Klein-Gordon Lagrangian for a real scalar field (spin 0).

2

L= 30,0)(0"0) — m*6* = 0,06 +m%6 =0

e KG for a complex scalar field (take ¢ and ¢* as independent).

0,0'p +m?p =0

L= (0:6)(0"0) =m0’ {8aﬂ¢*+m2¢*o
M _

e Dirac Lagrangian for a spin % spinor field (¢ and v independent).

B B AP — =0
L=y O —mipyp = { EZYW@Z + :z))% =0

e Proca Lagrangian for a vector field (spin 1).

L= —4F")(F) +3mP A7 A, o QP +mPAY =0

1
1
where F'H = gt AY — OV A*.

For massless fields we recover the Maxwell equations in empty
space (no sources or currents)

0, F" = .
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Exercise 3.2: I

(a) [1.0] Derive the field equations from the KG, complex and Dirac
Lagrangians given on page 3-9.

(b) [1.0] The Proca Lagrangian is
L=—-YF")(F,)+im°A"A,
The field tensor is defined by F* = 9FAY — 9" AV,

e Show that

oL
—— = — (A" — 0"A¥) = —F"
0(0,A,) ( )
Hint: Work this out for two components, (ux = 0, = 1) and
(u = 1,v = 2), for instance, and then generalise to the result

above.”> Remember that 0" = (9;, —V) and 9, = (9y, +V).

e Show that
oL

0A,

e Now write down the field equation.

— m2AY

(c) [0.5] The Maxwell Lagrangian is
L=—1iF"E,, —j'A,

e Show that the Euler-Lagrangian equation leads to the Maxwell
equations (see page 0-6 for the Maxwell equations in 4-vector
notation):

0, F = "

e Show that the current is conserved: 97" = 0.

Z3For a shorter (but more tricky) derivation see H&M, comment on Exercise 14.3 and 14.4, page 374.
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Global phase invariance of the Dirac Lagrangian'

e The Dirac Lagrangian i@v”@uw — man) is manifestly invariant
under a global phase change 9’ = €¢/® ) and El — e,

e According to Noether’s theorem this implies the existence of a
conserved quantity. To find out what this is, consider the infinites-
imal transformation

Y =(1+ia)Y)y — 0 =+iae
U =01—iap — 6=—iay
e The variation in L is
0L =57 0 + gy 00,0 + o 5¢+8M5auw
~ [ ¢+aa¢au¢ ¢ 3a¢au¢}

:Z&[(gi uaaw)w+(“aa¢)¢+aa¢auw_ }

Now the first term in brackets is zero (Euler-Lagrange) and the
next two terms combine into

(uaa¢)¢+ag£¢a¢ Oy (aaz/;w)

The same is true for the 1 terms so that we obtain

0L =ia 0, (c‘?c%w Y = m) O (V') =

Iwant

e Phase invariance leads to (electric) current conservation!

D" =0 with j"= gy (q is the electric charge)
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Local charge conservation'

e We have seen that global phase invariance leads to the continuity
equation d,j" = 0 which reads in 3-vector notation

% _
ot

e The meaning of this continuity equation becomes clear after inte-

__§7j

gration over a volume V

dQ d
— = — dV = — ) dV = — ) -1 d
i dt/vpV /VV] V /SJnS

which tells us that the change of charge in some volume should be
accounted for by the net flow of charge in or out of that volume.
However, we can make this volume as small as we please because
we know that charge is really locally conserved. Indeed, as we
have already mentioned on page 3-3, the decay

e — Ve

has never been observed since it violates charge conservation. The
electron is a point charge, so we cannot get more local than this!

e [ocal charge conservation suggests that the Lagrangian should not
only be invariant under global phase transformations but also un-
der local ones:

ZD/ _ eia(x) @b

e On Page 3-4 we have already investigated local phase invariance
of the Schrodinger equation of a particle in a static electric field,
but let us now investigate what happens when this local invariance
is imposed on the Dirac Lagrangian.
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Local phase invariance'

e Take the Dirac Lagrangian
L= Z‘E'yuaﬂp - maw
and consider a local transformation
Y (z) = e ()

where we have introduced a strength parameter g. (the electro-
magnetic coupling constant).

e The second term in L is clearly invariant but not the first term.
This is because 0,4 depends on the infinitesimal neighbourhood of
x where, by construction, ¢ transforms differently than at x itself.

e This effect is seen in
o = aue—ige%p = ¢ 19e0 10, — 1g9e(0,0) ] Y # e tgec 0,

e To restore local gauge invariance we can construct a covariant
derivative which has the desired transformation property

Dyp = Dy = e %" Dy

Iwant

e We can get this by introducing a gauge field A" such that
Db = (0, + 1geAu) .
e Indeed, provided that A, transforms as
A=A, + 0,
we find that, as you can easily check,
D) = (OptigeA;,) €% i = €% (O+igeAy) b = €% Dyih

Exercise 3.3: [ x | Well, please check it.
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Locally invariant Dirac Lagrangian'

e S0 we can now propose, as a first step, the Lagrangian

L =iy Dyp — miptp = iy Opp — m) — ge(1)7")) A,y

free term interaction term

which is invariant under local phase transformations and has ac-
quired an interaction term j# A, in addition to the free Lagrangian.

e We have a free term for the Dirac field, which suggests that we
should add a free term (Proca Lagrangian) for the gauge field A,

L=—YF")(F,)+1im?A"A,

e Exercise 3.4: [0.5] Check that the first term is invariant under
the gauge transformation A:L = A, +0,0 but not the second term.

e To maintain gauge invariance we are thus forced to set m = 0 and
consider only a massless gauge field which, of course, turns out to
be the electromagnetic (photon) field.

e We have, in fact, found here a restriction that also applies to
the SU(2) and SU(3) gauge invariant Lagrangians that we will
consider later on:

To maintain gauge invariance, the gauge field
must be massless
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The Lagrangian of QEDI

e We now can write-down the QED Lagrangian describing the inter-
action of Dirac particles with the electromagnetic field

Loep = (i) —m)p — 1(F")(Fy)
= E(Z@ - m)¢ — ge(E/VMw)AM - i(Fuy)(F;w)

In the expression above, we have introduced the usual shorthands
@ =0, = v,0" and D = +'D,, = ~,D".

e Note that the last two terms in the QED Lagrangian correspond
to Maxwell Lagrangian

EMaxwell — _iF/WFw/ - j'uA,u
e This Lagrangian leads to the Maxwell equations (see Exercise 3.2)
O, F" = 3"

with j# the Dirac current go(1y"1)).
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From Lagrangian to Feynman rules'

e The Lagrangians we have thus far considered may describe clas-
sical as well as quantum fields. Field quantisation is the realm of
quantum field theory which is outside the scope of these lec-
tures. In QF'T, particles emerge as quanta of the associated fields;
photons are then the quanta of the electromagnetic field A*, lep-
tons and quarks are the quanta of the Dirac field v, and gluons
are the quanta of an SU(3). gauge field, as we will see. Field quan-
tisation does not require a modification of the Lagrangian or the
field equations, which stay formally the same.

e To each Lagrangian corresponds a particular set of Feynman
rules. The derivation of these rules is part of QFT and beyond
the scope of these lectures. We just mention at this point that the
QED Lagrangian contains two types of terms, as we have seen: free
terms for the participating fields, and interaction terms that were
generated through local gauge invariance. In general, we have the
following correspondence:

Free Lagrangian — propagator

Interaction term — vertex factor

e For the Feynman rules of QED, you can have a look at PP-I sec-
tion 8, Griffiths section 7.5 and appendix D, or H&M section 6.17
(reproduced on the next page).
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Feynman rules for QEDI

TABLE 6.2
Feynman Rules for —iOM

Multiplicative
Factor

e External Lines / / ( / / )
Spin 0 boson (or antiboson) 1
Spin § fermion (in, out) / / U, u
antifermion (in, out) / / v, v
Spin 1 photon (in, out) r‘f / €, Ep

® Internal Lines— Propagators (need + ie prescription)

Spin 0 boson —
p?— m?
Spin } fermion . ° i(p+m)
p> - m?
Massive spin 1 boson ———————— — ~i(8w = nP.
p.'! - ‘M.‘
Massless spin 1 photon eANANANAAANAA =g,
(Feynman gauge) p?
e Vertex Factors P P
Photon—spin 0 (charge —e) ie(p + p)*
Photon—spin  (charge - ¢) iey"

Loops: [d*k/(2m)* over loop momentum; include — 1 if fermion loop and take the trace of

associated y-matrices

Identical Fermions: —1 between diagrams which differ only in e "« e~ or initial e” «

final e*
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A hypothetical 2-component Dirac ﬁeld'

e Consider two fields 7); and v that obey the Dirac equations
(i@ —mi)1 =0 and (i@ —ma) s =0
e The total Lagrangian is then simply the sum
L= ?1(1@ - mlﬁ@ + \@2(1@ - m2)¢%

L1 Lo

e We introduce the compact notation

L wl AR VA o mi 0
lb - (¢2) ) ¢ - (¢17¢2)7 M = ( 0 m2)

and set m; = my so that M = m/, and write

L =i — m)y

but we have to remember that ¢ and 1 are now 2-component

objects, each component being itself a 4-component spinor.?*

e We immediately see that £ is invariant under a global unitary

transformation ¢’ = U1) in our 2-dimensional space because

G = U IUY = P, and P = pUTUH = g

Note that for m; # ms the term ¥ M1 would not be invariant

because then UTMU # MU'U.

e We will now follow the original idea of Yang and Mills (1954),
and investigate what happens if this global invariance for unitary

transformations is made local.

24The notation @4 should here be understood as (gzl)
2
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Yang-Mills theory'

e The Yang-Mills theory describes pairs of Spin—% particles of equal
mass, and Yang and Mills originally had the proton and neutron
in mind as such a pair. A problem, however, is that the quanta
of the Yang-Mills field must be massless in order to maintain
gauge invariance (we have seen this already for the photon field on
page 3-14). The massless quanta should have long-range effects,
like the photon, and for this reason the theory was abandoned as

a candidate theory of the strong interaction, which is short-range.

However, the Yang-Mills theory is still important because it serves
as a prototype of non-Abelian gauge theories, that is, the-
ories for which the generators of the underlying symmetry group
do not commute.

Indeed, like SU(3) is a generalisation of SU(2), we will see that
QCD is a generalisation of Yang-Mills.

So we will first present the nuts and bolts of Yang-Mills as an
important step towards building the QCD Lagrangian. We may
summarise this in the road map below where we will follow, of
course, the branch leading to QCD.

e '™ = U(1) x SU(2)

(

U(l) — QED

U(1)xSU(2) 4 — Electroweak theory

— SUB3) — QCD

SU(2) — Yang-Mills {

\
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Recap of SU(2)I

e We will use several SU(2) formula which were presented earlier in
these lectures, or derived in exercises. Here is a summary:

e Unitary SU(2) matrix U = exp(ia- 7/2) with U'U = UU' = 1

e Here a = (a1, an, v3) and 7 = (71, 7o, 73) are the Pauli matrices:

0y (0 (10
= 1 0) 2T\ o) BT\ o1

T -1
T =T =T
Tr(r;) = 0
TiTj = 5ij+€z‘jk7_k

(@a-T)(b-T) = a-b+it-(axb)
exp(i@ - 7) = cos |0 +i(6 - T)sin |6

e Commutation relations for T' = 7/2: [T}, T;] = i€ 1y
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Local SU(2) invariance'

e We want to make the Lagrangian

) wd G-

invariant under local SU(2) transformations

L =0(id —m)p with w—<

U(z) = exp[—igy T - ()]
Here gy is some strength parameter (coupling constant).

e As in the U(1) case, we replace 0, by a covariant derivative D,
and require that the Lagrangian is invariant:

L'=pU D —m)Uy = p(P—m)p =L,
which is the case if UTD;LU =D,,or DLU=UD,.
e In analogy with the U(1) case we set
D,=0,+igswT-A,
which introduces three gauge fields A, = [(A1),, (A2),, (As3),].

e The transformation property of A we find from the requirement
DU =UD,:

(0 +igwT - AUty = U(0, +igeT - Ayt

Iwant

Exercise 4.1: [1.0] Show that this gives the transformation rule:

A =U(r- A)U™ + gi (8,0)U"!
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Exercise 4.2: I

(a) [0.4] The transformation rule for the gauge fields is

A =U(r- AU+ gi (0,U) U,

Expand to first order U ~ 1 — igy, T - @ and show that the trans-
formation rule can be approximated by

T -A, =T A, +igy[T Ay, T -a]+7-0,x

(b) [0.4] Use the expression for (@ - 7)(b - 7) on page 4-5 to evaluate
the commutator

T-A,, T -of]=-2iT(ax x A))

(¢) [0.2] Now substitute the commutator and multiply with 7! to get

A~ A, + 0+ 29 (ax Ay
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The SU(2) invariant Lagrangian'

e Substituting D, = 0, +igw T - A,,, we get for our SU(2) invariant
Lagrangian

L =P~ m)p = 9 — m)y — (g " 70) - A,

e \

TV
free term interaction term

e But we still have to add a free term for the gauge fields A,
Lirce = _i [(Fl)W(Fl)/w + (FQ)W(F2)W + (FB)W(FB)W]

_ _ 1l
= 4F FW

e Now we have to look for a definition of F'* that makes Liee 1n-
variant under the (infinitesimal) gauge transformation
A~ A, + 0+ 2 (ax Ay

It can be shown (elaborate, but straight forward algebra) that the
sought-after gauge field tensor is

F" = 9" A” — 9" A" — 2g,, (A" x AY)

e The SU(2) invariant Lagrangian is now®

Lym = E(Z@ —m)y — %LF/W - F — (9w @7“7@5) - Ay
e Note that the last two terms are like a Maxwell Lagrangian

L=—1F".F, —j" A,

but now with three Dirac currents j* = gy ¥y*11 and with three
gauge fields A,,.

ZHere we have talked only about infinitesimal gauge transformations but it can be shown that £ is also
invariant for finite transformations.
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Global SU(3). invariance'

e We have seen on page 2-28 the need to introduce the quark colour
quantum number and, on page 2-31, how this shows up experimen-
tally in the ratio R = o(ete™ — hadrons) /o(eTe™ — putu™).

e So we have now three Spin—% Dirac fields

("
¢ — ¢g and E — (ara Ega Eb)
U
e The free Lagrangian is, again,
L =(if —my

but we have to remember that 1) and 1) represent 3-component
objects, with colour index (r, g, b), and that each component is by

itself a 4-component Dirac spinor.?0

e This Lagrangian is manifestly invariant under U(3) = U(1)xSU(3)
global transformations. The U(1) phase invariance was already
explored so we only investigate here SU(3) invariance

W =U and o = U!

e To make £ invariant under local SU(3) transformations is now
a relatively easy task since we just can replace the 2 x 2 SU(2)
matrices in the Yang-Mills theory by 3 x 3 SU(3) matrices.

26We assume here that quarks of all flavours are identical by having the same mass. This is not true, of
course, and we should introduce a flavour index f = (d,u,s,c,b,t), and different masses my. We will not do
that here to keep the notation simple.
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Local SU(3). invariance'

e We want to make the Lagrangian invariant under local SU(3) trans-
formations (gs is the strong coupling constant)

Ulx) = explig A - ()]

Here we have eight angles a = (o, ..., as) and the eight Gell-
Mann matrices A = (A1, ..., Ag) that are given on page 2-23.

e We can now simply repeat the steps made in the Yang-Mills theory
and define the covariant derivative

D,=0,+igsA- A,
where we have now 8 gauge fields A = (Ay, ..., As).
e For infinitesimal transformations, the gauge fields transform as
A~ A, + 0+ 29 (ax A
but here we have to use the general expression for the cross product
(@ xb); = fijra;by (summation over j and k implied)
with fj;; the structure constants of SU(3), see page 2-23.%7

e The gauge field tensor is given by
F'" =0'A” — 0" AM — 2g5(AF x AY)
where we have to take the SU(3) cross product for the last term.

e Now we can write down the Lagrangian of QCD.

2TYou may check that for 3-vectors (a x b); = €ijk Qj by.
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The QCD Lagrangian'

e The QCD Lagrangian is

Laocp = (i@ —m)p — LF"™ - F,, — (g 0" M) - A, + - -

e We have now eight colour fields A, (gluon fields) and eight colour
currents 3" = g5 Yy* A that act as sources for the colour fields,
like the electric current is the source for the electromagnetic field.

e In the first term we recognise the free Dirac Lagrangian, just like
in QED. It will give rise to quark propagators.

e The last term also looks familiar: it is an interaction term that
gives rise to the quark-gluon vertex.

e The second term is the free Lagrangian of the gluon fields, which
also looks familiar from QED, but has a much richer structure. As
we will see, it gives rise to the gluon propagator, like the photon
propagator in QED, but also to 3- and 4-gluon vertices, which is
something that does not exist in QED. We will see in Section 6
that these gluon self-interactions are responsible for a characteristic
feature of QCD interactions: asymptotic freedom.

e Note that the QCD Lagrangian given above is not complete and
so-called gauge-fixing terms and ghost fields must be intro-
duced to make the theory consistent. This is highly technical and
way beyond the scope of these lectures.

e Up to now we have expressed Lagrangians in some kind of vector
notation which is compact, but not commonly used. So let us now
first present the QCD Lagrangian in (colour) index notation.
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Colour space indices'

e We have seen that quarks come in three colours ¢ = (r,g,b) so

that the wave function can be written as
4

C; uf (p“) incoming quark
G ! 5;9 (p*) outgoing quark
P =
cZT Sf (p*) incoming antiquark

L }8) (p") outgoing antiquark

Expressions for the 4-component spinors u and v can be found in
Griffiths p.233-4. We have here explicitly indicated the Lorentz
index p = (0,1,2,3), the spin index s = (1,2) = (up,down)
and the flavour index f = (d,u,s,c,b,t). To not overburden the
notation we will suppress these indices in the following.

e The colour index i = (1,2,3) = (1, g, b) is taken care of by defining
the following basis vectors in colour space

1 0 0
cit=10 , Cy = 1 , (€3 = 0 )
0 0 1

for red, green and blue, respectively. The Hermitian conjugates c}

are just the corresponding row vectors.

e A colour transition like ¢, — %, can now be described as an
SU(3) matrix operation in colour space. Recalling the SU(3) step
operators (page 2-24 and Exercise 2.8d) we may write

0 000 1
e = (A1—iX2) ¢, or, in colour space, 1l=1100 0
0 000 0
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The QCD Lagrangian in colour index notation'

e Here is QCD Lagrangian with all colour indices shown.?®

Locp = Y, (iv"0, — m); — }LF;“’F;‘V — s ER\%%‘ VA
FIV = RAY — P AR — g, fu ALAY

The colour index ¢ = (1,2,3) labels the quark fields, while the
colour index a = (1,...,8) labels the gluon fields and the corre-
sponding generators.

e Here are all the propagators and vertices of a QCD Feynman dia-
gram; the ones for the gluon become visible when you multiply-out
the field tensor contraction F}* Fj, in the Lagrangian:

Vi (i Oy — M) quark propagator

(OM Ay — 0V AL) (0, AL — 0, AF)  gluon propagator

gs i Ny AL quark-gluon vertex

gs (O* Ay, — OV AR) fabcAZA‘; 3-gluon vertex

92 f abc Ay AL f adeAzAS 4-gluon vertex

3 Fm e ]

Z8Summation over repeated indices is implied, irrespective of their position (upper or lower); the colour indices
are just placed wherever the Lorentz indices leaves room for them.
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Probing the strong quark interactions'

e Of course all hard scattering phenomena involving hadrons probe,
in one way or another, the constituent quarks. In the introduction
we have mentioned that energetic quarks tend to fragment into jets
of particles. The study of those jets is indeed an important part of
the experimental programmes at high energy pp and pp colliders.

e The largest centre of mass energies are reached at the Tevatron
2 TeV pp collider (Fermilab, Chicago, 1985-2011) and the pp
collider LHC at CERN, Geneva, which came into operation in
November 2009 and is presently upgraded from 8 TeV to 14 TeV
centre-of-mass energy.

e The advantage of these machines is the high collision energies that
can be reached but a disadvantage is that the (anti)proton beams
at these energies can be regarded as complicated streams of quarks
and gluons, so that the initial state of the collision is non-trivial.

e A clean initial state is provided by ete™ collisions, like at the
CERN LEP collider (1989-2000) with centre of mass energies of

up to 200 GeV. The figure on page 4-15 shows an e*

e — qq
event, where the quarks fragment into two back-to-back jets. Here

we can really ‘see’ the quark and antiquark flying apart.
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Two-jet event in eTe”

n % ¥ W 1w "
2 " 0 0 DELPHI

[
CADAUEDC XA b e B
8. 0 0.8 o
DOOR?, ic B3¢ B3¢ B B¢ 1¢ B

ENDCRPS

BRRREL

CENTRAL

Here we see quarks, but can we also see gluons?

Yes!
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Here they are (the gluons)'

Three-jet event in an ee™ collision, recorded by L3 at LEP.
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From the Lagrangian to Feynman graphs'

e We show here once more the QCD Lagrangian with the colour in-
dices i = (1,2,3) = (r,g,b) that label the quarks fields v; and v,
and the index a = (1,...,8) that label the eight gluon fields Aj.
In the expression below, g is the strong coupling constant, and
the fue are the structure constants of SU(3).

Laop = $(ir" 0y — mps = {FIFy, — 90X 1" A
Féw — aﬂAZ o aVAg - 298 fabcA'gAZ

e And here are again the propagators and vertices in the Lagrangian.

o P(iv"D, — m)Y; quark propagator

(Ot Ay — 0" AR) (0, A, — 0, AL.)  gluon propagator

Js @M?j%’y“ Aj quark-gluon vertex

gs (OFAY — Q¥ AH) fabcAZAg 3-gluon vertex

H Fm o

gs2 fabcAZAZ fadeAﬁA,(i 4—gluon vertex
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Feynman rules of QCDI

e T0 each element of a Feynman diagram corresponds a mathemati-
cal expression which, together with the prescription how to assem-
ble a scattering amplitude, make up the set of Feynman rules.
Deriving these rules is the subject of Quantum Field Theory and is
beyond the scope of these lectures. It was already said before that
our QCD Lagrangian is not complete and that so-called ghost
fields must be introduced to make the theory consistent, but this
is also beyond the scope of these lectures. The full set of QCD
Feynman rules (without ghosts) can be found in Griffiths p.287-8.

e In the following we will calculate so-called colour factors for
the leading order q¢ — qq and qq — qq diagrams. Here is the
dictionary that we will need for that calculation:

——— uc incoming quark
-———— uct outgoing quark
———<— vl incoming antiquark
— ve outgoing antiquark

ab
OOO0000  —i e gluon propagator

—igs5 " quark-gluon vertex
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Colour factor for qq — qu

uy C1

—iM = ascl (—igs—v”) U1y

colour factor

55



Colour factor for qq — qu

U9 Co Uy Cy

Ui C1 ugz Cg

: _ T( _— 1/)
—iM = Uzcz | —igs—=7" | uicy

)\b
X a4cll (—igsify’“‘) U Co

2
_q_SQ (usyur) (tay,u2)

(cg )\a’cl) (c}l )\%2)

7

<
|

(| =

Ve

colour factor
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Colour factors I

e We see that the leading order QCD amplitudes for g¢ — qgq and
qq — qq scattering can be written as (ag = g2 /47)

Maep = ag X colourfactor x Mqgp

This means that we can take the QED result (from PP-I for in-
stance), provided that we replace the fine structure constant a by
the strong coupling constant ay, and multiply by the colour factor.

e This correspondence does not only hold for tree diagrams (di-
agrams without loops) but for any diagram where photons can be
replaced by gluons.

T I3

e However, it is not true that QCD = colourfactor x QED because
there are QCD diagrams which do not exist in QED.

3> 3>
> >
> > > > > >

& g 4
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Colour transition operatorsl

e Instead of working with the matrices A% it is sometimes handy to
express them in terms of colour transition operators as follows.

e Consider an N-dimensional Hilbert space spanned by the kets |7).
In this space live the transition operators O,_,; = |j) (i| that trans-
form the state |i) to the state |7). Indeed,

Oijli) = 13)(il2) = 1)

A constraint is imposed by the closure relation
>l =1
i

so that there are N? — 1 independent transition operators.

e In our 3-dimensional colour space we then have transition operators
like O, = |G)(R] and it is straight-forward to express the Gell-
Mann matrices given on Page 2-23 in terms of these operators

N = |R)(R| - |G)(C]
M= |BYR|+|R)(B
X = i (|B)R| - |R)(B])
N = |B)G| +G)B]
A = i(|B)(G]| - |G)(B])
As = —(|R)(R| +|G){G]| - 2|B){(B|)
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Bookkeeping II

o We will write cj)\acj as (7| A*|7) which is, of course, just the matrix
element A;.

e The colour factors on Page 5-5 and 5-6 can be calculated from

42 0| A7) Ck[A[D) = 4Z>\ %5il5jk_%5ij5klzf(ijkl>

e The colour factor f(ijkl) thus depends on whether pairs of colours
are the same or not and we get, from the identity above,

(—t fi=jand k=1
FH) = ¢ sifi=land j =k
s ifi=j=k=I
0 otherwise

For the three non-zero colour factors we will also use the generic
notation f(xxyy), f(ryyx) and f(rzxx), respectively.

e Exercise 5.1: [1.0] Use the A matrices on page 2-23 or the oper-
ator representation on page 5-8 to check the colour factor f(ijkl).

Hint: Restrict yourself to two colours (red and green, say) so that
1,7, k,[ can only take the values 1 and 2. After this it is easy to
generalise to the other combinations red-blue and green-blue.
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Bookkeeping III

qq9 — qq 99 — 49

j 1)\a a Z ] 1)\@ a Z
477 \kl .. 47V7 7kl
tY fligklyr 2.

e The colour factors %1)\%)\% = f(ijkl) are the same in both diagrams
above, but note that the indices [ and k in the upper legs are
swapped. Thus for a given f(ijkl) the indices i, j, k, | are assigned
differently to the incoming and outgoing particles in ¢¢ — qq and

qq — qq scattering.

e Now we can list all allowed combinations of colour ‘z’ and ‘y’:

¢ q = qq ¢ q = qq

ik = il gl — ik fligkl)

r T — T T T T — T T f(:v:c:vx):%
T o=y oy vy =y x  flyzaey)= 3
Ty = Ty ry = Ty flazyy) = —¢
Ty — Yy x T T — Yy flyzyx)= 0

e [n fact, the table above reflects colour flow through the diagram,
as is shown on the next page for the combination red and green.
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Colour ﬂow'

® ¢ — qq and qq — qq diagrams showing colour exchange and the
possible cc combinations carried by the exchanged gluon.

T T T g 9 g
7, gg, bb rg, g r7, 9g, bb

r r r g r r

r T g T g g
7, gg, bb rg, 7g I, gg, bb

T T T g r T

e Here are some colour flow diagrams for (a) g¢ — ¢qg and (b) q¢ —
qq Interactions.

> ® > > >
(a) A

< ® < < <

> ® > > >
(b)

> ® —— > >

511



Gluon colour states'

e The gluon carries one unit of colour and one unit of anticolour and
because 3 ® 3 = 8 1 (see page 2-27) we can take the singlet as
our principal axis in colour-anticolour space and then construct a
basis by orthogonalisation. The invariant singlet state is obviously

0) = /5 (07 + g5 + bb).

By simple orthogonalisation we find a fully orthonormal basis as®”

rg tb gFf gb bFf bg 1T gg bb
|0) % /O 0 0 0O O 0 1 1 1 >
1) = /lt 0 0 O O O 0O 0 0 >
|2) = /O 1.0 0O O O O 0 0 >
13) = /0o 0 1. 0 O O 0O 0 0 >
|4) = /0o 0 0 1 0 0 0 0 0 >
|5) = /O 0 0 0 1 O 0 0 0 >
|6) = /0 0 0 0O O 1 0 0 0 >
|7) = % /0 0 0 0 O 0 1 -1 0 >
8)=4/+ /O 0 0O 0 O 0 1 1 -2 >

e According to the colour hypothesis (page 1-6) a singlet gluon could
exist as a free (unconfined) particle. Such a gluon would then
behave as a strongly interacting photon and be able to transmit
the strong force over (infinitely) large distances. A singlet gluon is
excluded from the list since it has never been observed in isolation,
and also because we know that the strong force is short-ranged.*’

e The quarks transform according to the 3 x 3 fundamental repre-
sentation of SU(3) (the A matrices), while the gluons transform
according to the 8 x 8 adjoint representation.

29H&M use this basis in Eq(2.93); Griffiths uses another orthonormal basis for the octet state, Eq(8.29).
30Remember also that QCD is based on the SU(3) colour symmetry which has eight generators and therefore
eight (not nine) gauge field quanta: there is no room for a singlet gluon in an SU(3) gauge theory.
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Colour interaction I

e QCD is formally very reminiscent of QED but there are impor-
tant differences because, unlike photons, the gluons interact among
themselves.

e In QED, the electric field of two oppositely charged particles per-
meates all space and diminishes quickly when the charges are sep-
arated (— Fig a). On the other hand, when one tries to separate
a colour charge the gluon self-interaction causes the colour field
between these charges to organise itself into a so-called flux tube
or colour string (— Fig a,b). When stretched, the behaviour
of such a string is very much like that of a rubber band.

e This behaviour of the gluon field leads to a force which is con-
stant between the colour charges, regardless of their distance. The
strength of this force is huge, about 16 x 10* N, or 16 tons.

e [t follows that the colour charges cannot be fully separated since
that would cost an infinite amount of energy. Instead, it will be
energetically more favourable to pull a quark-antiquark pair out of
the vacuum and this causes the string to break (— Fig c).

e EM-like behaviour at small distance, and string behaviour at large
distance leads to a QCD potential that behaves roughly as:

V(r) ~ gy o

r
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Colour strings'

(a) Lines of force do spread over the entire space in the electrostatic
attraction of two opposite charges (left) but in QCD the gluon
self-interactions squeeze the lines of force into a flux tube (right).

(b) Result of a Lattice QCD simulation®® showing a quark and an
antiquark (red colour) bound together into a meson by a string-

like gluon field configuration (green colour).*?

(¢) Schematic view of the colour-string breaking when an ud quark
pair is pulled apart.

31Tn Lattice QCD the field equations are solved numerically on a discrete space-time grid. This technique
allows to explore the non-perturbative regime of QCD.
32M. Cardoso et al., Phys. Rev. D 81, 034504 (2010).
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Is colour exchange attractive or repulsive?'

e We have seen that the 2 — 2 colour interaction at lowest order is
the same as the electromagnetic interaction, provided we replace
a by ag, and multiply by the QCD colour factor f.

e Now for unlike-sign charges the EM force is attractive and the
Coulomb potential is given by V' ~ —a/r so that we set for qq
colour interactions, at short distance,

Vig(r) ~ —f%

Likewise, the Coulomb potential is repulsive for like-sign charges
so that we set

Olg
qu(r) ~+f -

e Thus we have

L od attractive when f > 0
a“@—aqa = repulsive when f < 0
attractive when f < 0

— —=
94— 44 { repulsive when f > 0

e Note that this correspondence is based on lowest order perturba-
tion theory which is only valid at short distance where the coupling
constant is small (asymptotic freedom, see next lecture). At large
distance we do not know how the colour interaction exactly be-
haves because it is not perturbatively calculable.??

e Nevertheless, let us calculate the colour factors for different qq and
qq colour configurations, and see if we can get some understanding
whether the colour force is attractive or repulsive at short distance.

33Lattice QCD tries to access the non-perturbative regime by numerically solving the field equations on a
discrete space-time lattice. This is notoriously difficult and requires large-scale computing, sometimes with
dedicated computers engineered for this purpose.
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gq in an octet state'

e Here the ¢ pair is in one of the octet states (page 5-12), say rg.

e [rom the flow diagrams on page 5-11 it is seen that, if they are
different, an incoming quark colour can only be carried away by
an outgoing quark while an incoming anti-quark colour can only
be carried away by an outgoing anti-quark. This can also be seen
from the table on page 5-10.

e So we have to consider only the transition rg — rg or, more in
general, xy — xy with, as can be seen from the table, a colour
factor of f(xxyy) = —%.

e 'To finalise the calculation we have to sum over all possible output
states and average over the input states. Since there is only one
output state for each input state, and the colour factor is the same
for each of the eight members of the octet (see the exercise below),

we find that f = —% < 0.

e We conclude that the colour force between a quark and an anti-
quark in an octet state is repulsive.

e Exercise 5.2:

(a) [0.5] The ¢q pair is in the octet state |8) = [1T+gg — 2bb) //6,
Calculate the color factor of the transition |8) — |8).

(b) [0.5] Argue why all transitions within an SU(3). multiplet must
have the same colour factor.
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gq in a singlet state'

e The gq singlet state is

1 _

—(1T + gg + bb

v |

e From the diagrams on page 5-11 or from the table on page 5-10 it
is seen that an initial state where the quark and anti-quark colours
are equal always will give rise to a final state where the quark and
anti-quark colours are also equal, for example,

IT — 1T or IT —gg or IT— bb

e Thus we always have ¢; = ¢y and c3 = ¢4 with, as can be seen
from the table,

f :% if xo — xx (3 combinations)
1
2

if xx — yy (6combinations)

e Summing over all possible output states, and taking into account
the normalisation factor v/3 we find, since there is only one input

state,
f=3Bxi+6x3) =35>0

e Because f > 0 we conclude that the colour force is attractive for
a qg pair in a singlet state.

e To summarise, we have found that, at least at short distance, the
colour force is repulsive for gq pairs in the octet state and attractive
in the singlet state. So now we understand why bound gq states
(mesons) would prefer to be colour singlets.
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gqq in a singlet state'

e We have seen (page 2-28) that baryons are colour singlet qqq states
with an antisymmetric wave function in colour space

Y(crcac3) = 1gb + brg + ghr — grb — bgr — rbg
= (rg — gr)b + (br —rb)g + (gb — bg)r

Each pair of quarks in the singlet 3-quark system is thus in a
triplet state which are just the antisymmetric combinations

(1g — gr)/ V2
Colour triplet 3 = { (br — rb)/+/2
(gb — bg)/ V2

e For each triplet state we have ¢; # ¢y with, as can be seen from the
table on page 5-10, xy — zy and xy — yx as the only possible
transitions: each triplet state transforms into (minus) itself.

e 'To calculate the colour factor for a triplet state let us first introduce
some shorthand and write the matrix element for q,q, — q.qq as

(c[X*|a) (d|X"]b) = {cd]|ab)
Taking only into account the transition xy — xy, we have
(wy —yz|lvy —yx) = (zylley) — (eyllyz) — (yelley) + (y|lyz)

e Looking up in the table the colour factor of each term, and taking
into account the normalisation factor v/2 we get

felx(-lol_l_Ly—_2.

We find that the 2-quark colour interaction in a hadron is attractive.

e Exercise 5.3: [1.0] What is the color factor for the transition

xy — yx, and why did we not consider this transition?

e We refer to Griffiths Section 8.4.2 for other (qq)q colour states.
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SU(N) group invariants'
i m ]

> & ’

a a
ik kj

e Results of colour algebra are often expressed in terms of group
invariants. Below we will not use the Gell-Mann matrices A* but,
instead, the SU(N) generators t* = A%/2. The first invariant is

called T and 1s used to fix the normalisation

Tr(t"") = Tpdy, with, by convention, Tr = 3

e The colour factor of the quark self-energy diagram above intro-
duces another invariant, C,

Zt W = ([t = Crpé;;

where the right—hand side simply expresses the fact that the colours ¢
and 7 must be the same, because of colour conservation. Taking
the trace of the left-hand side gives

Tr(tt") = 8 Tr (") = Trdapbup = Trlae = Tr(N? — 1)
since 04, (Summation over @) just gives the number of generators,
which is N*—1 for SU(N). The d;; on the right-hand side is simply
the N x N unit matrix which has trace N. Thus we find
N2 -1

CrN =Tp(N*—=1) or Cp=Tg ¥

For SU(3), Cr = 3.
e A third invariant shows up in the relation

> favefara = Cubeq with Cyq=N
a,b
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Charge screening in QEDI

e In QED, a charged particle like the electron is surrounded by a
cloud of virtual photons and e*e™ pairs continuously popping in
and out of existence. Because of the attraction of opposite charges,
the virtual positrons tend to be closer to the electron and screen the
electron charge, as is indicated in the figure. This is analogous to
the polarisation of a dielectric medium in the presence of a charge
and is called vacuum polarisation.

®
+
Pasnd
@
|
Sae
[
+
Electron charge

Couiomb
charge

em=es 0 1/137
Distance from the
High-energy bare e~ charge Low-energy
probe probe

e This gives rise to the notion of an effective charge e(r) that becomes
smaller with larger distance.

e One says that the beta function
de(r)

is positive in QED.
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Charge screening in QCDI

e Likewise, the QCD vacuum consists of virtual q¢ pairs, and if this
would be all, the charge screening mechanism would be the same

as in QED, with a positive beta function.

e However, due to the gluon self coupling, the vacuum will also be
filled with virtual gluon pairs as is indicated in the figure. Because
the gluon cloud carries colour charge, it turns out that the effective
charge becomes larger with larger distance; the beta function is
negative. This effect is called antiscreening.®*

o =1

-
c
g&.
o.2
£k
o
c o
o
(]

Color charge

1 fermi
/

T Distance from the bare
quark color charge

High-energy probe
“Asymptotic freedom”’

e [t turns out that the negative contribution wins over the positive
contribution, so that the QCD beta function is negative, and the
effective strong coupling becomes small a short distances.

34 Antiscreening follows from the calculation of vacuum polarisation in QCD, which is non-trivial and beyond
the scope of these lectures; unfortunately it is not so easy to intuitively understand the antiscreening effect.
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The running coupling constant in QED and QCDI

e Charge screening in QED (screening) and QCD (antiscreening)
leads to the concept of a running coupling. In QED the cou-
pling becomes large at (very) short distance but its effect is small.

e In QCD, the antiscreening effect causes the strong coupling to be-
come small at short distance (large momentum transfer). This
causes the quarks inside hadrons to behave more or less as free
particles, when probed at large enough energies. This property of
the strong interaction is called asymptotic freedom. Asymp-
totic freedom allows us to use perturbation theory, and by this
arrive at quantitative predictions for hard scattering cross sections
in hadronic interactions.

e On the other hand, at increasing distance the coupling becomes so
strong that it is impossible to isolate a quark from a hadron (it be-
comes cheaper to create a quark-antiquark pair). This mechanism
is called confinement. Confinement is verified in Lattice QCD
calculations but, since it is nonperturbative, not mathematically
proven from first principles.®

e The discovery of asymptotic freedom (1973) was a major break-
through for QCD as the theory of the strong interaction, and was
awarded the Nobel prize in 2004 to Gross, Politzer and Wilczek.?

e To get a more quantitative insight into asymptotic freedom, we
will now first discuss the running coupling in QED.

35 A mathematical proof will gain you a $1M millennium prize from the Clay Mathematics Institute.
36The Nobel lecture of Frank Wilczek can be downloaded from http://www.nobelprize.org and makes
highly recommended reading, both as an exposé of the basic ideas, and as a record of the hard struggle.
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Propagator loop correction in QED II

e Consider the two electron-muon scattering diagrams below

P2 P4
D2 D4 \\/
\\/ .
! k q—Fk
¥ q
P1 3

e The matrix element of the left diagram is (¢ = p1 — p3 = ps — po)
_ g 1% — v
M = —g; [uzy"wi] q—ﬂg [ty ug]
e The right diagram has a virtual ete™ loop in the propagator:3’

_ _Z] UV r— 1%
M = —g; [uzy"uw] q4“ (47" ua)

with33
oy A% Ty (R me) v (F = g+ me)]
l = 4. /2w4 K2 —m2| [(k — q)2 —m2]

e Addition of this loop diagram is thus effectively a modification of

the photon propagator
Guv
e

e Unfortunately the integral I, is divergent.

37The matrix element M o g2 but this does not show because we assign a factor g2 to the propagator I,,,.
38In this lecture we will skip over much mathematical detail, most of which can be found in H&M Chapter 7.
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Propagator loop correction in QED III

py — —Ye

I 2/d4]<7 Te [y (F +me) v (F — ¢ + me) ]

- 2t (K = mi] [(k — ) —md]

e Because, after integration, the tensor I, only depends on g, it
must be some linear combination of g, and g,q,, since these are
the only tensors at our disposal. We can thus parameterise 1, as,

L = —iguw ¢°1(¢°) + 4uaJ (@),
where I(g*) and J(g?) are some functions of ¢*, see below.?

e Exercise 6.1: [1.0] Show that the term ¢,g,J(¢*) does not con-
tribute to the matrix element M. Hint: Use the Dirac equation,
page 0-16.

e Thus only the first term needs to be considered, and the function
I(g?) is found to be, after a lengthy calculation,

2 00 1 2
2\ __ 9e %_ . _Q_ o
I(q°) = 52 {/mg . 6/0 dz z(1 — 2)In [1 2 (1 z)] }

Indeed, the first integral is logarithmically divergent, while all non-

divergent contributions are collected in the second integral.

e The first step to handle the infinity is to regularise the integral.

39The factor —ig? in the first term is just there for convenience.
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Propagator loop correction in QED IIII

e Because ¢° < 0 (Exercise 6.2) we define Q? = —¢* and write

) = [ (4)]
f (%) 6/01dzz(1 —2)In [1+Q—2Z(1Z>]

m2
e We now impose a cutoff M so that first integral becomes finite

/OO dz /M dz <M2)
— = = In 5
m2 % m

so that we obtain

o (o () (@)

e The modification of the propagator on page 6-6 can be written as

uv G Uy guv 2
— — 1 —1(q
R e (Y]

e Because the propagator is always accompanied by the factor g
(see M on page 6-6), its modification can be interpreted as a loop
correction to the ‘bare’ electron charge ge:

g = g0 [1—1(q")] = gc {1 B 157%2 [ln (%D d (S;)”
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Exercise 6.2: I

f(Q—2) —6/01dzz<1_z>1n [HQ_QZQ_Z)]

2
mye

(a) [0.5] Show that ¢* = (p; — p3)* = (ps — p2)* < 0.
(b) [0.5] Show that, % for small and large Q?,

2
02 %}%g for Q% < m?
e In (%) for Q%> m?

Note from this that f is an increasing function of Q% with f(0) = 0.
Here is a sketch of f.

F(Q*/m?)

A

4OFor this, I give you the integrals f01 dz z(1 —2) = ¢ and fol dz 22(1 = 2)? = 55.

6-9



The QED running coupling constant II

e The (? evolution of the bare coupling constant is thus given by

2 2 2
# -5 | (Ge) ¢ (a3

e The first term is called the renormalised coupling constant

92 ]V[Q
90 = ge ] ——=—"In|—
1272 m?2

so that we may write

Q2 2 1 g Q2
- — 1 - Je
g = 9+ 127T2 f <m§ o+ 1272 g3 / m2

e

e Up to terms O(g}) we may set g = gj inside the braces, so that

9o — 93{ o 2f (Q2> +O(go)} = gn(Q°)

Here g2 (Q?) is called the running coupling constant.

e Because f(0) = 0 (Exercise 6.2) we can set gi = ¢ga(0) and thus

(@) =0 {1+ 8 (L) ot |

m?2

e The cutoff M has now disappeared from view since it is absorbed
in g&(0) which becomes infinitely large when we let M — oo. The
mathematical technique to isolate the singularities in a perturba-
tive calculation is called regularisation, cut-off regularisation in
our case.
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The QED running coupling constant III

e In terms of a = g2/4m, the running coupling becomes

a(Q?) = a(0) {1 L0, (m2> v O(a2)}

37 5

e The next step is to admit that our theory cannot describe physics at
asymptotically small distances so that we must replace the singu-
lar part of the calculation by measurement. This is called renor-
malisation.®! In QED it means that «/(0) is replaced by the fine
structure constant aw = 1/137, as measured at ‘large’ distances of
the order of the nuclear scale.

e There remains a finite correction term f(Q?) which causes the cou-
pling to run with Q2. This is a consequence of vacuum polarisation,
as we have already discussed on page 6-3.

e [t turns out that the effect of the running QED coupling constant
is really small and can safely be neglected at atomic or nuclear
scales. Even at large momentum transfers of Q? ~ 1000 GeV? at
the HERA collider, the correction to « is only about 1-2%.

Exercise 6.3: [0.5] Calculate a(Q?) for Q* = 1000 GeV2,

41t Hooft and Veltman showed that this can be done consistently to all orders, without spoiling gauge
invariance: they proved in general that gauge theories are renormalisable. They received for this work the
Nobel prize in 1999.
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More O(a?) graphs'

(a) (b)
X X
(c)

X X

e Apart from the vacuum polarisation graph (a) there are three more
divergent graphs to consider. The vertex correction (b) modifies
the electron magnetic moment (see H&M Section 7.4) while the
graphs (c) renormalise the electron mass.

e The three graphs (b) and (c) also contribute to the renormalisation
of the electron charge. However, it turns out that these contribu-
tions cancel each other so that our previous calculation, based on
diagram (a) alone, remains valid.

e This cancellation is called a Ward identity and is quite fortu-
nate: without it, the graphs (c¢) would cause the coupling constant
to be dependent on the lepton mass, and we would have different
renormalisation for the electron and the muon electric charge.
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The leading log approximation'

e For Q% > m? the one-loop corrected coupling constant is given by

a(Q?) = a(0) {1 L0y (QQ) + 0(042)} |

3 m2

e Because of the Ward identities, only propagator loops will con-
tribute at higher orders:

RSN

This induces a series

1
I+ X+ X2+ X+ = ——
+ X+ X7+ X5+ —
and indeed, from a full calculation one gets*?
a(0)

(@) = for m¢ < Q" < Qs

((0)/37] n(Q?/mg)

The expression blows up when In(Q*/m?) = 37 /a/(0), which oc-

curs at an astronomical scale of Q2. = 10 MeV?,

e Although the loops are summed to all orders, there are still more
complicated propagator diagrams (like multi-photon exchange be-
tween loops), which are ignored. The result given above is thus
not exact, and is known as the leading log approximation.

42This is an example of resummation where terms in a perturbative calculation are arranged in a geometric
series which is then summed up to all orders.
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The renormalisation scale'

e We have seen that the running QED coupling constant decreases
with decreasing Q* (increasing distance) to the asymptotic value
a(0) = 1/137 at Q* = 0. However, we could also have specified
an input value a(p?) at some arbitrary reference scale p?. We will
now derive the formula for the coupling constant running from
Q? = 12, instead of from Q? = 0. This is useful because, as we
will see, the reference scale Q? = 0 cannot be used in QCD.

e From
2 (0)
&) = TR B (@)
we have
L 1 1. Q@
a(@?) 3 (mg)
and

Subtraction gives

R [1“ (ST) o (57)] =5 (%)

and thus

2y _ a(p?) or m2 2 2
MO T @y €S G

e The reference scale ;2 where we wish to specify our input value of
« is called the renormalisation scale. Obviously, the value of
a(Q?) does not depend on what renormalisation scale p? we chose.
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The beta function'

e The running coupling can be written as

1 1 1 | Q?
= — N —_—
a(@)  a(p?) 3w \p?
Differentiation to t = In Q? gives

d(1>:—id—a _ 1 or d—@zﬁ(a):iaz

dt \a 2dt  3n t 3

e In the above, we have introduced the so-called beta function:

de(@?) 2 3 4
—— = pla) = —(ppa” + pra” + Py A - -
Here we have written this function as a series expansion in powers

of the coupling constant,*® where the first term corresponds to the
leading log approximation. It is an important task of perturbative

QED and QCD to calculate the coefficients in this expansion.**

e The QED one-loop beta function is 8 = /37 > 0. This means
that the coupling constant increases with increasing Q? (decreasing
distance). For QCD it turns out that § < 0, as we will see.

e The one-loop QED coupling constant can now be written as

B a(p?) - _ 1
MO = TRt M R

43The minus sign in front of the series expansion is a matter of convention.
44This is an explosive business: for QCD the 4-loop coefficient B3 has been calculated (at Nikhef!) by
evaluating 50.000 Feynman diagrams, using sophisticated symbolic algebra programs (also developed at Nikhef).
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The running strong coupling constant aSI

(a)

e To calculate the propagator loop correction in QCD, we do not
only have to consider quark loops (a), like electron loops in QED,
but also gluon loops (b). The quark loop will give rise to a positive
contribution to the beta function (screening) while the gluon loop
contribution will be negative (antiscreening), see also the discussion
on charge screening on page 6-4.

e The formula for the one-loop running coupling constant in QCD is

11NC - 2nf

2
o (Q?) = el with By = ———

1+ By a1 Q%)

Here N, is the number of colours (3) and ns is the number of

flavours (6 in the standard model).

e The second factor —2ny/127 in B comes from diagram (a). It is
the same (modulo a colour factor) as the coefficient 5y = —1/3m
in QED and causes screening. The first factor 11N, /127 comes
from diagram (b) and causes anti-screening.

e Clearly with V. = 3 and ny = 6, the antiscreening wins over the
screening, with By > 0 and a slope 8(as) = —Bya? < 0. This
means that oy decreases with Q* (— fig).
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The running strong coupling constant'

0.5

a(Q)

July 2009 |

s a Deep Inelastic Scattering

04 oe e*¢ Annihilation
0D® Heavy Quarkonia

03!
0.2}
0.1}
= QCD 0o(Mg)=0.1184 = 0.0007
1 100

" Q[Gev]

. Note that a4 is large, compared to the electromagnetic coupling
constant a = 1/137: strong interactions are strong.

. The running is also strong, compared to a few percent effect at

large Q% in QED.
. The running of «ay is beautifully confirmed by experiment.

. For Q% ~ 1, oy ~ 1 and perturbative QCD breaks down. Usually
Q? ~ 5-10 GeV? is considered to be reasonable lower bound for
perturbation theory to apply.
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The QCD scale parameter AI

1IN — 2ny
127

2 O‘b(ﬂz) :
O T R T
e Because By > 0 we find that oy — 0 for Q? — co. This vanishing
coupling is called asymptotic freedom and is responsible for the
fact that quarks behave like free particles at short distances (large
momentum transfers) as is observed in deep inelastic scattering
experiments.

e The expression for the running coupling constant can be simplified
when we define the QCD scale parameter A as follows

1 B 1 QQ QQ
as,(@?)as(m”“]“(u) 501“(A2>

The parameter A is thus equal to the scale where the first term

on the right-hand side vanishes, that is, the scale where a(u?)
becomes infinite. Now we may write

]
FoIn(Q?/A%)

e Experimentally, the value of A is found to be about 300 MeV, but
the scale parameter is nowadays out of fashion because it cannot

0s(Q°) =

be defined unambiguously beyond 1-loop order. Instead, it is now
common practise to not quote a value for A, but a value for ay at
the mass of the Z (— fig). This is unambiguous at all orders.

o At (% values close to A, the coupling constant becomes large and
perturbative QCD breaks down.
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The strong coupling constant oy at m%'

t-decays (N3LO) .'_o_.
Quarkonia (lattice) KI>|
|
Y decays (NLO) O
|
DIS F, (N3LO) —O—| :
DIS jets (NLO) ,_:o_|
|
ete™ jets & shps (NNLO) ——O+—
|
electroweak fits (N3LO) -—:o—l
ete™ jets & shapes (NNLO) o
0.11 0.12 0.13

o5 (Mz)

Today’s average: as(m3) = 0.1184 4 0.0007 (0.6% accuracy)
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Renormalisation scale dependence'

N O‘S(Nz)
(@) = 1+ By as(p?) In(Q?/ pu?)

e We have seen that apart from our physical scale Q? we have intro-
duced the renormalisation scale 1> where we wish to specify our
input value of a.

e Clearly it should not matter which scale p? we chose so that any
perturbatively calculated observable > should satisfy

ox(Q?, 1%, .. )
01n p?

which is called the renormalisation group equation.

207

e In practice, the renormalisation group equation will not be satisfied
since it holds only if we calculate our observable to all orders, which
is never the case of course. However, the renormalisation scale
dependence can be used to judge the accuracy of the calculation
because a vanishing p1? dependence is a sign that enough terms are
being included in the perturbative expansion (— fig.)

e Please be aware of the distinction between the @Q? dependence,*

which is physical (caused by vacuum polarisation, for instance),
and the 2 dependence, which is an artefact of our incomplete
perturbative expansion.

45The relevant physical scale depends on the process under study and is usually taken to be momentum
transfer, centre of mass energy, or transverse momentum.
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Squark production at the LHCI
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This plot shows the renormalisation scale dependence of the squark
production cross-section at the LHC. As expected, this dependence
becomes weaker as more terms are included in the perturbative expan-
sion (LO and NLO label leading and next-to-leading order in «, while
NLL and NNLL label two re-summation prescriptions).
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Can perturbative QCD predict anything?'

e We have seen that asymptotic freedom allows us to use pertur-
bation theory to calculate quark and gluon interactions at short
distances. But is this enough to arrive at predictions for experi-
mental observables?

e The answer is ‘no’, because the detectors in an experiment can
only observe hadrons and not the constituent quarks and gluons.

e We will see that we need two more things, if we want to make the
connection between theory and experiment:

1. either infrared safety,

2. or factorisation.

e These concepts are intimately related to the separation of the short
and long distance aspects of the strong interaction.

— Infrared Safety: There is a class of observables that do not
depend on long distance physics and are therefore calculable in
perturbative QCD.

— Factorisation: There is a wide class of processes that can be
factorised in a universal long distance piece (nonperturbative,
but process independent) and a short distance piece that is
calculable in perturbative QCD.

e To understand these ideas we will, in this section, study the lowest

+

order QCD correction to the process e"e™ — qq.
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The process ete™ — chg'

P1 k1,21
q ks, x3
P2 ko, xo

+

e Consider the process e"e™ — ggg. We have the following kine-

matic variables:

1. The four-momentum ¢ = p; + py of the virtual photon. The
square of the centre-of-mass energy is s = ¢* = ¢"q,.
2. The outgoing four-momenta kq, ko and k3. The energies of the
outgoing partons® in the centre-of-mass frame are E; = k.
e We define the energy fractions by
B 2¢- K
CVs5/2 s

Exercise 7.1: [0.5] Show that ¢-k; = E; y/s and that > . x; = 2.

)

From ) . x; = 2 it follows that only two of the x; are independent.

46We use the name ‘parton’ for both quark and gluon.
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Singularities in the cross section'

te” — ¢qg) two Feynman graphs

e 'To calculate the cross section (e
have to be taken into account, one where the gluon is radiated from
the quark and another where it is radiated from the antiquark. The
calculation of the cross section is rather lengthy so we will not give

it here; you can find it in H&M Section 11.5.
e The result is
d*c 20u r] + a3

dridzy 7037 (1 —21)(1 — 29)

Here 0y = o(eTe™ — hadrons) = (4ma?/s) Y e?, see page 2-30.
e There are three singularities in this cross section
L. (1—x1)=0
2. (1—m9)=0
3. (I1—z1)=(1—-29) =0

We will now have a look where these singularities come from.



More kinematics I

P1 k1,21
q ks, x3
D2 kZaxQ

e In the following we will neglect the quark masses (k? = 0) so that

(ki + k;)* = ki + K +2k; - kj = 2k; - k;

e Denote by 6;; the angle between the momenta of partons ¢ and j.
Then we can relate these angles to the energy fractions as follows

2]€1°]€2:<k1+/€2)2=<q—k3>228—2q-k3 —
2E1E2(1 — COS (912) = 8(1 — CL’3)
Exercise 7.2: [ X ] Show that ]ﬂz . kj = EZEj(l — COS 029)

e Dividing by s/2 and repeating the above for the angles between
other pairs of particles gives

(1 — 1'3)

r129(1 — cosf19) = 2
Tow3(1l — cosblhs) = 2(1 — xq)
2

r3x1(1 — cosblz) = 2(1 — x3)
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Phase space'

e From the above it follows that 0 < x < 1. Together with the
constraint x3 = 2 — 1 — x9 this implies that the allowed region
for (xy1, xo) is the triangle shown below.

T
2 k.
2
O\
1 o
2
&
N
7
0 1 2 X2

e [rom

r122(1 — cosbia) = 2(1 — x3)
Tox3(1l — cosbaz) = 2(1 — xy)
r3r1(l — cosbls) = 2(1 — x9)

we find that the collinear configurations are related to the x; by

912—>O <~ T3 — 1
(923—>O <~ r1 — 1
931—>O = To — 1

Thus when z; — 1 then 6, — 0, that is, 7 and £ are collinear.

Exercise 7.3:[0.5] Show that when x; — 1 then i is back-to-back
with both j and k. Also show that x; — 0 implies E; — 0: particle
¢t becomes soft. What can you say about the relative directions of

the particles 7 and k in this case?
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Three-parton conﬁgurations'

e This plot shows the three-parton configurations at the boundaries
of phase space.

—
'\f"zf*Z & 3 collinear

&
w
:::{

soft

1 &2
collinear

TeUI[0D € % |

e [idges: two partons collinear: 0;; — 0 & x; — 1.

e Corners: one parton soft x; — 0 < E; — 0 (other two partons
are back-to-back).

e Note that at the boundaries of phase space 2 — 3 kinematics goes
over to 2 — 2 kinematics.



Origin of the singularities'

e Where do the singularities actually come from? This is easy to
see by noting that internal quark momentum is (k1 + k3), giving a
propagator term ~ 1/(kj + k3)? in the cross section. Now

(lﬁ + k3)2 = 2]61 : ]Cg = 2E1E3 (1 — COS 931)

so that the propagator term evidently is singular when 63; — 0
and when F3 — 0.

e The collinear singularity at 33 — 0 and E3 — 0 can be made
explicit by rewriting the cross section as

do 2 f(Fs,031)
dE5 d cos O3 31 FEs5 (1 — cosbs)

Here f(Fj3,651) is a rather complicated function that turns out to
be finite when E35 — 0 or 03; — 0.

e Clearly we get a logarithmic divergence when we attempt to inte-
grate over f3; with E3 kept fixed or over E5 with 031 kept fixed.
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Infrared singularities'

e Are we seeing here a breakdown of perturbative QCD? The answer
is no: the problem is that we are trying to work with cross sections
on the parton level that are not infrared safe.

e These infrared problems always show up when 2 — 3 kinematics
becomes 2 — 2 kinematics. We have seen that this happens at
the edges of phase space when two partons become collinear or
one parton becomes soft. Another way of stating this is that the
internal propagator goes on shell: (ky + k3)? — 0.

e Please note that infrared divergences are omnipresent in QCD (and
also in QED) and are by no means limited to ete™ — ¢qg.

e [t is useful to get a space-time picture with the help of light cone
coordinates. We will then see that the divergences are caused
by long distance interactions.



Intermezzo: light cone coordinates'

e The light cone components of a four-vector a are defined by
ot = (a" £ a®)/V2
The vector is then be written asa = (a™,a™,a',a*) = (a*,a", at).*’
e Exercise 7.4: [1.0] Show that
2

a-b=a"b" +ab" —ar-by, and a’=2a"a — a}

Show that the vector transforms under boosts along the z axis like
d"=ae", d =ae?, ap=ar

with ¢ = $In[(1 — 8)/(1 + B)]. How does a transform under two
successive boosts 31 and (357

e One often chooses the z axis such that, perhaps after a boost, a
particle or a group of particles have large momenta along that axis.
For these particles p* is large and (since they are on the mass shell)

B m? + p2T

— —2p+

P is small.

4"Note that at and a~ are not 4-vector components.
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Space-time picture of the singularities'

h ky
q - ks
k=ki+ks
D2 ko
xT T

e To see what happens when k% = (k1 + k3)? becomes small (goes
on-shell), we choose the z axis along k with k™ large and k1 = 0.
Thus k? = 2kTk~ — 0 when k= becomes small.

e In QFT, the Green functions (propagators) in momentum space
are related to those in coordinate space by a Fourier transform:

Sela) = [ dth exp(-ika)Si(k)
B /d4:c exp[—i(kTz” + k2" — k- x1)] Sp(k)

Because k7 is large and £~ is small, the contributing values of x
have small 2~ and large ™. This means that the quark propagates
a long distance in the 2™ direction before decaying in a quark-gluon
pair, as is indicated in the space-time diagram above.

e It follows that the singularities that can lead to divergent perturba-
tive cross-sections arise from interactions that happen a long time
after the creation of a quark-antiquark pair.
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Infrared safe observablesl

e We have seen that soft/collinear singularities arise from interac-
tions that happen a long time after the creation of the quark-
antiquark pair and that perturbation theory cannot handle this
long-time physics. But a detector is a long distance away from
the interaction so we must somehow take long-time physics into
account in our theory:.

e Fortunately there are measurements that are insensitive to long-
time physics. These are called infrared safe observables. We
have seen that soft/collinear singularities appear when 2—3 kine-
matics reduces to 2—2 kinematics at the boundaries of phase
space. Therefore a meaningful infrared safe observable must be
insensitive to the indistinguishable 2—2, 2—3 origin of the long-
distance interactions.

e The most well known example of an infrared safe observable is the
total cross section o(ete™ — hadrons), see page 2-30. This cross
section is infrared safe because it is a totally inclusive quantity
(we sum over all particles in the final state and don’t care how
many there are) and the transition from partons to the hadronic
final state in a given event always occurs with unit probability,
whatever the details of the long-time hadronisation process.

e As an example of another infrared safe variable used in the analysis
of eTe™ collisions, we mention the thrust event shape variable.
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pencil-like: T"< 1 spherical: 7 2 1/2

e Thrust is an event shape variable, used to discriminate between
pencil-like and spherical events.

e Thrust is defined by

T:mgXZi \pi-u
u Zz ;|

Here the sum runs over all particles ¢ in the event, and the unit

vector w is varied to maximise the sum of the projections of the
3-momenta p; on u.

e So why is thrust infrared safe?

1. Zero-momentum particles do not contribute to 1.

2. A collinear splitting does not change the trust:

’(1_)‘)pz'ﬁ‘+’)\1’z‘"&‘ = ’pi'ﬁ’

(1= Np;| + [Ap;| = |p)]
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IR safe observables used in eTe™ physics'

Here 1s a list of more infrared safe observables.

Typical Value for:

A‘%

Name of Definition QCD
Observable calculation
P> Ib'.'rfl ) (resummed)
Thrust 1 2172 |
~% (il Olaz)
Thrust major Like T, however Ty, and T, maj 1 0 <5 <IN2 ole2)
plane 1L T n. - - s
. Like T, however Thin and Wy, in 5
Thrust 0 0 <1/2 Olas
rustminor {4 rection 1 to rand Wmaj (o)
Oblateness O = Traj- Tin 0 <1/3 0 Ola?)
$=15(Q;+Q,):Q,=. SQ,are o
Sphericit 0 <3/4 <l i
P Y Eigenvalues of §%B — Zip} o} i 2 N ("Ols::}ir)md
Zip}
. none
Aplanarity | A=15Q, 0 0 <12 |
e .
= (X E3-Z; i)iesg
Jet (Hemis- (Si Hemlspheres 1 toTl’T)
phere) masses M;l max(M’ M2) 0 <1/3 <1/2  |(resummed)
M3= IM+ M2| 0 <1/3 0 Ola2)
leS |p 1 ﬁTl
Be=—F2———:Br=B++B_| 0 <I/(2V3) <U(2V2)|resummed)
Jet broadening 2 Zi|5il olo2)
B, =max(B,,B)| 0 <1/(2V3) <1/(2V3) s
1# i
Energy-Energy ) . resummed
Correlations EEC()= e‘;s Z S(X'Xu) r ( 0la2) )
lJ VIS l"_ T O pis 0 T S
Asymmetry of
EEC AEEC(y) = EEC(rn-y) - EEC(y) Ola2
0 w20 w20 w2
Differential Ds(y) = RZ(}"AY) - Raoly) (resummed)
2-jet rate - Ay Ofa?)
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QCD as a predictive theory'

e We have seen that perturbative QCD suffers from collinear and
soft singularities but that so-called infrared-safe observables are
insensitive to the number of partons in the final state which means
that they are insensitive to the collinear merging of two daughter
partons or the disappearance of one daughter parton in the soft
limit. It can be shown that for infrared-safe observables there is
a precise cancellation of the soft and collinear divergences in the
contributing Feynman diagrams at all orders.*®

e However, it is clear that if QCD predictions would be restricted to
infrared-safe observables only, it would not be a very useful theory:.
Fortunately, there is a large class of cross-sections that factorises
into a perturbatively calculable infrared-safe short-distance (hard)
part, and a long-distance (soft) part which is infrared-singular but
has the virtue of being universal, that is, process-independent.

e Anexample is the deep-inelastic scattering (DIS) cross-section
o(lp — U'X)

where a lepton £ (electron, muon or neutrino) scatters on a proton
which breaks-up into the (uspecified) system X. The DIS cross-
section can be factorised in a hard lepton-quark cross-section and
a so-called parton distribution which is process independent,
but non-perturbative and infrared-singular. However, it can be
replaced by a measurement, like we did for the running coupling
where ultraviolet divergences were replaced by a measured value
of the coupling constant at some renormalisation scale (Section 6).

e In this section we will study DIS in more detail and see how it
leads to the famous quark-parton model of the proton.

4830-called Bloch-Nordsieck and Kinoshita-Lee-Lauenberg theorems.
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Inward bound'

e One way to probe the internal structure of matter is to bombard
it with high energy particles, and then see what happens. For in-
stance, in the Rutherford experiment (1911), alpha particles (he-
lium nuclei) were deflected on a thin gold foil. Rutherford found
that the deflections followed his famous inverse sin(#/2) law (see
page 0-13), and concluded that the alpha particles were scattered
from electrically charged point-like nuclei inside the gold atoms.

e Experiments using probes of higher energy later revealed that the
point-like scattering distributions were damped by form factors
which are essentially the Fourier transform of a charge distribu-
tion. This clearly showed that nuclei are not point-like and indeed,
after the discovery of the neutron by Chadwick (1932), it became
clear that nuclei are bound states of protons and neutrons.

e Also the protons and neutrons were found not to be point-like and a
real breakthrough came with a series of deep inelastic scattering
experiments in the 1960’s at SLAC, where electron beams were
scattered on proton targets at energies of about 20 GeV, large
enough to reveal the proton’s internal structure.

e The SLAC experiments showed that the electrons were scattering
off quasi-free point-like constituents inside the proton which were
soon identified with quarks. This was the first time that quarks
were shown to be dynamical entities, instead of bookkeeping de-
vices to classify the hadrons (Gell-Mann’s eightfold way). The
Nobel prize was awarded in 1990 for this spectacular discovery,
and the lectures of Friedman, Kendall and Taylor are a fascinating
record of the struggle to understand what these data did tell us.
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Deep inelastic scattering (DIS)I

e The pioneering SLAC experiments were followed by a series of
other fixed-target experiments® with larger energies at CERN
(Geneva) and at Fermilab (Chicago), using electrons, muons, neu-
trino’s and anti-neutrinos as probes.

e The largest centre-of-mass energies were reached at the HERA
collider in Hamburg (1992-2007) with counter-rotating beams of
27 GeV electrons and 800 GeV protons.

Exercise 8.1:[1.0] Calculate the centre-of-mass energies at SLAC
(20 GeV electrons on stationary protons) and at HERA (27 GeV
clectrons on 800 GeV protons). You can neglect the electron mass
and, at HERA, also the proton mass.

e Deep inelastic scattering (DIS) data are very important since they
provide detailed information on the momentum distributions of
the partons (quarks and gluons) inside the proton.

e Parton distributions are crucial ingredients in theoretical predic-
tions of scattering cross-sections at hadron colliders like the Teva-
tron (Fermilab, proton-antiproton at 2 TeV) or the LHC (CERN,
proton-proton at 8-14 TeV). The reason for this is simple: the col-
liding (anti)protons have a fixed centre-of-mass energy but not the
colliding partons, since their momenta are distributed inside the
(anti)proton. Clearly one has to fold-in this momentum spread to
compare theoretical predictions with the data.

e Apart from providing parton distributions, DIS is also an impor-
tant testing ground for perturbative QCD, as we will see.

49Tn a fixed-target experiment, beam particles interact with a stationary target in the laboratory, and the
debris is recorded in a downstream detector. In a collider experiment, on the other hand, counter-rotating
beams collide in the centre of a detector, which is built around the interaction region.
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DIS kinematics II

k/

e The graph above shows the kinematics of deep inelastic scattering:

k = incoming lepton
p = Incoming proton

k' = outgoing lepton
X = hadronic final state

qg=k — k' momentum transfer

e The interaction between the exchanged photon (or W in case of

vp — £X neutrino scattering) and the proton depends on p and

q, from which we can build the two Lorentz scalars:

Q=

Q2
2p-q

—¢* and z =

e Other scalars that are often used to characterise the event are

Proton mass squared

Centre of mass energy squared
Invariant mass of X squared
Fractional energy transfer in the lab

Energy transfer in the lab system
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DIS kinematics III

e In case of elastic scattering, the proton leaves the collision

without breaking-up or being in an excited state. Thus we have,

for elastic scattering, ep — ¢'p’ with®”

p=p?*=(p+q?=W?= M.

e Here are a few useful relations, which we will prove below

1. q* <0 (hence the minus sign in the definition of Q)
2. 0<z<l1
3 0<y<l1
4. W= M*+Q*(1 —x)/z > M?
® Proof

Since all kinematic variables are Lorentz invariants, it is often useful to calculate them in
frames which are convenient.

1. In the rest frame of the incoming electron with the outgoing electron along the z

axis we have k = (m,0,0,0) and ¥’ = (E’,0,0, k") so that
¢ =(m—E,0,0,—K) =m?-2mE+E?*—k? = m*-2mE' +m? = 2m(m—FE') < 0.
Obviously z = 0 when ? = 0. For the other limit set W? = M?. This gives

W2 = (p+q)? = P*+2p-q+¢® = M*+2p-¢—Q* = M* — @Q*=2pq — z=1

. For the limits on y it is easiest to work in the lab frame where the proton is at

rest and the electron comes in at the z direction. We then have k = (F,0,0,k),
p=(M,0,0,0) and ¢ = (E—E', ¢z, qy,q-) so that p-k = ME and p-q = M(E—E').
Therefore
_pq E-F
p-k E
From this it immediately follows that 0 <y < 1.

with m. < E' < E.

4. With z = Q*/(2p - q) we find

W?=(p+q)?=p"+2p-q+¢ =M +Q*/x—Q* =M+ Q*(1—x)/x.

%0From relation (4) below it follows that the elastic scattering limit is also given by x = 1.
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Exercise 8.2: I

(a) [0.5] Show that Q* = zys for large s > M? (so that we can neglect
the proton mass). What is, in this approximation, the largest ()
that can be reached at the SLAC experiments (/s = 6.4 GeV)
and at HERA (y/s = 294 GeV).>!

(b) [1.5] All DIS kinematic variables can be determined from a mea-
surement of the scattered electron energy E’ and angle 6 with
respect to the incident beam. In particular, show that for fixed-
target experiments (proton at rest and the electron coming in from
the z direction) we have the relations

Q* = 4EFE'sin*(0/2)

v = F—F
v = QM)
y = v/E

W? = M?*—Q*+2Mv
s = M(M+2FE)~2MFE
Hint: For the expression of Q% use the half-angle formula

cosf = 1 — 2sin?(0/2).

e It is convenient to plot the allowed kinematical region in the y-Q?
plane (— Fig.)

51'We will see later that the cross-section drops like Q~* so that DIS events at very large Q2 are rare. It is
thus difficult to collect data in this kinematic region.
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DIS kinematic plane'

Q> = 2MEy+ M? —W?
2M Exy
= 4(1 —y)E?sin*0/2

8-9



DIS kinematics in real lifeI

(k)
0(k)
v(q)

P(p) { remnant
mark Jet

:Quark Jet Quark Jet
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The quark-parton model I

e To explain the DIS measurements at SLAC, Feynman, Bjorken,
and others (1969) proposed the so-called parton model which
states that

Assumption I: A fast moving hadron appears as a jet of par-
tons (quarks and gluons) moving in more or less the same
direction as the parent hadron and sharing its 3-momentum.

Assumption II: The reaction cross-section is the incoherent sum

of partonic cross-sections, as calculated with free partons.”?

e We will now use the quark-parton model and results from the PP-I
course to derive the DIS cross-section. The kinematics is best
understood in the so-called Breit-, or infinite-momentum frame.

52By ‘incoherent sum’ we mean that cross-sections are added, instead of amplitudes.
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The Breit frame II

]5: (E70707€p)

ﬁ/ = <E7 07 O7p,)

k/

e Because the virtual photon is space-like (¢? < 0) it follows that
we can boost the photon along its direction of propagation (which
points to the proton) such that ¢” vanishes. This frame is called the
Breit frame or infinite momentum frame since the proton
then moves with very large momentum towards the virtual photon.

e In this frame the incoming quark moves with a 3-momentum &p.
along the z axis, where £ is the fraction of the proton 3-momentum
p.. The virtual photon moves with a 3-momentum () along —z.

e We take the incoming quark to be point-like, so that the scattering
is necessarily elastic:”3

PP=0+q° = P=p+2-q-Q = Q=2p-q
e If we denote the proton 4-momentum by p then, in the Breit frame,

p-q = (E,0,0,£p:)-(0,0,0,-Q) = {p.Q
Ep-q = €<Ep7 0,0,p.) - (07 0,0, _Q) = {p.Q

Thus p-q = & p-q but remember that this is only true in the Breit
frame where the virtual photon does not transfer energy.

53We indicate the unobservable partonic kinematic variables by a hat, like p for a partonic 4-momentum.
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The Breit frame III

p=(E,0,0,¢p)

Z/j/ = (E7 07 O7p/)

e The elastic scattering condition now becomes

C?Q

Q"=2p-q=26p-q — &= =

2p-q
e So we can identify the Bjorken-x variable as the 3-momentum frac-
tion of the struck quark in the Breit frame.

e Let us at this point introduce the notion of a quark distribution
fi(z)dx, which gives the number of quarks of flavour ¢ which carry
a 3-momentum fraction (in the Breit frame) between z and z+dwx.

e Remark: note that in the Breit frame the proton moves very fast
towards the photon, and is therefore Lorentz contracted to a kind
of pancake. The interaction then takes place on the very short time
scale when the photon passes that pancake. On the other hand, in
the rest frame of the proton, the inter-quark interactions take place
on time scales of the order of r,/c but because of time dilatation
these interactions are like ‘frozen’ the Breit frame. During the short
interaction time, the struck quark thus does not interact with the
spectator quarks and can be regarded as a free parton.
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Intermezzo: Mandelstam variables

pL=k

\/
/\

s = (p1+p2)* =~ 2p1 - po
t = (p1—p3)*=(ps—p2)° = —2p1-p3~ —2pas- Py
u = (pr—ps)* = (p3s —p2)° = —2p1-ps =~ —2p3 - Po

e Exercise 8.3: [0.5] Show that s + ¢ + u = m? +m3 + m3 + m}

e Exercise 8.4: [0.5] Show that, if we neglect the electron and

proton mass,

Q* = —~t
r = —t/(s+u)
y = (s+u)/s

W? = s+t+u

Note that we immediately get Q* = zys (if we ignore the masses).
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Parton density'

On page 8-13 we have introduced the parton density func-
tion f;(x)dx which gives the number of quarks of flavour ¢ =
d,u,s,...,d, 0,8, ... between momentum fraction x and = + dx.

Huh? But does not the proton consist of three quarks? No, not
in a dynamical picture: inside the proton there are also gluons
from the QCD splitting ¢ — ¢gg and quark-antiquark pairs from
the splitting g — qq (—fig). What is true is that there is a net
excess of three quarks that carry the quantum numbers of the
proton.

Now we use the second assumption of the parton model and write
the cross section as an incoherent sum of partonic cross sections

do = do(5,4,0) fi(z)de

Here we have introduced the parton kinematic variables
s~2xp-k=uxs, t=(Fk—-K)Y?=t i~ —2xp kK =2zu

For the partonic cross section we just take o(ep — en) as calcu-
lated in PP-I (lecture 8), with the muon charge replaced by the
quark charge.

Exercise 8.5: [0.5] Why do we take the cross section for ey — ep
as our reference, and not that of ee — ee 7



Dynamical picture of the proton'

>
> 0000000008 000000000

KQQ Q)

S Q

(00000000 g

l’..‘\

SN

00000000

< 9

|

Schematic picture of the QCD proton structure. The uud valence
quarks that carry the quantum numbers of the proton enter the dia-
gram on the left. This corresponds to a low-resolution 3-quark picture
of the proton that only accounts for its quantum numbers. At the right
of the diagram we see a high-resolution picture (at large Q?) of the pro-
ton where the valence quarks are dressed with gluons and a sea of qg
pairs. Note that the valence quarks can zig-zag through the diagram
but will never disappear so that the proton quantum numbers are the
same in both the low- and high-resolution pictures.



Cross section for e-p scattering'

po s u(ks) po oz (k)

e :u(ky) e :ulks)

e [n PP-I Section 8.2 the e-pu cross section is calculated as

do _04_2 s% + u?
dQ) Com_ 25 {2

e COM frame with momentum k; along x and scattering angle

ki=(k, k,0,0) ks = (k, kcosf, ksinf,0)
ky = (k,—k,0,0) ky= (k,—kcosf,—ksin,0)

s =4k* t=—2k*(1 —cosf), u=—2k*(1+ cosh)

e Cross section
de  do  do ﬁ_dea s do
dQ  sin 6dodo  sin Ododt |do N dodt N 2dodt

e Integrating over ¢ then gives

do  4ndo 2’ (32 + uz)

& sdQ 2 t2
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DIS cross section'

e Using the partonic variables, and multiplying the charge at the
muon vertex by the fractional quark charge e;, we get the partonic

do; 2ma’e? <§2 + ﬂ2)

Cross section

dt 8 2
[t is a simple matter to re-write this in terms of the DIS kinematic
variables (see page 8-14).

e Exercise 8.6: [1.0] Show that

Chfi Chfi 2ﬂ7126?

= — =
dt dQ?  Q*

e Now we can put this result in our master formula on page 8-15

- mae — ] filz)da

14 (1—y)

dQ2
. o 2o’
T = g 1+ (=9 3 ethia)

e The F; structure function is defined as the charge weighted
sum of the parton momentum densities x f;(z)

= Zefﬂﬁfi(l")

so that the DIS cross section can be written as

o4

d*c 4dma? [1+ (1 —y)?
dzdQ? Q4 2

Fy(z)

54 One can think of the y dependence as being an angular dependence through the relation 1—y = %(1+cos 0*).
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The Gallan-Gross relation'

e We have given a rather simple derivation of the parton model cross
section and established the relation between parton density func-
tions and the F5 structure function.

e However, a more formal derivation (see H&M Section 8), which
does not use the parton model, leads to the result

d2 2
s = r (1= 0P, @) + 2R, Q)]

Here another structure function shows up, which turns out to be

proportional to the absorption cross-section of transversely po-
larised photons: 2xF; o< op. Because the exchanged photon is
virtual, is also has a longitudinally polarised component. The F3
structure function is proportional to the sum of the transverse and
longitudinal absorption cross sections: Fy o< o1 + o71..

e In the Breit frame, where the quarks are highly relativistic without
transverse momenta, the quark spins will be aligned parallel or
antiparallel to the direction of motion (z axis) so that it can absorb
a head-on photon with helicity £1, just by flipping the spin.

e However the quarks cannot absorb a longitudinally polarised pho-
ton because for this the quark spin must have a non-vanishing
transverse component. Thus, in the parton model, o1, = 0 and
Fy = 2xFy. This is called the Gallan-Gross relation. Setting
Fy = 22 F, above, we recover the formula on page 8-18.%

e In the QCD improved parton model, gluon radiation imparts small
transverse momenta to the quarks so that now oy, # 0 and another
(small) structure function shows up, Fi, = Fy — 2z F}, with its own
characteristic y-dependence.

55Historically, experimental verification of the Gallan-Gross relation was a proof that quarks carry spin %
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Bjorken scaling'

e In principle, the structure functions depend on two variables, x
and Q? say, but in the parton model derivation on page 818 we

have defined

Fy(z) = erxfi(x)
which depends on x only. This Q? independence is called Bjorken
scaling and is formally stated as follows (in terms of lab variables):

622 — OO : B 622 . 9
If e with © = SN finite, then Fy(x, Q%) — Fy(x)

e This scaling behaviour is easy to understand by noticing that the
wavelength of the virtual photon A ~ 1/Q). But the resolving
power is irrelevant when we scatter on point-like objects, hence
the independence on Q?. In short, scaling — point-like scattering.

e 1

Y

i)
YYY

(a) (b)

e Indeed, measurements of I at different (Q? values seem to fall on a
universal curve (— fig) but close inspection reveals a characteristic
scale-breaking pattern. This Q? dependence is caused by the QCD
processes of gluon radiation and ¢gq formation, as we will see later.
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Figure 4.2 Bjorken scaling: the structure function vW¥, (a) plotted against w = 1/x for
different ¢ values (Miller et al 1972) (b) plotted against q* for asingle value of x = .25
(0 = 4) (Friedman and Kendall 1972).
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Neutrino scattering'

e Much information on the proton structure comes from (anti-)neutrino
deep inelastic scattering. We will not derive here the expressions
for the cross-sections (see H&M) but simply list the result for
vp — ¢ X scattering and for p — e X scattering®®

dQO'Vp ) - 2 .
oagz ~ AL 0= B+ [ (1= g o)

d2o"P 9 D 5 -
202 =oo{[1+(1—y)| ;"= [1—(1—y)’] 2F3"}
e Here we encounter a new structure function, x F3, which is sensitive
to the difference of quark and anti-quark distributions.

e In the parton model, the neutrino structure functions are
FYY = 2z(d+s+u+¢)
ek’ = 2x(d+s—u—¢)
EP = 2z(u+c+d+3)
(

eF = 2x(u+c—d—3)

56
G2 ([ MZ O\’
The factor in front is og = 47}7 <Q2 T+ M2 )
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Valence and momentum sum rules'

e We have introduced the quark number distributions f;(x) which we
will write as u(x), u(z), d(z),d(z), etc. It is convenient to define
the valence and sea distributions by

uy=u—u dy=d—d, s,=s5—5=0,
us = 21, ds = 24, Sq =235,

so that u + u = u, + ug, etc. See also the diagram on page 8-16.

e Because the quantum numbers of the proton must be carried by
the surplus of quarks over antiquarks, we get the counting rules

1 1
/ uy(z)dz =2 and / dy(x)dr =1
0 0

e The momentum distributions z f;(z)dx give the probability that
a quark carries a momentum fraction between z and x+dz.>” Thus
if all quarks carry the momentum of the proton we should have

Z/()la:fi(az)dx—l

e But integration of the quark distributions obtained from deep in-
elastic charged lepton and neutrino scattering gives

Z/l zfi(r)dr ~ 0.5
—Jo

e Where is the missing momentum? The answer is that it is carried
by gluons. Introducing a gluon momentum distribution zg(x), the
correct momentum sum rule is

;Al zfi(z)dz + /01 zg(r)dr =1

STIf f(x)dx is the number of quarks carrying a fraction x of the proton momentum P, then the total momentum
carried by these partons is p = P f(z)dx. The probability to carry a fraction z is thus p/P = z f(z)dx.
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Example of a pdf setI

Xd;

0.8
—  QCD fit Q> = 10 GeV*
S CTEQ4M
i XU,
0.6 \
Y Xq (X 0.05)

Remark: The widely used abbreviation ‘pdf’ stands for ‘parton density
function’. Usually, but not always, it is clear from the context or
notation (xf or f) if a momentum or a number density is meant.



Exercise 8.7: Universality of pdfs I

e The isospin symmetry assumption says that the u (anti)quark

distribution in the proton is equal to the d (anti)quark distribution
in the neutron, and wvice versa. Thus we have

ep __
FyW =
en __
Fy' =

I(d—HZ)—I—%x(u—i—ﬂ)+%x(s+§)+---
x(U—I—ﬂ)—F%x(d—I—J)—F%x(SJrE)+---

Ol— Ol

The same applies to (anti)neutrino scattering: Fy® = FyP(u <> d).

Note that the parton distributions, by convention, always refer to
those of the proton.

(a) [0.5] Use isospin symmetry to write down the parton model
expressions for Fy™ and Fy™ (F,” and F§™ are already given
above). Define the nucleon structure function F§» by aver-
aging the proton and neutron Fh. Likewise define F¥V by

averaging over proton and neutron and also over v and v.
(b) [0.5] Neglect charm and assume 3 flavours (d, u,s). Show that
N5 3 (s+5) ] _5
FYN 18 53 (q+q) ] 18

Because the (anti)strangeness content of the nucleon turns out

to be small, it follows that the strangeness correction term
above is also small; correction for charm would be even smaller.

e The plot on the next page shows an early experimental verifica-
tion of Fy ~ L2F5Y. This not only tests the (fractional) quark
charges, but also that electron and neutrino DIS probe the same
parton distribution: parton distributions are a process independent
property of the nucleon (universality of pdfs).
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« FYN(GARGAMELLE)
, * (1815) F{N(MIT-SLAC)
J1 ]
Fa(x) | { " %
0.8|. \ " .lu
\x\
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FIG. 10. Early Gargamelle measurements of F}¥ compared
with (18/5)F%Y calculated from the MIT-SLAC results.

Early verification that FY/Y ~ %FSN . Figure taken from Jerome
Friedman Nobel lecture, Rev. Mod. Phys. 63(1991)615.
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The QCD factorisation theorem'

e [n Section 7 we have seen that QCD suffers from infrared singular-
ities when two daughter partons cannot be resolved because they
become collinear, or because one of them becomes soft. We have
also seen that these singularities are associated with ‘long-distance’
physics which takes place a long time after the initial hard scat-
tering. So-called infrared-safe observables are still calculable in
perturbative QCD, but since this is quite restrictive we have to
look for ways to extend the predictive power of the theory. This
way-out is provided by the QCD factorisation theorem.

e For hadron-hadron scattering the factorisation theorem states that
the singular long-distance pieces can be removed from the partonic
cross section and factored into the parton distributions of the in-
coming hadrons, and that this can be done consistently at all orders
in the perturbative expansion.

e The partonic cross section is then calculable in perturbation theory,
and does not depend on the type of incoming hadron.

e The parton distributions, on the other hand, are a property of the
incoming hadrons but are universal in the sense that they do not
depend on the hard scattering process.”® Parton distributions are
nonperturbative and have to be obtained from experiment.

e Factorisation is a fundamental property of QCD. It turns pertur-
bative QCD into a reliable calculation tool, unlike the naive parton
model that does not take the parton dynamics into account.

58See also Exercise 8.7.
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Hadron-hadron cross sections II

e Schematically, a hadron-hadron cross section can be written as

:Z/d$1d$2 fz'(SUhMQ)fj(SUZaMQ) @j(xlax?»Q?/“Qv'”)
]

and can be depicted by (left diagram):

Hadron-hadron

Deep inelastic

O
NN
T

b1

b2

OF

(5).

W\
f

e Here the (arbitrary) factorisation scale p can be thought of
as the scale which separates the long and short-distance physics.
Roughly speaking, a parton with a transverse momentum less
than p is then considered to be part of the hadron structure and
is absorbed in the parton distribution. Partons with larger trans-
verse momenta participate in the hard scattering process with a
short-distance partonic cross-section o.
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Hadron-hadron cross sections III

e What is taken for the hard scale Q* depends on the scattering
process we are interested in. In jet production, for instance, one
usually takes the transverse momentum of the jet as the hard scale,
in deep inelastic scattering one takes the square of the four mo-
mentum transfer from the electron to the proton, and in eTe”

scattering one takes the centre-of-mass energy, and so on. Often

the simplifying assumption is made that the factorisation scale is

equal to the hard scale: u? = Q.

e The factorisation theorem also applies to deep inelastic scattering,
with one of the parton distributions replaced by an e¢’y* vertex as
is shown in the right-hand side diagram on page 9-4:

J

e We will use DIS to show how the infrared singularities are ab-
sorbed in the parton distributions. The QCD evolution equations
of the parton densities are then derived from the renormalisa-
tion group equation.
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Recap of the F;, structure function'

e We have seen that the F5 structure function measured in deep
inelastic electron-proton scattering is, to first order, independent
of ()%, the negative square of the momentum transfer from the
electron to the proton. This implies that DIS does not depend
on the resolution 1/@) with which the proton is probed. This is
explained in the naive parton model by assuming that the electron
scatters incoherently off pointlike quarks in the proton. The Fj
structure function can then be written as the charge weighted sum
of quark momentum distributions

Fy’(x) = Z ez fi(x).

]

Here e; is the charge of the quark, and f;(z)dz is the number of
quarks that carry a fraction between x and x + dx of the proton
momentum. The probability that the parton carries a momentum
fraction x is then given by z f;(x). The index ¢ denotes the quark
flavour d, u,s, ...,d,Q,s,. ..

e Although gluons show up in the naive parton model as missing
momentum, they are not treated as dynamical entities. We will
now incorporate the effect of gluon radiation by quarks, which
leads to the so-called QCD improved parton model.
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Scaling violation I I

proton

e Consider a quark that carries a fraction y of the proton momentum
and radiates a gluon with a fraction 1 — z of its momentum. After
radiating the gluon, the quark with momentum fraction zy scatters
off the virtual photon. The momentum fraction seen by the photon
is thus = zy which implies that z = x/y.

e Taking gluon radiation into account, the F5 structure function is
found to be (see H&M Section 10.1-5 for a lengthy derivation):

Bz, Q%) L dy x Qs T 2
S exa [ [s(=5) ()i

2

Here m~ is a lower transverse momentum cut-off to regularise the

divergence when the gluon becomes collinear with the quark.

e In the above, the splitting function P is given by

P.o(z) = g (1 +z2> |

Il —=z
It represents the probability that a parent quark emits a gluon with
the daughter quark retaining a fraction z of the parent momentum.
Note that an infrared divergence shows up when (1 — z) — 0
where the gluon becomes soft so that daughter and parent cannot
be resolved anymore.

9-7



Scaling violation II I

Bz, Q%) Ldy x Qg T Q*
S e [ 0-5) e () e

e Exercise 9.1: [1.0] Carry out the integral on the first term and
check that it corresponds to the parton model expression for Fb,
as is given on page 8-18 (note that for clarity we have suppressed
the flavour index ¢ and the summation over flavours).

e The expression above depends on the cutoff parameter m and di-
verges when m — 0. To simplify the notation we set

- [ ()

and write
F2(x7 Qz) :u2 Q2
— = e’ | f(z) + Iq(x)In — +1q(z) In 2
] Flan?) |
f(.Q2)

e Here we have defined the renormalised quark distribution f(z, u?)
at the so-called factorisation scale u where we separate the
singular factor, which depends on m but not on (? from the
calculable factor which depends on () but not on m.

e [f we substitute the renormalised distribution for the bare distri-
bution in I, we obtain, neglecting terms beyond O(ay),

P, Q) = fla )+ 2 / Y 1) P (£) 0% + 00

2T 1
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DGLAP evolution I

e The expression for Fy now becomes, up to O(a?),

F 2 . 1 d 2

e Clearly F5 should not depend on the choice of factorisation scale
which leads to the following renormalisation group equation:

L ORy(w, Q%) _ Of(w.p?) |

e2x  Oln p? 01n p?
as [ty [0f(y,p?), (Q° ) x
o J, [ oy (?) _f(y’wl Fag (5) !

e From this equation it is seen that (9 /0 In u?) is of order ay so that
the first term in the integral above is of order a®. Neglecting this
term we obtain an evolution equation for the quark distribution®

Of (@, 1) _ a /1dy
Olnp2 21 ), y

)P () + Ofa)

This is, together with the evolution equation for oy (page 6-16), the
most famous equation in QCD. It describes the evolution of a quark
distribution due to gluon radiation and is called the DGLAP
evolution equation after several authors who claim eternal
fame: Dokshitzer, Gribov, Lipatov, Altarelli and Parisi.

e This equation can be solved (numerically) once f(z, u2) is given as
an input at some starting scale p3. This is similar to the running
coupling constant ag where also an input has to be given at some
scale (usually taken to be m%, as we have seen).

n our derivation we have assumed that oy is a constant. Taking the running of ay into account is somewhat
subtle, but leads to the same evolution equation; see the comment in H&M exercise 10.7 on page 218.
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Quark and gluon evolution'

Of (x,p1*) o /1 dy ., x 2
alnlug T 2 Ly (ynu )qu Y +O(&s)

e We have seen the DGLAP evolution of quark distributions with
splitting function P, but when we introduce the gluon distribu-
tion, more splitting graphs have to be included.

Paq ; Z Pyg : Z qusf Z ngg; Z
(a) (b) (c) (d)

(a) A daughter quark from the splitting of a parent quark into a
quark and a gluon. When the gluon becomes soft (1 —z) — 0,
the distinction between daughter and parent vanishes, and a
singularity develops.

(b) A daughter quark from a parent gluon which splits into a
quark-antiquark pair. Here no singularity develops since daugh-
ter and parent can always be distinguished.

(¢) A daughter gluon from a quark parent. Also here no singularity.

(d) A daughter gluon from a parent gluon. Like in ¢ — ¢g a
singularity develops in the soft limit (1 — z) — 0.
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The leading order splitting functions'

e Here are the leading order splitting functions

‘th

}%g ‘F%q 'F%g
> > 7SS 7BEE888™
%, N < %,

41 1422 3
p0) — - “5(1 —
06 = 3|+ 50 - 2]
1 -
Pég)(z) =3 _22+(1 2)2]
411+ (1—2)*
O

o
)
~~
N
N—
I
(&)
1
_|_
_|_
N
/
H
|
N
N—
+
N\
'—l
|
|
5|
o)
N~
(@)
~
|
N
N—
1

e The singularities showing up in P, and Py, at (1—2) — 0 are reg-
ulated by a so-called ‘plus’ prescription which guarantees that the
integral f; exists of the splitting function multiplied by a parton
density function (provided that the pdf — 0 when x — 1).

e For reference, we give here the definition of the plus prescription

@), = f() — 81— o) / f(z) dz

or, equivalently,
[ 1@tz = [ 1) - f0lgt)de - £ [ gl
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The coupled DGLAP equations'

e The qq, qg, gq and gg transitions lead to a set of 2n; + 1 coupled

evolution equations that can be written as®

Ofiw, 1) <= as [Tdy x 2
W—jz %/x ?Pw ; fily, 1),
:—nf

where the splitting function P;;(2) represents the probability that
a daughter parton ¢ with momentum fraction z splits from a parent
parton j.9! Here the indexing is as follows

—1,...,—ny  antiquarks
1,] = 0 gluon
l,..., ny quarks

e To simplify the expressions for the evolution equations we write
the Mellin convolution in short-hand notation as

1
P®f5/d?y (g) fly, 1)

With this notation the set of coupled equations reads

__fzzz__ — :;f: E%i P @ch'
Olnpu? o T

j=—ng

e In leading order QCD we can write for the splitting functions:%?

P@i@j:PQinEquéij7 Pag = Pog = Pagy Pogy = Paq; = Pog

SOHere n ¢ is the number of ‘active’ quark flavours. Usually a quark species is considered to be active (i.e. it
participates in the QCD dynamics) when its mass m < p.

61The conventional index notation for splitting functions is thus Pyaughter-parent-

62The splitting functions are flavour independent since the strong interaction is flavour independent. Fur-
thermore, leading order splitting cannot change the flavour of a quark, as is expressed by the delta function.
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Singlet /gluon and non-singlet evolution'

e Exploiting the symmetries in the splitting functions (previous page),
the set of 2n;+1 coupled equations can to a large extent be decou-
pled by defining the singlet distribution ¢, which is the sum
over all flavours of the quark and antiquark distributions,

nf
ds = Z(C]@ + i)
i=1

e [t is easy to show that the evolution of this distribution is coupled
to that of the gluon

gy as

01n p? T or Faq @ Gs + 21 Fog ® ]
dg Ol
e~ an e ®et Fu@d

In compact matrix notation, this is often written as

0 s\ _ Os FPyq 2nfFPyg 2 ds
Olnp? \ g 21 \ Py P g

e Likewise it is easy to show that non-singlet distributions
nf nf
Gns = Z(OZ q; + D; Cj@) with Z(OZ —+ Dz) =0
i=1 =1
evolve independent from the gluon and from each other:

ac]ns Qg
— P, ns
Olnp? 27 M ©4

An example of a non-singlet is the valence distribution ¢; — ¢;.

e Thus, in practice we do not evolve the quark distributions u, u, d,
d, ... but, instead, the singlet distribution (coupled to the gluon)
and a well chosen set of 2ny — 1 non-singlet distributions.
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Higher orders ...
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e The LO splitting functions presented on page 9-11 can be seen as
the first term of a power series in o

P = P~(-0) + (/27 P-(~1) + (/27 QPZ.(jQ) 4.

1] 1]
Presently the splitting functions are known up to next-to-next-
to-leading order (NNLO), that is, up to P( ). Such a calculation
done at Nikhef) in no sinecure as the expression above shows. It

goes on for many more pages...%

63A. Vogt, S. Moch and J.A.M. Vermaseren, Nucl. Phys. B691, 129 (2004), hep-ph/0404111.
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e The gross features of the evolution can be easily understood as
follows. In the left plot above we indicate by the blob the resolution
1/Q of a photon with virtuality @Q*. Increasing Q* will resolve a
quark into a quark-gluon pair of lower momentum (right plot).
Thus when (Q? increases, more and more quarks are seen that have
split into low momentum quarks. As a consequence, the quark
distribution will shift to lower values of x with increasing Q?. This
results in the characteristic scale breaking pattern of F5, when

Intuitive picture I

plotted versus Q* for several values of z (— fig.)

small =




Scale breaking pattern of the F> structure function'

As expected!
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Comparison of the F,; data with the QCD prediction'
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e This plot shows a recent QCD analysis (up to third order) of HERA
F5 structure function data. In such an analysis the quark and the

gluon distributions are parameterised at an input scale of about

2 GeV? and evolved over the whole QQ? range. The parameters of

the input distributions are then obtained from a least squares fit.

There is an impressive agreement between data and theory.
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The pdf set from the HERA QCD analysis'
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e Parton distributions obtained from the HERA QCD analysis. The
sea (xS = 2xq(x), see page 8-24) and the gluon are divided by
a factor of 20. The parton distributions are parameterised at an
input scale of u2 = 1.9 GeV? and evolved to 10 GeV? for this plot.
The bands indicate various sources of uncertainty.

e In DIS the electrons only scatter off the charged quarks in the pro-
ton and not off the gluons. However, we still have indirect access
to the gluon distribution via the coupled singlet /gluon evolution.
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Scale dependence'

e At this point we have introduced three different scales:

1. The factorization scale p# where we have separated the short
and long distance physics, and on which the pdfs evolve.

2. The renormalisation scale p3 (called @ in Section 6) on which
the strong coupling constant ay evolves.

3. The hard scattering scale Q> which, in DIS, is the square of
the 4-momentum transfer from the electron to the proton.

e Exposing the different scales, we write the (non-singlet) evolution
equation, and the leading order expression for F5 as

Oqus(T, p1p) MR / dy T
— -[) ns
Y s (Y [17)

Fy(x, Q%) = > _ej [gilw, pp) + Gi(w, up)] + O(as)
i=1
e Usually one sets p = pi = Q. The sensitivity to this choice is
then quantified by varying the scales in the range, typically,

e < pp <Appand Q< pp < 4Q°
e But note, however, that Fy(x,Q?) above depends only on g
which, for a given ()%, is arbitrary. It follows that the leading order
perturbative stability is poor, and that LO perturbative QCD has

little predictive power. This defect is remedied when higher order
terms are included that are functions of both @Q* and .

e Fortunately, the scale dependence rapidly decreases when higher
order corrections are included, and this is of course the motiva-
tion behind that huge effort, at Nikhef, to calculate the splitting
functions and the F; correction terms up to NNLO.
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