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The QCD factorisation theorem

• In Section 7 we have seen that QCD su↵ers from infrared singular-
ities when two daughter partons cannot be resolved because they
become collinear, or because one of them becomes soft. We have
also seen that these singularities are associated with ‘long-distance’
physics which takes place a long time after the initial hard scat-
tering. So-called infrared-safe observables are still calculable in
perturbative QCD, but since this is quite restrictive we have to
look for ways to extend the predictive power of the theory. This
way-out is provided by the QCD factorisation theorem.

• For hadron-hadron scattering the factorisation theorem states that
the singular long-distance pieces can be removed from the partonic
cross section and factored into the parton distributions of the in-
coming hadrons, and that this can be done consistently at all orders
in the perturbative expansion.

• The partonic cross section is then calculable in perturbation theory,
and does not depend on the type of incoming hadron.

• The parton distributions, on the other hand, are a property of the
incoming hadrons but are universal in the sense that they do not
depend on the hard scattering process.57 Parton distributions are
nonperturbative and have to be obtained from experiment.

• Factorisation is a fundamental property of QCD. It turns pertur-
bative QCD into a reliable calculation tool, unlike the naive parton
model that does not take the parton dynamics into account.

57See also Exercise 8.7.
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Hadron-hadron cross sections I

• Schematically, a hadron-hadron cross section can be written as

�h-h =
X

i,j

Z
dx1dx2 fi(x1, µ

2)fj(x2, µ
2) �̂ij(x1, x2, Q

2/µ2, · · · )

and can be depicted by (left diagram):
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• Here the (arbitrary) factorisation scale µ can be thought of
as the scale which separates the long and short-distance physics.
Roughly speaking, a parton with a transverse momentum less
than µ is then considered to be part of the hadron structure and
is absorbed in the parton distribution. Partons with larger trans-
verse momenta participate in the hard scattering process with a
short-distance partonic cross-section �̂.
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Hadron-hadron cross sections II

• What is taken for the hard scale Q2 depends on the scattering
process we are interested in. In jet production, for instance, one
usually takes the transverse momentum of the jet as the hard scale,
in deep inelastic scattering one takes the square of the four mo-
mentum transfer from the electron to the proton, and in e+e�

scattering one takes the centre-of-mass energy, and so on. Often
the simplifying assumption is made that the factorisation scale is
equal to the hard scale: µ2 = Q2.

• The factorisation theorem also applies to deep inelastic scattering,
with one of the parton distributions replaced by an ee0�⇤ vertex as
is shown in the right-hand side diagram on page 9–4:

�DIS =
X

j

Z
dx fj(x, µ

2) �̂�⇤j(x,Q
2/µ2, · · · )

• We will use DIS to show how the infrared singularities are ab-
sorbed in the parton distributions. The QCD evolution equations
of the parton densities are then derived from the renormalisa-
tion group equation.
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Recap of the F2 structure function

• We have seen that the F2 structure function measured in deep
inelastic electron-proton scattering is, to first order, independent
of Q2, the negative square of the momentum transfer from the
electron to the proton. This implies that DIS does not depend
on the resolution 1/Q with which the proton is probed. This is
explained in the naive parton model by assuming that the electron
scatters incoherently o↵ pointlike quarks in the proton. The F2

structure function can then be written as the charge weighted sum
of quark momentum distributions

F ep
2 (x) =

X

i

e2i xfi(x).

Here ei is the charge of the quark, and fi(x)dx is the number of
quarks that carry a fraction between x and x + dx of the proton
momentum. The probability that the parton carries a momentum
fraction x is then given by xfi(x). The index i denotes the quark
flavour d, u, s, . . . , d̄, ū, s̄, . . .

• Although gluons show up in the naive parton model as missing
momentum, they are not treated as dynamical entities. We will
now incorporate the e↵ect of gluon radiation by quarks, which
leads to the so-called QCD improved parton model.
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Scaling violation I
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• Consider a quark that carries a fraction y of the proton momentum
and radiates a gluon with a fraction 1� z of its momentum. After
radiating the gluon, the quark with momentum fraction zy scatters
o↵ the virtual photon. The momentum fraction seen by the photon
is thus x = zy which implies that z = x/y.

• Taking gluon radiation into account, the F2 structure function is
found to be (see H&M Section 10.1–5 for a lengthy derivation):

F2(x,Q2)

x
=

X

i

e2i

Z 1

x

dy

y
fi(y)


�

✓
1 � x

y

◆
+

↵s

2⇡
Pqq

✓
x

y

◆
ln

Q2

m2

�

Here m2 is a lower transverse momentum cut-o↵ to regularise the
divergence when the gluon becomes collinear with the quark.

• In the above, the splitting function Pqq is given by

Pqq(z) =
4

3

✓
1 + z2

1 � z

◆
.

It represents the probability that a parent quark emits a gluon with
the daughter quark retaining a fraction z of the parent momentum.
Note that an infrared divergence shows up when (1 � z) ! 0
where the gluon becomes soft so that daughter and parent cannot
be resolved anymore.
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Scaling violation II

F2(x,Q2)
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= e2
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• Exercise 9.1: [1.0] Carry out the integral on the first term and
check that it corresponds to the parton model expression for F2,
as is given on page 8–18 (note that for clarity we have suppressed
the flavour index i and the summation over flavours).

• The expression above depends on the cuto↵ parameter m and di-
verges when m ! 0. To simplify the notation we set

Iqq(x) =
↵s

2⇡

Z 1

x

dy

y
f (y)Pqq

✓
x

y

◆

and write

F2(x,Q2)

x
= e2

2

6664
f (x) + Iqq(x) ln

µ2

m2
| {z }

f(x,µ2)

+Iqq(x) ln
Q2

µ2

3

7775

| {z }
f(x,Q2)

• Here we have defined the renormalised quark distribution f (x, µ2)
at the so-called factorisation scale µ where we separate the
singular factor, which depends on m but not on Q2, from the
calculable factor which depends on Q2 but not on m.

• If we substitute the renormalised distribution for the bare distri-
bution in Iqq we obtain, neglecting terms beyond O(↵s),

f (x,Q2) = f (x, µ2) +
↵s

2⇡

Z 1

x

dy

y
f (y, µ2)Pqq

✓
x

y

◆
ln
Q2

µ2
+ O(↵2

s )
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DGLAP evolution

• The expression for F2 now becomes, up to O(↵2
s ),

F2(x,Q2)

x
= e2


f (x, µ2) +

↵s

2⇡

Z 1

x

dy

y
f (y, µ2)Pqq

✓
x

y

◆
ln
Q2

µ2

�

• Clearly F2 should not depend on the choice of factorisation scale
which leads to the following renormalisation group equation:

1

e2x

@F2(x,Q2)

@ lnµ2
=

@f (x, µ2)

@ lnµ2
+

↵s

2⇡

Z 1

x

dy

y


@f (y, µ2)

@ lnµ2
ln

✓
Q2

µ2

◆
� f (y, µ2)

�
Pqq

✓
x

y

◆
= 0

• From this equation it is seen that (@f/@ lnµ2) is of order ↵s so that
the first term in the integral above is of order ↵2

s . Neglecting this
term we obtain an evolution equation for the quark distribution58

@f (x, µ2)

@ lnµ2
=

↵s

2⇡

Z 1

x

dy

y
f (y, µ2)Pqq

✓
x

y

◆
+ O(↵2

s )

This is, together with the evolution equation for ↵s (page 6–16), the
most famous equation in QCD. It describes the evolution of a quark
distribution due to gluon radiation and is called the DGLAP
evolution equation after several authors who claim eternal
fame: Dokshitzer, Gribov, Lipatov, Altarelli and Parisi.

• This equation can be solved (numerically) once f (x, µ2
0) is given as

an input at some starting scale µ2
0. This is similar to the running

coupling constant ↵s where also an input has to be given at some
scale (usually taken to be m2

Z, as we have seen).

58In our derivation we have assumed that ↵s is a constant. Taking the running of ↵s into account is somewhat
subtle, but leads to the same evolution equation; see the comment in H&M exercise 10.7 on page 218.
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Quark and gluon evolution

@f (x, µ2)

@ lnµ2
=

↵s

2⇡

Z 1

x

dy

y
f (y, µ2)Pqq

✓
x

y

◆
+ O(↵2

s )

• We have seen the DGLAP evolution of quark distributions with
splitting function Pqq but when we introduce the gluon distribu-
tion, more splitting graphs have to be included.

z

Pqq Pqg Pgq Pgg

(a) (b) (c) (d)

z z z

(a) A daughter quark from the splitting of a parent quark into a
quark and a gluon. When the gluon becomes soft (1� z) ! 0,
the distinction between daughter and parent vanishes, and a
singularity develops.

(b) A daughter quark from a parent gluon which splits into a
quark-antiquark pair. Here no singularity develops since daugh-
ter and parent can always be distinguished.

(c) A daughter gluon from a quark parent. Also here no singularity.

(d) A daughter gluon from a parent gluon. Like in q ! qg a
singularity develops in the soft limit (1 � z) ! 0.
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The leading order splitting functions

• Here are the leading order splitting functions
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• The singularities showing up in Pqq and Pgg at (1�z) ! 0 are reg-
ulated by a so-called ‘plus’ prescription which guarantees that the
integral

R 1
x exists of the splitting function multiplied by a parton

density function (provided that the pdf ! 0 when x ! 1).

• For reference, we give here the definition of the plus prescription

[f (x)]+ = f (x) � �(1 � x)

Z 1

0
f (z) dz

or, equivalently,
Z 1

x
f (z)[g(z)]+ dz =

Z 1

x
[f (z) � f (1)] g(z) dz � f (1)

Z x

0
g(z) dz.
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The coupled DGLAP equations

• The qq, qg, gq and gg transitions lead to a set of 2nf + 1 coupled
evolution equations that can be written as59

@fi(x, µ2)

@ lnµ2
=

nfX

j=�nf

↵s

2⇡

Z 1

x

dy

y
Pij

✓
x

y

◆
fj(y, µ

2),

where the splitting function Pij(z) represents the probability that
a daughter parton i with momentum fraction z splits from a parent
parton j.60 Here the indexing is as follows

i, j =

8
<

:

�1 , . . . ,�nf antiquarks
0 gluon
1 , . . . , nf quarks

• To simplify the expressions for the evolution equations we write
the Mellin convolution in short-hand notation as

P ⌦ f ⌘
Z 1

x

dy

y
P

✓
x

y

◆
f (y, µ2)

With this notation the set of coupled equations reads

@fi
@ lnµ2

=

nfX

j=�nf

↵s

2⇡
Pij ⌦ fj

• In leading order QCD we can write for the splitting functions:61

Pq̄iq̄j
= Pqiqj

⌘ Pqq �ij, Pq̄ig = Pqig ⌘ Pqg, Pgq̄i
= Pgqi

⌘ Pgq

59Here nf is the number of ‘active’ quark flavours. Usually a quark species is considered to be active (i.e. it
participates in the QCD dynamics) when its mass m < µ.

60The conventional index notation for splitting functions is thus Pdaughter-parent.
61The splitting functions are flavour independent since the strong interaction is flavour independent. Fur-

thermore, leading order splitting cannot change the flavour of a quark, as is expressed by the delta function.
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Singlet/gluon and non-singlet evolution

• Exploiting the symmetries in the splitting functions (previous page),
the set of 2nf+1 coupled equations can to a large extent be decou-
pled by defining the singlet distribution qs, which is the sum
over all flavours of the quark and antiquark distributions,

qs ⌘
nfX

i=1

(qi + q̄i)

• It is easy to show that the evolution of this distribution is coupled
to that of the gluon

@qs
@ lnµ2

=
↵s

2⇡
[Pqq ⌦ qs + 2nfPqg ⌦ g]

@g

@ lnµ2
=

↵s

2⇡
[Pgq ⌦ qs + Pgg ⌦ g]

In compact matrix notation, this is often written as

@

@ lnµ2

✓
qs
g

◆
=

↵s

2⇡

✓
Pqq 2nfPqg

Pgq Pgg

◆
⌦

✓
qs
g

◆

• Likewise it is easy to show that non-singlet distributions

qns ⌘
nfX

i=1

(Ci qi +Di q̄i) with

nfX

i=1

(Ci +Di) = 0

evolve independent from the gluon and from each other:

@qns
@ lnµ2

=
↵s

2⇡
Pqq ⌦ qns

An example of a non-singlet is the valence distribution qi � q̄i.

• Thus, in practice we do not evolve the quark distributions u, ū, d,
d̄, . . . but, instead, the singlet distribution (coupled to the gluon)
and a well chosen set of 2nf � 1 non-singlet distributions.

9–13



Higher orders ...
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• The LO splitting functions presented on page 9–11 can be seen as
the first term of a power series in ↵s

Pij = P (0)
ij + (↵s/2⇡)P

(1)
ij + (↵s/2⇡)

2P (2)
ij + · · ·

Presently the splitting functions are known up to next-to-next-
to-leading order (NNLO), that is, up to P (2)

ij . Such a calculation
(done at Nikhef) in no sinecure as the expression above shows. It
goes on for many more pages...62

62A. Vogt, S. Moch and J.A.M. Vermaseren, Nucl. Phys. B691, 129 (2004), hep-ph/0404111.
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Intuitive picture

• The gross features of the evolution can be easily understood as
follows. In the left plot above we indicate by the blob the resolution
1/Q of a photon with virtuality Q2. Increasing Q2 will resolve a
quark into a quark-gluon pair of lower momentum (right plot).
Thus when Q2 increases, more and more quarks are seen that have
split into low momentum quarks. As a consequence, the quark
distribution will shift to lower values of x with increasing Q2. This
results in the characteristic scale breaking pattern of F2, when
plotted versus Q2 for several values of x (! fig.)
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Scale breaking pattern of the F2 structure function

As expected!
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Comparison of the F2 data with the QCD prediction
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• This plot shows a recent QCD analysis (up to third order) of HERA
F2 structure function data. In such an analysis the quark and the
gluon distributions are parameterised at an input scale of about
2 GeV2 and evolved over the whole Q2 range. The parameters of
the input distributions are then obtained from a least squares fit.
There is an impressive agreement between data and theory.
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The pdf set from the HERA QCD analysis
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• Parton distributions obtained from the HERA QCD analysis. The
sea (xS = 2xq̄(x), see page 8–24) and the gluon are divided by
a factor of 20. The parton distributions are parameterised at an
input scale of µ2

0 = 1.9 GeV2 and evolved to 10 GeV2 for this plot.
The bands indicate various sources of uncertainty.

• In DIS the electrons only scatter o↵ the charged quarks in the pro-
ton and not o↵ the gluons. However, we still have indirect access
to the gluon distribution via the coupled singlet/gluon evolution.
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Scale dependence

• At this point we have introduced three di↵erent scales:

1. The factorization scale µ2
F where we have separated the short

and long distance physics, and on which the pdfs evolve.

2. The renormalisation scale µ2
R (called Q2 in Section 6) on which

the strong coupling constant ↵s evolves.

3. The hard scattering scale Q2 which, in DIS, is the square of
the 4-momentum transfer from the electron to the proton.

• Exposing the di↵erent scales, we write the (non-singlet) evolution
equation, and the leading order expression for F2 as

@qns(x, µ2
F)

@ lnµ2
F

=
↵s(µ2

R)

2⇡

Z 1

x

dy

y
Pqq

✓
x

y

◆
qns(y, µ

2
F)

F2(x,Q
2) =

nfX

i=1

e2i x
⇥
qi(x, µ

2
F) + q̄i(x, µ

2
F)

⇤
+ O(↵s)

• Usually one sets µ2
R = µ2

F = Q2. The sensitivity to this choice is
then quantified by varying the scales in the range, typically,

1
4µ

2
F  µ2

R  4µ2
F and 1

4Q
2  µ2

F  4Q2

• But note, however, that F2(x,Q2) above depends only on µ2
F

which, for a given Q2, is arbitrary. It follows that the leading order
perturbative stability is poor, and that LO perturbative QCD has
little predictive power. This defect is remedied when higher order
terms are included that are functions of both Q2 and µ2

F.

• Fortunately, the scale dependence rapidly decreases when higher
order corrections are included, and this is of course the motiva-
tion behind that huge e↵ort, at Nikhef, to calculate the splitting
functions and the F2 correction terms up to NNLO.
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