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1 Introduction

The Frequentist and Bayesian approaches to statistics differ in the definition of prob-
ability. For a Frequentist, the probability of an event is the relative frequency of the
occurrence of that event in an infinitely large set of repeated observations under identical
conditions. Roughly speaking, probability is, in this view, taken to be a property of the
world around us. Bayesian probability, on the other hand, is not defined as a frequency
of occurrence but as the plausibility that a proposition is true, given the available infor-
mation. Bayesian probability is thus not per se a property of the world around us, but
more reflects our state of knowledge about that world. These different views have, as
we will see, far-reaching consequences when it comes to data analysis since Bayesians
can assign probabilities to propositions, or hypotheses, while Frequentists cannot.

In these lectures we present the basic principles and techniques underlying Bayesian
statistics or, rather, Bayesian inference. Such inference is the process of determining
the plausibility of a conclusion, or a set of conclusions, which we draw from the available
data and prior information.

Since we derive in this write-up (almost) everything from scratch, little reference is made
to the literature. So let us start by giving some useful references below:

A good introduction to Bayesian methods is given in the book by Sivia ‘Data Analysis—
a Bayesian Tutorial ’ [Sivia06]. More extensive, with many worked-out examples in
Mathematica, is the book by P. Gregory ‘Bayesian Logical Data Analysis for the Physical
Sciences ’ [Greg05]. We also mention the monumental work by Jaynes, ‘Probability
Theory—The Logic of Science’ [Jay03] but this book is certainly not for the fainthearted.
Unfortunately Jaynes died before the book was finished so that it is incomplete. It is
available in print (Cambridge University Press) but a free (preliminary) copy can still be
found on the website given in [Jay98]. For those who want to refresh their memory on
Frequentist methods we recommend ‘Statistical Data Analysis ’ by G. Cowan [Cowan98]
and ‘Statistical Methods in Experimental Physics ’ by F. James [James06].

Many references in these notes are from an interesting collection of papers that can be
found on http://www.astro.cornell.edu/staff/loredo/bayes, and links therein.
From these we mention the nice review (from an astronomers perspective) of T. Loredo
‘From Laplace to Supernova SN 1987A: Bayesian Inference in Astrophysics ’ [Lor90]. To
get a grasp of the basic ideas and their historical development, we recommend ‘Bayesian
Methods: General Background ’ by E.T. Jaynes [Jay85]. A good summary of Bayesian
methods from a particle physicist view can be found in the article ‘Bayesian Inference
in Processing Experimental Data’ by G. D’Agostini [Agost03]. Illuminating case studies
are presented in ‘An Introduction to Parameter Estimation using Bayesian Probability
Theory ’ [Bret90] and ‘An Introduction to Model Selection using Probability Theory as
Logic’ [Bret96] by G.L. Bretthorst.

Finally, there are of course these lecture notes which can be found, together with the
lectures themselves, on http://www.nikhef.nl/user/h24/bayes.

Exercise 1.1: Several of the works referred to above are written by astronomers. Can
you give reasons why Bayesian methods tend to be more popular among astronomers than
among particle physicists?
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2 Bayesian Probability

Bayesian probability is a measure of the plausibility of a proposition. It can be viewed
as a quantity that interpolates between ‘true’ and ‘false’ in case we do not have sufficient
information to draw firm conclusions. In this section we will establish the link between
logic and probability and develop probability calculus from a Bayesian viewpoint.

2.1 Plausible inference

In Aristotelian logic a proposition can be either true or false. In the following we
will denote a proposition by a capital letter like A and represent ‘true’ or ‘false’ by the
Boolean values 1 and 0, respectively. The operation of negation (denoted by A or,
equivalently, by ∼A) turns a true proposition into a false one and vice versa.

Two propositions can be linked together to form a compound proposition. The state
of such a compound proposition depends on the states of the two input propositions
and on the way these are linked together. It is not difficult to see that there are exactly
16 different ways in which two propositions can be combined.1 All these have specific
names and symbols in formal logic but here we will be concerned with only a few of
these, namely, the tautology (>), the contradiction (⊥), the and (∧),2 the or (∨)
and the implication ‘if A then B’ (⇒). The truth tables of these binary relations are

A B A>B A ⊥ B A ∧B A ∨B A⇒ B
0 0 1 0 0 0 1
0 1 1 0 0 1 1
1 0 1 0 0 1 0
1 1 1 0 1 1 1

(2.1)

Note that the tautology is always true and the contradiction always false, independent
of the value of the input propositions.

Exercise 2.1: Show that A ∧A is a contradiction and A ∨A a tautology.

Two important relations between the logical operations ‘and’ and ‘or’ are given by the
de Morgan’s laws

A ∧B = A ∨B and A ∨B = A ∧B. (2.2)

We note here a remarkable duality possessed by logical equations in that they can be
transformed into other valid equations by interchanging the operations ∧ and ∨.

Exercise 2.2: Prove (2.2). Hint: this is easiest done by verifying that the truth tables of
the left and right-hand sides of the equations are the same. Once it is shown that the first
equation in (2.2) is valid, then duality guarantees that the second equation is also valid.

1Each input proposition can be true or false so that the two propositions define four possible input
states. The compound proposition can thus be encoded in 4 bits by specifying the output bit (true or
false) of each input state. Five out of the 16 possible output words are listed in the truth table (2.1).

2The conjunction A ∧ B will often be written as the juxtaposition AB since it looks neat in long
expressions or as (A,B) since we are accustomed to that in mathematical notation.
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One may ask the question how many logical functions are necessary to generate all
others. The answer (as every electronics engineer knows) is that only one function is
sufficient, namely the ‘nand’ defined by

A ↑ B ≡ A ∧B = A ∨B. (2.3)

Exercise 2.3: Express A, A ∧B and A ∨B in terms of the ‘nand’ operator.

The reasoning process by which conclusions are drawn from a set of input propositions is
called inference. If there is enough input information we apply deductive inference
which allows us to draw firm conclusions, that is, the conclusion can be shown to be
either true or false. Mathematical proofs, for instance, are based on deductive inferences.
If there is not enough input information we apply inductive inference which does not
allow us to draw a firm conclusion. The difference between deductive and inductive
reasoning can be illustrated by the following simple example:

P1: Roses are red
P2: This flower is a rose

→ This flower is red (deduction)

P1: Roses are red
P2: This flower is red

→ This flower is perhaps a rose (induction)

Induction thus leaves us in a state of uncertainty about our conclusion. However, the
statement that the flower is red increases the probability that we are dealing with a rose
as can easily be seen from the fact that—provided all roses are red—the fraction of roses
in the population of red flowers must be larger than that in the population of all flowers.

It was already known in the ancient world that deductive reasoning can be broken down
into a chain of strong syllogisms,3 the two types of which are

Major premise: If A is true then B is true If A is true then B is true
Minor premise: A is true B is false
Conclusion: B is true A is false

Inductive reasoning, on the other hand, contains one or more weak syllogisms

Major premise: If A is true then B is true If A is true then B is true
Minor premise: A is false B is true
Conclusion: B is less probable A is more probable

The first proposition in all four syllogisms above can be recognised as the implication
A ⇒ B for which the truth table is given in (2.1). It is straight forward to check from
this truth table the validity of the conclusions given above.

Exercise 2.4: (i) Show that it follows from A ⇒ B that B ⇒ A; (ii) Check that the
conclusions of the above syllogisms are consistent with the truth table of implication as
given in (2.1).

3A syllogism is a triplet of related propositions consisting of a major premise, a minor premise and
a conclusion.
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In inductive reasoning then, we are in a state of uncertainty about the validity (true or
false) of the conclusion we wish to draw. This is nothing special because we all the time
conduct, often intuitively, inductive reasoning to cope with questions such as: Shall I
cross this road? Should I bring my raincoat? Can I trust this bank?

The steps taken in answering such questions are very succinctly phrased by Jaynes as
follows [Jay85]: (i) Try to foresee all the possibilities that might arise; (ii) judge how
likely each is, based on everything you can see and all your past experience; (iii) in the
light of this, judge what the probable consequences of various actions would be; (iv) now
make your decision. The last two steps belong to the field of decision theory which
is not covered in these lectures. The first two steps belong to the field of plausible
inference, that is, the art of reasoning in the presence of uncertainty.

The first step in formalising the inductive reasoning process is to define a measure
P (A|I) of the plausibility (or degree of belief) that a proposition A is true, given the
information I. It may seem quite an arbitrary business to attempt to quantify something
like a ‘degree of belief’ but this is not so.

Cox (1946) has, in a seminal paper [Cox46], formulated the rules of plausible inference
and plausibility calculus by basing them on several desiderata. These desiderata are
not axioms (they don’t postulate true propositions) but a list of properties that a sen-
sible measure of plausibility measure should possess. Here is how Jaynes formulates
them [Jay03] (my wording):

(I) The measure of plausibility is a real number. This is because real numbers are
continuous and transitive which means that if a < b and b < c then a < c. We
need this because otherwise we cannot order propositions by degree of plausibility;

(II) Agreement with common sense. By this desideratum is meant that plausibility
should increase continuously and monotonically when more supporting evidence
for the truth of a proposition is supplied. At the same time, the plausibility of
the negated proposition must decrease. It is also required that plausible inference
must become Aristotelean logic (Boolean algebra) in the limit that we deal with
propositions which are certain to be true or false on the evidence;

(III) Consistency.

(a) The plausibility of a conclusion depends on the relevant information and not
on the path of reasoning by which the conclusion is reached;

(b) All available relevant information (and not some selection) should be taken
into account while all irrelevant information should be ignored;

(c) Equivalent states of knowledge must be represented by equal plausibility
assignments.

It turns out that these desiderata are so restrictive that they completely determine the
algebra of plausibility. To the surprise of many, this algebra appeared to be identical
to that of classical probability as defined by the axioms of Kolmogorov (see below for
these axioms). Plausibility is thus, for a Bayesian at least, identical to probability.4 It

4The intimate connection between probability and logic is reflected in the title of Jaynes’ book:
‘Probability Theory—The Logic of Science’.
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is worth noting that the desiderata—which are the foundation of Bayesian probability
theory—do not make any mention of random variables, frequencies, ensembles, or hy-
pothetical repetitions of an experiment. The derivation of the Kolmogorov axioms from
the desiderata is beyond the scope of these lectures; we refer to Loredo [Lor90] for a
very clear derivation of the product rule. Full derivations (covering many pages) can be
found in Cox [Cox61], Jaynes [Jay03] and Gregory [Greg05].5

Finally, we remark that the desiderata are built, from the start, into the theory so that
they cannot be violated in properly conducted Bayesian inference. Later on in this
write-up we will encounter examples where they are violated in Frequentist inference.

2.2 Probability calculus

We will now derive several useful formula, starting from the fundamental axioms of prob-
ability calculus and taking the viewpoint of a Homo Bayesiensis, when appropriate. As
already mentioned above, P (A|I) is a real number which, partially from the desiderata
and partially by convention, is bounded to P (A|I) = 1 (0) when we are certain that the
proposition A is true (false). The two Kolmogorov axioms that define probability
calculus are the sum rule

P (A ∨B|I) = P (A|I) + P (B|I)− P (AB|I) (2.4)

and the product rule
P (AB|I) = P (A|BI)P (B|I). (2.5)

Let us, at this point, spell-out the difference between AB (‘A and B’) and A|B (‘A given
B’): In AB, B can be true or false while in A|B, B is assumed to be true and cannot
be false. The following terminology is often used for the probabilities occurring in the
product rule (2.5): P (AB|I) is called the joint probability, P (A|BI) the conditional
probability and P (B|I) the marginal probability.

Probabilities can be represented in a Venn diagram by the (normalised) areas of the
sub-sets A and B of a given set I. The sum rule is then trivially understood from the
following diagram.

It turns out that these desiderata are so restrictive that they completely determine the
algebra of plausibilities. To the surprise of many, this algebra appeared to be identical
to that of classical probability as defined by the axioms of Kolmogorov (see below for
these axioms). Plausibility is thus—for a Bayesian—identical to probability.6

2.2 Probability calculus

We will now derive several useful formula starting from the fundamental axioms of prob-
ability calculus taking the viewpoint of a Homo Bayesiensis, when appropriate. First, as
already mentioned above, P (A|I) is a bounded quantity; by convention P (A|I) = 1 (0)
when we are certain that the proposition A is true (false). Next, the two Kolmogorov
axioms are the sum rule

P (A + B|I) = P (A|I) + P (B|I) − P (AB|I) (2.3)

and the product rule
P (AB|I) = P (A|BI)P (B|I). (2.4)

Let us, at this point, spell-out the difference between AB (‘A and B’) and A|B (‘A given
B’): In AB, B can be true or false while in A|B, B is assumed to be true and cannot
be false. The following terminology is often used for the probabilities occurring in the
product rule (2.4): P (AB|I) is called the joint probability, P (A|BI) the conditional
probability and P (B|I) the marginal probability.

Probabilities can be represented in a Venn diagram by the (normalized) areas of the
sub-sets A and B of a given set I. The sum rule is then trivially understood from the
following diagram

I

A
B

AB

while the product rule can be seen to give the relation between different normaliza-
tions of the area AB: P (AB|I) corresponds to the area AB normalized to I, P (A|BI)
corresponds to AB normalized to B and P (B|I) corresponds to B normalized to I.

Because A + Ā is a tautology (aways true) and AĀ a contradiction (always false) we
find from (2.3)

P (A|I) + P (Ā|I) = 1 (2.5)

which sometimes is taken as an axiom instead of (2.3)

Exercise 2.4: Derive the sum rule (2.3) from the axioms (2.4) and (2.5).

6The intimate connection between probability and logic is reflected in the title of Jaynes’ book:
‘Probability Theory—The Logic of Science’.
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The product rule (2.5) normalises the conjunction AB to the set B, instead of to I:
P (AB|I) corresponds to the area AB normalised to I, P (A|BI) corresponds to AB
normalised to B and P (B|I) corresponds to B normalised to I.

5Cox employed a somewhat unorthodox mathematics where he did not start from axioms, but from
desiderata which were cast into functional equations. The Kolmogorov axioms follow from solving these
equations. Two years later, Shannon used similar methods in his foundation of communication theory.
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Because A ∨ A is a tautology (always true) and AA a contradiction (always false) we
find from (2.4)

P (A|I) + P (A|I) = 1 (2.6)

which often is taken as an axiom instead of (2.4).6

Exercise 2.5: Derive the sum rule (2.4) from the axioms (2.5) and (2.6).

If A and B are mutually exclusive propositions (they cannot both be true) then,
because AB is a contradiction, P (AB|I) = 0 and (2.4) becomes

P (A ∨B|I) = P (A|I) + P (B|I) (A and B exclusive). (2.7)

If A and B are independent (the knowledge of B does not give us information on A
and vice versa),7 then P (A|BI) = P (A|I) and (2.5) becomes

P (AB|I) = P (A|I)P (B|I) (A and B independent). (2.8)

Because AB = BA we see from (2.5) that P (A|BI)P (B|I) = P (B|AI)P (A|I). From
this we obtain the rule for conditional probability inversion, also known as Bayes’
theorem:

P (H|DI) =
P (D|HI)P (H|I)

P (D|I)
. (2.9)

In (2.9) we replaced A and B by D and H to indicate that in the following these
propositions will refer to ‘data’ and ‘hypothesis’, respectively. From this we see that
Bayes’ theorem models a learning process in the sense that it specifies how to update the
knowledge on H when new information D becomes available. In words, this updating
process reads as follows: The probability P (H|DI) of a hypothesis, given the data, is
equal to the probability P (H|I) of the hypothesis, given the background information
alone (that is, without considering the data) multiplied by the probability P (D|HI) that
the hypothesis, when true, just yields that data. In Bayesian parlance P (H|DI) is called
the posterior probability, P (D|HI) the likelihood, P (H|I) the prior probability
and P (D|I) the evidence. Note that (2.9) only makes sense when the evidence P (D|I)
is non-zero.

Exercise 2.6: Investigate probability inversion

P (B|AI) =
P (A|BI)P (B|I)

P (A|I)

in case the propositions A and B are (i) mutually exclusive, (ii) logically independent, (iii)
both. You can take the marginal probabilities P (A|I) and P (B|I) to be both non-zero.

6Eq. (2.6) is then called the sum rule and (2.4) the ‘extended sum rule’.
7We are talking here about a logical dependence which could be defined as follows: A and B are

logically dependent when learning about A implies that we also will learn something about B. Note
that logical dependence does not necessarily imply causal dependence. Causal dependence does, on the
other hand, always imply logical dependence.
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We remark that Bayes’ theorem is valid in both the Bayesian and Frequentist worlds
because it follows directly from axiom (2.5) of probability calculus. What differs is the
interpretation of probability: for a Bayesian, probability is a measure of plausibility so
that it makes perfect sense to convert P (D|HI) into P (H|DI) for data D and hypoth-
esis H. For a Frequentist, on the other hand, probabilities are properties of random
variables and, although it makes sense to talk about P (D|HI), it does not make sense
to talk about P (H|DI) because a hypothesis H is a proposition and not a random
variable. More on Bayesian versus Frequentist in Section 2.5.

Not being aware of the consequences of probability inversion easily leads to flawed
reasoning. To see this, consider the case of Mr. White who goes to a doctor for an AIDS
test. This test is known to be 100% efficient (the test never fails to detect AIDS). A
few days later poor Mr. White learns that he is positive. Does this mean that he has
AIDS? Most people (including, perhaps, Mr. White himself and his doctor) would say
‘yes’ because they fail to realise that, in general,

P (positive|AIDS) 6= P (AIDS|positive).

Here are two more examples that should make the point clear:

P (rain|clouds) 6= P (clouds|rain), P (woman|pregnant) 6= P (pregnant|woman).

Right?

In the next section we will learn how to deal with Mr. White’s test (and with the opinion
of his doctor).

2.3 Exhaustive and exclusive sets of hypotheses

Let us now consider the important case that H can be expanded into an exhaustive set
of mutually exclusive hypotheses {Hi}, that is, into a set of which one and only one
hypothesis is true.8 Note that this implies, by definition, that H itself is a tautology.
Trivial properties of such a complete set of hypotheses are9

P (Hi, Hj|I) = P (Hi|I) δij (2.10)

and ∑

i

P (Hi|I) = P (
∨

i

Hi|I) = 1 (normalisation) (2.11)

where we used the sum rule (2.7) in the first equality and the fact that the logical sum of
the Hi is a tautology in the second equality. Eq. (2.11) is the extension of the sum-rule
axiom (2.6) and is called the normalisation condition.

Similarly it is straight forward to show that

∑

i

P (D,Hi|I) = P (D,
∨

i

Hi|I) = P (D|I). (2.12)

8A trivial example is the complete set H1 : x < a and H2 : x ≥ a with x and a real numbers.
9Here and in the following we write the conjunction AB as A,B.
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This operation is called marginalisation10 and plays a very important role in Bayesian
analysis since it allows us to eliminate sets of hypotheses which are necessary in the
formulation of a problem but are otherwise of no interest (‘nuisance parameters’).

The inverse of marginalisation is the expansion of a probability: Using the product
rule we can re-write (2.12) in reverse order as

P (D|I) =
∑

i

P (D,Hi|I) =
∑

i

P (D|Hi, I)P (Hi|I) (2.13)

which states that the probability of D can be written as the weighted sum of the prob-
abilities of a complete set of hypotheses {Hi}. The weights are just given by the proba-
bility that Hi, when true, gives D. In this way we have expanded P (D|I) on a basis of
probabilities P (Hi|I).11 Expansion is often used in probability assignment because it
allows us to express a compound probability in terms of known elementary probabilities.

Using (2.13), Bayes’ theorem (2.9) can, for a complete set of hypotheses, be written as

P (Hi|D, I) =
P (D|Hi, I)P (Hi|I)∑
i P (D|Hi, I)P (Hi|I)

, (2.14)

from which it is seen that the denominator is just a normalisation constant.

If we calculate with (2.14) the posteriors for all the hypotheses Hi in the set, we obtain
a spectrum of probabilities which, in the continuum limit, goes over to a probability
density distribution (see Section 2.4). Note that in computing this spectrum the term
P (D|Hi, I) is taken to be a function of the hypotheses for fixed data. It is then called
a likelihood function; note that this is not a probability. On the other hand, if
P (D|Hi, I) is regarded as a function of the data for fixed hypothesis it is not called a
likelihood but, instead, a sampling probability.

Exercise 2.7: Mr. White is positive on an AIDS test. The probability of a positive
test is 98% for a person who has AIDS (efficiency) and 3% for a person who has not
(false-positive). Given that a fraction µ = 1% of the population is infected, what is the
probability that Mr. White has AIDS? What would be this probability for full efficiency
and for zero false-positives? Note that Bayesian probabilities are by no means fixed since
they can change when new information becomes available. For instance, suppose that
two months after the test a more thorough investigation of the population reveals that
µ = 0.1%, instead of 1%. What is now the probability that Mr. White has AIDS?

Exercise 2.8: What would be the probability that Mr. White has AIDS given the prior
information µ = 0 (nobody has AIDS) or µ = 1 (everybody has AIDS)? Note that both
these statements on µ encode prior certainties. Convince yourself that, according to Bayes’
theorem, no amount of data can ever change a prior certainty.

Up to now we have explicitly kept the probabilities conditional to ‘I’ in all expressions as
a reminder that Bayesian probabilities are always defined in relation to some background

10A projection of a two-dimensional distribution f(x, y) on the x or y axis is called a marginal
distribution. Because (2.12) is projecting out P (D|I) it is called marginalisation.

11Note that (2.13) is similar to the closure relation in quantum mechanics 〈D|I〉 =
∑
i〈D|Hi〉〈Hi|I〉.
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information. This does not encompass ‘all that is known’ but, instead, all background
information known to us that is relevant for our inference. In the following we will be a
bit liberal and sometimes omit ‘I’ when it clutters the notation.

It is very important to realise that this background information must be the same for
all probabilities in a given expression; if this is not the case, calculations may lead to
paradoxical results.

Exercise 2.9: Suppose we use Bayes’ theorem P (H|DI) ∝ P (D|HI)P (H|I) to update
the prior probability P (H|I) with our data D. Now consider the following: take P (H|DI)
as a better estimate of the prior and use Bayes’ theorem again to improve on posterior!

Right?

2.4 Continuous variables

The formalism presented above describes the probability calculus of propositions or,
equivalently, of discrete variables (which can be thought of as an index labelling a set
of propositions). To extend this discrete algebra to continuous variables, consider the
propositions

A : r < a, B : r < b, C : a ≤ r < b

for a real variable r and two fixed real numbers a and b with a < b. Because we have
the Boolean relation B = A ∨ C and because A and C are mutually exclusive we find
from the sum rule (2.7)

P (a ≤ r < b|I) = P (r < b|I)− P (r < a|I) ≡ G(b)−G(a). (2.15)

In (2.15) we have introduced the cumulative distribution G(x) ≡ P (r < x|I) which
obviously is a monotonically increasing function of x. The probability density p is
defined by

p(x|I) = lim
δ→0

P (x ≤ r < x+ δ|I)

δ
=

dG(x)

dx
(2.16)

(note that p is positive definite) so that (2.15) can also be written as

P (a ≤ r < b|I) =

∫ b

a

p(r|I) dr. (2.17)

In terms of probability densities, the product rule (2.5) can now be written as

p(x, y|I) = p(x|y, I) p(y|I). (2.18)

Likewise, the normalisation condition (2.11) can be written as

∫
p(x|I) dx = 1, (2.19)

the marginalisation/expansion (2.13) as

p(x|I) =

∫
p(x, y|I) dy =

∫
p(x|y, I) p(y|I) dy (2.20)

12



and Bayes’ theorem (2.14) as

p(y|x, I) =
p(x|y, I) p(y|I)∫
p(x|y, I) p(y|I) dy

. (2.21)

Exercise 2.10: A counter produces a yes/no signal S when it is traversed by a pion. Given
are the efficiency P (S|π, I) = ε and miss-identification probability P (S| ∼π, I) = δ. The
fraction of pions in the beam is P (π|I) = µ. What is the probability P (π|S, I) that a
particle which generates a signal is a pion in case (i) µ is known and (ii) µ is unknown?
In the latter case assume a uniform prior distribution for µ in the range 0 ≤ µ ≤ 1.

We make four remarks: (1)—Probabilities are dimensionless numbers so that the di-
mension of a density is the reciprocal of the dimension of the variable. This implies
that p(x) transforms when we make a change of variable x → f(x). The size of the
infinitesimal element dx corresponding to df is given by dx = |dx/df | df ; because the
probability content of this element must be invariant we have

p(f |I) df = p(x|I) dx = p(x|I)

∣∣∣∣
dx

df

∣∣∣∣ df and thus p(f |I) = p(x|I)

∣∣∣∣
dx

df

∣∣∣∣ . (2.22)

Exercise 2.11: A lighthouse at sea is positioned a distance d from the coast.

Likewise, the normalization (2.10) can be written as

∫
p(x|I) dx = 1, (2.18)

the marginalization/decomposition (2.12) as

p(x|I) =

∫
p(x, y|I) dy =

∫
p(x|y, I) p(y|I) dy (2.19)

and Bayes’ theorem (2.13) as

p(y|x, I) =
p(x|y, I) p(y|I)∫
p(x|y, I) p(y|I) dy

. (2.20)

Exercise 2.7: A counter produces a yes/no signal S when it is traversed by a pion.
Given are the efficiency P (S|π, I) = ε and mis-identification probability P (S|π̄, I) = δ.
The fraction of pions in the beam is P (π|I) = µ. What is the probability P (π|S, I) that
a particle which generates a signal is a pion in case (i) µ is known and (ii) µ is unknown?
In the latter case assume a uniform prior distribution for µ in the range 0 ≤ µ ≤ 1.

We make four remarks: (1)—Probabilities are dimensionless numbers so that the di-
mension of a density is the reciprocal of the dimension of the variable. This implies
that p(x) transforms when we make a change of variable x → f(x). The size of the
infinitesimal element dx corresponding to df is given by dx = |dx/df | df ; because the
probability content of this element must be invariant we have

p(f |I) df = p(x|I) dx = p(x|I)

∣∣∣∣
dx

df

∣∣∣∣ df and thus p(f |I) = p(x|I)

∣∣∣∣
dx

df

∣∣∣∣ . (2.21)

Exercise 2.8: A lighthouse at sea is positioned a distance d from the coast.

x

y

x0

ϑd

This lighthouse emits collimated light pulses at random times in random directions, that
is, the distribution of pulses is uniform in ϑ. Derive an expression for the probability to
observe a light pulse as a function of the position x along the coast. (From Sivia [5].)

(2)—Without prior information it is tempting to chose a uniform distribution for the
prior density p(y|I) in Bayes’ theorem (2.20). However, the distribution of a transformed
variable z = f(y) will then, in general, not be uniform. An ambiguity arises in the
Bayesian formalism if our lack of information can be encoded equally well by a uniform
distribution in y as by a uniform distribution in z. How to select an optimal ‘non-
informative’ prior among (perhaps many) alternatives is an important—and sometimes

11

This lighthouse emits collimated light pulses at random times in random directions, that
is, the distribution of pulses is uniform in ϑ. Derive an expression for the probability to
observe a light pulse as a function of the position x along the coast. (From Sivia [Sivia06].)

(2)—Without prior information it is tempting to chose a uniform distribution for the
prior density p(y|I) in Bayes’ theorem (2.21). However, the distribution of a transformed
variable z = f(y) will then, in general, not be uniform. Uniformity thus seems to be
not a very good criterion to characterise un-informative densities: we will come back
to this in Section 5 where we introduce entropy as a measure of information content.
Note, however, that in an iterative learning process the choice of initial prior becomes
increasingly less important because the posterior obtained at one step can be taken as
the prior in the next step.12

Exercise 2.12: We put two pion counters in the beam both with efficiency P (S|π, I) = ε
and miss-identification probability P (S| ∼π, I) = δ. The fraction of pions in the beam
is P (π|I) = µ. A particle traverses and both counters give a positive signal. What is

12The rate of convergence can be much affected by the initial choice of prior, see Section 5.1 for a
nice example taken from the book by Sivia.
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the probability that the particle is a pion? Calculate this probability by first taking the
posterior of the measurement in counter (1) as the prior for the measurement in counter
(2) and second by considering the two responses (S1, S2) as one measurement and using
Bayes’ theorem directly. In order to get the same result in both calculations an assumption
has to be made on the measurements in counters (1) and (2). What is this assumption?

(3)—The equations (2.20) and (2.21) constitute, together with their discrete equivalents,
the core of Bayesian inference. Indeed, apart from the approximations and transforma-
tions described in Section 3 and the maximum entropy principle described in Section 5,
the remainder of these lectures will be not much more than repeated applications of
expansion, probability inversion and marginalisation.

(4)—Plausible inference is, strictly speaking, always conducted in terms of probabilities
instead of probability densities. A density p(x|I) is turned into a probability by multi-
plying it with the infinitesimal element dx. For conditional probabilities dx should refer
to the random variable (in front of the vertical bar) and not to the condition (behind
the vertical bar); thus p(x|y, I)dx is a probability but p(x|y, I)dy is not although it may
make perfect sense mathematically. It is a good habit to keep track of these infinitesimal
elements in a calculation even when most of them will cancel in the end.

2.5 Bayesian versus Frequentist inference (I)

The Bayesian interpretation of probability as a ‘degree of belief’ is not new since this was
just the concept used by the early founders of probability theory like Bernoulli (1713),
Bayes (1763), Laplace (1812) and others. Laplace, in particular, was very successful
in applying Bayesian methods to celestial mechanics13 and other fields of investigation.
However, many objections were raised to Bayesian methods which caused them to fall
into discredit at the beginning of the 20th century, in favour of Frequentist approaches,
much advocated by Fisher.

One reason for this was that the rules of probability calculus were known to apply to
probability defined in terms of frequencies, but that no compelling reason could be given
why they would apply to probability defined as a degree of belief. We have seen how
the work of Cox has solved this problem in 1946.

Furthermore, probability as a degree of belief was considered to be subjective, and thus
unfit for use in a scienctific argument. Bayesian probabilities are, of course, subjective
in the sense that they depend on the amount of available information which may dif-
fer from one person to another. But that does not mean that these probabilities are
arbitrary. Indeed, desideratum III of Section 2.1 requires that two people who are in
equivalent states of knowledge about a proposition must assign equal probabilities to
that proposition.

Another important feature of Bayesian inference is that it requires a prior probability
density as input. Here it is not possible to fall-back on an interpretation of probabil-
ity in terms of outcomes of a repeated experiment since the prior should reflect our
knowledge—or lack of knowledge—before we do any experiment. Because of this, there

13Laplace determined, to very good precision, the mass of Saturn (and its uncertainty) from the
limited set of astronomical data that were available to him.
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exists at present no generally accepted method to assign these priors, which is seen by
some as an insurmountable problem, and by others as just a technical difficulty. We will
see in Section 5 of these notes that guidance is provided by the principle of insufficient
reason, symmetry arguments, and maximum entropy. Note, however, that prior assign-
ment is presently a large and active field of research which is beyond the scope of these
lectures; for a review of recent developments you may consult [Kass96].

To avoid the problems mentioned above, the Frequentist defines probability as the fre-
quency of the occurrence of an event in an infinitely large number of repetitions of the
experiment or, equivalently, in an infinitely large ensemble of identical systems. Such
a definition of probability is consistent with the Kolmogorov axioms and is also ob-
jective since its definition does not depend on an observer. But it also implies that
Frequentist theory denies probability assignment to a hypothesis, since the hypothesis
must be either true or false in all the repetitions of the experiment.14 The inversion
of P (D|HI) to P (H|DI) with Bayes’ theorem is thus invalidated. This removes, in
Frequentist inference, the need to specify that disturbing prior probability P (H|I).

Because Bayes’ theorem cannot be used, an hypothesis (e.g. the value of a parameter)
is, in the Frequentist approach, accessed via a so-called statistic which is a function of
the data and thus a random variable with a distribution that can be derived from the
sampling distribution of the data. Such a statistic is called an estimator when it is used
to estimate the value of a parameter (e.g. sample mean and sample variance to estimate
the mean and variance of an underlying sampling distributition) or a test statistic when
it is used access the validity of an hypotheses, or to discriminate between hypotheses
(e.g. χ2, z-statistic, t-statistic, F -statistic). There is no fundamental rule to construct
a statistic and one has to base the choice on properties like consistency, bias, efficiency
and robustness for estimators, and on power or error-1 and error-2 probabilities for test
statistics. Bayesian inference does not make use of a statistic, parameter values being
accessed via the posterior (Section 6) and hypotheses via model selection (Section 8).

One important feature of Bayesian inference is that the posterior distribution is always
conditional on the data, that is, conclusions are always based on the data and prior
information. The Frequentist approach, on the other hand, allows in so-called ‘goodness
of fit’ tests that the validity of a hypothesis is based on hypothetical repetitions of the
experiment which never took place.15 The possible implications of this are nicely illus-
trated by the following example, taken from the book by Berger and Wolpert [Berg88].

Suppose we have a parameter θ and a random variable X which yields either θ − σ or
θ + σ, each with 50% probability. Our experiment consists of two observations x1 and
x2 from which we want to calculate an estimate m of θ:

m =

{
1
2
(x1 + x2) when x1 6= x2
x1 − σ when x1 = x2

The question now is what ‘confidence’ we can assign to this result, that is, what is

14A model parameter thus has for a Frequentist a fixed, but unknown, value which is also the view
of a Bayesian since the probability distribution that he assigns to the parameter does not describe how
it fluctuates but how uncertain we are of its value.

15Some people compare this to a judge which convicts a suspect on grounds of evidence that could
have been produced, but never was. In a famous Dutch court case, Lucia de B. fell victim to this and
served 7 years in prison.
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the probability that the statement ‘θ = m’ is true? We can answer this question by
constructing the sample space which consists of 4 events, each equally probable:

Event x1 x2 m θ = m
E1 θ − σ θ − σ θ − 2σ F
E2 θ + σ θ + σ θ T
E3 θ − σ θ + σ θ T
E4 θ + σ θ − σ θ T

Thus, if the experiment is repeated many times there will be a 75% chance of obtaining
the right answer, and this is the confidence that an orthodox Frequentist would assign
to the measurement. However, when we observe x1 = x2 we are 50% sure that the
answer is right, and when we observe x1 6= x2 we are 100% sure. This is because after
the measurement the sample space has collapsed to {E1,E2} in the first case, and to
{E3,E4} in the second. This collapse occurs when we ‘condition on the data’ which in
Bayesian inference is a trivial consequence of Bayes’ theorem. Indeed, Bayesian analysis
leads to a posterior probability which is always conditional on the data. In Frequentist
inference, on the other hand, one has to adhere to the likelihood principle which
states that all experimental evidence about an unknown quantity θ is contained in the
likelihood function (or a multiple thereof) of θ for given data. Berger and Wolpert
mention in the introduction of their book that Bayesian analysis seems to be the most
realistic implementation of the likelihood principle, and they state that ‘Many Bayesians
became Bayesians only because the likelihood principle left them little choice’ [Berg88,
p.2]. But note that the principle is not universally accepted by Frequentists.

Somewhat related to this is the observation that likelihoods may not only depend on
the relevant information carried by the data but also on how the data were actually
obtained. A well known example is the so-called optional stopping problem which we
will discuss in Section 4.4. It turns out that Bayesian inference automatically discards
information on the stopping strategy as being irrelevant—in accordance with desider-
atum IIIb in Section 2.1—while orthodox Frequentist inference does not, although a
way-out is provided by the likelihood principle.

With these remarks we leave the Bayesian-Frequentist comparison for what it is and
refer to the abundant literature on the subject, see e.g. [James00] for recent discussions.

3 Posterior Representation

The full result of Bayesian inference is the posterior distribution. However, instead of
publishing this distribution in the form of a parametrisation, table, plot or computer
program it is often more convenient to summarise the posterior—or any other probability
distribution—in terms of a few parameters.
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3.1 Measures of location and spread

The expectation value of a function f(x) is defined by16

<f > =

∫
f(x) p(x|I) dx. (3.1)

Here the integration domain is understood to be the definition range of the distribu-
tion p(x|I). The k-th moment of a distribution is the expectation value < xk >.
From (2.19) it immediately follows that the zeroth moment < x0 > = 1. The first
moment is called the mean of the distribution and is a location measure

µ = x̄ = <x> =

∫
x p(x|I) dx. (3.2)

The variance σ2 is the second moment about the mean

σ2 = <∆x2> = <(x− µ)2> =

∫
(x− µ)2 p(x|I) dx. (3.3)

The square root of the variance is called the standard deviation and is a measure of
the width of the distribution.

Exercise 3.1: Show that the variance is related to the first and second moments by
<∆x2> = <x2> − <x>2.

The width of a multivariate distribution is characterised by the covariance matrix:

Vij =<∆xi∆xj> =

∫
· · ·
∫

(xi − µi)(xj − µj) p(x1, . . . , xn|I) dx1 · · · dxn, (3.4)

where µi is given by

µi = x̄i = <xi> =

∫
· · ·
∫
xi p(x1, . . . , xn|I) dx1 · · · dxn.

The covariance matrix is obviously symmetric.

Exercise 3.2: Show that the off-diagonal elements of Vij vanish when x1, . . . , xn are
independent variables.

A correlation between the variables is better judged from the matrix of correlation
coefficients which is defined by

ρij =
Vij√
ViiVjj

=
Vij
σiσj

. (3.5)

It can be shown that −1 ≤ ρij ≤ +1.

16We discuss here only continuous variables; the expressions for discrete variables are obtained by
replacing the integrals with sums.
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The position of the maximum of a probability density function is called the mode17

which often is taken as a location parameter (provided the distribution has a single
maximum). For the general case of an n-dimensional distribution one finds the mode
by minimising the function L(x) = − ln p(x|I). Expanding L around some point x̂ we
can write

L(x) = L(x̂) +
n∑

i=1

∂L(x̂)

∂xi
∆xi +

1

2

n∑

i=1

n∑

j=1

∂2L(x̂)

∂xi∂xj
∆xi∆xj + · · · (3.6)

with ∆xi ≡ xi − x̂i. We now take x̂ to be the mode, that is, the point where p is
maximum and L is minimum. With this choice x̂ is a solution of the set of equations

∂L(x̂)

∂xi
= 0 (3.7)

so that the second term in (3.6) vanishes. Up to second order, the expansion can now
be written in matrix notation as

L(x) = L(x̂) + 1
2
(x− x̂)H(x− x̂) + · · · , (3.8)

where the Hessian matrix of second derivatives is defined by

Hij ≡
∂2L(x̂)

∂xi∂xj
. (3.9)

Taking the exponent of (3.8) gives for our approximation of the probability density in
the neighbourhood of the mode:

p(x|I) ≈ C exp[−1
2
(x− x̂)H(x− x̂)] (3.10)

where C is a constant which can be adjusted to C = p(x̂|I) or to a value that normalises
the right-hand side of (3.10). In the latter case the posterior is approximated by a
normalised multivariate Gaussian in x-space

p(x|I) ≈ 1√
(2π)n |V |

exp
[
−1

2
(x− x̂)V −1(x− x̂)

]
, (3.11)

where the inverse of the Hessian is identified with the covariance matrix V of the Gaus-
sian18 and where |V | in the normalisation term denotes the determinant of V .19 One
should always bear in mind that the approximation (3.10) or (3.11) will, by construc-
tion, have the same mode as the posterior, but not necessarily the same shape, unless
the posterior happens to be Gaussian of course.

Sometimes the distribution p(x|I) is such that the mode and Hessian can be calculated
analytically. In most cases, however, minimisation programs like minuit are used to

17We denote the mode by x̂ to distinguish it from the mean x̄. For symmetric distributions this
distinction is irrelevant since then x̂ = x̄.

18This is why we have expanded in (3.6) the logarithm instead of the distribution itself: only then
the inverse of the second derivative matrix is equal to the covariance matrix of a multivariate Gaussian.

19There is no problem with
√
|V | since |V | is positive definite as will be shown in Section 3.3.
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determine numerically x̂ and V = H−1 from L(x) (the function L is then calculated in
the subroutine fcn provided by the user).

The approximation (3.11) is easily marginalised. It can be shown (see Appendix A)
that integrating a multivariate Gaussian over one variable xi is equivalent to deleting
the corresponding row and column i in the covariance matrix V . This defines a new
covariance matrix V ′ and, by inversion, a new Hessian H ′. Replacing V by V ′ and n
by (n − 1) in (3.11) then obtains the integrated Gaussian. It is now easy to see that
integration over all but one xi gives

p(xi|I) =
1

σi
√

2π
exp

[
−1

2

(
xi − x̂i
σi

)2
]

(3.12)

where σ2
i is the diagonal element Vii of the covariance matrix V .20

A continuous density p(x|I) defined on an interval [a, b] can also be described by the
cumulative distribution

G(x) =

∫ x

a

p(y|I)dy a ≤ x ≤ b,

with, obviously, G(a) = 0 and G(b) = 1. The value xα for which G(xα) = α is called the
α-quantile of the distribution. The 50% quantile, which divides the probability content
in equal parts, is called the median.21 The complement 1 − G(x) is, in Frequentist
hypothesis testing, called the p-value of an observation x (small p-values being unlikely
with x residing in the right-hand tail of the distribution).

Let us close this section by making the remark that one may very well encounter dis-
tributions for which the mean and variance do not exist because the integrals (3.2) or
(3.3) are divergent. An example of this is the Cauchy distribution

p(x|I) =
1

π

1

1 + x2
, (3.13)

which we plot in Fig. 1.

Exercise 3.3: The Cauchy distribution is often called the Breit-Wigner distribution
which usually is parametrised as

p(x|x0,Γ) =
1

π

Γ/2

(Γ/2)2 + (x− x0)2
.

(i) Show that Γ is the FWHM (full width at half maximum). (ii) For simplicity set x0 = 0
and Γ = 2 and calculate the Gaussian approximation (3.11) of the Breit-Wigner. Use a
plotting program to check if this approximation is reasonable.

20The error on a ‘fitted’ parameter given by minuit is the diagonal element of the covariance matrix
and is thus the width of the marginal distribution of this parameter.

21The median is often preferred as a measure of central tendency, because it is insensitive to outliers.
In statistical language the median is called a robust estimator; the mean is clearly not robust.
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Figure 1: The Cauchy distribution.

3.2 Transformations

In this section we briefly describe how to construct probability densities of functions of
a (multi-dimensional) random variable. We start by calculating the probability density
p(z|I) of a single function z = f(x) from a given distribution p(x|I) of n variables x.
Expansion in the variable x gives

p(z|I) =

∫
p(z,x|I) dx =

∫
p(z|x, I) p(x|I) dx =

=

∫
δ[z − f(x)] p(x|I) dx (3.14)

where we have made the trivial assignment p(z|x, I) = δ[z − f(x)]. This assignment
guarantees that the integral only receives contributions from the hyperplane f(x) = z.

As an example consider two independent variables x and y distributed according to
p(x, y|I) = f(x)g(y). Using (3.14) we find that the distribution of the sum z = x+ y is
given by the Fourier convolution of f and g

p(z|I) =

∫
f(x)g(z − x) dx =

∫
f(z − y)g(y) dy. (3.15)

Likewise we find that the product z = xy is distributed according to the Mellin con-
volution of f and g

p(z|I) =

∫
f(x)g(z/x)

dx

|x| =

∫
f(z/y)g(y)

dy

|y| , (3.16)

provided that the definition ranges do not include x = 0 and y = 0.

Exercise 3.4: Use (3.14) to derive Eqs. (3.15) and (3.16).

In case of a coordinate transformation it may be convenient to just use the Jacobian
as we have done in (2.22) in Section 2.4. By a coordinate transformation we mean a

20



mapping Rn → Rn by a set of n functions

z(x) = {z1(x), . . . , zn(x)},

for which there exists an inverse transformation

x(z) = {x1(z), . . . , xn(z)}.

The probability density of the transformed variables is then given by

q(z|I) = p[x(z)|I] |J | (3.17)

where |J | is the absolute value of the determinant of the Jacobian matrix

Jik =
∂xi
∂zk

. (3.18)

Exercise 3.5: Let x and y be two independent variables distributed according to p(x, y|I) =
f(x)g(y). Let u = x + y and v = x − y. Use (3.17) to obtain an expression for p(u, v|I)
in terms of f and g and show, by integrating over v, that the marginal distribution of
u is given by (3.15). Likewise, define u = xy and v = x/y and show that the marginal
distribution of u is given by (3.16).

The above, although it formally settles the issue of how to deal with functions of random
variables, often gives rise to tedious algebra as can be seen from the following exercise:22

Exercise 3.6: Two variables x1 and x2 are independently Gaussian distributed:

p(xi|I) =
1

σi
√

2π
exp

[
−1

2

(
xi − µi
σi

)2
]

i = 1, 2.

Show, by carrying out the integral in (3.15), that the variable z = x1 + x2 is Gaussian
distributed with mean µ = µ1 + µ2 and variance σ2 = σ2

1 + σ2
2 .

A simple way to obtain numerical results is to generate p(x|I) by Monte Carlo, calculate
F (x) at each generation and then histogram the result.

However, if we are content with summarising the distributions by mean and covariance,
and if F (x) is not strongly varying, then we may use a very simple transformation rule,
known as linear error propagation. Let Fλ(x) be one of a set of m functions of x.
Linear approximation gives

∆Fλ ≡ Fλ(x)− Fλ(x̄) =
n∑

i=1

∂Fλ(x̄)

∂xi
∆xi (3.19)

with ∆xi = xi − x̄i. Now multiplying (3.19) by the expression for ∆Fµ and averaging
obtains

<∆Fλ∆Fµ> =
n∑

i=1

n∑

j=1

∂Fλ
∂xi

∂Fµ
∂xj

<∆xi∆xj> . (3.20)

22Later on we will use Fourier transforms (characteristic functions) to make life much easier.
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Eq. (3.20) can be written in compact matrix notation as

VF = DVxD
T (3.21)

where D denotes the m × n derivative matrix Dλi = ∂Fλ/∂xi and DT its transpose.
Well known applications are the quadratic addition of errors for a sum of independent
variables

σ2 = σ2
1 + σ2

2 + · · ·+ σ2
n for z = x1 + x2 + · · ·+ xn (3.22)

and the quadratic addition of relative errors for a product of independent variables

(σ
z

)2
=

(
σ1
x1

)2

+

(
σ2
x2

)2

+ · · ·+
(
σn
xn

)2

for z = x1x2 · · ·xn. (3.23)

Exercise 3.7: Use (3.20) to derive the two propagation rules (3.22) and (3.23).

Exercise 3.8: A counter is traversed by N particles and fires n times. Since n ⊆ N these
counts are not independent but n and m = N−n are. Assume Poisson errors (Section 4.6)
σn =

√
n and σm =

√
m and use (3.20) or (3.21) to show that the error on the efficiency

ε = n/N is given by

σε =

√
ε(1− ε)
N

This is known as the binomial error, see Section 4.2.

Exercise 3.9: Let x be a random variable distributed according to p(x|I). Show that the
cumulative distribution of x is uniform.

3.3 The covariance matrix revisited

In this section we investigate in some more detail the properties of the covariance matrix
which, together with the mean, fully characterises the multivariate Gaussian (3.11).

In Section 3.1 we have already remarked that V is symmetric but not every symmetric
matrix can serve as a covariance matrix. To see this, consider a function f(x) of a set
of Gaussian random variables x. For the variance of f we have according to (3.21)

σ2 = <∆f 2> = dV d,

where d is the vector of derivatives ∂f/∂xi. But since σ2 is positive for any function f
it follows that the following inequality must hold:

dV d > 0 for any vector d. (3.24)

A matrix that possesses this property is called positive definite.

A covariance matrix can be diagonalised by a unitary transformation. This can be
seen from Fig. 2 where we show the one standard deviation contour of two correlated
Gaussian variables (x1, x2) and two uncorrelated variables (y1, y2). It is clear from these
plots that the two error ellipses are related by a simple rotation. A pure rotation is not
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where d is the vector of derivatives ∂f/∂xi. But since σ2 is positive for any function f
it follows that the following inequality must hold:

d V d > 0 for any vector d. (3.23)

A matrix which possesses this property is called positive definite.

A covariance matrix can be diagonalized by a unitary transformation. This can be
seen from Fig. 1 where we show the one standard deviation contour of two correlated

x1

x2(a)

σ2

σ1

y1

y2

(b)

Figure 1: The one standard deviation contour of a two dimensional Gaussian for (a) correlated
variables x1 and x2 and (b) uncorrelated variables y1 and y2. The marginal distributions of x1 and x2

have a standard deviation of σ1 and σ2, respectively.

Gaussian variables (x1, x2) and two uncorrelated variables (y1, y2). It is clear from these
plots that the two error ellipses are related by a simple rotation. The rotation matrix is
unique, provided that the variables x are linearly independent. A pure rotation is not
the only way to diagonalize the covariance matrix since the rotation can be combined
with a scale transformation along y1 or y2.

The rotation U which diagonalizes V must, according to the transformation rule (3.19),
satisfy the relation

UV UT = L ⇒ V UT = UTL (3.24)

where L = diag(λ1, . . . , λn) denotes a diagonal matrix. In (3.24) we have used the
property U−1 = UT of an orthogonal transformation. Let the columns i of UT be
denoted by the set of vectors ui, that is,

ui
j = UT

ji = Uij . (3.25)

It is then easy to see that (3.24) corresponds to the set of eigenvalue equations

V ui = λiu
i. (3.26)

Thus, the rotation matrix U and the vector of diagonal elements λi is determined by
the complete set of eigenvectors and eigenvalues of the covariance matrix V .

Exercise 3.9: Show that (3.24) is equivalent to (3.26).

Exercise 3.10: (i) Show that for a symmetric matrix V and two arbitrary vectors x and
y the following relation holds y V x = x V y; (ii) Show that the eigenvectors ui and uj

of a symmetric matrix V are orthogonal, that is, uiuj = 0 for i "= j; (iii) Show that the
eigenvalues of a positive definite symmetric matrix V are all positive.

20

Figure 2: The one standard deviation contour of a two dimensional Gaussian for (a) correlated
variables x1 and x2 and (b) uncorrelated variables y1 and y2. The marginal distributions of x1 and x2
have a standard deviation of σ1 and σ2, respectively.

the only way to diagonalise the covariance matrix since the rotation can be combined
with a scale transformation along y1 or y2.

The rotation U which diagonalises V must, according to the transformation rule (3.20),
satisfy the relation

UV UT = L ⇒ V UT = UTL (3.25)

where L = diag(λ1, . . . , λn) denotes a diagonal matrix. In (3.25) we have used the
property U−1 = UT of an orthogonal transformation. Let the columns i of UT be
denoted by the set of vectors u(i), that is,

u
(i)
j = UT

ji = Uij. (3.26)

It is then easy to see that (3.25) corresponds to the set of eigenvalue equations

V u(i) = λiu
(i). (3.27)

Thus, the rotation matrix U and the vector of diagonal elements λi is determined by
the complete set of eigenvectors and eigenvalues of the covariance matrix V . From the
eigenvalue spectrum is it easy to calculate the condition number κ = λmax/λmin of the
covariance matrix. A large condition number means that the matrix is ill-conditioned,
that is, susceptible to round-off errors.

Exercise 3.10: Show that (3.25) is equivalent to (3.27).

Exercise 3.11: (i) Show that for a symmetric matrix V and two arbitrary vectors x and
y the following relation holds y V x = xV y; (ii) Show that the eigenvectors ui and uj

of a symmetric matrix V are orthogonal, that is, uiuj = 0 for i 6= j; (iii) Show that the
eigenvalues of a positive definite symmetric matrix V are all positive.

The normalisation factor of the multivariate Gaussian (3.11) is proportional to the
square root of the determinant |V |, which only makes sense if this determinant is positive
definite. Indeed,

|V | = |U | |V |
∣∣UT

∣∣ =
∣∣UV UT

∣∣ = |L| =
∏

i

λi > 0,

where we have used the fact that |U | = 1 and that all the eigenvalues of V are positive.
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4 Basic Probability Assignment

In Section 2.3 we have introduced the operation of expansion which allows us to assign
a compound probability by writing it as a sum of known elementary probabilities.

Bernoulli (1713) was among the first to formulate a rule for an elementary probability
assignment which was, later on, called the principle of insufficient reason, also
known as the principle of indifference:

If for a set of N exclusive and exhaustive propositions there is no evidence
to prefer any proposition over the others then each proposition must be
assigned an equal probability 1/N .

As a very basic application of expansion in combination with Bernoulli’s principle we
will discuss, in the next section, drawing balls from an urn. In passing we will make
some observations about probabilities which are very Bayesian and which you may find
quite surprising if you have never encountered them before. This is because probability
is for you as a Frequentist a property of the urn and its contents, while for you as a
Bayesian it is a measure of what you know about the urn and its contents.

We then proceed by deriving the Binomial distribution in subsection 4.2 using nothing
else but the sum and product rules of probability calculus. Multinomial and Poisson
distributions are introduced in the subsections 4.5 and 4.6. In the last subsection we
will introduce a new tool, the characteristic function, and derive the Gauss distribution
as the limit of a sum of arbitrarily distributed random variables.

4.1 Bernoulli’s urn

Consider an experiment where balls are drawn from an urn. Let the urn contain N
balls and let the balls be labelled i = 1, . . . , N . We can now define the exhaustive and
exclusive set of hypotheses

Hi = ‘this ball has label i’, i = 1, . . . , N.

Since we have no information on which ball we will draw we use the principle of insuf-
ficient reason to assign the probability to get ball ‘i’ at the first draw:

P (Hi|N, I) =
1

N
. (4.1)

Next, we consider the case that R balls are coloured red and W = N − R are coloured
white. We define the exhaustive and exclusive set of hypotheses

HR = ‘this ball is red’

HW = ‘this ball is white’.
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We now want to assign the probability that the first ball we draw will be red. To solve
this problem we expand this probability into the hypothesis space {Hi} which gives

P (HR|I) =
N∑

i=1

P (HR, Hi|I) =
N∑

i=1

P (HR|Hi, I)P (Hi|I)

=
1

N

N∑

i=1

P (HR|Hi, I) =
R

N
(4.2)

where, in the last step, we have made the trivial probability assignment

P (HR|Hi, I) =

{
1 if ball ‘i’ is red
0 otherwise.

Next, we assign the probability that the second ball will be red. This probability depends
on how we draw the balls:

1. We draw the first ball, put it back in the urn and shake the urn. The latter action
may be called ‘randomisation’ but from a Bayesian point of view the purpose
of shaking the urn is, in fact, to destroy all information we might have on the
whereabouts of this ball after it was put back in the urn (it would most likely
end-up in the top layer of balls). Since this drawing with replacement does
not change the contents of the urn and since the shaking destroys all previously
accumulated information, the probability of drawing a red ball a second time is
equal to that of drawing a red ball the first time:

P (R2|I) =
R

N
,

where R2 stands for the hypothesis ‘the second ball is red’.

2. We record the colour of the first ball, lay it aside, and then draw the second ball.
Obviously the content of the urn has changed after the first draw. Depending on
the colour of the first ball we assign:

P (R2|R1, I) =
R− 1

N − 1

P (R2|W1, I) =
R

N − 1

Exercise 4.1: Draw the first ball blindly and put it aside (i.e. without knowing its
colour). Show that the probability for the second draw to be red is the same as that for
the first draw to be red: P (R2|I) = R/N . This result is hard to swallow if you insist that
probability is a property of the urns content, which has changed after the first draw!

In the above we have seen that the probability of the second draw may depend on the
outcome of the first draw. We will now show that the probability of the first draw may
depend on the outcome of the second draw! Consider the following situation: The first
draw is blind and the ball is put aside (without knowing its colour). The probability
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that this first ball is red is R/N , as we have shown in (4.2). A second ball is drawn and
it turns out to be red. What is now the probability that the first ball was red? Bayes’
theorem immediately shows that it is not R/N :

P (R1|R2, I) =
P (R2|R1, I)P (R1|I)

P (R2|R1, I)P (R1|I) + P (R2|W1, I)P (W1|I)
=
R− 1

N − 1
.

If this argument fails to convince you, take the extreme case of an urn containing one
red and one white ball. The probability of a red ball at the first draw is 1/2. Lay the
ball aside (without knowing its colour) and take the second ball. If it is red, then the
probability that the first ball was red is zero and not 1/2. The fact that the second draw
influences the probability of the first draw has of course nothing to do with a causal
relation but, instead, with a logical relation.

Exercise 4.2: Draw a first ball blindly and put it back in the urn. The colour of a second
draw is red. What is the probability that the first draw was red?

4.2 Binomial distribution

We now make N draws from the urn, putting the ball back after each draw and shaking
the urn. In this way the probability that a draw is red is the same for all draws:
h = R/N . (We call the probability ‘h’ for ‘heads’ in coin flipping which will be our
archetypical random process later on in these notes.) What is the probability that we
find n red balls in our sample of N draws? Again, we seek to expand this probability
into a combination of elementary ones which are easy to assign. Let us start with the
hypothesis

Sj = “the N balls are drawn in the sequence labelled ‘j’ ”

where j = 1, . . . , 2N is the index in a list of all possible sequences (of length N) of
white and red draws. The set of hypotheses {Sj} is obviously exclusive and exhaustive.
The draws are independent, that is, the probability of the kth draw does not depend
on the outcome of the other draws (remember that this is only true for drawing with
replacement). Thus we find from the product rule

P (Sj|I) = P (C1, . . . , CN |I) =
N∏

k=1

P (Ck|I) = hnj(1− h)N−nj , (4.3)

where Ck stands for red or white at the kth draw and where nj is the number of red
draws in the sequence j. Having assigned the probability of each element in the set
{Sj}, we now expand our probability of n red balls into this set:

P (n|I) =
2N∑

j=1

P (n, Sj|I) =
2N∑

j=1

P (n|Sj, I)P (Sj|I)

=




2N∑

j=1

δ(n− nj)


hn(1− h)N−n (4.4)
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where we have assigned the trivial probability

P (n, |Sj, I) = δ(n− nj) =

{
1 when the sequence Sj contains n red draws
0 otherwise.

The sum inside the square brackets in (4.4) counts the number of sequences in the set
{Sj} which have just n red draws. It is an exercise in combinatorics to show that this
number is given by the binomial coefficient. Thus we obtain

P (n|h,N) =
N !

n!(N − n)!
hn(1− h)N−n =

(
N

n

)
hn(1− h)N−n. (4.5)

This is called the binomial distribution which applies to all processes where the
outcome is binary (red or white, head or tail, yes or no, absent or present etc.), provided
that the probability h of the outcome of a single draw is the same for all draws. In
Fig. 3 we show the distribution of red draws for N = (10, 20, 40) trials for an urn with
h = 0.25.
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0.1
0.15
0.2
0.25

P ! r " 10, 0.25 #

0 2 4 6 8 10 12 14
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0.2

P ! r " 20, 0.25 #
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r
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0.08
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0.12
0.14

P ! r " 40, 0.25 #

Figure 3: The binomial distribution to observe r red balls in N = (10, 20, 40) draws from an urn
containing a fraction h = 0.25 of red balls.

The binomial probabilities are just the terms of the binomial expansion

(a+ b)N =
N∑

n=0

(
N

n

)
an bN−n (4.6)

with a = h and b = 1− h. From this it follows immediately that

N∑

n=0

P (n|h,N) = 1.

The condition of independence of the trials is important and may not be fulfilled: for
instance, suppose we scoop a handful of balls out of the urn and count the number n
of red balls in this sample. Does n follow the binomial distribution? The answer is ‘no’
since we did not perform draws with replacement, as required. This can also be seen
from the extreme situation where we take all balls out of the urn. Then n would not
be distributed at all: it would just be R.
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The first and second moments and the variance of the binomial distribution are

<n> =
N∑

n=0

nP (n|h,N) = Nh

<n2> =
N∑

n=0

n2P (n|h,N) = Nh(1− h) +N2h2

<∆n2> = <n2> − <n>2 = Nh(1− h) (4.7)

If we now define the ratio µ = n/N then it follows immediately from (4.7) that

<µ> = h <∆µ2> =
h(1− h)

N
(4.8)

The square root of this variance is called the binomial error which we have already
encountered in Exercise 3.8. It is seen that the variance vanishes in the limit of large
N and thus that µ converges to h in that limit. This fundamental relation between
a probability and a limiting relative frequency was first discovered by Bernoulli and is
called the law of large numbers. This law is, of course, the basis for the Frequentist
definition of probability.

For a uniform prior, the Binomial posterior is given by p(h|n,N)dh = CP (n|h,N)dh =
Chn(1−h)(N−n)dh. Integrating this distribution to calculate the normalisation constant,
we find for the posterior, and its mode,

p(h|n,N) dh =
(N + 1)!

n!(N − n)!
hn(1− h)(N−n) dh ĥ =

n

N
±

√
ĥ(1− ĥ)

N
. (4.9)

Here we have characterised the width of the posterior by the inverse of the Hessian.

Exercise 4.3: A counter is traversed by N particles and fires N times. Calculating the
efficiency and error from (4.8) gives ε = 1 ± 0 which is an unacceptable estimate for
the error. Derive an expression for the lower limit εα corresponding to the α confidence
interval defined by the equation

∫ 1

εα

p(ε|N,N) dε = α.

Show that for N = 4 and α = 0.65 the result on the efficiency can be reported as

ε = 1 +0
−0.19 (65% CL)

4.3 The negative binomial

Instead of drawing N balls from the urn (with replacement), we may decide to draw
balls as many times as is necessary to observe n red balls. Because the last draw must
by definition be red, and because the probability of this draw does not depend on the
previous draws, the probability of N draws is given by

P (N |n, h) = P (n− 1 red balls in N − 1 draws)× P (one red ball in one draw)

=
(N − 1)!

(n− 1)!(N − n)!
hN (1− h)N−n n ≥ 1, N ≥ n. (4.10)
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Figure 4: The negative binomial distribution P (N |n, h) of the number of trials N needed to observe
n = (3, 9, 20) red balls in draws from an urn with 50% red balls (h = 0.5).

This distribution is known as the negative binomial. In Fig. 4 we show this distribu-
tion for h = 0.5 and n = (3, 9, 20) red balls.

It can be shown that P (N |n, h) is properly normalised

∞∑

N=n

P (N |n, h) = 1.

The first and second moments and the variance of this distribution are

<N> =
∞∑

N=n

NP (N |n, h) =
n

h

<N2> =
∞∑

N=n

N2P (N |n, h) =
n(1− h)

h2
+
n2

h2

<∆N2> =
n(1− h)

h2
(4.11)

If we define the ratio Q = N/n as our statistic for z ≡ 1/h it follows directly from (4.11)
that the average and variance of Q are given by

<Q> = z <∆Q2> =
z(z − 1)

N
(4.12)

4.4 The stopping problem

There is a curious problem in the analysis of counting experiments, related to the fact
that the sampling distribution (or likelihood) depends on the strategy we have adopted
to halt the experiment. In a simple coin flipping experiment, for instance, the sampling
distribution is different when we chose to stop after a fixed amount of N throws or chose
to stop after the observation of a fixed amount of n heads. In the first case the number
of heads is the random variable while in the second case it is the number of throws. In
the following we will have a closer look at these two stopping strategies. As we will see,
Frequentist inference is sensitive to the stopping rules but Bayesian inference is not.
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We denote the probability of heads in coin flipping by h. If we stop the experiment after
N throws, the likelihood of observing n heads is given by the binomial distribution

P (n|N, h, I) =
N !

n!(N − n)!
hn(1− h)N−n. (4.13)

The expectation value of the statistic R = n/N is, from (4.8),

<R> = <
n

N
> =

<n>

N
= h. (4.14)

If we stop after observing n heads, the likelihood is given by the negative binomial

P (N |n, h, I) =
(N − 1)!

(n− 1)!(N − n)!
hn (1− h)N−n. (4.15)

But the expectation value of R over the negative binomial is not equal to h. This can
easily be seen, without any explicit calculation, from the fact that N and not n is the
random variable and that the reciprocal of an expectation value is not the expectation
value of the reciprocal. Indeed, using (4.11) for the expectation value < N > of the
negative binomial we find

n

<N>
= h but <R> = <

n

N
> = n <

1

N
> 6= n

<N>
.

The expectation value < R > of our estimator R thus depends not only on the data
(n heads in N throws) but also on the stopping strategy! It follows that a Frequentist
cannot analyse these data unless the stopping strategy is known, since he needs this
knowledge to construct a meaningful statistic. For a Bayesian the situation is different.

From the binomial likelihood (4.13) and Bayes’ theorem, we obtain for the posterior of h

p(h|n,N, I) = C P (n|N, h, I) p(h|I) = C hn (1− h)N−n p(h|I), (4.16)

where p(h|I) is the prior for h and C is a normalisation constant. Taking, instead, the
negative binomial likelihood (4.15), we get

p′(h|n,N, I) = C ′ P (N |n, h, I) p(h|I) = C ′ hn (1− h)N−n p(h|I). (4.17)

Normalisation gives C ′ = C and thus p′ = p.

Here we have encountered a very nice property of Bayesian inference, namely its ability
to discard information which is irrelevant. This is in accordance with Cox’ desideratum
of consistency which states that conclusions should depend on relevant information
only. Frequentist inference does not possess this property since the stopping rule must
be specified in order to construct the likelihood and a meaningful statistic.23

It can be shown (Exercise 4.4 below) that if we stop at random—for instance when a
certain amount of time has elapsed—the number of heads is Poisson distributed. Also
in this case, Bayesian inference is not sensitive to the stopping rule.

23Note that the dependence on the stopping strategy disappears in the posterior normalisation step.
This is equivalent to saying that normalisation factors in the likelihood are irrelevant, and this is—not
surprisingly—also stated in the ‘likelihood principle’ of Frequentist statistics.
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Exercise 4.4: We flip a coin at an average rate of R flips per second and decide to stop
when a time ∆t has elapsed. This gives a Poisson distribution for N

P (N |µ) =
µN

N !
e−µ,

where µ = R∆t. Derive an expression for the sampling distribution P (n|h, µ) for n heads.
Show that the posterior distribution of h is, again, the same as (4.16).

4.5 Multinomial distribution

A generalisation of the binomial distribution is the multinomial distribution which
applies to N independent trials where the outcome of each trial is among a set of k
alternatives with probability pi. Examples are drawing from an urn containing balls
with k different colours, the throwing of a dice (k = 6) or distributing N independent
events over the bins of a histogram.

The multinomial distribution can be written as

P (n|p, N) =
N !

n1! · · ·nk!
pn1
1 · · · pnk

k (4.18)

where n = (n1, . . . , nk) and p = (p1, . . . , pk) are vectors subject to the constraints

k∑

i=1

ni = N and
k∑

i=1

pi = 1. (4.19)

The multinomial probabilities are just the terms of the expansion

(p1 + · · ·+ pk)
N

from which the normalisation of P (n|p, N) immediately follows. The average, variance
and covariance are given by

<ni> = Npi

<∆n2
i > = Npi(1− pi)

<∆ni∆nj> = −Npipj for i 6= j. (4.20)

Marginalisation is achieved by adding in (4.18) two or more variables ni and their
corresponding probabilities pi.

Exercise 4.5: Use the addition rule above to show that the marginal distribution of each
ni in (4.18) is given by the binomial distribution P (ni|pi, N) as defined in (4.5).

The conditional distribution on, say, the count nk is given by

P (m|nk, q,M) =
M !

n1! · · ·nk−1!
qn1
1 · · · q

nk−1

k−1

where

m = (n1, . . . , nk−1), q =
1

s
(pi, . . . , pk−1), s =

k−1∑

i=1

pi and M = N − nk.
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Exercise 4.6: Derive the expression for the conditional probability by dividing the joint
probability (4.18) by the marginal (binomial) probability P (nk|pk, N).

Exercise 4.7: We fill the k bins of a histogram according to the probabilities

(p1, . . . , pk−1, pk = 1− S) where S =

k−1∑

i=1

pi.

The histogram is filled at a rate of R entries per second and we stop the accumulation
after a time ∆t has elapsed. The likelihood for a total content N of the histogram is then

P (N |µ) =
µN

N !
e−µ with µ = R∆t.

Assume uniform priors for (p1, . . . , pk−1) and µ and show that the posterior of the quan-
tities ci = µpi is given by a product of independent Poisson distributions

p(c1, . . . , ck|n1, . . . , nk) =

k∏

i=1

cnii
ni!

e−ci .

Show also that the posterior for (p1, . . . , pk−1) is given by

p(p1, . . . , pk−1|n1, . . . , nk) ∝
(
k−1∏

i=1

pnii

)
(1− S)nk .

Note that this is a generalisation of (4.16).

4.6 Poisson distribution

Here we consider ‘events’ or ‘counts’ which occur randomly in time (or space). The
counting rate R is supposed to be given, that is, we know the average number of counts
µ = R∆t in a given time interval ∆t. There are several ways to derive an expression for
the probability P (n|µ) to observe n events in a time interval with contains, on average,
µ events. Our derivation is based on the fact that this probability distribution is a
limiting case of the binomial distribution.

For this, we divide the interval ∆t in N sub-intervals δt. The probability to observe an
event in such a sub-interval is then p = µ/N , see (4.2). Now we can always make N
so large and δt so small that the number of events in each sub-interval is either one or
zero. The probability to find n events in N sub-intervals is then equal to the (binomial)
probability to find n successes in N trials:

P (n|N) =
N !

n!(N − n)!

( µ
N

)n (
1− µ

N

)N−n
.

Re-arranging some terms and taking the limit N →∞ then yields the desired result

P (n|µ) = lim
N→∞

N !

(N − n)!(N − µ)n
µn

n!

(
1− µ

N

)N
=
µn

n!
e−µ. (4.21)

This distribution is known as the Poisson distribution. The normalisation, average
and variance are given by, respectively,

∞∑

n=0

P (n|µ) = 1, <n>= µ and <∆n2>= µ. (4.22)
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Exercise 4.8: A counter is traversed by beam particles at an average rate of R particles
per second. (i) If we observe n counts in a time interval ∆t, derive an expression for
the posterior distribution of µ = R∆t, given that the prior for µ is uniform. Calculate
mean, variance, mode and width (inverse of the Hessian) of this posterior. (ii) Give an
expression for the probability p(τ |R, I) dτ that the time interval between the passage of
two particles is between τ and τ + dτ .

4.7 Gauss distribution

The sum of many small random fluctuations follows the Gauss distribution (also
called the normal distribution), irrespective of the distribution of each of the terms
contributing to the sum (see below for some restrictions). This fact, known as the
central limit theorem, is often held responsible for the dominant presence of the
Gauss distribution in statistical data analysis. But there are also other reasons for the
ubiquitous Gauss distribution, as we will see in Section 5.

To prove the central limit theorem we first have to introduce the characteristic func-
tion, which is nothing else than the Fourier transform of a probability density. The
Fourier transform, and its inverse, of a distribution p(x) is defined by

φ(k) =

∫ ∞

−∞
eikxp(x) dx p(x) =

1

2π

∫ ∞

−∞
e−ikx φ(k) dk (4.23)

This transformation plays an important role in proving many theorems related to sums
of random variables and moments of probability distributions. This is because a Fourier
transform turns a Fourier convolution in x-space, see (3.15), into a product in k-space.24

To see this, consider a joint distribution of n independent variables

p(x|I) = f1(x1) · · · fn(xn).

Using (3.14) we write for the transform of the distribution of the sum z =
∑
xi

φ(k) =

∫ ∞

−∞
dz

∫ ∞

−∞
· · ·
∫ ∞

−∞
dx1 · · · dxn exp(ikz) f1(x1) · · · fn(xn) δ(z −

n∑

i=1

xi)

=

∫ ∞

−∞
· · ·
∫ ∞

−∞
dx1 · · · dxn exp

(
ik

n∑

i=1

xi

)
f1(x1) · · · fn(xn)

=

∫ ∞

−∞
· · ·
∫ ∞

−∞
dx1 · · · dxn exp(ikx1)f1(x1) · · · exp(ikxn)fn(xn)

= φ1(k) · · ·φn(k). (4.24)

The transform of a sum of independent random variables is thus the product of the
transforms of each variable.

The moments of a distribution are related to the derivatives of the transform at k = 0:

dnφ(k)

dkn
=

∫ ∞

−∞
(ix)n eikxp(x) dx ⇒ dnφ(0)

dkn
= in <xn> . (4.25)

24A Mellin transform turns a Mellin convolution (3.16) in x-space into a product in k-space. We will
not discuss Mellin transforms in these notes.
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The characteristic functions (Fourier transforms) of many distributions can be found
in, for instance, the particle data book [Eid04]. Of importance to us is the Gauss
distribution and its transform

p(x) =
1

σ
√

2π
exp

[
−1

2

(
x− µ
σ

)2
]

φ(k) = exp

(
iµk − 1

2
σ2k2

)
(4.26)

To prove the central limit theorem we consider the sum of a large set of n random
variables s =

∑
xj. Each xj is distributed independently according to fj(xj) with mean

µj and a standard deviation σ which we take, for the moment, to be the same for all fj.
To simplify the algebra, we do not consider the sum itself but rather

z =
n∑

j=1

yj =
n∑

j=1

xj − µj√
n

=
s− µ√
n

(4.27)

where we have set µ =
∑
µi. Now take the Fourier transform φj(k) of the distribution

of yj and make a Taylor expansion around k = 0. Using (4.25) we find

φj(k) =
∞∑

m=0

km

m!

dmφj(0)

dkm
=

∞∑

m=0

(ik)m <ymj >

m!

= 1 +
∞∑

m=2

(ik)m <(xj − µj)m>
m!nm/2

= 1− k2σ2

2n
+ O(n−3/2) (4.28)

Taking only the first two terms of this expansion we find from (4.24) for the characteristic
function of z

φ(k) =

(
1− k2σ2

2n

)n
→ exp

(
−1

2
σ2k2

)
for n→∞. (4.29)

But this is just the characteristic function of a Gaussian with mean zero and width σ.
Transforming back to the sum s we find

p(s) =
1

σ
√

2πn
exp

[
(s− µ)2

nσ2

]
(4.30)

It can be shown that the central limit theorem also applies when the widths of the
individual distributions are different in which case the variance of the Gauss is σ2 =

∑
σ2
i

instead of nσ2 as in (4.30). However, the theorem breaks down when one or more
individual widths are much larger than the others, allowing for one or more variables xi
to occasionally dominate the sum. It is also required that all µi and σi exist so that the
theorem does not apply to, for instance, a sum of Cauchy distributed variables.

Exercise 4.9: Apply (4.25) to the characteristic function (4.26) to show that the mean
and variance of a Gauss distribution are µ and σ2, respectively.

Exercise 4.10: In Exercise 3.6 we have derived the distribution of the sum of two Gaussian
distributed variables by explicitly calculating the convolution integral (3.15). Derive the
same result by using the characteristic function (4.26). Convince yourself that the ‘central
limit theorem’ always applies to sums of Gaussian distributed variables even for a finite
number of terms or large differences in width.
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5 Least Informative Probabilities

5.1 Impact of prior knowledge

The impact of the prior on the outcome of plausible inference is nicely illustrated by a
very instructive example, taken from Sivia [Sivia06], were the bias of a coin is determined
from the observation of the number of heads in N throws.

Let us first recapitulate what constitutes a well posed problem so that we can apply
Bayesian inference.

• First, we need to define a complete set of hypotheses. For our coin flipping ex-
periment this will be the value of the probability h to obtain a head in a single
throw. The definition range is 0 ≤ h ≤ 1.

• Second, we need a model which relates the set of hypotheses to the data. In other
words, we need to construct the likelihood P (D|H, I) for all the hypotheses in the
set. In our case this is the binomial probability to observe n heads in N throws
of a coin with bias h

P (n|h,N, I) =
N !

n!(N − n)!
hn(1− h)N−n. (5.1)

• Finally, we need to specify the prior probability p(h|I) dh.

If we observe n heads in N throws, the posterior distribution of h is given by Bayes’
theorem

p(h|n,N, I) dh = C hn(1− h)N−n p(h|I) dh, (5.2)

where C is a normalisation constant which presently is of no interest to us. In Fig. 5
these posteriors are shown for 10, 100 and 1000 throws of a coin with bias h = 0.25 for
a flat prior (top row of plots), a strong prior preference for h = 0.5 (middle row) and
a prior which excludes the possibility that h < 0.5 (bottom row). It is seen that the
flat prior converges nicely to the correct answer h = 0.25 when the number of throws
increases. The second prior does this too, but more slowly. This is not surprising because
we have encoded, in this case, quite a strong prior belief that the coin is unbiased and it
takes a lot of evidence from the data to change that belief. In the last choice of prior we
see that the posterior cannot go below h = 0.5, because we have excluded this region by
setting the prior to zero. This is an illustration of the fact that no amount of data can
change certainties encoded by the prior as we have already remarked in Exercise 2.8.
This can of course be turned into an advantage since it allows us to exclude physically
forbidden regions from the posterior, like a negative mass for instance.

Two important lessons can be learnt from this exercise in coin flipping. First, we learn
that the conclusion derived from the data depends on prior knowledge. This is not
a weak point of Bayesian inference but a strong one, because prior information must
play a role, as the following simple argument will show. If we observe 255 heads in
1000 throws of the coin then, without prior knowledge about the coin (or the throwing
process), we would conclude that it is biased. Now suppose that we have convinced
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Figure 5: The posterior density p(h|n,N) for n heads in N flips of a coin with bias h = 0.25. In
the top row of plots the prior is uniform, in the middle row it is strongly peaked around h = 0.5 while
in the bottom row the region h < 0.5 has been excluded. The posterior densities are scaled to unit
maximum for ease of comparison.

ourselves beforehand, by careful measurement of its properties, that the coin is fair.
The observation of 255 heads in 1000 throws would then lead to the conclusion that
we just have witnessed a very rare event, or that the coin has been exchanged, or that
something went wrong with the counting, or that some mechanism controls the throws,
or whatever other explanation we may come up with, but not that our coin is biased!

Second, we learn that unsupported information should not enter into the prior because
it may need a lot of data to converge to the correct result in case this information turns
out to be wrong. The maximum entropy principle provides a means to construct priors
which have the property that they are consistent with given boundary conditions but
are otherwise maximally un-informative.

Let us close this section by making a few general remarks on priors. First, it is clear
that when the likelihood is narrow compared to the prior, it does not matter very much
what prior distribution we chose. On the other hand, when the likelihood is so wide
that it competes with any reasonable prior then this simply means that the experiment
does not carry much information on the subject we want to investigate. In such a case
it should not come as a surprise that answers become dominated by prior knowledge
or assumptions. Of course there is nothing wrong with that, as long as these prior
assumptions are clearly stated (alternatively one could try to look for better data!). The
prior also plays an important role when the likelihood peaks near a physical boundary or,
as very well may happen, resides in an unphysical region (likelihoods related to neutrino
mass measurements are a famous example; for another example see Section 7.1 in this
write-up). In such cases, the information on the boundary is mostly (or exclusively)
contained in the prior and not in the data.

Before we proceed with the maximum entropy principle let us first, in the next section,
make a few remarks on symmetry considerations in the assignment of probabilities.
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5.2 Symmetry considerations

In Section 4 we have introduced Bernoulli’s principle of insufficient reason which states
that, in absence of relevant information, equal probability should be assigned to members
of an enumerable exclusive set of hypotheses. Below we give a very simple invariance
argument supporting this principle.

Suppose we would plot the probabilities assigned to each hypothesis in a bar chart. If
we are in a state of complete ignorance about these hypotheses then it obviously should
not matter how they would be ordered in such a chart. Stated differently, in absence of
additional information the set of hypotheses is invariant under permutations. But our
bar chart of probabilities can only be invariant under permutations if all the probabilities
are the same, hence Bernoulli’s principle.

Similarly, translation invariance implies that the least informative probability distri-
bution of a so-called location parameter is uniform. Indeed, a translation invariant
probability should obey the relation

p(x|I) dx = p(x+ a|I) d(x+ a) = p(x+ a|I) dx, (5.3)

which can be satisfied only when p(x|I) is a constant.

A somewhat less intuitive assignment is related to positive definite scale parameters.
Scale invariance implies that for r > 0 and α > 0

p(r|I) dr = p(αr|I) d(αr) = α p(αr|I) dr. (5.4)

But this is only possible when p(r|I) ∝ 1/r. This probability assignment is called a
Jeffreys prior. Note that a Jeffreys prior is uniform in ln(r), which means that it
assigns equal probability per decade instead of per unit interval as does a uniform prior.

Both the uniform and the Jeffreys prior cannot be normalised when the variable ranges
are x ∈ [−∞,∞] or r ∈ [0,∞]. Such un-normalisable distributions are called improper.
The way to deal with improper distributions is to normalise them on a finite interval
and take the limits to infinity (or zero) at the end of the calculation.25 The posterior
should, of course, always remain finite. If not, you may have to carefully reformulate
your problem or it may be that your data simply do not carry enough information.
In the exercise below we illustrate this by an estimate of the decay rate R from an
observation of n counts in a time interval ∆t. Assuming a Poisson likelihood and a
Jeffreys prior it turns out that the posterior is only finite when at least one count is
observed; for small R we have to be patient and wait for that one count!.

Exercise 5.1: We make an inference on a counting rate R by observing the number of
counts n in a time interval ∆t. Assume that the likelihood P (n|R∆t) is Poisson distributed
as defined by (4.21). Assume further a Jeffreys prior for R, defined on the positive interval
R ∈ [a, b]. Show that (i) for ∆t = 0 the posterior is equal to the prior and that we cannot
take the limits a → 0 or b → ∞; (ii) when ∆t > 0 but still n = 0 we can take the
limit b → ∞ but not a → 0; (iii) that both limits can be taken once n > 0. (From
Gull [Gull88].)

25Limits should always be taken at the end of a mathematical calculation, if one does not want to
run into all kind of paradoxes. Often it is also important to exactly specify how the limits are taken.
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Finally, let us remark that we have only touched here upon very simple cases so that the
above may seem quite trivial. However, in Jaynes [Jay03] you can find several examples
which are far from trivial. In his book, Jaynes also includes a beautiful argument, due
to the astronomer J. Herschel (1850), where the Gaussian distribution is derived from
symmetry considerations alone. Here is how it goes:

Herschel was looking for the probability distribution which quantifies the uncertainty in
a measurement of the position of a star in the sky. He defined an orthogonal coordinate
system (x, y), centred on the true star position with x running horizontal (azimuth) and
y vertical (altitude). The corresponding polar coordinate system is denoted by (r, ϕ).
Next, Herschel postulated

1. The position in x does not yield information on that in y and vice versa.

2. The uncertainty distribution does not depend on ϕ.

According to the first postulate the unknown distribution should factorise in x and y.
Together with the second postulate we obtain the following functional equation

p(x, y)dxdy = f(x)g(y)dxdy = h(r)rdrdϕ.

The second postulate also enforces f() = g() so that we have

f(x)f(y) = h(
√
x2 + y2). (5.5)

Setting x (or y) to zero obtains, for real argument z

f(0)f(z) = h(|z|).
Substituting this result in the right-hand side of (5.5) gives

f(x)f(y) = f(0)f(
√
x2 + y2).

Defining u(z) = ln[f(z)/f(0)] the above equation can be written as

u(x) + u(y) = u(
√
x2 + y2),

which only can be satisfied if u(z) = αz2. For α > 0 we then have

f(z) = f(0) exp(±αz2),
where only the negative exponent is acceptable since the distribution should be normal-
isable. Thus,

f(z) = f(0) exp(−αz2) (α > 0).

Normalising the distribution and denoting the variance by σ2 we find
∫∫ ∞

−∞
f(0) exp[−α(x2 + y2)]dxdy =

πf(0)

α
= 1,

∫∫ ∞

−∞
f(0) x2 exp[−α(x2 + y2)]dxdy =

πf(0)

2α2
= σ2.

Solving for f(0) and α then gives for the uncertainty distribution

p(x, y) =
1

2πσ2
exp

(
−x

2 + y2

2σ2

)
,

which is just the expression for an uncorrelated two-dimensional Gaussian distribution
with equal width in x and y, see also (3.11) in Section 3.1.
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5.3 Maximum entropy principle

In the assignments we have made up to now (mainly in Section 4), there was always
enough information to unambiguously determine the probability distribution. For in-
stance if we apply the principle of insufficient reason to a fair dice then this leads to a
probability assignment of 1/6 for each face i = 1, . . . , 6. Note that this corresponds to
an expectation value of < i>= 3.5. But what probability should we assign to each of
the six faces when no information is given about the dice except that, say, <i>= 4.5?
There are obviously an infinite number of probability distributions which satisfy this
constraint so that we have to look elsewhere for a criterion to select one of these.

Jaynes (1957) has proposed to take the distribution which is the least informative by
maximising the entropy (MAXENT). The concept of entropy as a measure of infor-
mation was first introduced by Shannon (1948) in his pioneering paper on information
theory [Shan48]. The entropy carried by a probability distribution is defined by26

S[p1, . . . , pn] = −
n∑

i=1

pi ln

(
pi
mi

)
(discrete case)

S[p] = −
∫
p(x) ln

[
p(x)

m(x)

]
dx (continuous case) (5.6)

where mi or m(x) is the so-called Lebesgue measure which satisfies

n∑

i=1

mi = 1 or

∫
m(x) dx = 1. (5.7)

Roughly speaking, the Lebesgue measure associates to each subspace of the sample space
a positive real number that measures the ‘size’ of that subspace. Note that the measure
m(x) makes the entropy invariant under coordinate transformations since both p and
m transform in the same way.

Some formal insight can be gained by maximising (5.6), imposing only the normalisation
constraint and nothing else. Restricting ourselves to the discrete case we find, using the
method of Lagrange multipliers, that the following equation has to be satisfied

δ

[
n∑

i=1

pi ln

(
pi
mi

)
+ λ

(
n∑

i=1

pi − 1

)]
= 0. (5.8)

Differentiation of (5.8) to pi leads to the equation

ln

(
pi
mi

)
+ 1 + λ = 0,

so that

pi = mie
−(λ+1). (5.9)

26The definition (5.6) is such that larger entropies correspond to smaller information content of the
probability distribution.
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Imposing the normalisation constraint
∑
pi = 1 we find, using (5.7),

n∑

i=1

pi =

(
n∑

i=1

mi

)
e−(λ+1) = e−(λ+1) = 1.

Substituting this result into (5.9), it follows that

pi = mi (discrete case), p(x) dx = m(x) dx (continuous case). (5.10)

It follows that the Lebesgue measure mi or m(x) is just the least informative probability
distribution in complete absence of information. This ‘Ur -prior’ thus describes the
structure of our sample space and to determine it we have, again, to look elsewhere and
use symmetry arguments (see Section 5.2) or we just make an ansatz which can always
be revised later, if necessary.

Let us now assume that we have chosen some Lebesgue measure m, say uniform, and
proceed by imposing further constraints on the probability distribution, like specifying
moments, expectation values, etc. Such constraints are called testable information
because one can always verify afterward that the MAXENT distribution indeed satis-
fies the constraint. We can write, in the discrete case, the constraints as a set of k
independent weighted sums of the probabilities pi

n∑

i=1

wji pi = βj j = 1, . . . , k. (5.11)

Using Lagrange multipliers we maximise the entropy by solving the equation

δ

[
n∑

i=1

pi ln

(
pi
mi

)
+ λ0

(
n∑

i=1

pi − 1

)
+

k∑

j=1

λj

(
n∑

i=1

wjipi − βj
)]

= 0. (5.12)

Differentiating to pi gives the equation

ln

(
pi
mi

)
+ 1 + λ0 +

k∑

j=1

λjwji = 0 ⇒ pi = mi exp(−1− λ0) exp

(
−

k∑

j=1

λjwji

)
.

Imposing the normalisation condition
∑
pi = 1 to solve for λ0, we find

pi =
1

Z
mi exp

(
−

k∑

j=1

λjwji

)
(5.13)

where we have introduced the partition function (normalisation sum)

Z(λ1, . . . , λk) =
n∑

i=1

mi exp

(
−

k∑

j=1

λjwji

)
. (5.14)

Such partition functions play a very important role because our constraints (5.11) are
encoded in Z through (see Exercise 5.2)

−∂ lnZ

∂λj
= βj. (5.15)
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The formal solution (5.13) guarantees that the normalisation condition is obeyed but we
still have to solve for the unknown Lagrange multipliers λ1, . . . , λk from the equations
(5.15) or, equivalently, by substituting (5.13) into (5.11). This often has to be done
numerically.

For a continuous distribution p(x|I), the above reads as follows. Let
∫
fj(x) p(x|I) dx = βj j = 1, . . . , k (5.16)

be a set of k testable constraints. The distribution that maximises the entropy is then
given by

p(x|I) =
1

Z
m(x) exp

[
−

k∑

j=1

λjfj(x)

]
. (5.17)

Here the partition function Z (normalisation integral) is defined by

Z(λ1, . . . , λk) =

∫
m(x) exp

[
−

k∑

j=1

λjfj(x)

]
dx. (5.18)

The values of the Lagrange multipliers λi are either found by solving (5.15), or by
substituting (5.17) back into (5.16).

Exercise 5.2: Prove (5.15) by differentiating the logarithm of the partition function (5.14)
or (5.18).

5.4 MAXENT distributions

In this section we will derive from the maximum entropy principle a few well known
distributions: the uniform, exponential, Gauss, and Poisson distributions. The fact
that they can be derived from MAXENT sheds some new light on the origin of these
distributions, namely that they are not necessarily related to some underlying random
process, as is assumed in Frequentist theory (and also in Section 4) but that they can
also be viewed as least informative distributions. With the MAXENT assignment, we
indeed have moved far away from random variables, repeated observations, and the like.

If there are no constraints, f(x) = 0 in (5.16) so that it immediately follows from (5.17),
(5.18) and (5.7) that

p(x|I) = m(x).

For a sample space without structure this gives a uniform distribution, in accordance
with the continuum limit of Bernoulli’s principle of insufficient reason.

Let us now consider a continuous distribution defined on [0,∞] and impose a constraint
on the mean

<x> =

∫ ∞

0

xp(x|I) dx = µ (5.19)

so that f(x) = x in (5.16). From (5.17) and (5.18) we have, assuming a uniform Lebesgue
measure,

p(x|I) = e−λx
[∫ ∞

0

e−λx dx

]−1
= λe−λx.
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Substituting this into (5.19) leads to

∫ ∞

0

xλe−λx dx =
1

λ
= µ

from which we find that x follows an exponential distribution

p(x|µ, I) =
1

µ
exp

(
−x
µ

)
. (5.20)

The moments of this distribution are given by

<xn> = n!µn so that <x> = µ, <x2> = 2µ2 and <∆x2> = µ2.

Another interesting case is a continuous distribution defined on [−∞,∞] with a con-
straint on the variance

<∆x2> =

∫ ∞

−∞
(x− µ)2 p(x|I) dx = σ2

so that f(x) = (x− µ)2 in (5.16). We find from (5.17), after normalisation,

p(x|I) =

√
λ

π
exp

[
−λ(x− µ)2

]
.

The constraint on the variance allows us to solve for λ:

<∆x2> =

√
λ

π

∫ ∞

−∞
(x− µ)2 exp

[
−λ(x− µ)2

]
dx =

1

2λ
= σ2,

so that x turns out to be Gaussian distributed

p(x|µ, σ, I) =
1

σ
√

2π
exp

[
−1

2

(
x− µ
σ

)2
]
. (5.21)

This is a very important result because it means that we do not necessarily have to invoke
the central limit theorem to justify a Gaussian. It can be applied to all cases where we
want to describe noise of which nothing is known, except its level (characterised by the
value of the variance).

This is then the fourth time we encounter the Gaussian: in Section 3.1 as a convenient
approximation of the posterior in the neighbourhood of the mode, in Section 4.7 as the
limiting distribution of a sum of random variables, in Section 5.2 as a consequence of
symmetry constraints and in this section as the least informative distribution consistent
with a constraint on the variance.

As an example of a non-uniform Lebesgue measure we will now derive the Poisson
distribution from the maximum entropy principle. We want to know the distribution
P (n|I) of n counts in a time interval ∆t when there is nothing given but the average

∞∑

n=0

nP (n|I) = µ. (5.22)
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To find the Lebesgue measure of the time interval ∆t we divide it into a very large
number (M) of intervals δt. A particular distribution of counts over these infinitesimal
boxes is called a micro-state. If the micro-states are independent and equally probable
then it follows from the sum rule that the probability of observing n counts is propor-
tional to the number of micro-states which have n boxes occupied, which is given by the
binomial coefficient. For large M � n this becomes Mn/n!, as is easy to show by using
the Stirling approximation for M !. Upon normalisation we then have for the Lebesgue
measure

m(n) =
Mn

n!
e−M . (5.23)

Inserting this result in (5.13) we get

P (n|I) =
C e−M

(
Me−λ

)n

n!

with
1

C
= e−M

∞∑

n=0

(
Me−λ

)n

n!
= e−M exp

(
Me−λ

)
,

so that

P (n|I) =

(
Me−λ

)n

exp (Me−λ)n!
. (5.24)

To calculate the average we observe that

∞∑

n=0

n
(
Me−λ

)n

n!
= − ∂

∂λ

∞∑

n=0

(
Me−λ

)n

n!
= − ∂

∂λ
exp

(
Me−λ

)
= Me−λ exp

(
Me−λ

)

Combining this with (5.24) we find from the constraint (5.22)

Me−λ = µ ⇒ P (n|µ) =
µn

n!
e−µ (5.25)

which is the same result as derived in Section 4.6.

6 Parameter Estimation

In data analysis the measurements are often described by a parametrised model. In
hypothesis testing such a model is called a composite hypothesis (i.e. one with pa-
rameters) in contrast to a simple hypothesis (without parameters). Given a composite
hypothesis, the problem is how to extract information on the parameters from the data.
This is called parameter estimation. It is important to realise that the composite
hypothesis is assumed here to be true; investigating the plausibility of the hypothesis
itself, by comparing it to a set of alternatives, is called ‘model selection’. This will be
the subject of Section 8.

The relation between the model and the data is encoded in the likelihood function

p(d|θ, s, I)

where d denotes a vector of data points and θ and s are the model parameters which
we have sub-divided in two classes:
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1. The class θ of parameters of interest;

2. The class s of so-called nuisance parameters which are necessary to model
the data but are otherwise of no interest. These parameters often describe the
systematic uncertainties due to detector calibration, acceptance corrections and
so on. Input parameters also belong to this class like, for instance, an input value
of the strong coupling constant αs ±∆αs, taken from the literature.

There may also be parameters in the model which have known values. These are, if not
explicitly listed, included in the background information ‘I’.

Given a prior distribution for the parameters θ and s, Bayes’ theorem gives for the joint
posterior distribution

p(θ, s|d, I)dθds =
p(d|θ, s, I)p(θ, s|I)dθds∫
p(d|θ, s, I)p(θ, s|I)dθds

. (6.1)

The posterior of the parameters θ is then obtained by marginalisation of the nuisance
parameters s:

p(θ|d, I) =

∫
p(θ, s|d, I) ds. (6.2)

As we have discussed in Section 5, choosing appropriate priors for the parameters θ
may, or may not be a delicate issue (often it is not). However, a very nice feature of
priors is that unphysical regions can be excluded from the posterior by simply setting
it to zero. In this way it is—to give an example—impossible to obtain a negative value
for the neutrino mass even when that would be preferred by the likelihood. The priors
for s are assumed to be known from detector studies (Monte Carlo simulations) or, in
case of external parameters, from the literature. Note that the marginalisation (6.2)
provides a very elegant way to propagate the uncertainties in the parameters s to the
posterior distribution of θ (‘systematic error propagation’, see Section 6.4).

Bayesian parameter estimation is thus fully described by the equations (6.1) and (6.2).
But the evaluation of these two innocent looking formulae may need a lot of sophis-
tication to properly assign the probabilities and to compute the integrals. These may
be far from trivial tasks, in particular when we deal with complicated detectors and/or
when our parameter space has a large number of dimensions. Considerable simplifica-
tions occur when two or more variables are independent (the probability distributions
then factorise), when the distributions are Gaussian or when the model is linear in the
parameters.

In the following subsections we will discuss a few simple cases which are frequently
encountered in data analysis.

6.1 Gaussian sampling

One of the most simple parameter estimation problems is to find the mean and/or
variance of a Gaussian distribution from which a sample of n measurements is drawn.

Suppose that we know the width σ of the Gaussian (resolution of our measuring device)
and want to find the best estimate for the mean (or mode) µ from a set of n independent
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observations di. Since the measurements are independent, we can use the product
rule (2.8) and write for the likelihood

p(d|µ, σ) =
n∏

i=1

p(di|µ, σ) =
1

(2πσ2)n/2
exp

[
−1

2

n∑

i=1

(
di − µ
σ

)2
]
.

The quantity (di − µ)/σ is called a residual. Assuming a uniform prior for µ the
posterior becomes

p(µ|d, σ) = C exp

[
−1

2

n∑

i=1

(
di − µ
σ

)2
]
. (6.3)

To calculate the normalisation constant it is convenient to write

n∑

i=1

(di − µ)2 = V + n(d̄− µ)2

where

d̄ =
1

n

n∑

i=1

di and V =
n∑

i=1

(di − d̄)2.

The quantities d̄ and S2 ≡ V/(n−1) are called the sample mean and sample variance,
respectively (we will see later why V is divided by n − 1 and not by n). The constant
C is now obtained from

1

C
= exp

(
− V

2σ2

)∫ ∞

−∞
exp

[
−n(d̄− µ)2

2σ2

]
dµ =

√
2πσ2

n
exp

(
− V

2σ2

)
.

Inserting this result in (6.3) we find

p(µ|d̄, σ, n) =

√
n

2πσ2
exp

[
−n

2

(
d̄− µ
σ

)2
]
. (6.4)

But this is just a Gaussian with mean d̄ and width σ/
√
n. Thus we have the well known

result
µ̂ = µ̄ = d̄± σ√

n
. (6.5)

Exercise 6.1: Derive (6.5) directly from (6.3) by expanding L = − ln p using equations
(3.6), (3.7) and (3.9) in Section 3.1. Calculate the width as the inverse of the Hessian.

Now suppose that not only µ but also σ is unknown. Assuming a Jeffreys prior

p(σ|I) =

{
0 for σ ≤ 0

1/σ for σ > 0

we find for the posterior

p(µ, σ|d̄, V, n) ∝ 1

σn+1
exp

[
−V + n(d̄− µ)2

2σ2

]
. (6.6)
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Figure 6: (a) The joint distribution p(µ, σ|d̄, V, n) for d̄ = 0, V = 4 and n = 4; (b) The marginal
distribution p(µ|d̄, V, n) (full curve), compared to a Gaussian with σ = 1/2 (dashed curve); (c) The
marginal distribution p(σ|V, n).

In Fig. 6a we show this joint distribution for four samples (n = 4) drawn from a Gauss
distribution of zero mean and unit width. For this plot, the random variables in (6.6)
were set to d̄ = 0 and V = 4.

The posterior for µ is found by integrating over σ.

p(µ|d̄, V, n) =

∫ ∞

0

p(µ, σ|d̄, V, n) dσ = C

[
1

V + n(d̄− µ)2

]n/2
. (6.7)

When n = 1, the distribution (6.7) is improper (cannot be normalised on [−∞,∞]).
Calculating the normalisation constant C for n ≥ 2 we find the Student-t distribu-
tion:

p(µ|d̄, V, n) =
Γ[n/2]

Γ[(n− 1)/2]

√
n

πV

[
V

V + n(d̄− µ)2

]n/2
. (6.8)

To obtain a more universal form for this distribution, define the scaled variable t =
(d̄ − µ)/∆, where ∆2 is the variance of the sample mean d̄. This variance is taken to
be the sample variance S2, divided by n: ∆2 = S2/n = V/n(n − 1). In terms of t, the
distribution reads

p(t|ν) =
Γ[(ν + 1)/2]

Γ(ν/2)
√
πν

(
1 +

t2

ν

)−(ν+1)/2

, (6.9)

which has the number of degrees of freedom ν ≡ n − 1 as the only parameter. This is
the expression for the Student-t distribution with ν degrees of freedom, usually found
in the literature.

Exercise 6.2: Derive (6.9) from (6.8).

The Student-t distribution for ν = 1 degree of freedom is equal to the Cauchy distri-
bution (3.13) which has no well defined moments (except normalisation). For ν ≥ 2
the first moment is given by < t >= 0 and for ν ≥ 3 the second moment is given by
< t2 >= ν/(ν − 2). From this it is easy to see that the mean and standard deviation
of (6.8) are given by

<µ>= d̄ (n ≥ 3) and <∆µ2>=
V

n(n− 3)
(n ≥ 4). (6.10)
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Exercise 6.3: Derive (6.10).

In Fig. 6b we show the marginal distribution (6.8) for d̄ = 0, V = 4 and n = 4 (full
curve), compared to a Gaussian with zero mean and width σ/

√
n = 1/2. It is seen that

the Student-t distribution is similar to a Gaussian but has much longer tails.

Likewise, we can integrate (6.6) over µ to obtain the posterior for σ:

p(σ|d̄, V, n) =

∫ ∞

−∞
p(µ, σ|d̄, V, n) dµ =

C

σn
exp

(
− V

2σ2

)
. (6.11)

Integrating this equation over σ to calculate the normalisation constant C we find the
chi-squared distribution for ν = n− 1 degrees of freedom

p(σ|V, n) = 2

(
V

2

)(n−1)/2
1

Γ[(n− 1)/2]

1

σn
exp

(
− V

2σ2

)
. (6.12)

This distribution is shown for V = 4 and n = 4 in Fig. 6c.

Exercise 6.4: Transform χ2 = V/σ2 and show that (6.12) can be written in the more
familiar form with ν = n− 1 as the only parameter

p(σ|V, n) dσ → p(χ2|ν) dχ2 =

(
χ2
)α−1

exp(− 1
2χ

2)

2αΓ(α)
dχ2,

where α = ν/2. Use the definition of the Gamma function

Γ(z) =

∫ ∞

0

tz−1e−t dt

and the property Γ(z + 1) = zΓ(z) to show that the mean and variance of the χ2 distri-
bution are given by ν and 2ν, respectively.

Exercise 6.5: Show by expanding the negative logarithm of (6.11) that the maximum of
the posterior is located at σ̂ =

√
V/n.

I can be shown that the sampling distribution of the random variable V is also χ2

distributed with ν = n − 1 degrees of freedom; the proof is somewhat lengthy and we
refer for this to standard textbooks. Using the result <χ2>= ν, we find

<
V

σ2
>=

<V >

σ2
= n− 1 ⇒ σ2 =

<V >

n− 1
. (6.13)

This justifies the definition of the sample variance S2 ≡ V/(n − 1), mentioned above,
because its distribution has a mean value of σ2.

6.2 Bayesian versus Frequentist inference (II)

In the previous section we have seen how to conduct Bayesian inference on the unknown
mean (and/or width) of a Gaussian sampling distribution. At this point it is interesting
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to compare this to inference done in the Frequentist way. For this comparison we will
reduce the inference problem to one which is as simple as possible.

Suppose we have done one measurement x = 3 drawn from a Gaussian sampling distri-
bution p(x|µ) with an unknown mean µ and a known width σ = 5. Given the observation
x = 3, we now ask what is the best value of µ and its uncertainty. Assuming a uniform
prior, Bayes theorem gives for the posterior

p(µ|x)dµ = C p(x|µ) p(µ)dµ =
1

σ
√

2π
exp

[
−(x− µ)2

2σ2

]
dµ, (6.14)

which is shown in Fig. 7a for x = 3. This plot is then the full result of the Bayesian
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Figure 7: (a) Bayesian inference: The posterior distribution p(µ|x) for one measurement x = 3 drawn
from a Gaussian distribution with unknown mean µ and known width σ = 5. The shaded area indicates
the ±1σ credible interval containing 68.3% probability. (b) Frequentist inference: confidence intervals
x ± σ (vertical bars) of the first ten measurements drawn from a Gaussian distribution with µ = 0
(unknown) and σ = 5 (known). Five out of ten confidence intervals contain the unknown value of µ.
The limit for an infinite number of measurements is that 68.3% of the intervals contain µ.

inference which we may summarise, if we wish, by giving the ±1σ credible interval27

as
µ = 3± 5 (68.3% CL) or as P (−2 < µ < 8) = 68.3%. (6.15)

In Frequentist statistics the outcome of the measurement is described by a random
variable which we denote here by the capital letter X. This random variable takes
on different values (x1, x2, . . .) at every repetition of the experiment according to some
known sampling distribution, which, in this example, is our Gaussian with unknown
mean µ and known σ = 5. It is important to note that X is a random variable but that
the realisations (x1, x2, . . .) of X are not random variables.

Now to make an inference on µ from the observations we first have to construct a
statistic which is a function of the data and which is in one way or another related
to µ. This statistic is thus also a random variable with a known distribution which can
be derived from the sampling distribution of the data. A convenient statistic for the
inference on µ is the sample mean X̄ which reduces in our case (only one measurement)
to X itself.

27Intervals defined on Bayesian posteriors are called credible intervals to distinguish them from con-
fidence intervals which are defined on the likelihood or sampling distribution and play a very specific
role in Frequentist statistics.
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Once an appropriate statistic is defined, various probability statements can be made
like, for our statistic X,

P (µ− σ < X < µ+ σ) = 68.3%.

Subtracting µ and X in the inequality above and then reversing the signs we can re-write
this as

P (X − σ < µ < X + σ) = 68.3%. (6.16)

Having observed x = 3 it is tempting substitute this in (6.16) to obtain

P (x− σ < µ < x+ σ) = P (−2 < µ < 8) = 68.3% (6.17)

which is, by the way, the same statement as given in (6.15).

But in the Frequentist world (6.17) does not make sense!

This follows immediately from the fact that Frequentist probabilistic statements can
only be made about random variables but the argument of P in (6.17) does not contain
any random variable. A little thought will reveal that accepting (6.17) would allow
for probability inversion without using Bayes’ theorem or even specifying a prior. This
clearly violates the elementary rules of probability calculus and thus the desiderata of
plausible inference as given in Section 2.1.

Thus, as a Frequentist we cannot go beyond (6.16) which says, in fact, that the confi-
dence interval [x−σ, x+σ] associated with each possible measurement x will contain
the unknown µ in 68.3% of the cases in the limit of an infinite amount of repetitions of
the experiment. This fact is illustrated in Fig. 7b for the first 10 measurements. The
property that the unknown µ is contained in a given fraction of the confidence intervals
is called coverage. This pre-defined fraction (68.3% in our case) is called a confidence
level (CL).28 For more on Frequentist interval estimation we refer to [Cowan98, Ch. 9],
[James06, Ch. 9], and discussions in [James00] or [Zech02].

Before we enter again the Bayesian world, let us wrap-up this section with the remark
that a statement like

µ = 3± 5 (68.3% CL)

has quite a different meaning in Bayesian and Frequentist inference, and that

P (−2 < µ < 8) = 68.3%

is a statement which does not exist in the Frequentist world.

6.3 Maximum likelihood and least squares

In this section we consider the case that the data can be described by a function f(x;θ)
of a variable x depending on a set of parameters θ. For simplicity we will consider only
functions of one variable x; the extension to more dimensions is trivial. Suppose that

28For a given distribution, there is an infinity of confidence intervals corresponding to a given con-
fidence level. The interval can then be fixed by additional criteria like requiring equal probability
(1− CL)/2 in the left- and right-hand tails, or taking the shortest possible interval, etc.
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we have made a series of measurements {di} at the sample points {xi} and that each
measurement is distributed according to some sampling distribution pi(di|µi, σi). Here
µi and σi characterise the position and the width of the sampling distribution pi of data
point di. We parametrise the positions µi by the function f :

µi(θ) = f(xi;θ).

If the measurements are independent we can write for the likelihood

p(d|θ, I) =
n∏

i=1

pi[di|µi(θ), σi].

Introducing the somewhat more compact notation pi(di|θ, I) for the sampling distribu-
tions, we write for the posterior distribution

p(θ|d, I) = C

(
n∏

i=1

pi(di|θ, I)

)
p(θ|I) (6.18)

where C is a normalisation constant and p(θ|I) is the joint prior distribution of the
parameters θ. The position and width of the posterior can be found by minimising

L(θ) = − ln[p(θ|d, I)] = − ln(C)− ln[p(θ|I)]−
n∑

i=1

ln[pi(di|θ, I)] (6.19)

as described in Section 3.1, equations (3.6)–(3.9). In practice this is often done nu-
merically by presenting L(θ) to a minimisation program like minuit. Note that this
procedure can be carried out for any sampling distribution pi be it Binomial, Poisson,
Cauchy, Gauss or whatever. In case the prior p(θ|I) is chosen to be uniform, the sec-
ond term in (6.19) is constant so that the maximum of the posterior coincides with the
maximum of the likelihood. The procedure is then called a maximum likelihood fit.

The most common case encountered in data analysis is when the sampling distributions
are Gaussian. For a uniform prior, (6.19) reduces to

L(θ) = constant + 1
2
χ2 = constant + 1

2

n∑

i=1

[
di − µi(θ)

σi

]2
. (6.20)

We then speak of χχχ222 minimisation or least squares minimisation. When the func-
tion f(x;θ) is linear in the parameters, the minimisation can be reduced to a single
matrix inversion, as we will now show.

A function which is linear in the parameters can generically be expressed by

f(x;θ) =
m∑

λ=1

θλfλ(x) (6.21)

where the fλ are a set of functions of x and the θλ are the coefficients to be determined
from the data. We denote by wi ≡ 1/σ2

i the weight of each data point and write for the
log posterior

L(θ) = 1
2

n∑

i=1

wi [di − f(xi;θ)]2 = 1
2

n∑

i=1

wi

[
di −

m∑

λ=1

θλfλ(xi)

]2
. (6.22)
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The mode θ̂ is found by setting the derivative of L to all parameters to zero

∂L(θ̂)

∂θµ
= −

n∑

i=1

wi

[
di −

m∑

λ=1

θ̂λfλ(xi)

]
fµ(xi) = 0. (6.23)

We can write this equation in vector notation as

b = Wθ̂ so that θ̂ = W−1b (6.24)

where the (symmetric) matrix W and the vector b are given by

Wλµ =
n∑

i=1

wi fλ(xi)fµ(xi) and bµ =
n∑

i=1

wi di fµ(xi). (6.25)

Differentiating (6.22) twice to θλ yields an expression for the Hessian

Hλµ =
∂2L(θ̂)

∂θλ∂θµ
= Wλµ. (6.26)

Higher derivatives vanish so that the quadratic expansion (3.8) in Section 3.1 is exact.

To summarise, when the function to be fitted is linear in the parameters we can build
a vector b and a matrix W as defined by (6.25). The posterior (assuming uniform
priors) is then a multivariate Gaussian with mean (or mode) θ̄ = θ̂ = W−1b and
covariance matrix V ≡ H−1 = W−1. In this way, a fit to the data is reduced to one
matrix inversion and does not need starting values for the parameters, nor iterations,
nor convergence criteria.

Exercise 6.6: Calculate the matrix W and the vector b of (6.25) for a polynomial
parametrisation of the data

f(x;a) = a1 + a2x+ a3x
2 + a4x

3 + · · · .

Exercise 6.7: Show that a fit to a constant results in the weighted average of the data

â1 =

∑
i widi∑
i wi

± 1√∑
i wi

.

6.4 Correlated data errors

Data are often subject to sources of uncertainty which cause a simultaneous fluctuation
of more than one data point. We will call these correlated uncertainties systematic, in
contrast to point to point un-correlated errors, which we will call statistical.

To propagate the systematic uncertainties to the parameters θ of interest one often
offsets the data by each systematic error in turn, redo the analysis, and then add the
deviations from the optimal values θ̂ in quadrature. Such an intuitive ad hoc procedure
(offset method) has no sound theoretical foundation and may even spoil your result
by assigning errors which are far too large, see [Alekh00] for an illustrative example and
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also Exercise 6.10 below. The method of systematic error propagation described below
is taken from the CTEQ group [Stump02] who used it to propagate the experimental
systematic errors in their global QCD analyses of deep inelastic and collider data.

To take systematic errors into account we include them in the data model. How to do this
properly, depends of course on the experiment; here we will restrict ourselves to a linear
parametrisation with Gaussian distributed parameters which has the advantage that it is
easily incorporated in a least squares minimisation procedure. This model, as it stands,
does not handle asymmetric errors. However, in case we deal with several systematic
sources these asymmetries tend to vanish by virtue of the central limit theorem.

In Fig. 8 we show a systematic distortion of a set of data points
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Figure 8: Systematic distortion (black symbols) of a set of data points (grey symbols) for two values
of the interpolation parameter s = +1 (left) and s = −1 (right).

di → di + s∆i.

Here ∆i is a list of systematic deviations and s is an interpolation parameter which
controls the amount of systematic shift applied to the data. Usually there are several
sources of systematic error stemming from uncertainties in the detector calibration,
acceptance, efficiency and so on. For m such sources, the data model can be written as

di = ti(θ) + ri +
m∑

λ=1

sλ∆iλ, (6.27)

where ti(θ) = f(xi;θ) is the theory prediction containing the parameters θ of interest
and ∆iλ is the correlated error on point i stemming from source λ. In (6.27), the uncor-
related statistical fluctuations of the data are described by the independent Gaussian
random variables ri of zero mean and variance σ2

i . The sλ are independent Gaussian
random variables of zero mean and unit variance which account for the systematic fluc-
tuations. The joint distribution of r and s is thus given by

p(r, s|I) =
n∏

i=1

1

σi
√

2π
exp

(
− r2i

2σ2
i

) m∏

λ=1

1√
2π

exp

(
−s

2
λ

2

)
.

The covariance matrix of this joint distribution is trivial:

<rirj> = σ2
i δij <sλsµ> = δλµ <risλ> = 0. (6.28)
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Because the data are a linear combination of the Gaussian random variables r and s, it
follows that d is also Gaussian distributed

p(d|I) =
1√

(2π)n |V |
exp

[
−1

2
(d− d̄)V −1(d− d̄)

]
. (6.29)

The mean d̄ is found by taking the average of (6.27)

d̄i = <di> = ti(θ) + <ri> +
m∑

λ=1

<sλ> ∆iλ = ti(θ). (6.30)

A transformation of (6.28) by linear error propagation (see Section 3.2) gives for the
covariance matrix

V =




σ2
1 + S11 S12 · · · S1n

S21 σ2
2 + S22 · · · S2n

...
...

. . .
...

Sn1 Sn2 · · · σ2
n + Snn


 with Sij =

m∑

λ=1

∆iλ∆jλ. (6.31)

Exercise 6.8: Use the propagation formula (3.20) in Section 3.2 to derive (6.31) from
(6.27) and (6.28).

It is more easy to calculate this covariance matrix by directly averaging the product
∆di∆dj. Because all the cross terms vanish by virtue of (6.28) we immediately obtain

Vij = <∆di∆dj> = <(ri +
∑

λ

sλ∆iλ)(rj +
∑

λ

sλ∆jλ)>

= <rirj> +
∑

λ

∑

µ

∆iλ∆jµ <sλsµ> + · · ·

= σ2
i δij +

∑

λ

∆iλ∆jλ

which is the same as given in (6.31).

Inserting (6.30) in (6.29) and assuming a uniform prior, the log posterior of the param-
eters θ can be written as

L(θ) = − ln[p(θ|d)] = Constant + 1
2

n∑

i=1

n∑

j=1

[di − ti(θ)]V −1ij [dj − tj(θ)]. (6.32)

Minimising L defined by (6.32) is impractical because we need the inverse of the co-
variance matrix (6.31) which can become very large. Furthermore, when the systematic
errors dominate, the matrix might—numerically—be uncomfortably close to a matrix
with the simple structure Vij = ∆i∆j, which is singular.

Fortunately, (6.32) can be cast into an alternative form which avoids the inversion
of large matrices [Stump02]. Our derivation of this result is based on the standard
steps taken in a Bayesian inference: (i) use the data model to write an expression for
the likelihood; (ii) define prior probabilities; (iii) calculate posterior probabilities with
Bayes’ theorem and (iv) integrate over the nuisance parameters.
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The likelihood p(d|θ, s) is calculated from the expansion in the variables r

p(d|θ, s) =

∫
dr p(d, r|θ, s) =

∫
dr p(d|r,θ, s) p(r|θ, s) (6.33)

The data model (6.27) is incorporated through the trivial assignment

p(d|r,θ, s) =
n∏

i=1

δ[ri + ti(θ) +
m∑

λ=1

sλ∆iλ − di]. (6.34)

As already discussed above, the distribution of r is taken to be

p(r|θ, s) =
n∏

i=1

1

σi
√

2π
exp

(
− r2i

2σ2
i

)
. (6.35)

Inserting (6.34) and (6.35) in (6.33) yields, after integration over r,

p(d|θ, s) =
n∏

i=1

1

σi
√

2π
exp

[
−1

2

(
di − ti(θ)−∑λ sλ∆iλ

σi

)2
]
. (6.36)

Assuming a Gaussian prior for s

p(s|I) = (2π)−m/2
m∏

λ=1

exp(−1
2
s2λ)

and a uniform prior for θ, the joint posterior distribution can be written as

p(θ, s|d) = C exp


−1

2

n∑

i=1

wi

(
di − ti(θ)−

m∑

λ=1

sλ∆iλ

)2

− 1
2

m∑

λ=1

s2λ


 (6.37)

where wi = 1/σ2
i . The log posterior L = − ln p can now numerically be minimised (for

instance by minuit) with respect to the parameters θ and s. Marginalisation of the
nuisance parameters s, as described in Section 3.1, then yields the desired result. Clearly
we now got rid of our large covariance matrix (6.31) at the expense of extending the
parameter space from θ to θ×s. In a global data analysis where many experiments are
combined, the number of systematic sources s can become quite large so that minimising
L of (6.37) may still not be very attractive.

However, the fact that L is linear in s allows us to analytically carry out the minimisation
and marginalisation with respect to s. For this, we expand L like in (3.6) but only to s
and not to θ (it is easy to show that this expansion is exact i.e. that higher derivatives
in sλ vanish):

L(θ, s) = L(θ, ŝ) +
∑

λ

∂L(θ, ŝ)

∂sλ
∆sλ +

1

2

∑

λ

∑

µ

∂2L(θ, ŝ)

∂sλ∂sµ
∆sλ∆sµ.

Solving the equations ∂L/∂sµ = 0 we find

L(θ, s) = L(θ, ŝ) + 1
2
(s− ŝ)S(s− ŝ) (6.38)
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with

ŝ = S−1b

Sλµ = δλµ +
n∑

i=1

wi∆iλ∆iµ

bλ(θ) =
n∑

i=1

wi[di − ti(θ)]∆iλ. (6.39)

and

L(θ, ŝ) = 1
2

n∑

i=1

wi

(
di − ti(θ)−

m∑

λ=1

ŝλ∆iλ

)2

− 1
2

m∑

λ=1

ŝ2λ. (6.40)

Exercise 6.9: Derive the equations (6.38)–(6.40).

Taking the exponent of (6.38) gives for the posterior

p(θ, s|d) = C exp [−L(θ, ŝ)] exp
[
−1

2
(s− ŝ)S(s− ŝ)

]

which yields upon integrating over the nuisance parameters s

p(θ|d) = C ′ exp [−L(θ, ŝ)] (6.41)

The log posterior (6.40) can now numerically be minimised with respect to the param-
eters θ. Instead of the n × n covariance matrix V of (6.31) only an m ×m matrix S
has to be inverted with m the number of systematic sources.

The solution (6.39) for ŝ can be substituted back into (6.40). This leads after straight
forward algebra to the following very compact and elegant representation of the poste-
rior [Stump02]

p(θ|d) = C ′ exp

{
−1

2

[
n∑

i=1

wi(di − ti)2 − b S−1b
]}

. (6.42)

The first term in the exponent is the usual χ2 in absence of correlated errors while
the second term takes into account the systematic correlations. Note that S does not
depend on θ so that S−1 can be computed once and for all. The vector b, on the other
hand, does depend on θ so that it has to be recalculated at each minimisation step.

Although the posteriors defined by (6.32) and (6.42) look very different, it can be shown
(tedious algebra) that they are mathematically identical [Stump09]. In other words,
minimising (6.32) leads to the same result for θ̂ as minimising the negative logarithm
of (6.42).

It is clear that the uncertainty on parameters derived from a given data sample should
decrease when new data are added to the sample. This is because additional data will
always increase the available information even when these data are very uncertain. From
this it follows immediately that the error obtained from an analysis of the total sample
can never be larger than the error obtained from an analysis of any sub-sample of the
data. It turns out that error estimates based on equations (6.39)–(6.42) do meet this
requirement but that the offset method—mentioned in the beginning of this section—
does not. This issue is investigated further in the following exercise.

55



Exercise 6.10: We make n measurements di ± σi of the temperature in a room. The
measurements have a common systematic offset error ∆. Calculate the best estimate µ̂
of the temperature and the total error (statistical ⊕ systematic) by: (i) using the offset
method mentioned at the beginning of this section and (ii) using (6.42). To simplify the
algebra assume that all data and errors have the same value: di = d, σi = σ.

A second set of n measurements is added using another thermometer which has the same
resolution σ but no offset uncertainty. Calculate the best estimate µ̂ and the total error
from both data sets using either the offset method or (6.42). Again, assume that di = d
and σi = σ to simplify the algebra.

Now let n→∞. Which error estimate makes sense in this limit and which does not?

The systematic errors described in this section were treated as offsets. Another impor-
tant class are scale or normalisation errors which should be treated somewhat differently
because they affect not only the position but also the width of the sampling distributions.
We will come back to this in the next section.

7 A Few Examples

In this section we work-out a few simple cases of parameter estimation which are of-
ten encountered in data analysis but cannot be solved by out-of-the-box least square
minimisation. These examples are the fitting of a signal drowned in background, the
fitting of a sparsely filled histogram, the treatment of normalisation uncertainties and
the accounting for poorly known experimental errors. In Section 7.5 we describe how
to treat data with errors on both the x and y co-ordinate. That section is particularly
interesting since it provides an example of somewhat more advanced Bayesian reasoning.

7.1 Signal drowned in background

In this section we describe a typical case where the likelihood prefers a negative value
for a positive definite quantity. Defining a confidence interval in such a case is not so
obvious in Frequentist statistics. But in our Bayesian approach the solution is trivial
as is illustrated by the following example where a negative counting rate is found after
background subtraction.

A search was made by the NA49 experiment at the CERN SPS for D0 production in a
large sample of 4×106 Pb-Pb collisions at a beam energy of 158 GeV per nucleon [Alt06].
Since NA49 does not have secondary vertex reconstruction capabilities, all pairs of
positive and negative tracks in the event were accumulated in invariant mass spectra
assuming that the tracks originate from the decays D0 → K−π+ or D̄ 0 → K+π−. In the
left-hand side plot of Fig. 9 we show the invariant mass spectrum of the D0 candidates.
The vertical lines indicate a ±90 MeV window around the nominal D0 mass. The large
combinatorial background is due to a multiplicity of approximately 1400 charged tracks
per event giving, for each event, about 5×105 entries in the histogram. In the right-hand
side plot we show the invariant mass spectrum after background subtraction. Clearly
no signal is observed.
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Figure 9: Left: The invariant mass distribution of D0 candidates in 158A GeV Pb-Pb collisions at the
CERN SPS. The open (shaded) histograms are before (after) applying cuts to improve the significance.
The vertical lines indicate a ±90 MeV window around the nominal D0 mass. Right: The D0 + D̄ 0

invariant mass spectrum after background subtraction. The full curve is a fit to the data assuming a
fixed signal shape. The other curves correspond to model predictions of the D0 yield.

A least squares fit to the data of a Cauchy line shape (with fixed position and FWHM
but free normalisation n) on top of a polynomial background yielded a negative value
for the yield n̂(D0 + D̄ 0) = −0.36± 0.74 per event as is shown by the full curve in the
right-hand side plot of Fig. 9. As already mentioned above, this is a typical example of
a case where the likelihood favours an outcome which is unphysical.

To calculate an upper limit on the D0 yield, Bayesian inference is used as follows. In the
fit to the invariant mass spectrum, the parameters θ = (n,a) are introduced where n
is the D0 yield of interest, and a are the background shape (nuisance) parameters. The
likelihood of the data d is now written as a multivariate Gaussian in parameter space:

p(d|θ, I) =
1√

(2π)p |V |
exp

[
−1

2
(θ −θ̂)V −1(θ −θ̂)

]
(7.1)

where p is the number of parameters and θ̂ and V are the best values and covariance ma-
trix as obtained from minuit, see also Section 3.1. Taking flat priors for the background
parameters, but not for the yield n

p(θ|I) = p(n,a|I) ∝ p(n|I),

leads to the posterior distribution

p(θ|d, I) =
C√

(2π)p |V |
exp

[
−1

2
(θ −θ̂)V −1(θ −θ̂)

]
p(n|I) (7.2)

where C is a normalisation constant and p(n|I) is the prior for the D0 yield n. The
posterior for n is now obtained by integrating (7.2) over the background parameters a.
As explained in Section 3.1 this yields a one-dimensional Gauss with a variance given
by the diagonal element σ2 = Vnn of the covariance matrix. Thus we have

p(n|d, I) =
C

σ
√

2π
exp

[
−1

2

(
n− n̂
σ

)2
]
p(n|I) = CN (n; n̂, σ) p(n|I) (7.3)
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where we have introduced the short-hand notation N () for a one-dimensional Gaussian
distribution. In (7.3), n̂ = −0.36 and σ = 0.74 as obtained from the fit to the data.

As a last step we encode in the prior p(n|I) our knowledge that n is positive definite

P (n|I) ∝ θ(n) with θ(n) =

{
0 for n < 0
1 for n ≥ 0.

(7.4)

Inserting (7.4) in (7.3) and integrating over n to calculate the constant C we find

p(n|d, I) = N (n; n̂, σ) θ(n)

[∫ ∞

0

N (n; n̂, σ) dn

]−1
. (7.5)

The posterior distribution is thus a truncated Gaussian with mean and variance as
obtained from the fit. This Gaussian is set to zero for n < 0 and re-normalised to unity
for n ≥ 0. The upper limit (nmax), corresponding to a given confidence level (CL) is
then calculated by (numerically) solving the equation

CL =

∫ nmax

0

p(n|d, I) dn =

∫ nmax

0

N (n; n̂, σ) dn

[∫ ∞

0

N (n; n̂, σ) dn

]−1
. (7.6)

Using the numbers quoted above this gives n(D0 + D̄ 0) < 1.5 per event at 98% CL.

7.2 Sparsely populated histogram

As stated in Section 6.3, a χ2 minimisation is only valid when the data are Gaussian
distributed. Another important requirement—which is easily forgotten—is that the fit
model should not affect the data errors.29 The results of a χ2 analysis can be seriously
biased when these requirements are not met, as is the case in the following simple
example.

In Fig. 10 we show a histogram filled with a uniform background. There are 10 counts
observed in 50 bins so that the average background rate is R = 10/50 = 0.2 counts per
bin. However, a least squares fit (with root) to a zero-degree polynomial (that is, to
a constant), yields R̂ = 1.06, as is shown by the full line in the plot. The reason for
this biased result is twofold. First, the counts in a bin are Poisson distributed, and not
Gaussian. Second, assuming Poisson errors, the program minimises30

χ2 =
∑

ni>0

(ni −R)2

ni
.

This χ2 discards empty bins which still carry a lot of information.

The proper way to analyse these data is to start from the correct posterior. Using a flat
prior for R ≥ 0 we find

p(R|n, I) ∝
∏

i

Rni

ni!
e−R and L = − ln(p) =

∑

i

[R− ni ln(R)] + constant. (7.7)

29See (7.22) below, where the errors are affected.
30By default, root minimises a χ2 but there is an option to use the log likelihood (7.7).
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Figure 10: Sparse histogram filled with a uniform distribution. The full line shows the result of a χ2

fit to the data. The dashed line corresponds to the likelihood fit described in the text.

The mode R̂ is found by setting the derivative to R of the log posterior to zero:

dL

dR
=
∑

i

(
1− ni

R

)
= 0 whence R̂ =

∑
ni

nbins

=
10

50
= 0.2,

which is the correct answer. In Fig. 11 is shown the posterior distribution (7.7), together
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Figure 11: The posterior distribution of the background rate R (counts per bin) for the data shown
in Fig. 10. The region between the vertical lines (16% and 84% quantiles) contains 68% probability.

with the 16% and 84% quantiles which happen to be located at R = 0.155 and 0.285,
respectively. Thus we may summarise our result as

R = 0.20+0.08
−0.04 (68% CL) or as P (0.16 < R < 0.28) = 0.68.

The lesson to be learnt here is that one should never start from some ad hoc χ2 but
always from the likelihood which, when multiplied by the prior, gives the posterior. The
log posterior can then be analysed using programs like minuit, for instance. However,
one should be aware of a little catch here: the parameter errors (inverse of the Hessian)
calculated by minuit correspond to

χ2(θ̂ + ∆θ) = χ2(θ̂) + 1 but for L we have L(θ̂ + ∆θ) = L(θ̂) + 1
2
.
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Exercise 7.1: Where does the χ2 + 1 rule come from, and why is the rule different when
we consider the log posterior (or log likelihood) instead of χ2?

7.3 Normalisation uncertainties

When parameters are estimated from a combination of data sets, each with their own
normalisation uncertainty ∆, it may be beneficial to allow the data to float within this
uncertainty. In case of a single data set (to keep the notation simple) a multiplicative
normalisation parameter N is introduced and the χ2 is often defined by

χ2(N,θ) =
∑

i

[
Ndi − fi(θ)

σi

]2
+

(
N − 1

∆

)2

. (7.8)

Here the last term is a so-called ‘penalty chi-squared’, introduced to constrain N to
within the quoted error ∆, thus avoiding a possible collapse χ2 = 0 for N = 0.31 In
Fig. 12 we show data fitted to a straight line with a 5% floating normalisation, using
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Figure 12: Data fitted to a linear dependence with a 5% floating normalisation uncertainty. The
dashed line shows the result when minimising (7.8) and the full line when minimising (7.11).

the χ2 definition (7.8). The result, plotted as the dashed line in the figure, completely
misses the data! This bias is explained in [Agost94, Take96] but its origin is clear:
normalisation affects both d and σ so that the χ2 definition (7.8) is just wrong.

So let us first write down the correct likelihood32

p(d|N,θ, I) =
∏

i

1

σi
√

2π
exp

{
−1

2

[
Ndi − fi(θ)

Nσi

]2}
. (7.9)

We assume a Gaussian prior for N

p(N |I) ∝ exp

[
−1

2

(
N − 1

∆

)2
]

(7.10)

31Such a collapse occurs when there exists some θ̂ for which fi(θ̂) = 0 for all data points i.
32One may wonder why σ is scaled by N in the exponent but not in the normalisation constant. We

leave it as an exercise to show that the normalisation factors of (7.9) are, indeed, correct.
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so that (minus) the log posterior becomes

χ2(N,θ) =
∑

i

[
Ndi − fi(θ)

Nσi

]2
+

(
N − 1

∆

)2

. (7.11)

It is now also understood that the last term in (7.8) is not some magic penalty χ2, but
just a Bayesian prior. Note, however, that N is positive definite so that a Gaussian
prior is inadequate when ∆ is large. It would then be better to choose a lognormal
distribution,33 for instance. But the Gaussian prior is fine for our 5% normalisation error,
and minimising (7.11) clearly does a good job, as is shown by the full line in Fig. 12.

7.4 Uncertain experimental errors

In a χ2 analysis of a large body of experimental data, it often happens that a value
of χ2/ν > 1 is observed. For example, a global parton distribution fit by the CTEQ
group [Pump02], yields χ2 = 1954/1811 = 1.08. This corresponds to a p-value of 1%.
Instead of rejecting QCD as the theory of the strong interaction on the grounds of
this p-value, it is more reasonable to suspect that, among other possible causes, the
published experimental errors might be somewhat underestimated, or that there are
unknown correlations in the data.

To obtain a rough estimate of the effect, one can artificially increase the experimental
errors by some common factor α.

Exercise 7.2: Show that when the experimental errors are scaled by α, the χ2 is scaled
by 1/α2 and the (co)variances of the estimated parameters by α2.

A reasonable choice is α =
√
χ2/ν since that makes the χ2 value equal to the number

of degrees of freedom, as would be the case for a perfect fit. The covariance matrix of
the fitted parameters must then be multiplied by a factor α2. Note that such scaling
makes, by construction, the data globally compatible with the fit model; we try, in a
sense, to determine the experimental error by observing the scatter of the data around
the optimal value. For the CTEQ fit above, the scale factor would give only a modest
increase of 4% in the parameter errors.

While globally underestimated (or overestimated) errors are a nuisance—they spoil the
comparison between the data and the model—it is far more dangerous to have outliers
in the data. This is because Gauss distributions carry little probability in the tails so
that a data point which is many standard deviations off can exert an enormous pull on
the fit. Outlier sensitivity is considerably reduced if we allow the experimental errors to
be distributed towards larger values, instead of fixing them to the published ones. The
Gaussian probability distributions of the data then acquire long tails, somewhat similar
to the Student-t distribution described in Section 6.1. Below we will use a very simple
ansatz for the distribution of errors, taken from the book by Sivia [Sivia06].

The proposed distribution of the error on a data point is

p(σ|σ0) =
σ0
σ2

for σ ≥ σ0, (7.12)

33If x ∈ (0,∞] and ln(x) is normally distributed, then x is lognormally distributed.

61



and zero otherwise. Assuming that p(d|µ, σ) is Gaussian distributed, we obtain for the
likelihood of a data point d

p(d|µ, σ0) =

∫ ∞

0

p(d, |µ, σ)p(σ|σ0) dσ =
1√
2π

∫ ∞

σ0

σ0
σ3

exp

[
−(d− µ)2

2σ2

]
dσ. (7.13)

Transforming z = 1/σ, this integral is not difficult to evaluate; the result is

p(d, |µ, σ0) =
1

σ0
√

2π

[
1− exp(−∆2/2)

∆2

]
with ∆ =

d− µ
σ0

. (7.14)

The likelihood is shown for µ = 0 and σ0 = 1 in Fig. 13. It clearly has much longer
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Figure 13: The likelihood (7.14) of a measurement with uncertain errors (full curve), compared to a
Gaussian of unit width (dashed curve). The distributions are scaled to unit maximum for the Gauss.

tails than the corresponding Gauss distribution (dashed curve in the figure). In Fig. 14
we plot data that follow a straight line, but has two outliers. These outliers spoil a
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Figure 14: Data along a straight line with two outliers that spoil the least squares fit, shown by the
dashed curve. A minimisation of the log likelihood (7.15) is insensitive to the outliers (full curve).

least squares fit as is shown by the dashed curve. However, the full line in the figure
shows that there is hardly any outlier sensitivity when we minimise the log likelihood
(or, rather, the log posterior)

L = −
∑

i

log

[
1− exp(−∆2

i /2)

∆2
i

]
. (7.15)
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In the above, we have used a very simple-minded 1/σ2 distribution of the experimental
errors; see [Agost99] for a more sophisticated assignment.

7.5 Errors on both x and y

Sometimes we want to estimate the parameters θ of a functional relationship

y = f(x;θ) (7.16)

from a data set where both x and y have errors, be it correlated or uncorrelated. How
to deal with this is very nicely explained by D’Agostini in [Agost05], and we will closely
follow here his line of argument.

The variables in the problem are the measured points xi and yi, their means µxi and µyi ,
and the parameters θ. We are interested in the posterior distribution p(θ|x,y, I). The
first step is to relate this conditional probability to the joint density p(x,y,µx,µy,θ|I).

Using the product rule we may write

p(x,y,µx,µy,θ|I) = p(µx,µy,θ|x,y, I)p(x,y|I). (7.17)

On the other hand, marginalisation gives

p(x,y|I) =

∫∫∫
p(x,y,µx,µy,θ|I) dµxdµydθ (7.18)

so that we obtain, combining (7.17) and (7.18)

p(µx,µy,θ|x,y, I) =
p(x,y,µx,µy,θ|I)∫∫∫

p(x,y,µx,µy,θ|I) dµxdµydθ

Marginalisation over µx and µy then yields the desired result

p(θ|x,y, I) =

∫∫
p(x,y,µx,µy,θ|I)dµxdµy∫∫∫
p(x,y,µx,µy,θ|I) dµxdµydθ

. (7.19)

Our task is now to determine the joint probability density p(x,y,µx,µy,θ|I) from the
background information I at our disposal. By successive application of the product rule,
we can write this joint density as

p(x,y,µx,µy,θ|I) = p(x|y,µx,µy,θ, I)

× p(y|µx,µy,θ, I)

× p(µy|µx,θ, I)

× p(µx|θ, I)

× p(θ|I) (7.20)

There are of course many possible orderings of the conditional probabilities in this chain
(also called a Bayesian network) and one should try to chose the sequence which best
accommodates the model relations between the variables (we have done that here, as
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we will see below). The last density p(θ|I) in (7.20) is a prior: priors, as we have
emphasised several times in these lectures, do always enter into an inference problem.

Now we proceed by actually incorporating the relations between the variables in the
conditional probabilities of (7.20). These relations are of course not universal, but
depend on the problem we want to solve; the ones given below are just toy assumptions.

1. We assume that x depends only on µx, so that p(x|y,µx,µy,θ, I) = p(x|µx, I);

2. Likewise, we assume that there are no correlations between x and y so that y
depends only on µy. Therefore p(y|µx,µy,θ, I) = p(y|µy, I);

3. The relation between µx and µy is given by (7.16) so that

p(µy|µx,θ, I) = δ[µy − f(µx;θ)];

4. Finally, we regard µx as an independent variable with a prior density p(µx|I).

In Fig. 15 we show a diagram that represents (7.20). The full (dashed) arrows indicate

θ

µxi

xi

µyi

yi

[ for each i ]

Figure 1: Graphical representation of the model in term of a Bayesian network (see text).

we take immediately uniform distributions over a large domain (a ‘flat prior’). Instead,
we leave here the expression of f(θ | I) undefined, as a reminder for critical problems (e.g.
one of the parameter is positively defined because of its physical meaning), though it can
also be taken flat in routine applications with ‘many’ data points.

f(µx |θ, I) · f(θ | I) = f(µx | I) · f(θ | I) (18)

= kx f(θ | I) (19)

The constant value of f(µx | I), indicated here by kx, is then in practice absorbed in the
normalization constant.

In conclusion we have

f(x,y,µx,µy,θ | I) =
∏

i

f(xi |µxi , I) · f(yi |µyi , I) · δ[µyi − µy(µxi ,θ) ] · f(µxi | I) · f(θ | I)

(20)

=
∏

i

kxi f(xi |µxi , I) · f(yi |µyi , I) · δ[µyi − µy(µxi ,θ) ] · f(θ | I) (21)

∝
∏

i

f(xi |µxi , I) · f(yi |µyi , I) · δ[µyi − µy(µxi ,θ) ] · f(θ | I) . (22)

Figure 1 provides a graphical representation of the model [or, more precisely, a graphical
representation of Eq. (20)]. In this diagram the probabilistic connections are indicated by solid
lines and the deterministic connections by dashed lines. These kind of networks of probabilistic
and deterministic relations among uncertain quantities is known as ‘Bayesian network’,4 ’belief

4According to Wikipedia [4], a Bayesian network “is a directed graph of nodes representing variables and arcs
representing dependence relations among the variables. If there is an arc from node A to another node B, then we
say that A is a parent of B. If a node has a known value, it is said to be an evidence node. A node can represent

6

Figure 15: Bayesian network diagram showing the relations between the variables of the inference
problem described in the text. Full (dashed) arrows represent probabilistic (functional) relations. Figure
taken from [Agost05].

the probabilistic (functional) relations between the variables. Note that the variables θ
and µx have no arrows pointing to them so that these are priors.

We take a uniform prior for µx so that we have,

p(x,y,µx,µy,θ|I) ∝ p(x|µx, I) p(y|µy, I) δ[µy − f(µx;θ)] p(θ|I). (7.21)

If we assume Gaussian distributions for x and y and a linear relation

µy = aµx + b,

then it is an exercise in Gaussian integration to obtain from (7.21) and (7.19)

p(a, b|x,y) ∝
∏

i

1√
σ2
yi

+ a2σ2
xi

exp

[
−(yi − axi − b)2

2(σ2
yi

+ a2σ2
xi

)

]
p(a, b|I). (7.22)
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Exercise 7.3: Carry out the integrals leading to (7.22).

Note that the errors on xi and yi are added in quadrature, but with σxi weighted by
the slope parameter a. Note also that the straight line fit has become non-linear in the
parameters, so that the negative logarithm of (7.22) has to be minimised numerically,
by minuit, for instance.34 In Fig. 16 we show a linear fit to data which have errors on
both x and y.

x1 2 3 4 5

y

1

2

3

4

5

Graph

Figure 16: Straight line fit using (7.22) to data with (uncorrelated) errors on both x and y.

Exercise 7.4: Repeat the analysis above, but assume that the errors on x and y are
correlated. How does the Bayesian network diagram now look?

8 Bayesian Hypothesis Testing

In the previous sections we have derived posterior distributions of model parameters
under the assumption that the model hypothesis is true. In other words, we have only
investigated the model parameters, and not the model itself.

But how do we handle the case when the data do, in fact, indicate that the model
hypothesis might be wrong? The Bayesian answer is to populate an enlarged hypothesis
space with several competing models and then ask the question which model is preferred
by the data. A requirement is that the extended set of model hypotheses must form
a reasonably complete collection of exclusive alternatives.35 The procedure to pick the
best alternative is called model selection. As we will see, this model selection is
not only based on the quality of the data description (‘goodness of fit’) but also on a
factor which penalises models which have a larger number parameters. Bayesian model
selection thus automatically applies Occam’s razor in preferring, to a certain degree,
the more simple model.

34The method TGraph::Fit in root can handle errors on both the x and y coordinate, using a
generalisation of (7.22) where the slope parameter a is replaced by f ′(x).

35In particle ID, for instance, the hypothesis space is usually taken to contain e, µ, π, K, p and d.
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8.1 Model selection

As already mentioned several times before, Bayesian inference can only asses the plausi-
bility of an hypothesis when this hypothesis is a member of an exclusive and exhaustive
set. One can of course always complement a given hypothesis H by its negation H but
this does not bring us very far since H is usually too vague a condition for a meaningful
probability assignment.36 Thus, in general, we have to include our model H into a finite
set of mutually exclusive and exhaustive alternatives {Hk}. This obviously restricts the
outcome of our selection procedure to one of these alternatives but has the virtue that
we can use Bayes’ theorem to assign posterior probabilities to each of the Hk

P (Hk|D, I) =
P (D|Hk, I)P (Hk|I)∑
i P (D|Hi, I)P (Hi|I)

. (8.1)

To avoid calculating the denominator, one often works with the so-called odds ratio
(i.e. a ratio of probabilities)

Okj =
P (Hk|D, I)

P (Hj|D, I)︸ ︷︷ ︸
Posterior odds

=
P (Hk|I)

P (Hj|I)︸ ︷︷ ︸
Prior odds

× P (D|Hk, I)

P (D|Hj, I)︸ ︷︷ ︸
Bayes’ factor

. (8.2)

The first term on the right-hand side is called the prior odds and the second term the
Bayes’ factor.

The selection problem can thus be solved by calculating the odds with (8.2) and accept
hypothesis k if Okj is much larger than one, declare the data to be inconclusive if the
ratio is about unity and reject k in favour of one of the alternatives if Okj turns out
to be much smaller than one. The prior odds are usually set to unity unless there is
strong prior evidence in favour of one of the hypotheses. However, when the hypotheses
in (8.2) are composite, then not only the prior odds depend on prior information but
also the Bayes’ factor.

To see this, we follow Sivia [Sivia06] in working out an illustrative example where the
choice is between a parameter-free hypothesis H0 and an alternative H1 with one free
parameter λ. Let us denote a set of data points by d and expand the probability density
p(d|H1) into the parameter λ

p(d|H1) =

∫
p(d, λ|H1) dλ =

∫
p(d|λ,H1) p(λ|H1) dλ. (8.3)

To evaluate (8.3) we assume a uniform prior for λ in a finite range ∆λ and write

p(λ|H1) =
1

∆λ
. (8.4)

Gaussian approximation of the likelihood (which is a function of λ) gives

p(d|λ,H1) ≈ p(d|λ̂, H1) exp


−1

2

(
λ− λ̂
σ

)2

 . (8.5)

36We could, for instance, describe a detector response to pions by a probability P (d|π). However, it
would be very hard to assign something like a ‘not-pion probability’ P (d| ∼π) without specifying the
detector response to members of an alternative set of particles like electrons, kaons, protons etc.
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Here λ̂ is the mode of the likelihood and σ is the inverse of the Hessian, as is described
in Section 3.1. Inserting (8.4) and (8.5) in (8.3) gives, upon integration over λ,

p(d|H1) ≈ p(d|λ̂, H1)
σ
√

2π

∆λ
. (8.6)

Exercise 8.1: Derive an expression for the posterior of λ by inserting Eqs. (8.4), (8.5)
and (8.6) in Bayes theorem

p(λ|d, H1) =
p(d|λ,H1) p(λ|H1)

p(d|H1)
.

The result should look familiar.

Thus we find for the odds ratio (8.2)

P (H0|d, I)

P (H1|d, I)︸ ︷︷ ︸
Posterior odds

=
P (H0|I)

P (H1|I)︸ ︷︷ ︸
Prior odds

× p(d|H0)

p(d|H1, λ̂)︸ ︷︷ ︸
Likelihood ratio

× ∆λ

σ
√

2π︸ ︷︷ ︸
Occam factor

(8.7)

As already mentioned above, the prior odds can be set to unity unless there is informa-
tion which gives us prior preference for one model over another. The likelihood ratio will,
in general, be smaller than unity and therefore favour the model H1. This is because
the additional flexibility of an adjustable parameter usually yields a better description
of the data. This preference for models with more parameters leads to the well known
phenomenon that one can ‘fit an elephant’ with enough free parameters.37 This clearly
illustrates the inadequacy of using the fit quality as the only criterion in model selection.
Indeed, such a criterion alone could never favour a simpler model.

Intuitively we would prefer a model that gives a good description of the data in a wide
range of parameter values over one with many fine-tuned parameters, unless the latter
would provide a significantly better fit. Such an application of Occam’s razor is encoded
by the so-called Occam factor in (8.7). This factor tends to favour H0 since it penalises
H1 for reducing a wide parameter range ∆λ to a smaller range σ allowed by the fit. Here
we immediately face the problem that H0 would always be favoured in case ∆λ is set
to infinity. Prior assignment is thus a more sensitive issue in model selection problems
than it is in parameter estimation problems.

In case Hi and Hj both have one free parameter (µ and λ) the odds ratio becomes

P (Hi|d, I)

P (Hj|d, I)
=
P (Hi|I)

P (Hj|I)
× p(d|Hi, µ̂)

p(d|Hj, λ̂)
× ∆λ

σλ

σµ
∆µ

. (8.8)

For similar prior ranges ∆λ and ∆µ the likelihood ratio has to overcome the penalty
factor σµ/σλ. This factor favours the model for which the likelihood has the largest
width. It may seem a bit strange that the less discriminating model is favoured but
inspection of (8.6) shows that the evidence P (D|H) carried by the data tends to be
larger for models with a larger ratio σ/∆λ, that is, for models which cause a smaller
collapse of the hypothesis space when confronted with the data. Note that the prior
ranges enter as a ratio in (8.8) and that they vanish for parameters that are common
between the hypotheses. Note also that the Occam factor penalises each free parameter,
so that models with many parameters may get very strongly disfavoured by this factor.

37Including as many parameters as data points will cause any model to perfectly describe the data.
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Exercise 8.2: Generalise (8.8) to the case where Hi has n free parameters λλλ and Hj has
m free parameters µµµ (with n 6= m).

From the above it should be clear that model selection is less straight-forward than
parameter estimation because the answer depends on the hypothesis space explored,
and on the prior ranges of the parameters. But these issues may be less of a problem
than one might initially think, as the example in the next section shows.

8.2 Example: is there a signal or not?

To illustrate model selection, we will search for a signal (s), superimposed on a uniform
background (b) in a histogram. This is similar to the D0 search described in Section 7.1,
except that in the D0 search there was no doubt on the validity of the fit model: we
know that D0 are produced in heavy-ion collisions, and we also know where the signal
should show up in the invariant mass spectrum. In the analysis presented below we are
not sure that a signal exists (like in a Higgs search) so that we have to consider two
alternative hypotheses, namely, H0 := ‘no signal exists’ and H1 := ‘a signal exists’.

The data are accumulated in a histogram that covers a range ∆x in some variable x
(invariant mass, for instance). The signal—if it exists at all—has an unknown position
which should lie somewhere in the measured range ∆x. Furthermore, the anticipated
signal has a very narrow width so that it will contribute to the yield of a single bin
only. The background distribution is known to be uniform. As an example, we show in
Fig. 17 data accumulated in a histogram with 20 bins. A signal with a significance of
S = s/

√
b = 6 is clearly visible above a uniform background.

x
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Figure 17: Histogram showing a signal s (dashed circle) above a uniform background b (full line) in
20 bins of x. In this example, the significance s/

√
b = 6. This significance is large enough to establish

the presence of a signal by visual inspection, without a model selection analysis.

We will now identify the parameters of the hypotheses H0 and H1, and set the prior
ranges. The total number of counts in the histogram is denoted by Ntot, and the number
of bins by nbins.
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Hypothesis H0: There is no signal and the histogram is populated by a uniform back-
ground b (counts per bin). This background rate is the only parameter of H0, and
we assume a uniform prior p(b|H0) = 1/∆b, with ∆b some constant.

Hypothesis H1: The histogram is populated by a uniform background b, and a narrow
signal s that contributes only to one bin, located at xs. This hypothesis has three
parameters with the following prior probabilities:

Parameter b : We assume, like above, a flat background rate b (counts per bin)
with a uniform prior p(b|H1) = 1/∆b.

Parameter s : When the signal significance S = s/
√
b is large (Fig. 17) we do

not need model selection so that we can restrict ourselves to small signals
0 < s < smax = S

√
b ≈ S

√
Ntot/nbins ≡ ∆s. We assign a uniform prior

p(s|H1) = 1/∆s which is calculated with, say, S = 6.

Parameter xs : The position of the signal is expected to be within the histogram
range ∆x with a uniform prior of p(xs|H1) = 1/∆x.

Under the hypothesis H0, the likelihood of the data is given by (Poisson statistics)

p(n|b,H0) =

nbins∏

i=1

bni

ni!
e−b. (8.9)

Minimisation of the negative log likelihood gives for the mode and width (inverse of the
Hessian) of b:

b0 =
Ntot

nbins

, σ0 =

√
Ntot

nbins

. (8.10)

Under the hypothesis H1 we have for the likelihood

p(n|b, s, xs, H1) =



n′bins∏

i=1

bni

ni!
e−b


 ×

[
(b+ s)ns

ns!
e−(b+s)

]
. (8.11)

The product in the first bracket gives the contribution to the likelihood of all bins that
contain only background. The term in the second bracket gives the contribution from
the bin that contains both signal and background. This bin is taken to be that with the
largest count ns in the histogram. Minimisation of the negative log likelihood gives

b1 =
N ′tot
n′bins

, σ1 =

√
N ′tot
n′bins

s = ns − b1, σs =
√
σ2
1 + ns, (8.12)

where ns is the largest bin content in the histogram, N ′tot = Ntot − ns and n′bins =
nbins − 1. The bin with the largest content is located at xs to which we assign an error
of σx = w/

√
12, where w = ∆x/nbins is the bin width.

Exercise 8.3: (i) Derive the results given in (8.10) and (8.12). (ii) Show that the variance
of a uniform distribution in the range a < x < b is given by (b− a)2/12.
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Setting the prior odds to unity, we find from (8.7) for the posterior odds

Rpost =
p(H1|n)

p(H0|n)
=

[(
b1
b0

)N ′tot (b1 + s

b0

)ns

e−nbins(b1−b0)−s
]
×
[

2π σ1 σs σx
σ0 ∆s∆x

]
. (8.13)

Here the first term in the square brackets is the likelihood ratio, and the second term
is the Occam factor.38 Note that the background prior range ∆b, which is difficult to
assign, cancels in the Occam factor because b is a parameter of both H0 and H1.

Because the values of the ratio’s in (8.13) can become quite extreme, it is convenient
to express them on a decibel scale, defined by 10 log10(R) dB. A value of 0 dB means
a unit ratio (fifty-fifty odds), 3 dB is about a factor of 2, and 10 dB corresponds to a
factor of 10. In the following we will accept a posterior odds of +10 dB or larger, that
is, we are willing to bet on H1 when there is an odds ratio of 10 : 1 in favour of H1.

In Fig. 18 we show simulated data where 500 counts are distributed over 20 bins. A
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Figure 18: Signal search in a histogram, assuming that the signal contributes to one bin, superimposed
on a uniform background (full curves). The top plot shows a signal with a significance S = 2.8. The fit
is rejected because the posterior odds are found to be −3.3 dB. The bottom plot shows a signal with
a significance S = 4.2. The fit is accepted because the posterior odds are found to be +12.0 dB.

signal with a strength of half the nominal background is generated in the 11th bin;
this corresponds, on average, to a significance of S = 12.5/

√
25 = 2.5. The differ-

ences between the top and bottom histograms of Fig. 18 are simply caused by random
fluctuations.

38For simplicity we have neglected correlations between the parameters in the Occam factor; we leave
it as an exercise to take correlations into account.

70



Both histograms were fitted to the hypotheses H0 and H1 and the posterior odds were
calculated from (8.13). The results are listed in Table 1. The fit of the top histogram

Table 1: The signal significance, likelihood ratio, Occam factor and the posterior odds from the fits
to the two histograms of Fig. 18. Also given are the χ2 and the corresponding p-values for the fits to
the hypothesis H1, with 17 degrees of freedom. The values given in brackets are from the fit to the
background-only hypothesis H0, with 19 degrees of freedom.

Significance Likelihood Occam Posterior χ2 p-value
Top 2.8 +14 dB −17 dB −3 dB 18.2 (22.8) 0.38 (0.25)
Bottom 4.2 +29 dB −17 dB +12 dB 24.0 (32.7) 0.12 (0.03)

picks for the signal a random fluctuation in the 15th bin (S = 2.8). However, the
hypothesis H1 is rejected in favour of H0 because the likelihood ratio of 14 dB is not
large enough to overcome the Occam penalty factor of −17 dB. Selection on the basis of
p-values (goodness of fit) would wrongly favour the hypothesis H1 (see Table 1). The fit
to the bottom histogram finds the signal at the 11th bin with a significance of S = 4.2.
Here the hypothesis H1 is accepted on grounds of the large posterior odds of +12 dB.
Note that a standard cut of 5% on the p-value would also accept H1, and reject H0.

For other worked-out examples of model selection we refer to Loredo [Lor90], Bret-
thorst [Bret96], Sivia [Sivia06] and Gregory [Greg05].

9 Concluding Remarks

In these lectures we have shown how the intimate connection between probability and
logic leads to a beautifully coherent and simple theory of inference. This theory is based
on the Cox’ desiderata of plausible inference which lead to an algebra that turns out to
be the same as that of probability, based on the Kolmogorov axioms. For a Bayesian,
probability is thus a measure of plausibility, and probabilities can be assigned to propo-
sitions, or hypotheses. This is in contrast to the Frequentist notion of probability as a
relative frequency of occurrence. Here a probability cannot be assigned to a hypothesis
since it is not a random variable. This distinction lies at the heart of the difference
between the Bayesian and Frequentist approaches to data analysis.

Necessary input to Bayesian inference is prior information which enters via Bayes’ the-
orem through a multiplication of the likelihood function by a prior probability density.
The assignment of priors is still an open issue but in practice this is often not such a great
concern because priors are important only when the data carry little information on the
inference being conducted, or when relevant information is contained in the prior and
not in the data. But prior probability assignment is clearly an important issue which we
have, in these lectures, tried to trace back to Bernoulli’s principle of insufficient reason
and to symmetry and maximum entropy arguments.

Many examples in these lectures clearly show that Bayesian inference often amounts
to straight-forward application of probability calculus, using little else but expansion,
probability inversion and marginalisation. The Bayesian approach has therefore the
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virtue of taking much mystery out of statistical methods while providing a simple and
well-founded framework for creative solutions to statistical data analysis problems.

A Gaussian Integration

In this appendix we derive expressions for the normalisation and marginalisation inte-
grals of a multivariate Gaussian distribution. Starting point is the well known result

∫ ∞

−∞
e−

1
2
z2dz =

√
2π. (A.1)

From this it follows immediately that

∫
· · ·
∫ ∞

−∞
exp

(
−1

2

n∑

i=1

λiz
2
i

)
dz1 · · · dzn =

(2π)
n
2√

λ1 · · ·λn
(λi > 0).

Introducing the vector notation

z =



z1
...
zn


 and D =




λ1
. . .

λn




we can write ∫ ∞

−∞
exp

(
−1

2
zTDz

)
dz =

(2π)
n
2√

|D|
, (A.2)

where |D| = λ1 · · ·λn denotes the determinant of D. Next, we introduce the non-
singular linear transformation z = Ax. The Jacobian of this transformation is dz =
|A| dx so that (A.2) becomes

∫ ∞

−∞
exp

[
−1

2
xT(ATDA)x

]
|A| dx =

(2π)
n
2√

|D|
. (A.3)

Setting H ≡ V −1 = ATDA we find for the normalisation integral
∫ ∞

−∞
exp

(
−1

2
xTHx

)
dx =

∫ ∞

−∞
exp

(
−1

2
xTV −1x

)
dx =

√
(2π)n |V | (A.4)

where we have used the fact that |H| = |V |−1 = |A|2 |D|. Note that H (and also V )
is, by construction, symmetric positive definite. A normalised multivariate Gaussian
density with a mean x̄ is thus given by

G(x) =
1√

(2π)n |V |
exp

[
−1

2
(x− x̄)TV −1(x− x̄)

]
. (A.5)

To calculate the marginal integral

G(x1, . . . , xm) =
1√

(2π)n |V |

∫
· · ·
∫ ∞

−∞
exp

(
−1

2
xTHx

)
dxm+1 · · · dxn, (A.6)
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we partition the vector x and the matrix H into

x =

(
p
q

)
and H =

(
P R
RT Q

)
(A.7)

where p contains the first m elements of x and q the last n−m elements. There is no
loss of generality by integrating over the last elements of x since we are free to re-arrange
the vector x as we like. The integral (A.6) is solved by completing the squares, that is,
the exponent is written in the form (see also the solution to Exercise 3.6 in Appendix B)

xTHx = (q − q̂)TQ(q − q̂) + C. (A.8)

Inserting (A.7) in (A.8) and comparing the terms on the left and right-hand sides yields

pTR = −q̂TQ, RTp = −Qq̂ and pTPp = q̂TQq̂ + C,

so that we obtain for the unknown q̂ and C in (A.8):

q̂ = −Q−1RTp, q̂T = −pTRQ−1, C = pT
(
P −RQ−1RT

)
p. (A.9)

To simplify the expression for C we observe that

V = H−1 =

(
P R
RT Q

)−1
=

(
1 −P−1R

−Q−1RT 1

)(
Vp

Vq

)
. (A.10)

where

Vp =
(
P −RQ−1RT

)−1
and Vq =

(
Q−RTP−1R

)−1
. (A.11)

The above can easily be verified by substitution into the relation HV = V H = 1.
Comparing equations (A.9) and (A.11) we see that

C = pTV −1p p

where Vp is the m ×m sub-matrix of the original covariance matrix V . Eq. (A.6) can
now be written as

G(p) =
1√

(2π)n |V |
exp

(
−1

2
pTV −1p p

) ∫ ∞

−∞
exp

[
−1

2
(q − q̂)TQ(q − q̂)

]
dq. (A.12)

According to (A.4) the integral over q evaluates to
√

(2π)(n−m) |Q| so that

G(p) =

√
(2π)(n−m) |Q|√

(2π)n |V |
exp

(
−1

2
pTV −1p p

)
. (A.13)

Because G(p) is normalised to unity we find, by integrating (A.13), the following non-
trivial relationship between the determinants

|V | = |Q| |Vp| .
Using this relation to eliminate |V | and |Q| in (A.13) we finally find for our marginal
distribution

G(p) =
1√

(2π)m |Vp|
exp

(
−1

2
pTV −1p p

)
. (A.14)

To summarise, integration over k out of n variables of a multivariate Gaussian distribu-
tion is calculated by deleting the corresponding elements of the random variable x− x̄
together with the corresponding rows and columns of the covariance matrix V . Then
x, x̄, V and n are simply replaced by x′, x̄′, V ′ and n′ = n− k in (A.5).
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B Solution to Selected Exercises

Exercise 1.1

This is because astronomers often have to draw conclusions from the observation of rare events. Bayesian
inference is well suited for this since it is based solely on the evidence carried by the data (and prior
information) instead of being based on hypothetical repetitions of the experiment.

Exercise 2.3

A = A ↑ A, A ∧B = (A ↑ A) ↑ (B ↑ B) and A ∨B = (A ↑ B) ↑ (A ↑ B).

Exercise 2.4

(i) From the truth table (2.1) it is seen that both B and A⇒ B are true if and only if A is false. But
this is just the implication B ⇒ A.

(ii) From (2.1) we can derive the following truth table

A⇒ B A B
1 0 0
1 0 1
1 1 1

Thus, given that the impication is true then if A is false, B can be either true or false while if A is true,

then B must be true. Likewise if B is false, A must be false while if B is true, A can be either true or

false. This is consistent with the conclusions drawn in the four syllogisms given in Section 2.1.

Exercise 2.5

From de Morgan’s law and repeated application of the product and sum rules (2.5) and (2.6) we find

P (A ∨B) = 1− P (A ∨B) = 1− P (AB)

= 1− P (B|A)P (A) = 1− P (A)[1− P (B|A)]

= 1− P (A) + P (B|A)P (A) = P (A) + P (AB)

= P (A) + P (A|B)P (B) = P (A) + P (B)[1− P (A|B)]

= P (A) + P (B)− P (A|B)P (B) = P (A) + P (B)− P (AB).

Exercise 2.6

(i) When A and B are mutually exclusive then

P (AB|I) = P (A|BI)P (B|I) = P (B|AI)P (A|I) = 0,

which implies that the conditional probabilities P (A|BI) and P (B|AI) are zero. In this case it is
meaningless to talk about conditional probability inversion.

(ii) When A and B are independent, probability inversion reduces to the statements P (A|BI) = P (A|I)
and P (B|AI) = P (B|I), and Bayes’ theorem becomes a triviality.

(iii) Two propositions A and B cannot be both exclusive and independent, unless one of them is a
contradiction. This follows immediately from P (AB|I) = 0 (exclusive) and P (AB|I) = P (A|I)P (B|I)
(independent) so that either P (A|I) or P (B|I), or both, must be zero.

Exercise 2.7

(i) The probability for Mr. White to have AIDS is

P (A|T ) =
P (T |A)P (A)

P (T |A)P (A) + P (T |A)P (A)
=

0.98× 0.01

0.98× 0.01 + 0.03× 0.99
= 0.25.

(ii) For full efficiency, P (T |A) = 1 so that

P (A|T ) =
1× 0.01

1× 0.01 + 0.03× 0.99
= 0.25.
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(iii) For zero false-positives, P (T |A) = 0 so that

P (A|T ) =
0.98× 0.01

0.98× 0.01 + 0× 0.99
= 1.

Exercise 2.8

(i) If nobody has AIDS then P (A) = 0 and thus

P (A|T ) =
P (T |A)× 0

P (T |A)× 0 + P (T |A)× 1
= 0.

(ii) If everybody has AIDS then P (A) = 1 and thus

P (A|T ) =
P (T |A)× 1

P (T |A)× 1 + P (T |A)× 0
= 1.

In both these cases the posterior is thus equal to the prior independent of the likelihood P (T |A).

Exercise 2.10

(i) When µ is known we can write for the posterior distribution

P (π|S, µ) =
P (S|π)P (π)

P (S|π)P (π) + P (S| ∼π)P (∼π)
=

εµ

εµ+ δ(1− µ)
.

(ii) When µ is unknown we expand P (π|S) in µ which gives

P (π|S) =

∫ 1

0

P (π, µ|S) dµ =

∫ 1

0

P (π|S, µ)p(µ) dµ.

Assuming a uniform prior p(µ) = 1 gives for the probability that the signal S corresponds to a pion

P (π|S) =

∫ 1

0

dµ
εµ

εµ+ δ(1− µ)
=
ε[ε− δ + δ ln(δ/ε)]

(δ − ε)2 ,

where we have used the Mathematica program to evaluate the integral.

Exercise 2.11

The quantities x, x0, d and ϑ are related by x = x0 + d tanϑ. With p(ϑ|I) = 1/π it follows that p(x|I)
is Cauchy distributed

p(x|I) = p(ϑ|I)

∣∣∣∣
dϑ

dx

∣∣∣∣ =
1

π

cos2 ϑ

d
=

1

π

d

(x− x0)2 + d2
.

The first and second derivatives of L = − ln p are

dL

dx
=

2(x− x0)

(x− x0)2 + d2
d2L

dx2
= − 4(x− x0)2

[(x− x0)2 + d2]2
+

2

(x− x0)2 + d2
.

This gives for the position and width of p(x)

dL(x̂)

dx
= 0 ⇒ x̂ = x0

1

σ2
=

d2L(x̂)

dx2
=

2

d2
⇒ σ =

d√
2
.

Exercise 2.12

(i) The posterior distribution of the first measurement is

P (π|S1) =
P (S1|π)P (π)

P (S1|π)P (π) + P (S1| ∼π)P (∼π)
=

εµ

εµ+ δ(1− µ)
.

75



Using this as the prior for the second measurement we have

P (π|S1, S2) =
P (S2|π, S1)P (π|S1)

P (S2|π, S1)P (π|S1) + P (S2| ∼π, S1)P (∼π|S1)
= · · · = ε2µ

ε2µ+ δ2(1− µ)
.

Here we have assumed that the two measurements are independent, that is,

P (S2|π, S1) = P (S2|π) = ε P (S2| ∼π, S1) = P (S2| ∼π) = δ.

(ii) Direct application of Bayes’ theorem gives

P (π|S1, S2) =
P (S1, S2|π)P (π)

P (S1, S2|π)P (π) + P (S1, S2| ∼π)P (∼π)
=

ε2µ

ε2µ+ δ2(1− µ)
.

Here we have again assumed that the two measurements are independent, that is,

P (S1, S2|π) = P (S1|π)P (S2|π) = ε2 P (S1, S2| ∼π) = P (S1| ∼π)P (S2| ∼π) = δ2.

Both results are thus the same when we assume that the two measurements are independent.

Exercise 3.1

Because averaging is a linear operation we have

<∆x2> = <(x− x̄)2> = <x2> −2x̄ <x> + <x>2

= <x2> −2 <x>2 + <x>2= <x2> − <x>2 .

Exercise 3.2

The covariance matrix can be written as

Vij =<(xi − x̄i)(xj − x̄j)> =<xixj> − <xi><xj> .

For independent variables the joint probability factorizes p(xi, xj |I) = p(xi|I)p(xj |I) so that

<xixj> =

∫
dxi xip(xi|I)

∫
dxj xjp(xj |I) =<xi><xj> .

This implies that the off-diagonal elements of Vij vanish.

Exercise 3.3

(i) Substituting x = x0 in the Breit-Wigner formula gives for the maximum value 2/(πΓ). Substituting
x = x0 ± Γ/2 gives a value of 1/(πΓ) which is just half the maximum.

(ii) When we substitute x0 = 0 and Γ = 2, the Breit-Wigner reduces to the Gauchy distribution

p(x|x0 = 0,Γ = 2, I) =
1

π

1

1 + x2
.

For this distribution L = lnπ + ln(1 + x2). The first and second derivatives of L are given by

dL

dx
=

2x

1 + x2
and

d2L

dx2
= − 4x2

(1 + x2)2
+

2

1 + x2
.

From dL/dx = 0 we find x̂ = 0. It follows that the second derivative of L at ŷ is 2 so that the width
of the distribution is σ = 1/

√
2. This gives the Gaussian approximation

p(x|x0 = 0,Γ = 2, I) ≈ exp(−x2)√
π

.

This Gaussian approximation is pretty bad (dashed curve) when compared to the original Cauchy
distribution (full curve).
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Exercise 3.4

For z = x+ y and z = xy we have

p(z|I) =

∫∫
δ(z − x− y) f(x)g(y) dxdy =

∫
f(z − y)g(y) dy and

p(z|I) =

∫∫
δ(z − xy) f(x)g(y) dxdy =

∫∫
δ(z − w) f(w/y)g(y)

dw

|y| dy =

∫
f(z/y)g(y)

dy

|y| .

Exercise 3.5

(i) The inverse transformations are

x =
u+ v

2
y =

u− v
2

so that the determinant of the Jacobian is

|J | =
∣∣∣∣
∂x/∂u ∂x/∂v
∂y/∂u ∂y/∂v

∣∣∣∣ =

∣∣∣∣
1/2 1/2
1/2 −1/2

∣∣∣∣ =
1

2
.

The joint distribution of u and v is thus

p(u, v) = p(x, y) |J | = 1

2
f(x)g(y) =

1

2
f

(
u+ v

2

)
g

(
u− v

2

)
.

Integration over v gives

p(u) =

∫
p(u, v) dv =

1

2

∫
f

(
u+ v

2

)
g

(
u− v

2

)
dv =

∫
f(w)g(u− w) dw

which is just (3.15).

(ii) Here we have for the inverse transformation and the Jacobian determinant

x =
√
uv y =

√
u

v
|J | =

∣∣∣∣
v(4uv)−1/2 u(4uv)−1/2

(4uv)−1/2 −u(4uv3)−1/2

∣∣∣∣ =
1

2v

which gives for the joint distribution

p(u, v) =
1

2v
f
(√
uv
)
g

(√
u

v

)
.

Marginalisation of v gives

p(u) =

∫
p(u, v) dv =

∫
dv

2v
f
(√
uv
)
g

(√
u

v

)
=

∫
dw

w
f(w)g

( u
w

)

which is just (3.16).
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Exercise 3.6

According to (3.15) the distribution of z is given by

p(z|I) =
1

2πσ1σ2

∫ ∞

−∞
dx exp

{
−1

2

[(
x− µ1

σ1

)2

+

(
z − x− µ2

σ2

)2
]}

.

The standard way to deal with such an integral is to ‘complete the squares’, that is, to write the
exponent in the form a(x− b)2 + c. This allows to carry out the integral

∫ ∞

−∞
dx exp

{
− 1

2

[
a(x− b)2 + c

]}
= exp

(
− 1

2c
) ∫ ∞

−∞
dy exp

(
− 1

2ay
2
)

=

√
2π

a
exp

(
− 1

2c
)
.

Our problem is now reduced to finding the coefficients a, b and c such that the following equation holds

p(x− r)2 + q(x− s)2 = a(x− b)2 + c

where the left-hand side is a generic expression for the exponent of the convolution of our two Gaussians.
Since the coefficients of the powers of x must be equal at both sides of the equation we have

p+ q = a pr + qs = ab pr2 + qs2 = ab2 + c.

Solving these equations for a, b and c gives

a = p+ q b =
pr + qs

p+ q
c =

pq

p+ q
(s− r)2.

Then substituting
p = 1/σ2

1 q = 1/σ2
2 r = µ1 s = z − µ2

yields the desired result

p(z|I) =
1√

2π(σ2
1 + σ2

2)
exp

[
− (z − µ1 − µ2)2

2(σ2
1 + σ2

2)

]
.

Exercise 3.7

For independent random variables xi with variance σ2
i we have <∆xi∆xj> = σiσjδij .

(i) For the sum z =
∑
xi we have ∂z/∂xi = 1 so that (3.20) gives

<∆z2> =
∑

i

∑

j

σiσjδij =
∑

i

σ2
i .

(ii) For the product z =
∏
xi we have ∂z/∂xi = z/xi so that (3.20) gives

<∆z2> =
∑

i

∑

j

z

xi

z

xj
σiσjδij = z2

∑

i

(
σi
xi

)2

.

Exercise 3.8

We have

ε =
n

N
=

n

n+m

∂ε

∂n
=

m

(n+m)2
=
N − n
N2

∂ε

∂m
= − n

(n+m)2
= − n

N2

and
<∆n2> = n <∆m2> = m = N − n <∆n∆m> = 0.

Inserting this in (3.20) gives for the variance of ε

<∆ε2> =

(
∂ε

∂n

)2

<∆n2> +

(
∂ε

∂m

)2

<∆m2>

=

(
N − n
N2

)2

n+
( n

N2

)2
(N − n) =

ε(1− ε)
N

.
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Exercise 3.9

The cumulative distribution is defined by

c(x) =

∫

x

p(y|I) dy ⇒ dc

dx
= p(x|I) and thus p(c|I) = p(x|I)

∣∣∣∣
dx

dc

∣∣∣∣ = 1.

Exercise 3.10

Writing out (3.25) in components gives, using the definition (3.26)
∑

k

VikU
T
kj =

∑

k

UT
ikλkδkj ⇒

∑

k

Viku
j
k = λju

j
i ⇒ V uj = λju

j .

Exercise 3.11

(i) For a symmetric matrix V and two arbitrary vectors x and y we have

y V x =
∑

ij

yi Vij xj =
∑

ij

xjV
T
ji yi =

∑

ij

xjVji yi = xV y.

(ii) Because V is symmetric we have

ui V uj = uj V ui ⇒ λiuiuj = λjuiuj or (λi − λj)uiuj = 0 ⇒ uiuj = 0 for λi 6= λj .

(iii) If V is positive definite we have uiV ui = λiu
iui = λi > 0.

Exercise 4.1

Expansion of P (R2|I) in the hypothesis space {R1,W1} gives

P (R2|I) = P (R2, R1|I) + P (R2,W1|I)

= P (R2|R1, I)P (R1|I) + P (R2|W1, I)P (W1|I)

=
R− 1

N − 1

R

N
+

R

N − 1

W

N
=
R

N
.

Exercise 4.2

For draws with replacement we have P (R2|R1, I) = P (R2|W1, I) = P (R1|I) = R/N and P (W1|I) =
W/N . Inserting this in Bayes’ theorem gives

P (R1|R2, I) =
P (R2|R1, I)P (R1|I)

P (R2|R1, I)P (R1|I) + P (R2|W1, I)P (W1|I)
=
R

N
.

Exercise 4.3

The likelihood for N signals by N particles is P (N |N, ε) = εN . For a flat prior, the normalised posterior
is p(ε|N,N) = (N + 1) εN . The α confidence interval is calculated from

∫ a

0

p(ε|N,N)dε = aN+1 = 1− α ⇒ a = (1− α)1/(N+1).

Putting N = 4 and α = 0.65 gives a = 0.81 so that ε = 1+0
−0.19 at 65% CL.

Exercise 4.4

To calculate the likelihood P (n|h, µ), we expand it in the set N = {n, n+ 1, . . .}

P (n|h, µ) =

∞∑

N=n

P (n,N |h, µ) =

∞∑

N=n

P (n|N,h) P (N |µ)

=

∞∑

N=n

N !

n!(N − n)!
hn(1− h)N−n

µN

N !
e−µ

=
(µh)n

n!
e−µ

∞∑

N=n

1

(N − n)!
(µ− µh)N−n =

(µh)n

n!
e−µ e(µ−µh) =

(µh)n

n!
e−µh
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It is illustrative to try to get a posterior for h by inverting P (n|h, µ). Assuming a uniform prior for h
and µ we obtain

p(h, µ|n) = C P (n|h, µ) = C
(µh)n

n!
e−µh.

Integration over µ gives

p(h|n) =
C

n!h

∫ ∞

0

zne−zdz =
C

h
.

But this posterior does not depend on n and is also improper (not normalisable). We do not encounter
here a break-down of Bayesian probability theory but, instead, a warning that n by itself does not
contain enough information to properly conduct inference on h. Indeed, a little thought reveals that
we need both the number of heads (n1) and the number of tails (n2), and also that the knowledge of
n1 tells us nothing about n2 and vice versa. These numbers are thus uncorrelated so that

P (n1, n2|h, µ) = P (n1|h, µ) P (n2|h, µ) =
(hµ)n1 [(1− h)µ]n2

n1!n2!
e−µ.

Assuming a uniform prior for µ, we obtain for the posterior

p(h|n1, n2) ∝ p(h|I)

∫ ∞

0

p(h, µ|n1, n2) dµ ∝ p(h|I)hn1(1− h)n2

∫ ∞

0

µ(n1+n2)e−µ

= C hn1 (1− h)n2 p(h|I),

which is the same as (4.16) or (4.17).

Exercise 4.5

Without loss of generality we can consider marginalisation of the multinomial distribution over all but
the first probability. According to (4.19) we have

n′2 =

k∑

i=2

ni = N − n1 and p′2 =

k∑

i=2

pi = 1− p1.

Inserting this in (4.18) gives the binomial distribution

P (n1, n
′
2 | p1, p′2, N) =

N !

n!(N − n)!
pn1
1 (1− p1)N−n1 .

Exercise 4.6

From the product rule we have

P (n1, . . . , nk|I) = P (n1, . . . , nk−1|nk, I)P (nk|I)

From this we find for the conditional distribution

P (n1, . . . , nk−1|nk, I) =
P (n1, . . . , nk|I)

P (nk|I)

=
N !

n1! · · ·nk!
pn1
1 · · · p

nk−1

k−1 p
nk
k ×

nk!(N − nk)!

N !

1

pnkk (1− pk)N−nk

=
(N − nk)!

n1! · · ·nk−1!

(
p1

1− pk

)n1

· · ·
(
pk−1

1− pk

)nk−1

.

Exercise 4.7

The solution to this exercise is very similar to that of Exercise 4.4.

Exercise 4.8

(i) The likelihood to observe n counts in a time window ∆t is given by the Poisson distribution

P (n|µ) =
µn

n!
exp(−µ)
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with µ = R∆t and R the average counting rate. Assuming a flat prior for µ ∈ [0,∞] the posterior is

p(µ|n) = C
µn

n!
exp(−µ)

with C a normalisation constant which turns out to be unity: the Poisson distribution has the remark-
able property that it is normalized with respect to both n and µ:

∞∑

n=0

P (n|µ) =

∞∑

n=0

µn

n!
exp(−µ) = 1 and

∫ ∞

0

p(µ|n) dµ =

∫ ∞

0

µn

n!
exp(−µ) dµ = 1.

The mean, second moment and the variance of the posterior are

<µ> = n+ 1, <µ2> = (n+ 1)(n+ 2), <∆µ2> = n+ 1.

The log posterior and the derivatives are

L = constant− n ln(µ) + µ,
dL

dµ
= 1− n

µ
,

d2L

dµ2
=

n

µ2
.

Setting the derivative to zero we find µ̂ = n. The square root of the inverse of the Hessian at the mode
gives for the width σ =

√
n.

(ii) The probability p(τ |R, I) dτ that the time interval between the passage of two particles is between
τ and τ + dτ is given by

p(τ |R, I) dτ = P (‘no particle passes during τ ’)× P (‘one particle passes during dτ ’)

= exp(−Rτ)×Rdτ.

Exercise 4.9

The derivatives of the characteristic function (4.26) are

dφ(k)

dk
= (iµ− kσ2) exp

(
iµk − 1

2
σ2k2

)
d2φ(k)

dk2
=
[
(iµ− kσ2)2 − σ2

]
exp

(
iµk − 1

2
σ2k2

)
.

From (4.25) we find for the first and second moment

<x> =
1

i

dφ(0)

dk
= µ <x2> =

1

i2
d2φ(0)

dk2
= µ2 + σ2

from which it immediately follows that the variance is given by <x2> − <x>2= σ2.

Exercise 4.10

From (4.24) and (4.26) we have

φ(k) = φ1(k)φ2(k) = exp

[
i(µ1 + µ2)k − 1

2
(σ2

1 + σ2
2)k2

]

which is just the characteristic function of a Gauss with mean µ1 + µ2 and variance σ2
1 + σ2

2 .

Exercise 5.2

From differentiating the logarithm of (5.14) we get

−∂ lnZ

∂λk
= − 1

Z

∂Z

∂λk
= − 1

Z

n∑

i=1

mi
∂

λk
exp




m∑

j=1

λjfji




=
1

Z

n∑

i=1

fkimi exp




m∑

j=1

λjfji


 =

n∑

i=1

fki pi = βk.
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Exercise 6.1

The log posterior of (6.3) is given by

L = Constant +
1

2

n∑

i=1

(
di − µ
σ

)2

.

Setting the first derivative to zero gives

dL

dµ
= −

n∑

i=1

(
di − µ
σ2

)
= 0 ⇒ µ̂ =

1

n

n∑

i=1

di.

The Hessian and the square root of its inverse at µ̂ are

d2L

dµ2
=

n∑

i=1

1

σ2
=

n

σ2
⇒

[
d2L(µ̂)

dµ2

]− 1
2

=
σ√
n
.

Exercise 6.4

By substituting t = 1
2χ

2 we find for the average

<χ2> =

∫ ∞

0

χ2p(χ2|ν) dχ2 =
2

Γ(α)

∫ ∞

0

tαe−t dt =
2Γ(α+ 1)

Γ(α)
= 2α = ν.

Likewise, the second moment is found to be

<χ4> =

∫ ∞

0

χ4p(χ2|ν) dχ2 =
4

Γ(α)

∫ ∞

0

tα+1e−t dt =
4Γ(α+ 2)

Γ(α)
= 4α(α+ 1) = ν(ν + 2).

Therefore the variance is

<χ4> − <χ2>2= ν(ν + 2)− ν2 = 2ν.

Exercise 6.6

In case of a polynomial parameterisation

f(x;a) = a1 + a2x+ a3x
2 + a4x

3 + · · ·

the basis functions are given by fλ(x) = xλ−1. To give an example, for a quadratic polynomial the
equation (6.24) takes the form



∑
i wi

∑
i wixi

∑
i wix

2
i∑

i wixi
∑
i wix

2
i

∑
i wix

3
i∑

i wix
2
i

∑
i wix

3
i

∑
i wix

4
i






â1
â2
â3


 =



∑
i widi∑
i widixi∑
i widix

2
i


 .

Exercise 6.7

In case f(x;a) = a1 (fit to a constant) the matrix W and the vector b are one-dimensional:

W =
∑

i

wi, b =
∑

i

widi.

It then immediately follows from Eqs. (6.24) and (6.26) that

â1 =

∑
i widi∑
i wi

± 1√∑
i wi

.

82



Exercise 6.8

The covariance matrix V ′ of r and s is given by (6.28) as

V ′ij = σ2
i δij , V ′λµ = δλµ, V ′iλ = 0.

Differentiation of (6.27) gives for the derivative matrix D

Dij =
∂di
∂rj

= δij , Diλ =
∂di
∂sλ

= ∆iλ.

Carrying out the matrix multiplication V = DV ′DT we find

Vij =
∑

k

∑

l

DikV
′
klD

T
lj +

∑

λ

∑

µ

DiλV
′
λµD

T
µj

=
∑

k

∑

l

δikσ
2
kδklδlj +

∑

λ

∑

µ

∆iλδλµ∆jµ

= σ2
i δij +

∑

λ

∆iλ∆jλ.

Exercise 6.9

From (6.37) we have for the log posterior

L(a, s) = Constant + 1
2

n∑

i=1

wi

(
di − ti(a)−

m∑

λ=1

sλ∆iλ

)2

+ 1
2

m∑

λ=1

s2λ.

Setting the derivative to zero leads to

∂L(a, s)

∂sλ
= −

n∑

i=1

wi(di − ti)∆iλ +

m∑

µ=1

sµ

n∑

i=1

wi∆iλ∆iµ + sλ = 0.

This equation can be rewritten as

m∑

µ=1

sµ

(
δλµ +

n∑

i=1

wi∆iλ∆iµ

)
=

n∑

i=1

wi(di − ti)∆iλ.

But this is just the matrix equation
∑
µ Sλµsµ = bλ as given in (6.39).

Exercise 6.10

The best estimate µ̂ of the temperature is, according to Exercise 6.7, given by the weighted average.
Setting di = d and wi = 1/σ2

i = 1/σ2, we find for the average and variance of n measurements

µ̂ =

∑
widi∑
wi

= d and <∆µ̂2> =
1∑
wi

=
σ2

n
.

1. Offsetting all data points by an amount ±∆ gives for the best estimate µ̂± = d±∆. Adding the
statistical and systematic deviations in quadrature we thus find from the offset method that

µ̂ = d±
√
σ2

n
+ ∆2 ⇒ µ̂ = d±∆ for n→∞.

2. The matrix S and the vector b defined in (6.39) are in this case one-dimensional. We have

S = 1 + n

(
∆

σ

)2

, b =
n(d− µ)∆

σ2
,

∑
wi(di − ti)2 =

n(d− µ)2

σ2
.
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Inserting this in (6.42) we find, after some algebra

L(µ) =
1

2

n(d− µ)2

σ2 + n∆2
,

dL(µ)

dµ
= − n(d− µ)

σ2 + n∆2
,

d2L(µ)

dµ2
=

n

σ2 + n∆2
.

Setting the first derivative to zero gives µ̂ = d. Equating the error as the square root of the
inverse of the Hessian (second derivative at µ̂) obtains the same result as from the offset method:

µ̂ = d±
√
σ2

n
+ ∆2 ⇒ µ̂ = d±∆ for n→∞.

We now add a second set of n measurements which do not have a systematic error ∆. The weighted
average gives for the best estimate µ̂ and the variance of the combined data

µ̂ = d and <∆µ̂2> =
σ2

2n
.

1. Offsetting the first set of n data points by an amount ±∆ but leaving the second set intact
gives for the best estimate µ̂± = d ±∆/2. Adding the statistical and systematic deviations in
quadrature we thus find from the offset method that

µ̂ = d±
√
σ2

2n
+

(
∆

2

)2

⇒ µ̂ = d± ∆

2
for n→∞.

But this error is larger than if we would have considered only the second data set:

µ̂ = d± σ√
n

⇒ µ̂ = d± 0 for n→∞

In other words, the offset method violates the requirement that the error derived from all available
data must always be smaller than that derived from a subset of the data.

2. The matrix S and the vector b defined in (6.39) are now two-dimensional but with many zero-
valued elements since the systematic error ∆ of the second data set is zero. We find

S =

(
S 0
0 1

)
b =

(
b
0

)
,

where S and b are defined above. The log posterior of (6.42) is found to be

L(µ) =
1

2

[
2n

(
d− µ
σ

)2

− bS−1b
]

=
1

2

n(d− µ)2

σ2 + n∆2

(
2 + n

∆2

σ2

)
.

Solving the equation dL(µ)/dµ = 0 immediately yields µ̂ = d. The inverse of the second
derivative gives an estimate of the error. After some straight forward algebra we find

µ̂ = d±
(
σ2

n
+ ∆2

)(
2 + n

∆2

σ2

)−1
.

It is seen that the error vanishes in the limit n→∞, as it should be.

Exercise 8.1

In (3.11) we state that the posterior p(λ|d, H1) is Gaussian distributed in the neighborhood of the mode

λ̂. Indeed, that is exactly what we find inserting Eqs. (8.4), (8.5) and (8.6) in Bayes theorem,

p(λ|d, H1) =
1

σ
√

2π
exp


−1

2

(
λ− λ̂
σ

)2

 .
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The approximations made in Eqs. (8.4) and (8.5) are thus consistent with those made in (3.11).

Exercise 8.2

When Hi has n free parameters λλλ and Hj has m free parameters µµµ, the Occam factor in (8.8) becomes
the ratio of multivariate Gaussian normalisation factors, see (3.11):

√
(2π)m |Vµ|
(2π)n |Vλ|

.
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Index

AIDS example, 10, 11
algebra of plausibility, 7
Aristotelian logic, 5
assignment, see probability assignment
average, see mean

background information, 11
Bayes’ factor, 66
Bayes’ theorem, 9, 13

for a complete set of hypotheses, 11
Bayes, T., 14
Bayesian inference, 4

discards irrelevant information, 30
steps taken in, 35, 53, 63–64

Bayesian probability, see probability
Bayesian network, 63
Bernoulli’s urn, drawing from, 24–26
Bernoulli, J., 14, 24, 28
bias

biased result, 58, 60
of a coin, 35

binomial distribution
definition and properties of, 26–28
posterior of, 28, 30, 35

binomial error, 22, 28
Boolean algebra, 7
Breit-Wigner distribution, 19

Cauchy distribution, 19, 46
causal dependence, 9, 26
central limit theorem, 33–34
characteristic function, 33
χ2 distribution, 47
χ2 minimisation, see least squares
closure relation, 11
completing the squares, 73, 78
composite hypothesis, see hypothesis
condition number, 23
conditional probability, definition of, 8
confidence interval, 49
confidence level, 49
conjunction, see logical and
contradiction, 5
coordinate transformation, 20
correlated data errors, 51–56

correlation coefficient, 17
covariance matrix, 22–23

as the inverse of the Hessian, 18
definition of, 17
linear transformation of, 22
of systematic errors, 53

coverage, 49
Cox’ desiderata, see desiderata
Cox, R.T., 7, 14
credible interval, 48
cumulative distribution, 12

de Morgan’s laws, 5
decision theory, 7
deduction; deductive inference, 6
degree of belief, see plausibility
degree of freedom, 46, 47
density, see probability distribution
desiderata of plausible inference, 7–8
diagonalisation, 22
disjunction, see logical or
distribution, see probability distribution
drawing with(out) replacement, 25–27

eigenvalue equations, 23
entropy, 39
error propagation, linear, 21–22
error contour, 22
estimator, 15
evidence, 9, 67
exclusive propositions, 9
expansion, definition of, 11, 12
expectation value, 17
exponential distribution, 42

Fourier transform, 33
Fourier convolution, 20
Frequentist probability, see probability

Gamma function, 47
Gauss distribution

characteristic function of, 34
from central limit theorem, 33
from maximum entropy, 42
from symmetry considerations, 38
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marginalisation of, 19, 72–73
multivariate, definition of, 18
normalisation of, 72

Gaussian sampling, 44–47

Herschel, J., 38
Hessian matrix, definition of, 18
histogram, 32

sparsely populated, 58–59
hypothesis

complete set of, 10, 66
simple and composite, 43

implication, 5
improper distribution, 37
independent propositions, 9
induction; inductive inference, 6
inference, 6
information entropy, see entropy
invariance, see symmetry considerations

Jacobian matrix, definition of, 21
Jaynes, E.T., 4, 39
Jeffreys prior, 37
joint probability, definition of, 8

Kolmogorov axioms, 8

Lagrange multipliers, 41
Laplace, P.S., 14
law of large numbers, 28
least informative probability, 39
least squares minimisation, 50–51
Lebesgue measure, 39

non-uniform, 42
likelihood

definition of, 9
in unphysical region, 36
width, compared to prior, 36

likelihood principle, 16
linear parameterisation, 50
location parameter, 37
log likelihood, see maximum likelihood
logical and, 5
logical or, 5
logical dependence, 9, 26
lognormal distribution, 61

marginal probability, definition of, 8

marginalisation, definition of, 11, 12
MAXENT, see maximum entropy
maximum entropy principle, 39–43
maximum likelihood fit, 50, 58
mean, definition of, 17
median, definition of, 19
Mellin convolution, 20
mode, definition of, 18
model selection, 65–71
moments

definition of, 17
from characteristic function, 33

multinomial distribution, 31

negation, 5
negative binomial distribution, 28–29
network, see Bayesian network
normalisation condition, 10, 12
normalisation uncertainties, 60–61
normal distribution, see Gauss distribution
nuisance parameters, 44

Occam factor, 67
Occam’s razor, 65
odds ratio, 66
offset method, 51
optional stopping, see stopping problem
orthogonal transformation, 23
outlier sensitivity, 62

p-value, 19
parameter estimation, 43–51
partition function, 40
penalty χ2, 60
permutation invariance, 37
plausibility, plausible inference, 7
Poisson distribution, 32–33

from maximum entropy, 42
posterior, for uniform prior, 81

polynomial fit, 51
positive definite matrix, 22
posterior probability, definition of, 9
principle of insufficient reason, 24

from maximum entropy, 41
from permutation invariance, 37

prior odds, 66
prior probability, definition of, 9
prior certainty, 11, 35
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probability
Bayesian definition of, 4, 7
Frequentist definition of, 4, 15

probability calculus, 8–13
probability density, definition of, 12
probability inversion, see Bayes’ theorem
probability assignment, 24–34

using invariance, 37–38
using MAXENT, 39–43

product rule, 8, 12

quadratic addition of errors, 22
quantile, 19

random variable, 15, 48
residual, 45
rotation, see orthogonal transformation

sample mean, 45
sample variance, 45
sampling probability, definition of, 11
scale parameter, 37
Shannon, C.E., 39
simple hypothesis, see hypothesis
standard deviation, 17
statistic, 15, 48
stopping problem, 16, 29–31
strong syllogism, see syllogism
Student-t distribution, 46–47
subjective probability, 14
sum rule, 8
syllogism, 6
symmetry considerations, 37–38
systematic errors, see correlated errors

tautology, 5
Taylor expansion

of log posterior, 18
test statistic, 15
testable information, 40
transitivity, 7
truth table, 5

un-informative probability, 13, 36
uniform distribution

from maximum entropy, 41
from symmetry, 37

variance, 17

Venn diagram, 8

weak syllogism, see syllogism
weighted average, 51
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