Probability
assignment




We have seen the basics of
probability calculus ...

... but what about
probability assignment?



Principle of Insufficient Reason

e |fwehaveasetof N 0.15 ; Bernoulli, 1713
exhaustive and

mutually exclusive 0.1 1
hypotheses H; and
there is no reason to 0.05
prefer any of them
then we must assign 0 |

P(Hll)=1/N H2 H3 H4 H5 H6 H7 H8 H9

e Thisis the principle we use to assign P(head|/) =0.5in
unbiased coin flipping or P(3|/) = 1/6 in dice throwing
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Toy Model: Bernoulli’s Urn

® An urn contains N balls, with R red and N-R white balls
® \What is the probability to get a red ball at the first draw?

Everybody knows the answer: P(R,|/) = R/N and this is
usually taken for granted

But where does this assignment actually come from?

® To see this, we will derive this result from scratch using

nothing else but the principle of insufficient reason and
the rules of probability calculus

But buckle-up: at the end of the road we will make some
observations which you may find quite remarkable ...

Michiel Botje Nikhef 2013 Topical Lectures Bayesian Inference (2)



® Label each ball and define the exhaustive and
exclusive set of hypotheses

H,; := ‘this ball has label ¢’

e Use the principle of insufficient reason to assign

1

® Also define the exhaustive and exclusive set

Hpr := ‘this ball is red’
Hyy = ‘this ball is white’
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® Now expand in the set H,

P (HelTy = S (H | Hi) (H | T)

I R

® |nthe last step we made the trivial assignment

P(Hg|H;, I) = { L if ball *2" 1s red

0 otherwise.

This simple example clearly shows expansion as a
powerful tool in probability assignment



What is the probability that the second ball is red?

e Drawing with replacement (contents do not change)

R
P(Rs|l) = <
e Drawing without replacement (contents do change)
R—1
P(R:|Ry, 1) = N1
. R

e Here we know the outcome of the first draw, but
what happens when we do not know this outcome?
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e |[f we draw without replacement and do not know
the outcome of the first draw then the probability

that the second draw is red is found by expansion
in the set {R,, W}

(R2|I) = (R2 R1><R1 I) + <R2\W1><W1\I>

A =3 x AS el ! % =

H—lR R W R

p— "\ —_— l ‘\ ‘__\_' - l i\}_‘ — *\.T

= This does not depend on the outcome of the first
draw and thus not on the contents of the urn which

has changed after the first draw!



e \We have seen that the outcome of the
first draw can influence the probability of
the outcome of the second draw, in case

we draw witho

ut replacement and know

the color of the first ball

The first event

influences the second

which is kinda natural, right?

But now we wi
of the second @

| show that the outcome
raw can influence the

probability of t

ne first draw!



The probability that the first ball is red is R/N
Blindly draw the first ball, without recording its color
Draw he second ball and it is red

The probability that the first ball is red is now not R/N
as Bayes’ theorem shows
P(Rs|Ry) P(R) R—1

P(Fa|R2) = P(Ry|R1) P(Ry) + P(Ro|[W1) P(W;) N —1

The color of second ball can influence the probability
of the color of the first balll

This is of course not a causal but a logical relationship



Here is a simple example to make it clear

An urn contains one red and one white ball

The probability of a red ball at the first draw is %
Lay the ball aside without knowing its color

Now draw the second ball

If the second ball is red, then the probability that
the first ball is red is 0 and not %
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Binomial distribution

® | et h be the probability that a coin flip gives heads

® The probability to observe n heads in N flips is the
binomial distribution (see writeup for derivation)

N
nl(N —n)!

P(n|N,h) = (1 — h)N "

® Applies to cases where the outcome is binary like
ves/no, head/tail, good/bad ... and where the
probability h is the same for all trials
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<n>= Nh <An*>= Nh(1 —h)

P(r|10,0.25) P(r|20,0.25) P(r|40,0.25)
0.2 0.14
0.25 0.12
0.2 0.15 0.1
0.15 0.08
o 01 0.06
. 0.04
0.05
0.05 0.02 I I
i [ l. ) Ny Li.
0 2 4 6 8 10 0 2 4 6 8 10 12 14 0 5 10 15 20 25

<”>=h:\/h(h_1) . hfor N — oo

The fact that n/N converges to h is called the law
of large numbers and provides the link between a
probability (h) and a frequency (Bernoulli 1713)
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The binomial posterior
Bayes’ theorem gives for the posterior of h
p(h, |n, N)dh = C P(n|h, N)p(h|I) dh

A uniform prior p(h|I) = 1 yields upon calculation of the
normalization constant C

(N +1)! N
h.|ln.N)dh = R (1 — BN =) gp
p(h,|n, N) (N — )] ( )

Looks like the Binomial but isn’t since it is a function of h not n

The mode and width (inverse of the Hessian) are

N N




Posterior for the first three flips of a coin

NB: the distributions are scaled to unit maximum for ease of comparison

pihy 0/1 pih) 0/2 pih) 13
1 | 1
08¢ 0.8 08
06} 0.6 06
04} 0.4 04
02 0.2 02
h h h
02 04 06 08 1 02 04 06 08 1 02 04 06 08 1
No head in one throw No head in two throws One head in three throws
The data exclude the The data favor lower The data favor lower values
possibility that h=1 values of h of h and exclude that h=0
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Error on a 100% efficiency measurement

® One may ask the question how to calculate the error on an
efficiency measurement where a counter fires N times in N
events. Binomial statistics tell you that the error is zero

N  Je(l—¢)
E—N—l AS—\/ N =0

Here is the Bayesian answer: assuming a uniform prior, the
(normalised) posterior of € for n hits in N events is
(N + 1)!

pelnN) = et

p(e|N,N) = (N+1)&V



® |ntegrating the posterior gives the a confidence limit

1—a:/p(6\N,N)d5:a(N+1> — a=(1—a)/O+D)
0

e If N=4 and we choose a =0.65 then we find o =0.81

® The 65% CLresult is 55 /
thus, for N = 4: el /
3L
_ 1 +0 2|
=1 _0.19 1 / 6%
% 02 04 0.6 0.8 1
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Negative binomial

® Draw N times = the number of heads (n) is the
random variable with binomial distribution

® \Wait for n heads = the number of draws (N) is the
random variable with negative binomial distribution

P(N|n,h) = Binom(n — 1|N —1,h) x Binom(1|1, h)

— V- 1) RN (1 —h)N"
(n —1)(N —n)! |

® The likelihood for n heads in N trials thus depends on
the stopping strategy
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<N >=ng <AN?*>=nqg(q—1) q=1/h

P(N|3,05) P(N|9,05) P(N|20,0.5)
0.2 0.07
0.1 0.06
0.15 0.08 0.05
0.04
0 0.06
0.03
0.04
0.05 0.02
| L I " H
III--N .I IIlIl- N .I|| ||||I||-. N
4 6 8 10 12 14 10 15 20 25 30 35 30 40 50 60 70

<N > \/q(q—l) 1

= q = >q:—fornﬁoo
n

n h

Thus N/n converges to 1/h but the reciprocal
n/N does not converge to h (see next slide)
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Stopping problem: Frequentist

® Observe n heads in N flips of a coin with bias h
® Define statistic R = n/N as an estimate for h

® |f we stop at N flips then <R> converges to h because n
follows a binomial distribution

® |f we stop at n heads then <R> does not converge to h
because N follows a negative binomial distribution

n n n

oy =h bt <R>=<N>:”<%>#<—N>

® The correct statistic would be Q = N/n that converges to 1/h

Given n heads in N flips but no stopping rule,
the Frequentist cannot analyse these data!
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Stopping problem: Bayesian

® Observe n heads in N flips of a coin with bias h
® |f we stop at N flips then the posterior of h becomes

p(h|n, N) = C Binom(n|N, k) p(h|I) = C h™(1 — b)Y =" p(h|I)
® If we stop at n heads then the posterior of h becomes

p'(h|n, N) = C’ Negbin(N|n, h) p(h|I) = C" h"(1 — h)N =" p(h|I)

® Normalisation gives C = C’ and thus p = p” which means that
Bayesian inference is not sensitive to the stopping rule!

This shows that Bayesian inference automatically discards
irrelevant information in accordance with Cox’ desideratum 32
which states that only relevant information should play a role
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Other standard distributions
are discussed in the write-up
and are not presented here

® Multinomial distribution

e Poisson distribution

e Gauss distribution from the
central limit theorem

Up to now, assignments are
based on the modeling of
random processes which

unambiguously determines

the probability distribution

Michiel Botje Nikhef 2013 Topical Lectures

4.5 Multinomial distribution

A generalisation of the binomial distribution is the multinomial distribution which
applies to N independent trials where the outcome of each trial is among a set of k
alternatives with probability p;. Examples are drawing from an urn containing balls
with & different colours, the throwing of a dice (k = 6) or distributing N independent
events over the bins of a histogram.

The multinomial distribution can be written as

ul

7 M n n
P(n|p,N) =m171"“17kk (4.17)

where n = (nq,...,n) and p = (p1,...,py) are vectors subject to the constraints

k k
Zni =N and Zp, =1 (4.18)
i—1 i—1

The multinomial probabilities are just the terms of the expansion
(o +-+ o)V

from which the normalisation of P(n|p, N) immediately follows. The average, variance
and covariance are given by

<n;> = Np;
<An?> = Npi(l-p)
<An;An;> = —Npjp; for i#j. (4.19)

Marginalisation is achieved by adding in (4.17) two or more variables n; and their
corresponding probabilities p;.

Exercise 4.5: Use the addition rule above to show that the marginal distribution of each

n; in (4.17) is given by the binomial distribution P(n;|p;, N) as defined in (4.5).

The conditional distribution on, say, the count ny, is given by

P(m|ny,q, M) = AR a gt
T gyt k=1
where
1 =
m=(ny,....,nk-1), =i, ,Pr1), S= Zp, and M = N —n.
s
i1

Exercise 4.6: Derive the expression for the conditional probability by dividing the joint
probability (4.17) by the marginal (binomial) probability P(ny|pk, N).

30

Bayesian Inference (2) 22



e Until now we have not paid much
attention to the role of the prior in
Bayesian inference

p(zly, I) p(y|1)
p(zly, I) p(y|1)dy

p(y\a:, [) — f

® To get anidea, lets flip some coins



Is this coin



® Denote biasbyO<h <1

h =0.0: two tails

h = 0.5 : unbiased coin
h=1.0:two heads

® The likelihood for n heads in N throws is

N!
nl(N —n)!

P(n|h,N) = (1 — h)N "

® The posterior is

p(hln, N)dh = CP(n|h, N) p(h|I)dh

e How does the posterior behave for different priors?

Michiel Botje Nikhef
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1. Flat prior

p(h) 0/0 p(h) 3/10 phy  21/100 pthy  255/1000

1 1 1 1
0.8 0.8 0.8 08
0.6 0.6 0.6 06
04 04 04 04
0.2 0.2 0.2 0.2

h h h h
02040608 1 02040608 1 02040608 1 02040608 1

Posterior converges to h = 0.25 when the
number of throws increases

Michiel Botje Nikhef 2013 Topical Lectures Bayesian Inference (2) 26



2. Strong prior preference for a fair coin

pih) 0/0 pthy 310 pthi 21/100 phy  255/1000

1 I | 1
06 I 06 |Pl| 08 {\ 08 r\
06 | 06 1 06 | 06 J
04 } | 04 /| 04 i 04 ||
02 /| 02 | 02f | 02| |

\ I\ h J \ b it ,
02040608 1 02040608 1 02040608 1 02040608 1

Posterior converges to h = 0.25 but slower
than for a flat prior = it takes a lot of
evidence to change a strong prior belief
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3. Exclude the possibility that h < 0.5

pihy 0/0 pih) 310 pih) 21100 pihy  255/1000

1 I || i 1
08 0.8 0.8 08
0.6 0.6 0.6 0.6
04 0.4 0.4 04
0.2 0.2 0.2 L 0.2

h h h h
02040608 1 02040608 1 02040608 1 02040608 1

Posterior cannot go below h=0.5 = no
amount of data can change a prior certainty
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pih)
1

Posterior for different priors

This coin is definitely biased with h = %: do you know how to make such a coin?

0/0

0.8
06
04
0.2

pih)

1
0.8
06
04
0.2

h
02040608 1

0/0

pih)

1
08
06

04
02

h
02040608 1

0/0
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h
02040608 1

pch) 3/10
1

0.8

06

04

0.2

020406 08 1

pch) 3/10
1

0.8

0.6

0.4

0.2

02040608 1

p(h) 3/10
1

08

0.6

0.4
02

h
02040608 1

pih)

1
0.8
06
04
02

21/100

pih)
1
0.8
06
0.4
02

02040608

21/100

1

pih)
1
0.8
0.6

0.4
0.2

02040608

21/100

h
1

02040608

h
1

pthy 25511000
1

0.8

06

04

0.2

0204 06 0.8

pthy  255/1000
1

0.8

0.6

04

0.2

020406 038

pthy  255/1000

020406 08

Remark: all posteriors are scaled to unit height for ease of comparison
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What did we learn from this coin flipping experiment?
1. Conclusion depends on prior information, which always
enters into inference (like axioms in mathematics)

For instance, we investigate the coin beforehand and conclude
that it is unbiased. Then 255 heads in 1000 throws tells us

that we have witnessed a rare event

or that something went wrong with the counting
or that the coin has been exchanged

or that some mechanism controls the throws

but not that the coin is biased!

2. Unsupported information should not enter into the prior
because it may need a lot of data to converge to the correct

result in case this prior turns out to be wrong

3. No amount of data can ever change a prior certainty
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When are priors important?

If the prior is very wide compared to the likelihood then
obviously it doesn’t matter what prior we take

If the width of the likelihood is comparable to that of any
reasonable choice of prior then it does matter

In this case the experiment does not carry much information
so that answers become dominated by prior assumptions
(perhaps you should, if possible, look for better data!)

The likelihood peaks near a physical boundary or resides in an
unphysical region; the information on the boundary is then
contained in the prior and not in the data (neutrino mass
measurements are a famous example)
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Least informative priors

® Many assignments are based on expansion into a set of
elementary probabilities, which are perhaps again expanded,
until one hits assignment by the principle of insufficient reason

® Extension of this principle to continuous variables implies that
one takes a uniform distribution as maximally un-informative

® But a coordinate transformation can make it non-uniform

(informative) so that we have to look elsewhere for a least
informative probability assignment

= Invariance (symmetry) arguments
= Principle of maximum entropy (MAXENT)

= Just make some reasonable ansatz
—
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Insufficient reason from symmetry

0.15 -

® Suppose we have an
enumerable set of hypothesis ']
but no other information

0.05 -

e Plot the probability assigned to

each hypothesisin a bar chart °°

H1 H2 H3 H4 H5 H6 H7 H8 H9

® |t should not matter how they would be ordered in the chart

® But our bar chart can only be invariant under permutations
when all the probabilities are the same

® Hence Bernoulli’s principle of insufficient reason
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Translation invariance

® Let x be a location parameter and suppose that
nothing is known about this parameter

® The probability distribution of x should then be
invariant under translations (otherwise something
would be known about x)

p(z)dr = p(z +a)d(x + a) = p(z + a)dx

® But this can be only satisfied when p(x) is a constant
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Scale invariance

® | et r be a positive definite scale parameter of which
nothing is known

® Scale invariance implies that forr>0and a >0
p(r)dr = p(ar)d(ar) = ap(ar)dr
® But this is only possible when
p(r) o< 1/r

® This is called a Jeffrey’s prior

® A Jeffrey’s prior is uniform in In(r) and assigns equal
probability per decade instead of per unit interval
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Improper distributions

® The uniform prior cannot be normalised on the
range [-oo,+oo] and the Jeffrey’s prior not on (0,o°]

® Such distributions are called improper

® Should be dealt with by defining them in a finite
range [a,b] and then take the limit at the end of the
calculation

® |f the posterior is still improper it means that the
likelihood cannot sufficiently constrain the prior:
your data simply do not carry enough information!
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Gauss distribution from invariance

Uncertainty in star position (Herschel 1815)

He postulated

= Position in x does not yield mformatlon
" on position in y

= Distribution does not depend on ¢

From this alone he derived the Gauss d.istribution (Writeup p.38)

1 x2 4+ y2 :
ex -
Qo2 p i 952

p(x,y|I) =

Michiel Botje Nikhef 2013 Topical Lectures Bayesian Inference (2)

37
]



Incomplete information

Suppose we know that a dice is fair

Then we can use the principle of insufficient
reason to assign P( k|I) = 1/6 to throw face k

We also know that< k>=3.5

Now suppose we are given that < k > =4.5 but nothing else

Then there are infinitely many probability assignments that
satisfy this constraint

Armed with this incomplete information, what probability
should we assign to throw face k ?
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Principle of maximum entropy

® Jaynes (1957) has proposed to select the least
informative probability distribution by maximising

the entropy, subject to the constraints imposed by
the available information

® For a set of discrete "
hypotheses "

s oyem(Z) -

® |arger entropy means less information content

Michiel Botje Nikhef
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Information entropy

® |nformation entropy (Shannon 1948)

n

_ )i

S(p1..... Pn) = — g p;i In (1—2) (discrete case)
— m;

o
S(p) = — / p(z)In [1(< ))] dr (continuous case)
m(x

® Here mis the Lebesgue measure that satisfies

n

Z m; =1 or / m(x)dr =1

=1

® |ebesgue measure assigns a size’ to any subset of the sample
space and makes S invariant under coordinate transformations
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Lebesgue measure

® Suppose we measure annual
rainfall by collecting water in
ponds of different size

e The amount of water
collected must obviously be
normalised to the surface of
each pond

® Thisisthe role of the Lebesgue measure m;in

Michiel Botje Nikhef 2013 Topical Lectures Bayesian Inference (2)
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Another view on the m,

® N probabilities with nothing ip .,
known except normalisation — '

N
® The information entropyis 5= — > Pin (i)
— my
® To maximise the entropy we

have to solve, using
Lagrange multipliers

zpm< >+>\<ZP1>] 0

® This leads to (see writeup) P, =m;

e The Lebesgue measure is the least informative distribution
when nothing is known, except the normalisation constraint;
it is a kind of Ur-Prior
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Testable information

® |n the previous slide we have maximised the entropy while
satisfying the normalisation constraint

® Additional constraints like specifying means, variances or
higher moments are called testable information (because
you can test that your distribution satisfies such constraints)

® Maximising the entropy now becomes more complicated

[szln( ) + No (sz - 1) +Z/\’~ (Z Fops — [ )] 0

[ Normalisationconsﬁh  Testable con/s%

Michiel Botje Nikhef 2013 Topical Lectures Bayesian Inference (2)
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MAXENT recipe for continuous distributions

® f.(x)is a set of functions with given expectation values

/fk p(x|l)dx = By

® The partition function (normalisation integral) is

= /m(iv) exp [ ZAkfk(l’)]
k

® The MAXENT distribution satisfying the constraints is
1
HelD) = ko) exp | - Y|

Substitute this solution back into the constraint equations to
solve for the Lagrange multipliers A, (often numerically)
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In the write-up you can find
how MAXENT is used to
derive a few well known
distributions

Uniform distribution
Exponential distribution
Gauss distribution
Poisson distribution

Here the Gauss distribution
is of particular interest ...

For a continuous distribution p(z|I), the above reads as follows. Let

/ fr(@)p(z|l)dz = 3 k=1,...,m (5.16)

be a set of m testable constraints. The distribution that maximises the entropy is then
given by

plx|l) = %m(m) exp {7 Z /\k‘fk(4l?):| . (5.17)
k=1

Here the partition function Z (normalisation integral) is defined by

Z(Aiyee o Am) = / m(x) exp {7 i )\kfk(;l:)} daz. (5.18)
=)

The values of the Lagrange multipliers \; are either found by solving (5.15), or by
substituting (5.17) back into (5.16).

Exercise 5.2: Prove (5.15) by differentiating the logarithm of the partition function (5.14)
or (5.18).

5.4 MAXENT distributions

In this section we will derive from the maximum entropy principle a few well known
distributions: the uniform, exponential, Gauss, and Poisson distributions. The fact
that they can be derived from MAXENT sheds some new light on the origin of these
distributions; it means that they are not necessarily related to some underlying random
process, as is assumed in Frequentist theory (and also in Section 4) but that they can
also be viewed as least informative distributions. With the MAXENT assignment, we
indeed have moved far away from random variables, repeated observations, and the like.
If there are no constraints, f(z) = 0 in (5.16) so that it immediately follows from (5.17),
(5.18) and (5.7) that
p(x|I) =m(x).

For a sample space without structure this gives a uniform distribution, in accordance
with the continuum limit of Bernoulli’s principle of insufficient reason.

Let us now consider a continuous distribution defined on [0, 0o] and impose a constraint
on the mean

<z> :/wzp(zu)dr:,u (5.19)

0
so that f(z) = zin (5.16). From (5.17) and (5.18) we have, assuming a uniform Lebesgue
measure, . B

p(all) = e [/ e dar] = e,

Jo

Substituting this into (5.19) leads to
/ﬂm;z: e M dr = % =pn

40
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Noise with constraint on the variance

OO

e Constraint / (¢ — p)* p(|I) de = o

OO

® (alculating the normalisation integral and feeding
back the MAXENT distribution into the constraint
equation to solve for the Lagrange multiplier gives

= @Gauss distribution

1 1 x—,uZ
x\u,o,l) = exp | —=
plaliond) = ——exp |5 (1)

— We don’t need to invoke the Central Limit Theorem
to justify a Gauss!
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To summarise ...

® \Well known distributions like uniform, exponential
and Gauss can be seen as least informative
distributions

® |n particular the Gauss distribution is the best way
to describe noise of which noting else it known

than its level (given by the variance o)

® \We do not need to invoke the central limit
theorem to justify a Gauss!

® Note that MAXENT assignment is quite a far cry
from frequentist ensembles, repeated
observations, random variables and so on!
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What we have learned

® Basic assignment through the principle of insufficient
reason + probability calculus
® Priors are important when

® Likelihood is wide (data do not carry much information)

® Likelihood resides near an physical boundary, or even outside
(information on boundary is in the prior and not in the data)

® Priors should not contain unsupported information

® Assignment of least informative probabilities by:

® Principle of insufficient reason for an enumerable, exhaustive and
mutually exclusive set of hypotheses

® Symmetry (invariance) arguments

® Principle of maximum entropy (MAXENT)



v/ Lecture 1
Basics of logic and Bayesian probability calculus
v/ Lecture 2
Probability assignment
® Lecture 3
Parameter estimation
® |ectured

Glimpse at a Bayesian network, and model selection
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