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Preliminary

This section is not part of the lectures, but a small collection of ma-
terial that should be familiar from special relativity, electrodynamics,
quantum mechanics and the lecture series Particle Physics I.

Also included is a summary of group theory, but still very incomplete.





Units and conversion factors

In particle physics, energy is measured in units of GeV = 106 eV,
where 1 eV = 1.6 ⇥ 10�19 J is the change in kinetic energy of an
electron when it traverses a potential di↵erence of one volt. From the
relation E2 = p2c2 + m2c4 it follows that the units of momentum
and mass are GeV/c and GeV/c2, respectively. The dimension of ~
is energy⇥time so that the unit of time is ~/GeV; ~c has dimension
energy⇥length so that length has unit ~c/GeV.
One often works in a system of units where ~ and c have a numerical
value of one, so that these constants can be omitted in expressions,
as in E2 = p2 + m2. A disadvantage is that the dimensions carried
by ~ (energy⇥time) and c (length/time) also disappear but these can
always be restored, if necessary, by a dimensional analysis afterward.

Here are some useful conversions.

Conversion ~ = c = 1 units Natural units

Mass 1 kg = 5.61 ⇥ 1026 GeV GeV/c2

Length 1 m = 5.07 ⇥ 1015 GeV�1 ~c/GeV
Time 1 s = 1.52 ⇥ 1024 GeV�1 ~/GeV
Charge e =

p
4⇡↵ dimensionless

p
~c

1 TeV = 103 GeV = 106 MeV = 109 KeV = 1012 eV

1 fm = 10�15 m = 10�13 cm = 5.07 GeV�1

1 barn = 10�28 m2 = 10�24 cm2

1 fm2 = 10 mb = 104 µb = 107 nb = 1010 pb

1 GeV�2 = 0.389 mb

~c = 197 MeV fm

(~c)2 = 0.389 GeV2 mb

↵ = e2/(4⇡~c) ⇡ 1/137
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Covariant notation (c = 1)

• Contravariant space-time coordinate: xµ = (x0, x1, x2, x3) = (t,x)

• Covariant space-time coordinate: xµ = (x0, x1, x2, x3) = (t,�x)

• Contravariant derivative: @µ ⌘ @/@xµ = (@t,+r)

• Covariant derivative: @µ ⌘ @/@xµ = (@t,�r)

• Metric tensor: gµ⌫ = gµ⌫ = diag(1,�1,�1,�1)

• Index raising/lowering: aµ = gµ⌫ a⌫, aµ = gµ⌫ a⌫

• Lorentz boost along x-axis:2 x0µ = ⇤µ
⌫ x

⌫

⇤µ
⌫ =

0

BBB@

� ��� 0 0
��� � 0 0
0 0 1 0
0 0 0 1

1

CCCA
� =

1p
1 � �2

We have also: x0
µ = ⇤ ⌫

µ x⌫ with ⇤ ⌫
µ (�) = ⇤µ

⌫(��) ⌘ (⇤µ
⌫)

�1

• Inproduct (Lorentz scalar): a · b = aµ bµ = a0 b0 � a · b = aµ bµ

• a2 > 0 time-like 4-vector ! possible causal connection
a2 = 0 light-like 4-vector
a2 < 0 space-like 4-vector ! no causal connection

• 4-momentum: pµ = (E,p), pµ = (E,�p)

• Invariant mass: p2 = pµ pµ = pµ pµ = E2 � p2 = m2

• Particle velocity: � = E/m, � = |p| /E

2This is the relation between the coordinates x
µ of an event observed in a system S and the coordinates x

0µ

of that same event observed in a system S
0 that moves with a velocity +� along the x-axis of S.
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Vector calculus

r ⇥ (r ) = 0

r · (r ⇥ A) = 0

r ⇥ (r ⇥ A) = r(r · A) � r2A
Z

V
r · A dV =

Z

S
A · n̂ dS (Divergence theorem)

Z

V
(�r2 �  r2�) dV =

Z

S
(�r �  r�) · n̂ dS (Green’s theorem)

Z

S
(r ⇥ A) · n̂ dS =

I

C
A · dl (Stokes’ theorem)

• In the above, S is a closed surface bounding V , with n̂ the outward
normal unit vector at the surface element dS.

• In Stokes’ theorem, the direction of n̂ is related by the right-hand
rule to the sense of the contour integral around C.
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Maxwell’s equations in vacuum

• Maxwell’s equations

r · E = ⇢ r · B = 0

r ⇥ E + @B/@t = 0 r ⇥ B � @E/@t = j

• Continuity equation

r · j = �@⇢
@t

• The potentials V andA are defined such that the second and third
of Maxwell’s equations are automatically satisfied

B = r ⇥ A ! r · B = 0

E = �@A/@t � rV ! r ⇥ E = �@B/@t

• Gauge transformations leave the E and B fields invariant

V 0 = V +
@�

@t
and A0 = A � r�

• Maxwell’s equations in 4-vector notation

4-vector potential Aµ = (V,A)

4-vector current jµ = (⇢, j)

Electromagnetic tensor Fµ⌫ = @µA⌫ � @⌫Aµ

Maxwell’s equations @µFµ⌫ = j⌫

Continuity equation @µjµ = 0

Gauge transformation Aµ ! Aµ + @µ�

• Lorentz gauge and Coulomb condition

Lorentz gauge @µAµ = 0 ! @µ@µA⌫ = j⌫

Coulomb condition A0 = 0 or equivalently rA = 0
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The Lagrangian in classical mechanics

In classical mechanics, the Lagrangian is the di↵erence between the kinetic and
potential energy: L(q, q̇) ⌘ T � V . The coordinates q(t) = {q1(t), . . . , qN(t)}
fully describe the system at any given instant t. The number N of coordinates
is called the number of degrees of freedom of the system.

Let the system move from A(t1) to B(t2) along some given path. The action
S[path] is defined by the integral of the Lagrangian along the path:

S[path] =

Z
t2

t1

dt L(q, q̇)

The action S assigns a number to each path and is thus a function of the path.
In mathematics, S is called a functional.

The principle of least action states that the system will evolve along the
path that minimises the action.

Let q(t) be a path and q(t) + �q(t) be some deviating path between the same

points A(t1) and B(t2). That is, �q(t1) = �q(t2) = 0. The variation in the
action is then given by

�S =

Z
t2

t1

dt �L(q, q̇) =

Z
t2

t1

dt

✓
@L

@q
�q +

@L

@q̇
�q̇

◆
=

Iwant
0.

Because
d

dt

✓
@L

@q̇
�q

◆
=

✓
d

dt

@L

@q̇

◆
�q +

✓
@L

@q̇

◆
�q̇,

we find, by partial integration,

�S =

Z
t2

t1

dt

✓
@L

@q
� d

dt

@L

@q̇

◆
�q +

Z
t2

t1

d

✓
@L

@q̇
�q

◆
=

Iwant
0.

The second integral vanishes because �q(t1) = �q(t2) = 0.

The first integral vanishes for all �q if and only if the term in brackets vanishes,
leading to the Euler-Lagrange equations, for N degrees of freedom:

�S

�qi

=
d

dt

✓
@L

@q̇i

◆
� @L

@qi

= 0 i = 1, . . . , N

Solving the EL equations for a given Lagrangian lead to the equations of
motion of the system.
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The Hamiltonian in classical mechanics

If L does not explicitly depend on time we have for the time derivative

dL

dt
=
@L

@q̇
q̈ +

@L

@q
q̇

Substituting @L/@q from the Euler-Lagrange equations gives

dL

dt
=
@L

@q̇
q̈ +

d

dt

✓
@L

@q̇

◆
q̇ =

d

dt

✓
@L

@q̇
q̇

◆
! d

dt

✓
@L

@q̇
q̇ � L

◆
= 0

The term in brackets is the Legendre transform of L and is called theHamil-
tonian:

H
def
=

@L

@q̇
q̇ � L = pq̇ � L with p

def
=

@L

@q̇
,

where we have also introduced the canonical momentum p. The Hamiltonian
is identified with the total energy E = T + V which is thus conserved in the
time evolution of the system. This is an example of a conservation law.

In the Lagrangian, the dependence on q̇ resides in the kinetic energy term T
while the dependence on q is contained in the potential energy V . Thus if V = 0
(or a constant) we have in the EL equations

@L

@q
= 0 ! d

dt

✓
@L

@q̇

◆
=

dp

dt
= 0

Thus the momentum p is conserved in a system that is not under the influence
of an external potential. This is another example of a conservation law.

The Hamiltonian equations of motion are

q̇ =
@H

@p
and ṗ = �@H

@q

This can be derived as follows. Consider the total di↵erential

dL =
@L

@q
dq +

@L

@q̇
dq̇

Now
@L

@q
= ṗ (from EL),

@L

@q̇
= p (by definition),

and thus, using pdq̇ = d(pq̇) � q̇dp, we obtain

dL = ṗdq + d(pq̇) � q̇dp ! d(pq̇ � L) = dH = q̇dp � ṗdq,

from which the Hamiltonian equations immediately follow.
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Dirac �-function

• The Dirac �-function can be defined by3

�(x) =

⇢
0, if x 6= 0
1, if x = 0

with

Z 1

�1
�(x)dx = 1

• Generalisation to more dimensions is trivial, like �(r) ⌘ �(x)�(y)�(z).

• For x ! 0 we may write f (x)�(x) = f (0)�(x) so that
Z 1

�1
f (x)�(x)dx = f (0) and

Z 1

�1
f (x)�(x � a)dx = f (a)

• For a linear transformation y = k(x � a) we have

�(y) =
1

|k| �(x � a)

This is straight-forward to prove by showing that �(y) satisfies the
definition of the �-function given above.

• Likewise, if {xi} is the set of points for which f (xi) = 0, then it is
easy to show by Taylor expansion around the xi that

�[f (x)] =
X

i

1

|f 0(xi)|
�(x � xi)

• There exist many representations of the �-function, for instance,

�(r) =
1

(2⇡)3

Z
eik·rd3k or �(x) =

d✓(x)

dx
,

with ✓(x) =

⇢
0, for x < 0
1, for x � 0

(Heaviside step function).

3A more rigorous mathematical definition is usually in terms of a limiting sequence of functions.
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Green functions

• Let ⌦ be some linear di↵erential operator. A Green function
of the operator ⌦ is a solution of the di↵erential equation

⌦ G(r) = �(r)

These Green functions can be viewed as some potential caused by
a point source at r.

• Once we have the Green function we can immediately solve the
di↵erential equation for any source density s(r)

⌦ (r) = s(r)

By substitution it is easy to see that ( 0 is the solution of ⌦ 0 = 0)

 (r) =  0(r) +

Z
G(r � r0)s(r0) dr0

Here it is clearly seen that G(r�r0) ‘propagates’ the contribution
from the source element s(r0)dr0 to the potential  (r).

• A few well-known Green functions are ...

r2G(r) = �(r) G(r) = �1/(4⇡r)

(r2 + k2)G(r) = �(r) G±(r) = � exp(±ikr)/(4⇡r)

(r2 � m2)G(r) = �(r) G(r) = � exp(�mr)/(4⇡r)

• ... and here are their Fourier transforms

G(r) = �1/(4⇡r) G̃(q) = �1/q2

G+(r) = � exp(ikr)/(4⇡r) G̃+(q) = 1/(k2 � q2 + i")

G(r) = � exp(�mr)/(4⇡r) G̃(q) = �1/(q2 +m2)
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Non-relativistic scattering theory I

• Classical relation E = p2/2m + V with substitution E ! i@/@t
and p = �ir gives the Schroedinger equation

i
@

@t
 (r, t) = �


r2

2m
� V (r, t)

�
 (r, t)

• Separate  (r, t) = �(t) (r). Dividing through by � gives

i@t�(t)

�(t)
= �[r2 � 2mV (r, t)] (r)

2m (r)

Assume now that V does not depend on t. The left and right-hand
side must then be equal to a constant, say E, and we have

@�(t)

@t
= �iE �(t) ! �(t) = e�iEt

[r2 + k2] (r) = 2mV (r) (r)

where we have set k2 = 2mE. Using Green functions we get

 (r) =  0(r) � m

2⇡

Z
eik|r�r0|

|r � r0|V (r0) (r0)dr0

• For large r � r0 we have |r � r0| ⇡ r � r̂r0 so that

 (r) =  0(r) � m

2⇡

eikr

r

Z
e�ikr̂r0

V (r0) (r0)dr0

• We set k0 ⌘ kr̂ and write, formally,

 (r) =  0(r)+f (k
0)
eikr

r
with f (k0) ⌘ �m

2⇡

Z
e�ik0r0

V (r0) (r0)dr0

The function f (k0) is called the scattering amplitude.
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Non-relativistic scattering theory II

• An incoming plane wave  in = Beikz describes beam particles
moving along the z axis with momentum k. The wave function
is normalised such that ⇢ =  ⇤ = |B|2 is the particle density
(number of particles per unit volume). The current density is

j in =
1

2mi
( ⇤r �  r ⇤) = |B|2 k

m
= ⇢

k

m
= ⇢v

with v the velocity of the particle. The number of beam particles
passing per second through an area A is Rin = ⇢vA = |j in|A.
Likewise, the number of scattered particles that pass per second
through an area r2d⌦ is Rsc = |jsc|r2d⌦.

• We now imagine a hypothetical area d� such that the number of
beam particles that pass through that area is equal to the number
of particles that scatter in the solid angle d⌦. We then have, by
definition, |j in| d� = |jsc| r2d⌦, or

d�

d⌦
=

r2 |jsc|
|j in|

The quantity d�/d⌦ is called a di↵erential cross section.

• For our scattered wave  sc = f (k0) eikr/r we find

jsc =
1

2mi

✓
 ⇤@ 

@r
�  

@ ⇤

@r

◆
= |f (k0)|2 k

mr2

and thus
d�

d⌦
= |f (k0)|2

where we have assumed ⇢ = 1 and ksc = kin (elastic scattering).
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Non-relativistic scattering theory III

• Recall that for scattering on a potential, the outgoing wave is

 out(r) =  0(r) + f (k0)
eikr

r
with

f (k0) ⌘ �m

2⇡

Z
e�ik0r0

V (r0) out(r
0)dr0

Here k0 is the momentum vector of the scattered particle.

• The problem now is that  out occurs on both sides of the equation
above. A first order approximation is achieved by setting in the
scattering amplitude  out ⇡  in = eikz = eikr. This gives

f (k,k0) ⌘ �m

2⇡

Z
ei(k�k0)r0

V (r0)dr0 = �m

2⇡

Z
e�iqr0V (r0)dr0

where we have set the momentum transfer q ⌘ k0 � k. In
this so-called Born approximation, the scattering amplitude
f (k,k0) ⌘ f (q) is thus the Fourier transform of the potential.

• Example: Yukawa potential V (r) = Q1Q2 e�ar/r

f (q) = �mQ1Q2

2⇡

Z
e�ar0

r0 e�iqr0
dr0 = · · · = 2mQ1Q2

q2 + a2

d�

d⌦
= |f (q)|2 =


2mQ1Q2

q2 + a2

�2

• Example: Coulomb potential V (r) = Q1Q2/r set a = 0 above:

d�

d⌦
=


2mQ1Q2

q2

�2

=


Q1Q2

2mv2 sin2(✓/2)

�2

This is the famous formula for Rutherford scattering.
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Dirac’s bra-ket notation I

• A state vector  ↵ can be represented by a column vector of complex
numbers in a Hilbert space and is denoted by the ket |↵i. To each
ket is associated a bra vector h↵| in a dual Hilbert space. This
bra is represented by the conjugate transpose  †

↵, that is, by the
row vector of complex conjugates. The operation of Hermitian
conjugation turns a bra into a ket and vice versa

|↵i† = h↵| and (c|↵i)† = h↵|c⇤ (c any complex number)

Note that the Hermitian conjugate of a c-number is the complex
conjugate. The inproduct  †

↵ ·  � is denoted by h↵|�i and is a
c-number so that

h�|↵i ⌘ h↵|�i† = c† = c⇤ = h↵|�i⇤

• An operator O transforms a ket |↵i into another ket, say |�i. The
operator and its Hermitian conjugate are then defined by

O|↵i = |�i and h↵|O† = h�|

Multiplying from the left with h�| and from the right with |�i we
find the relation between the matrix elements of O and O†

O�↵ ⌘ h�|O|↵i = h�|�i
O†
↵� ⌘ h↵|O†|�i = h�|�i = h�|�i⇤ = h�|O|↵i⇤ = O⇤

�↵

• An operator for which O = O† is called self-adjoint or Hermi-
tian. Observable quantities are always represented by Hermitian
operators. Indeed, the expectation value h↵|O|↵i is then real,
as it should be, since

h↵|O|↵i ⌘ h↵|O†|↵i = h↵|O|↵i⇤
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Dirac’s bra-ket notation II

• An orthonormal basis is written as |eii with hei|eji = �ij. On this
basis, a state |↵i is given by the linear combination

|↵i =
X

i

|eiihei|↵i

The operator |eiihei| is called a projection operator, for obvi-
ous reasons. The closure relation reads

P
i |eiihei| = 1

• We denote the wave function  ↵(r) by hr|↵i and its Hermitian
conjugate  †

↵(r) by h↵|ri. In particular, the wave function of a
momentum eigenstate is hr|ki / eikr.

• For the complete set of states |ri the closure relation reads
Z

|rihr| dr = 1

From this, we nicely recover the expression for the inproduct of
two wave functions

h↵|�i =
Z

h↵|rihr|�i dr =

Z
 ⇤
↵(r) �(r) dr

that of the delta function

�(k � k0) = hk0|ki =
Z

hk0|rihr|kidr / 1

(2⇡)3

Z
ei(k�k0)rdr

and also that of Fourier transforms

 (k) = hk| i =
Z

hk|rihr| idr /
Z

e�ikr (r)dr

0–15



Dirac equation

• Dirac equation:

i�µ@µ � m = 0

(/p � m)u = 0
| {z }

particle in

, ū(/p � m) = 0
| {z }

particle out

, (/p +m)v = 0
| {z }
antiparticle out

, v̄(/p +m) = 0
| {z }
antiparticle in

 =  †�0, /a = �µaµ

• Pauli matrices:

�x =

✓
0 1
1 0

◆
, �y =

✓
0 �i
i 0

◆
, �z =

✓
1 0
0 �1

◆

�i�j = �ij + i✏ijk�k, �†
i = �i = ��1

i , [�i, �j] = 2✏ijk�k

(a · �)(b · �) = a · b + i� · (a ⇥ b)

exp(i✓ · �) = cos |✓| + i(✓̂ · �) sin |✓|

• Dirac matrices:

�0 =

✓
1 0
0 �1

◆
, �i =

✓
0 �i

��i 0

◆
, �5 = i�0�1�2�3 =

✓
0 1
1 0

◆

�0
†
= �0, �i

†
= ��i, �0�µ†�0 = �µ

{�µ, �⌫} = 2gµ⌫, {�µ, �5} = 0,
�
�5

�2
= 1
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