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Can perturbative QCD predict anything?

• We have seen that asymptotic freedom allows us to use pertur-
bation theory to calculate quark and gluon interactions at short
distances. But is this enough to arrive at predictions for experi-
mental observables?

• The answer is ‘no’, because the detectors in an experiment can
only observe hadrons and not the constituent quarks and gluons.

• We will see that we need two more things, if we want to make the
connection between theory and experiment:

1. either infrared safety,

2. or factorisation.

• These concepts are intimately related to the separation of the short
and long distance aspects of the strong interaction.

– Infrared Safety: There is a class of observables that do not
depend on long distance physics and are therefore calculable in
perturbative QCD.

– Factorisation: There is a wide class of processes that can be
factorised in a universal long distance piece (nonperturbative,
but process independent) and a short distance piece that is
calculable in perturbative QCD.

• To understand these ideas we will, in this section, study the lowest
order QCD correction to the process e+e� ! qq̄.
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The process e+e� ! qq̄g
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• Consider the process e+e� ! qq̄g. We have the following kine-
matic variables:

1. The four-momentum q = p1 + p2 of the virtual photon. The
square of the centre-of-mass energy is s = q2 = qµqµ.

2. The outgoing four-momenta k1, k2 and k3. The energies of the
outgoing partons45 in the centre-of-mass frame are Ei = k0i .

• We define the energy fractions by

xi =
Eip
s/2

=
2q · ki
s

Exercise 7.1: [0.5] Show that q ·ki = Ei
p
s and that

P
i xi = 2.

From
P

i xi = 2 it follows that only two of the xi are independent.

45We use the name ‘parton’ for both quark and gluon.
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Singularities in the cross section

+

• To calculate the cross section �(e+e� ! qq̄g) two Feynman graphs
have to be taken into account, one where the gluon is radiated from
the quark and another where it is radiated from the antiquark. The
calculation of the cross section is rather lengthy so we will not give
it here; you can find it in H&M Section 11.5.

• The result is

d2�

dx1dx2
= �0

2↵s

3⇡

x21 + x22
(1 � x1)(1 � x2)

Here �0 = �(e+e� ! hadrons) = (4⇡↵2/s)
P

e2i , see page 2–30.

• There are three singularities in this cross section

1. (1 � x1) = 0

2. (1 � x2) = 0

3. (1 � x1) = (1 � x2) = 0

We will now have a look where these singularities come from.
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More kinematics
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• In the following we will neglect the quark masses (k2i = 0) so that

(ki + kj)
2 = k2i + k2j + 2ki · kj = 2ki · kj

• Denote by ✓ij the angle between the momenta of partons i and j.
Then we can relate these angles to the energy fractions as follows

2k1 · k2 = (k1 + k2)
2 = (q � k3)

2 = s � 2q · k3 !

2E1E2(1 � cos ✓12) = s(1 � x3)

Exercise 7.2: [⇥ ] Show that ki · kj = EiEj(1 � cos ✓ij).

• Dividing by s/2 and repeating the above for the angles between
other pairs of particles gives

x1x2(1 � cos ✓12) = 2(1 � x3)

x2x3(1 � cos ✓23) = 2(1 � x1)

x3x1(1 � cos ✓31) = 2(1 � x2)
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Phase space

• From the above it follows that 0  x  1. Together with the
constraint x3 = 2 � x1 � x2 this implies that the allowed region
for (x1, x2) is the triangle shown below.
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• From

x1x2(1 � cos ✓12) = 2(1 � x3)

x2x3(1 � cos ✓23) = 2(1 � x1)

x3x1(1 � cos ✓31) = 2(1 � x2)

we find that the collinear configurations are related to the xi by

✓12 ! 0 , x3 ! 1

✓23 ! 0 , x1 ! 1

✓31 ! 0 , x2 ! 1

Thus when xi ! 1 then ✓jk ! 0, that is, j and k are collinear.

Exercise 7.3: [0.5] Show that when xi ! 1 then i is back-to-back
with both j and k. Also show that xi ! 0 impliesEi ! 0: particle
i becomes soft. What can you say about the relative directions of
the particles j and k in this case?
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Three-parton configurations

• This plot shows the three-parton configurations at the boundaries
of phase space.

• Edges: two partons collinear: ✓ij ! 0 , xk ! 1.

• Corners: one parton soft xi ! 0 , Ei ! 0 (other two partons
are back-to-back).

• Note that at the boundaries of phase space 2 ! 3 kinematics goes
over to 2 ! 2 kinematics.
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Origin of the singularities
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• Where do the singularities actually come from? This is easy to
see by noting that internal quark momentum is (k1+ k3), giving a
propagator term ⇠ 1/(k1 + k3)2 in the cross section. Now

(k1 + k3)
2 = 2k1 · k3 = 2E1E3 (1 � cos ✓31)

so that the propagator term evidently is singular when ✓31 ! 0
and when E3 ! 0.

• The collinear singularity at ✓31 ! 0 and E3 ! 0 can be made
explicit by rewriting the cross section as

d�

dE3 d cos ✓31
= �0

2↵s

3⇡

f (E3, ✓31)

E3 (1 � cos ✓31)
.

Here f (E3, ✓31) is a rather complicated function that turns out to
be finite when E3 ! 0 or ✓31 ! 0.

• Clearly we get a logarithmic divergence when we attempt to inte-
grate over ✓31 with E3 kept fixed or over E3 with ✓31 kept fixed.
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Infrared singularities

• Are we seeing here a breakdown of perturbative QCD? The answer
is no: the problem is that we are trying to work with cross sections
on the parton level that are not infrared safe.

• These infrared problems always show up when 2 ! 3 kinematics
becomes 2 ! 2 kinematics. We have seen that this happens at
the edges of phase space when two partons become collinear or
one parton becomes soft. Another way of stating this is that the
internal propagator goes on shell: (k1 + k3)2 ! 0.

• Please note that infrared divergences are omnipresent in QCD (and
also in QED) and are by no means limited to e+e� ! qq̄g.

• It is useful to get a space-time picture with the help of light cone
coordinates. We will then see that the divergences are caused
by long distance interactions.
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Intermezzo: light cone coordinates

• The light cone components of a four-vector a are defined by

a± = (a0 ± a3)/
p
2

The vector is then be written as a = (a+, a�, a1, a2) = (a+, a�,aT).46

• Exercise 7.4: [1.0] Show that

a · b = a+b� + a�b+ � aT · bT, and a2 = 2a+a� � a

2
T

Show that the vector transforms under boosts along the z axis like

a0+ = a+e , a0� = a�e� , a

0
T = aT

with  = 1
2 ln[(1 � �)/(1 + �)]. How does a transform under two

successive boosts �1 and �2?

• One often chooses the z axis such that, perhaps after a boost, a
particle or a group of particles have large momenta along that axis.
For these particles p+ is large and (since they are on the mass shell)

p� =
m2 + p

2
T

2p+
is small.

46Note that a+ and a� are not 4-vector components.
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Space-time picture of the singularities

p1

p2

q

k1

k2

k3

k = k1 + k3

k

p1 p2

k2

x+ x�

• To see what happens when k2 = (k1 + k3)2 becomes small (goes
on-shell), we choose the z axis along k with k+ large and kT = 0.
Thus k2 = 2k+k� ! 0 when k� becomes small.

• In QFT, the Green functions (propagators) in momentum space
are related to those in coordinate space by a Fourier transform:

SF (x) =

Z
d4k exp(�ikx)SF (k)

=

Z
d4x exp[�i(k+x� + k�x+ � kT · xT)]SF (k)

Because k+ is large and k� is small, the contributing values of x
have small x� and large x+. This means that the quark propagates
a long distance in the x+ direction before decaying in a quark-gluon
pair, as is indicated in the space-time diagram above.

• It follows that the singularities that can lead to divergent perturba-
tive cross-sections arise from interactions that happen a long time
after the creation of a quark-antiquark pair.
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Infrared safe observables

• We have seen that soft/collinear singularities arise from interac-
tions that happen a long time after the creation of the quark-
antiquark pair and that perturbation theory cannot handle this
long-time physics. But a detector is a long distance away from
the interaction so we must somehow take long-time physics into
account in our theory.

• Fortunately there are measurements that are insensitive to long-
time physics. These are called infrared safe observables. We
have seen that soft/collinear singularities appear when 2!3 kine-
matics reduces to 2!2 kinematics at the boundaries of phase
space. Therefore a meaningful infrared safe observable must be
insensitive to the indistinguishable 2!2, 2!3 origin of the long-
distance interactions.

• The most well known example of an infrared safe observable is the
total cross section �(e+e� ! hadrons), see page 2–30. This cross
section is infrared safe because it is a totally inclusive quantity
(we sum over all particles in the final state and don’t care how
many there are) and the transition from partons to the hadronic
final state in a given event always occurs with unit probability,
whatever the details of the long-time hadronisation process.

• As an example of another infrared safe variable used in the analysis
of e+e� collisions, we mention the thrust event shape variable.
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Thrust

• Thrust is an event shape variable, used to discriminate between
pencil-like and spherical events.

• Thrust is defined by

T = max
u

P
i |pi · û|P

i |pi|

Here the sum runs over all particles i in the event, and the unit
vector û is varied to maximise the sum of the projections of the
3-momenta pi on û.

• So why is thrust infrared safe?

1. Zero-momentum particles do not contribute to T .

2. A collinear splitting does not change the trust:

|(1 � �)pi · û| + |�pi · û| = |pi · û|

|(1 � �)pi| + |�pi| = |pi|
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IR safe observables used in e+e� physics

Here is a list of more infrared safe observables.

!
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