Lecture notes Particle Physics II

Quantum Chromo Dynamics

Michiel Botje Nikhef, Science Park, Amsterdam

November 12, 2013

(Corrected July 28, 2019)

Preliminary

This section is not part of the lectures, but a small collection of material that should be familiar from special relativity, electrodynamics, quantum mechanics and the lecture series Particle Physics I.

Also included is a summary of group theory, but still very incomplete.

Units and conversion factors

In particle physics, energy is measured in units of $\text{GeV} = 10^6 \text{ eV}$, where 1 eV = 1.6×10^{-19} J is the change in kinetic energy of an electron when it traverses a potential difference of one volt. From the relation $E^2 = p^2 c^2 + m^2 c^4$ it follows that the units of momentum and mass are GeV/c and GeV/c^2 , respectively. The dimension of \hbar is energy×time so that the unit of time is \hbar/GeV ; $\hbar c$ has dimension energy×length so that length has unit $\hbar c/\text{GeV}$.

One often works in a system of units where \hbar and c have a numerical value of one, so that these constants can be omitted in expressions, as in $E^2 = p^2 + m^2$. A disadvantage is that the dimensions carried by \hbar (energy×time) and c (length/time) also disappear but these can always be restored, if necessary, by a dimensional analysis afterward.

Here are some useful conversions.

	Conversion	$\hbar = c = 1$ units	Natural units
Mass	$1 \text{ kg} = 5.61 \times 10^{26}$	GeV	${ m GeV}/c^2$
Length	$1 \text{ m} = 5.07 \times 10^{15}$	${\rm GeV}^{-1}$	$\hbar c/{ m GeV}$
Time	$1 \text{ s} = 1.52 \times 10^{24}$	${\rm GeV}^{-1}$	$\hbar/{ m GeV}$
Charge	$e = \sqrt{4\pi\alpha}$	dimensionless	$\sqrt{\hbar c}$

1 TeV =
$$10^3$$
 GeV = 10^6 MeV = 10^9 KeV = 10^{12} eV
1 fm = 10^{-15} m = 10^{-13} cm = 5.07 GeV⁻¹
1 barn = 10^{-28} m² = 10^{-24} cm²
1 fm² = 10 mb = 10^4 µb = 10^7 nb = 10^{10} pb
1 GeV⁻² = 0.389 mb
 $\hbar c = 197$ MeV fm
 $(\hbar c)^2 = 0.389$ GeV² mb
 $\alpha = e^2/(4\pi\hbar c) \approx 1/137$

Covariant notation (c = 1)

- Contravariant space-time coordinate: $x^{\mu} = (x^0, x^1, x^2, x^3) = (t, \boldsymbol{x})$
- Covariant space-time coordinate: $x_{\mu} = (x_0, x_1, x_2, x_3) = (t, -\boldsymbol{x})$
- Contravariant derivative: $\partial_{\mu} \equiv \partial/\partial x^{\mu} = (\partial_t, +\nabla)$
- Covariant derivative: $\partial^{\mu} \equiv \partial/\partial x_{\mu} = (\partial_t, -\nabla)$
- Metric tensor: $g_{\mu\nu} = g^{\mu\nu} = \text{diag}(1, -1, -1, -1)$
- Index raising/lowering: $a_{\mu} = g_{\mu\nu} a^{\nu}, \quad a^{\mu} = g^{\mu\nu} a_{\nu}$
- Lorentz boost along x-axis:² $x'^{\mu} = \Lambda^{\mu}_{\ \nu} x^{\nu}$

$$\Lambda^{\mu}_{\ \nu} = \begin{pmatrix} \gamma & -\gamma\beta & 0 & 0 \\ -\gamma\beta & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad \gamma = \frac{1}{\sqrt{1-\beta^2}}$$

We have also: $x'_{\mu} = \Lambda_{\mu}^{\nu} x_{\nu}$ with $\Lambda_{\mu}^{\nu}(\beta) = \Lambda_{\nu}^{\mu}(-\beta) \equiv (\Lambda_{\nu}^{\mu})^{-1}$

- Inproduct (Lorentz scalar): $a \cdot b = a^{\mu} b_{\mu} = a^0 b_0 \boldsymbol{a} \cdot \boldsymbol{b} = a_{\mu} b^{\mu}$
- $a^2 > 0$ time-like 4-vector \rightarrow possible causal connection $a^2 = 0$ light-like 4-vector $a^2 < 0$ space-like 4-vector \rightarrow no causal connection
- 4-momentum: $p^{\mu} = (E, p), \quad p_{\mu} = (E, -p)$
- Invariant mass: $p^2 = p^{\mu} p_{\mu} = p_{\mu} p^{\mu} = E^2 p^2 = m^2$
- Particle velocity: $\gamma = E/m$, $\beta = |\mathbf{p}|/E$

²This is the relation between the coordinates x^{μ} of an event observed in a system S and the coordinates x'^{μ} of that same event observed in a system S' that moves with a velocity $+\beta$ along the x-axis of S.

Vector calculus

$$\nabla \times (\nabla \psi) = \mathbf{0}$$

$$\nabla \cdot (\nabla \times \mathbf{A}) = 0$$

$$\nabla \times (\nabla \times \mathbf{A}) = \nabla (\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A}$$

$$\int_V \nabla \cdot \mathbf{A} \, \mathrm{d}V = \int_S \mathbf{A} \cdot \hat{\mathbf{n}} \, \mathrm{d}S \qquad \text{(Divergence theorem)}$$

$$\int_V (\phi \nabla^2 \psi - \psi \nabla^2 \phi) \, \mathrm{d}V = \int_S (\phi \nabla \psi - \psi \nabla \phi) \cdot \hat{\mathbf{n}} \, \mathrm{d}S \quad \text{(Green's theorem)}$$

$$\int_S (\nabla \times \mathbf{A}) \cdot \hat{\mathbf{n}} \, \mathrm{d}S = \oint_C \mathbf{A} \cdot \mathrm{d}\mathbf{l} \qquad \text{(Stokes' theorem)}$$

- In the above, S is a closed surface bounding V, with \hat{n} the outward normal unit vector at the surface element dS.
- In Stokes' theorem, the direction of \hat{n} is related by the right-hand rule to the sense of the contour integral around C.

Maxwell's equations in vacuum

• Maxwell's equations

$$\nabla \cdot \boldsymbol{E} = \rho \qquad \nabla \cdot \boldsymbol{B} = 0$$
$$\nabla \times \boldsymbol{E} + \partial \boldsymbol{B} / \partial t = 0 \qquad \nabla \times \boldsymbol{B} - \partial \boldsymbol{E} / \partial t = \boldsymbol{j}$$

• Continuity equation

$$abla \cdot \boldsymbol{j} = -rac{\partial
ho}{\partial t}$$

• The potentials V and A are defined such that the second and third of Maxwell's equations are automatically satisfied

$$\begin{aligned} \boldsymbol{B} &= \nabla \times \boldsymbol{A} & \rightarrow & \nabla \cdot \boldsymbol{B} = 0 \\ \boldsymbol{E} &= -\partial \boldsymbol{A} / \partial t - \nabla V & \rightarrow & \nabla \times \boldsymbol{E} = -\partial \boldsymbol{B} / \partial t \end{aligned}$$

• Gauge transformations leave the \boldsymbol{E} and \boldsymbol{B} fields invariant

$$V' = V + \frac{\partial \lambda}{\partial t}$$
 and $A' = A - \nabla \lambda$

- Maxwell's equations in 4-vector notation
 - 4-vector potential $A^{\mu} = (V, \mathbf{A})$ 4-vector current $j^{\mu} = (\rho, \mathbf{j})$ Electromagnetic tensor $F^{\mu\nu} = \partial^{\mu}A^{\nu} \partial^{\nu}A^{\mu}$ Maxwell's equations $\partial_{\mu}F^{\mu\nu} = j^{\nu}$ Continuity equation $\partial_{\mu}j^{\mu} = 0$ Gauge transformation $A^{\mu} \rightarrow A^{\mu} + \partial^{\mu}\lambda$
- Lorentz gauge and Coulomb condition

Lorentz gauge	$\partial_{\mu}A^{\mu} = 0 \rightarrow$	$\partial_{\mu}\partial^{\mu}A^{\nu} = j^{\nu}$
Coulomb condition	$A^0 = 0$ or equiv	valently $\nabla \boldsymbol{A} = 0$

The Lagrangian in classical mechanics

In classical mechanics, the Lagrangian is the difference between the kinetic and potential energy: $L(\mathbf{q}, \dot{\mathbf{q}}) \equiv T - V$. The coordinates $\mathbf{q}(t) = \{q_1(t), \ldots, q_N(t)\}$ fully describe the system at any given instant t. The number N of coordinates is called the **number of degrees of freedom** of the system.

Let the system move from $A(t_1)$ to $B(t_2)$ along some given path. The **action** S[path] is defined by the integral of the Lagrangian along the path:

$$S[\text{path}] = \int_{t_1}^{t_2} \mathrm{d}t \ L(\boldsymbol{q}, \dot{\boldsymbol{q}})$$

The action S assigns a number to each path and is thus a function of the path. In mathematics, S is called a **functional**.

The **principle of least action** states that the system will evolve along the path that minimises the action.

Let q(t) be a path and $q(t) + \delta q(t)$ be some deviating path between the same points $A(t_1)$ and $B(t_2)$. That is, $\delta q(t_1) = \delta q(t_2) = 0$. The variation in the action is then given by

$$\delta S = \int_{t_1}^{t_2} \mathrm{d}t \; \delta L(q, \dot{q}) = \int_{t_1}^{t_2} \mathrm{d}t \left(\frac{\partial L}{\partial q} \delta q + \frac{\partial L}{\partial \dot{q}} \delta \dot{q} \right) \underset{\text{Iwant}}{=} 0.$$

Because

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}} \delta q \right) = \left(\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}} \right) \delta q + \left(\frac{\partial L}{\partial \dot{q}} \right) \delta \dot{q},$$

we find, by partial integration,

$$\delta S = \int_{t_1}^{t_2} \mathrm{d}t \left(\frac{\partial L}{\partial q} - \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial \dot{q}} \right) \delta q + \int_{t_1}^{t_2} \mathrm{d} \left(\frac{\partial L}{\partial \dot{q}} \delta q \right) \stackrel{=}{}_{\mathrm{Iwant}} 0.$$

The second integral vanishes because $\delta q(t_1) = \delta q(t_2) = 0$.

The first integral vanishes for all δq if and only if the term in brackets vanishes, leading to the **Euler-Lagrange equations**, for N degrees of freedom:

$$\frac{\delta S}{\delta q_i} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} = 0 \qquad i = 1, \dots, N$$

Solving the EL equations for a given Lagrangian lead to the **equations of motion** of the system.

The Hamiltonian in classical mechanics

If L does not explicitly depend on time we have for the time derivative

$$\frac{\mathrm{d}L}{\mathrm{d}t} = \frac{\partial L}{\partial \dot{q}} \, \ddot{q} + \frac{\partial L}{\partial q} \, \dot{q}$$

Substituting $\partial L/\partial q$ from the Euler-Lagrange equations gives

$$\frac{\mathrm{d}L}{\mathrm{d}t} = \frac{\partial L}{\partial \dot{q}} \ddot{q} + \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}}\right) \dot{q} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}} \dot{q}\right) \rightarrow \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}} \dot{q} - L\right) = 0$$

The term in brackets is the **Legendre transform** of L and is called the **Hamiltonian**:

$$H \stackrel{\text{def}}{=} \frac{\partial L}{\partial \dot{q}} \dot{q} - L = p\dot{q} - L \quad \text{with} \quad p \stackrel{\text{def}}{=} \frac{\partial L}{\partial \dot{q}}$$

where we have also introduced the **canonical momentum** p. The Hamiltonian is identified with the total energy E = T + V which is thus conserved in the time evolution of the system. This is an example of a conservation law.

In the Lagrangian, the dependence on \dot{q} resides in the kinetic energy term T while the dependence on q is contained in the potential energy V. Thus if V = 0 (or a constant) we have in the EL equations

$$\frac{\partial L}{\partial q} = 0 \quad \rightarrow \quad \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}} \right) = \frac{\mathrm{d}p}{\mathrm{d}t} = 0$$

Thus the momentum p is conserved in a system that is not under the influence of an external potential. This is another example of a conservation law.

The Hamiltonian equations of motion are

$$\dot{q} = \frac{\partial H}{\partial p}$$
 and $\dot{p} = -\frac{\partial H}{\partial q}$

This can be derived as follows. Consider the total differential

$$\mathrm{d}L = \frac{\partial L}{\partial q} \mathrm{d}q + \frac{\partial L}{\partial \dot{q}} \mathrm{d}\dot{q}$$

Now

$$\frac{\partial L}{\partial q} = \dot{p} \text{ (from EL)}, \quad \frac{\partial L}{\partial \dot{q}} = p \text{ (by definition)},$$

and thus, using $pd\dot{q} = d(p\dot{q}) - \dot{q}dp$, we obtain

$$dL = \dot{p}dq + d(p\dot{q}) - \dot{q}dp \quad \rightarrow \quad d(p\dot{q} - L) = dH = \dot{q}dp - \dot{p}dq,$$

from which the Hamiltonian equations immediately follow.

Dirac δ -function

 \bullet The Dirac $\delta\text{-function}$ can be defined by ^3

$$\delta(x) = \begin{cases} 0, & \text{if } x \neq 0\\ \infty, & \text{if } x = 0 \end{cases} \quad \text{with} \quad \int_{-\infty}^{\infty} \delta(x) dx = 1$$

- Generalisation to more dimensions is trivial, like $\delta(\mathbf{r}) \equiv \delta(x)\delta(y)\delta(z)$.
- For $x \to 0$ we may write $f(x)\delta(x) = f(0)\delta(x)$ so that

$$\int_{-\infty}^{\infty} f(x)\delta(x)dx = f(0) \text{ and } \int_{-\infty}^{\infty} f(x)\delta(x-a)dx = f(a)$$

• For a linear transformation y = k(x - a) we have

$$\delta(y) = \frac{1}{|k|} \,\delta(x-a)$$

This is straight-forward to prove by showing that $\delta(y)$ satisfies the definition of the δ -function given above.

• Likewise, if $\{x_i\}$ is the set of points for which $f(x_i) = 0$, then it is easy to show by Taylor expansion around the x_i that

$$\delta[f(x)] = \sum_{i} \frac{1}{|f'(x_i)|} \delta(x - x_i)$$

 \bullet There exist many representations of the $\delta\text{-function},$ for instance,

$$\delta(\boldsymbol{r}) = \frac{1}{(2\pi)^3} \int e^{i\boldsymbol{k}\cdot\boldsymbol{r}} \mathrm{d}^3 \boldsymbol{k} \quad \text{or} \quad \delta(x) = \frac{\mathrm{d}\theta(x)}{\mathrm{d}x},$$

with $\theta(x) = \begin{cases} 0, \text{ for } x < 0\\ 1, \text{ for } x \ge 0 \end{cases}$ (Heaviside step function).

 $^{^{3}\}mathrm{A}$ more rigorous mathematical definition is usually in terms of a limiting sequence of functions.

Green functions

• Let Ω be some linear differential operator. A **Green function** of the operator Ω is a solution of the differential equation

$$\Omega \ G(\boldsymbol{r}) = \delta(\boldsymbol{r})$$

These Green functions can be viewed as some potential caused by a point source at \boldsymbol{r} .

• Once we have the Green function we can immediately solve the differential equation for any source density $s(\mathbf{r})$

$$\Omega\,\psi(\boldsymbol{r}) = s(\boldsymbol{r})$$

By substitution it is easy to see that (ψ_0 is the solution of $\Omega \psi_0 = 0$)

$$\psi(\boldsymbol{r}) = \psi_0(\boldsymbol{r}) + \int G(\boldsymbol{r} - \boldsymbol{r}') s(\boldsymbol{r}') \, \mathrm{d}\boldsymbol{r}'$$

Here it is clearly seen that $G(\mathbf{r} - \mathbf{r'})$ 'propagates' the contribution from the source element $s(\mathbf{r'})d\mathbf{r'}$ to the potential $\psi(\mathbf{r})$.

• A few well-known Green functions are ...

$$\nabla^2 G(\boldsymbol{r}) = \delta(\boldsymbol{r}) \qquad G(\boldsymbol{r}) = -1/(4\pi r)$$
$$(\nabla^2 + \boldsymbol{k}^2) G(\boldsymbol{r}) = \delta(\boldsymbol{r}) \qquad G^{\pm}(\boldsymbol{r}) = -\exp(\pm ikr)/(4\pi r)$$
$$(\nabla^2 - m^2) G(\boldsymbol{r}) = \delta(\boldsymbol{r}) \qquad G(\boldsymbol{r}) = -\exp(-mr)/(4\pi r)$$

• ... and here are their Fourier transforms

$$\begin{aligned} G(\mathbf{r}) &= -1/(4\pi r) & \tilde{G}(\mathbf{q}) &= -1/q^2 \\ G^+(\mathbf{r}) &= -\exp(ikr)/(4\pi r) & \tilde{G}^+(\mathbf{q}) &= 1/(k^2 - q^2 + i\varepsilon) \\ G(\mathbf{r}) &= -\exp(-mr)/(4\pi r) & \tilde{G}(\mathbf{q}) &= -1/(q^2 + m^2) \end{aligned}$$

Non-relativistic scattering theory I

• Classical relation $E = p^2/2m + V$ with substitution $E \to i\partial/\partial t$ and $p = -i\nabla$ gives the Schroedinger equation

$$i\frac{\partial}{\partial t}\psi(\boldsymbol{r},t) = -\left[\frac{\nabla^2}{2m} - V(\boldsymbol{r},t)\right]\psi(\boldsymbol{r},t)$$

• Separate $\psi(\mathbf{r}, t) = \phi(t)\psi(\mathbf{r})$. Dividing through by $\phi\psi$ gives

$$\frac{i\partial_t \phi(t)}{\phi(t)} = -\frac{\left[\nabla^2 - 2mV(\boldsymbol{r}, t)\right]\psi(\boldsymbol{r})}{2m\psi(\boldsymbol{r})}$$

Assume now that V does not depend on t. The left and right-hand side must then be equal to a constant, say E, and we have

$$\begin{aligned} \frac{\partial \phi(t)}{\partial t} &= -iE \,\phi(t) \quad \rightarrow \quad \phi(t) = e^{-iEt} \\ &\left[\nabla^2 + k^2 \right] \psi(\mathbf{r}) = 2mV(\mathbf{r})\psi(\mathbf{r}) \end{aligned}$$

where we have set $k^2 = 2mE$. Using Green functions we get

$$\psi(\boldsymbol{r}) = \psi_0(\boldsymbol{r}) - \frac{m}{2\pi} \int \frac{e^{ik|\boldsymbol{r}-\boldsymbol{r}'|}}{|\boldsymbol{r}-\boldsymbol{r}'|} V(\boldsymbol{r}') \psi(\boldsymbol{r}') \mathrm{d}\boldsymbol{r}'$$

• For large $r \gg r'$ we have $|\boldsymbol{r} - \boldsymbol{r}'| \approx r - \hat{\boldsymbol{r}}\boldsymbol{r}'$ so that

$$\psi(\boldsymbol{r}) = \psi_0(\boldsymbol{r}) - \frac{m}{2\pi} \frac{e^{ikr}}{r} \int e^{-ik\hat{\boldsymbol{r}}\boldsymbol{r}'} V(\boldsymbol{r}')\psi(\boldsymbol{r}') d\boldsymbol{r}'$$

• We set $\mathbf{k}' \equiv k\hat{\mathbf{r}}$ and write, formally,

$$\psi(\mathbf{r}) = \psi_0(\mathbf{r}) + f(\mathbf{k}') \frac{e^{i\mathbf{k}\mathbf{r}}}{r} \quad \text{with} \quad f(\mathbf{k}') \equiv -\frac{m}{2\pi} \int e^{-i\mathbf{k}'\mathbf{r}'} V(\mathbf{r}') \psi(\mathbf{r}') d\mathbf{r}'$$

The function $f(\mathbf{k}')$ is called the **scattering amplitude**.

Non-relativistic scattering theory II

• An incoming plane wave $\psi_{in} = Be^{ikz}$ describes beam particles moving along the z axis with momentum k. The wave function is normalised such that $\rho = \psi^* \psi = |B|^2$ is the particle density (number of particles per unit volume). The current density is

$$\boldsymbol{j}_{\rm in} = \frac{1}{2mi} (\psi^* \nabla \psi - \psi \nabla \psi^*) = |B|^2 \frac{\boldsymbol{k}}{m} = \rho \frac{\boldsymbol{k}}{m} = \rho \boldsymbol{v}$$

with \boldsymbol{v} the velocity of the particle. The number of beam particles passing per second through an area A is $R_{\rm in} = \rho v A = |\boldsymbol{j}_{\rm in}|A$. Likewise, the number of scattered particles that pass per second through an area $r^2 d\Omega$ is $R_{\rm sc} = |\boldsymbol{j}_{\rm sc}| r^2 d\Omega$.

• We now imagine a hypothetical area $d\sigma$ such that the number of beam particles that pass through that area is equal to the number of particles that scatter in the solid angle $d\Omega$. We then have, by definition, $|\mathbf{j}_{in}| d\sigma = |\mathbf{j}_{sc}| r^2 d\Omega$, or

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{r^2 \left| \boldsymbol{j}_{\mathrm{sc}} \right|}{\left| \boldsymbol{j}_{\mathrm{in}} \right|}$$

The quantity $d\sigma/d\Omega$ is called a **differential cross section**.

• For our scattered wave $\psi_{\rm sc} = f(\mathbf{k}') e^{ikr}/r$ we find

$$j_{\rm sc} = \frac{1}{2mi} \left(\psi^* \frac{\partial \psi}{\partial r} - \psi \frac{\partial \psi^*}{\partial r} \right) = |f(\mathbf{k}')|^2 \frac{k}{mr^2}$$

and thus

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = |f(\boldsymbol{k}')|^2$$

where we have assumed $\rho = 1$ and $k_{sc} = k_{in}$ (elastic scattering).

Non-relativistic scattering theory III

• Recall that for scattering on a potential, the outgoing wave is

$$\psi_{\text{out}}(\boldsymbol{r}) = \psi_0(\boldsymbol{r}) + f(\boldsymbol{k}') \frac{e^{ikr}}{r}$$

with

$$f(\mathbf{k}') \equiv -\frac{m}{2\pi} \int e^{-i\mathbf{k}'\mathbf{r}'} V(\mathbf{r}') \psi_{\text{out}}(\mathbf{r}') \mathrm{d}\mathbf{r}'$$

Here \mathbf{k}' is the momentum vector of the scattered particle.

• The problem now is that ψ_{out} occurs on both sides of the equation above. A first order approximation is achieved by setting in the scattering amplitude $\psi_{out} \approx \psi_{in} = e^{ikz} = e^{ikr}$. This gives

$$f(\boldsymbol{k},\boldsymbol{k}') \equiv -\frac{m}{2\pi} \int e^{i(\boldsymbol{k}-\boldsymbol{k}')\boldsymbol{r}'} V(\boldsymbol{r}') \mathrm{d}\boldsymbol{r}' = -\frac{m}{2\pi} \int e^{-i\boldsymbol{q}\boldsymbol{r}'} V(\boldsymbol{r}') \mathrm{d}\boldsymbol{r}'$$

where we have set the momentum transfer $\boldsymbol{q} \equiv \boldsymbol{k}' - \boldsymbol{k}$. In this so-called **Born approximation**, the scattering amplitude $f(\boldsymbol{k}, \boldsymbol{k}') \equiv f(\boldsymbol{q})$ is thus the Fourier transform of the potential.

• <u>Example</u>: Yukawa potential $V(r) = Q_1 Q_2 e^{-ar}/r$

$$f(\boldsymbol{q}) = -\frac{mQ_1Q_2}{2\pi} \int \frac{e^{-ar'}}{r'} e^{-i\boldsymbol{q}\boldsymbol{r}'} d\boldsymbol{r}' = \dots = \frac{2mQ_1Q_2}{q^2 + a^2}$$
$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = |f(\boldsymbol{q})|^2 = \left[\frac{2mQ_1Q_2}{q^2 + a^2}\right]^2$$

• Example: Coulomb potential $V(r) = Q_1 Q_2 / r$ set a = 0 above:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \left[\frac{2mQ_1Q_2}{q^2}\right]^2 = \left[\frac{Q_1Q_2}{2mv^2\sin^2(\theta/2)}\right]^2$$

This is the famous formula for **Rutherford scattering**.

Dirac's bra-ket notation I

A state vector ψ_α can be represented by a column vector of complex numbers in a Hilbert space and is denoted by the ket |α⟩. To each ket is associated a bra vector ⟨α| in a dual Hilbert space. This bra is represented by the conjugate transpose ψ[†]_α, that is, by the row vector of complex conjugates. The operation of Hermitian conjugation turns a bra into a ket and vice versa

 $|\alpha\rangle^{\dagger} = \langle \alpha |$ and $(c|\alpha\rangle)^{\dagger} = \langle \alpha | c^{*}$ (*c* any complex number)

Note that the Hermitian conjugate of a c-number is the complex conjugate. The inproduct $\psi_{\alpha}^{\dagger} \cdot \psi_{\beta}$ is denoted by $\langle \alpha | \beta \rangle$ and is a c-number so that

$$\langle \beta | \alpha \rangle \equiv \langle \alpha | \beta \rangle^{\dagger} = c^{\dagger} = c^{*} = \langle \alpha | \beta \rangle^{*}$$

• An operator O transforms a ket $|\alpha\rangle$ into another ket, say $|\gamma\rangle$. The operator and its Hermitian conjugate are then defined by

 $O|\alpha\rangle = |\gamma\rangle$ and $\langle \alpha|O^{\dagger} = \langle \gamma|$

Multiplying from the left with $\langle \beta |$ and from the right with $|\beta \rangle$ we find the relation between the **matrix elements** of O and O^{\dagger}

$$O_{\beta\alpha} \equiv \langle \beta | O | \alpha \rangle = \langle \beta | \gamma \rangle$$

$$O_{\alpha\beta}^{\dagger} \equiv \langle \alpha | O^{\dagger} | \beta \rangle = \langle \gamma | \beta \rangle = \langle \beta | \gamma \rangle^{*} = \langle \beta | O | \alpha \rangle^{*} = O_{\beta\alpha}^{*}$$

An operator for which O = O[†] is called **self-adjoint** or **Hermi-tian**. Observable quantities are always represented by Hermitian operators. Indeed, the **expectation value** (α|O|α) is then real, as it should be, since

$$\langle \alpha | O | \alpha \rangle \equiv \langle \alpha | O^{\dagger} | \alpha \rangle = \langle \alpha | O | \alpha \rangle^{*}$$

Dirac's bra-ket notation II

• An orthonormal basis is written as $|e_i\rangle$ with $\langle e_i|e_j\rangle = \delta_{ij}$. On this basis, a state $|\alpha\rangle$ is given by the linear combination

$$|\alpha\rangle = \sum_{i} |e_i\rangle\langle e_i|\alpha\rangle$$

The operator $|e_i\rangle\langle e_i|$ is called a **projection operator**, for obvious reasons. The **closure relation** reads $\sum_i |e_i\rangle\langle e_i| = 1$

- We denote the wave function $\psi_{\alpha}(\mathbf{r})$ by $\langle \mathbf{r} | \alpha \rangle$ and its Hermitian conjugate $\psi_{\alpha}^{\dagger}(\mathbf{r})$ by $\langle \alpha | \mathbf{r} \rangle$. In particular, the wave function of a momentum eigenstate is $\langle \mathbf{r} | \mathbf{k} \rangle \propto e^{i\mathbf{k}\mathbf{r}}$.
- For the complete set of states $|r\rangle$ the closure relation reads

$$\int |\boldsymbol{r}\rangle \langle \boldsymbol{r}| \; \mathrm{d}\boldsymbol{r} = 1$$

From this, we nicely recover the expression for the inproduct of two wave functions

$$\langle \alpha | \beta \rangle = \int \langle \alpha | \boldsymbol{r} \rangle \langle \boldsymbol{r} | \beta \rangle \, \mathrm{d} \boldsymbol{r} = \int \psi_{\alpha}^{*}(\boldsymbol{r}) \psi_{\beta}(\boldsymbol{r}) \, \mathrm{d} \boldsymbol{r}$$

that of the delta function

$$\delta(\boldsymbol{k} - \boldsymbol{k}') = \langle \boldsymbol{k}' | \boldsymbol{k} \rangle = \int \langle \boldsymbol{k}' | \boldsymbol{r} \rangle \langle \boldsymbol{r} | \boldsymbol{k} \rangle \mathrm{d} \boldsymbol{r} \propto \frac{1}{(2\pi)^3} \int e^{i(\boldsymbol{k} - \boldsymbol{k}')\boldsymbol{r}} \mathrm{d} \boldsymbol{r}$$

and also that of Fourier transforms

$$\psi(\mathbf{k}) = \langle \mathbf{k} | \psi \rangle = \int \langle \mathbf{k} | \mathbf{r} \rangle \langle \mathbf{r} | \psi \rangle \mathrm{d}\mathbf{r} \propto \int e^{-i\mathbf{k}\mathbf{r}} \psi(\mathbf{r}) \mathrm{d}\mathbf{r}$$

Dirac equation

• Dirac equation:

• <u>Pauli matrices:</u>

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$\sigma_i \sigma_j = \delta_{ij} + i\epsilon_{ijk}\sigma_k, \quad \sigma_i^{\dagger} = \sigma_i = \sigma_i^{-1}, \quad [\sigma_i, \sigma_j] = 2\epsilon_{ijk}\sigma_k$$
$$(\boldsymbol{a} \cdot \boldsymbol{\sigma})(\boldsymbol{b} \cdot \boldsymbol{\sigma}) = \boldsymbol{a} \cdot \boldsymbol{b} + i\boldsymbol{\sigma} \cdot (\boldsymbol{a} \times \boldsymbol{b})$$
$$\exp(i\boldsymbol{\theta} \cdot \boldsymbol{\sigma}) = \cos|\boldsymbol{\theta}| + i(\hat{\boldsymbol{\theta}} \cdot \boldsymbol{\sigma}) \sin|\boldsymbol{\theta}|$$

• <u>Dirac matrices:</u>

$$\gamma^{0} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \gamma^{i} = \begin{pmatrix} 0 & \sigma_{i} \\ -\sigma_{i} & 0 \end{pmatrix}, \quad \gamma^{5} = i\gamma^{0}\gamma^{1}\gamma^{2}\gamma^{3} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
$$\gamma^{0\dagger} = \gamma^{0}, \quad \gamma^{i\dagger} = -\gamma^{i}, \quad \gamma^{0}\gamma^{\mu\dagger}\gamma^{0} = \gamma^{\mu}$$
$$\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu}, \quad \{\gamma^{\mu}, \gamma^{5}\} = 0, \quad (\gamma^{5})^{2} = 1$$