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Abstract— The general consensus in literature concerning Einstein’s 1905 paper on 

special relativity, is that he independently derived the Lorentz transformations using a 

kinematic method. That is he was apparently unaware of the latter work of Lorentz and 

others while composing the paper.  Here it is demonstrated that the derivation is 

mathematically inconsistent. There are several errors in the development and the main one 

is the inconsistent steps of requiring a partial derivative to be zero at one point, but 

necessarily finite at the last step.  This derivative can only equal zero if the relative velocity 

between the frames goes to zero.  It is also shown that the scheme of following a light beam 

reflecting between two moving mirrors (the kinematic method) cannot correctly arrive at 

the transformations. A study of many textbooks on relativity will reveal that this derivation 

is almost never used to introduce the Lorentz transformations. Only one source was found 

that discussed this particular method; and it was in an appendix.  

 

Index Terms—Einstein, History of Science, Special Theory of Relativity. 

 

HE first derivation of the Lorentz transformations given by Einstein was in the classic paper 

published in 1905.  To the best of our knowledge this method was never given again in any 

of his subsequent publications. An up-to-date discussion on the paper by A. Martinez [1] on the 

concepts and technique is illuminating. Briefly, he says the derivation contains ambiguities due 

to both imprecise notation and possible multiple definitions. Further investigation here reveals 

inconsistent math steps that invalidate the procedure. It is remarkable that the inconsistencies 

have not been noted in the literature.  One may justifiably ask “How can there be any errors 

noted now, after 110 years since the publication”? It is speculated that most readers of the paper 

apparently did not attempt to fill in the omitted steps where the problems arise. There has been 

uncertainty among historians and biographers about the question if Einstein knew the form of the 

equations he wanted, and sought to develop them; rather than obtaining them directly from the 

derivation itself without prior knowledge.  The results here answer the question; yes, he must 

have known the final form, but the steps used to get them were imprecise. The equations had 

been published prior to 1905 so it is not surprising that Einstein was aware of various forms for 

the transformations.  In his paperback [2] Max Born, a Nobel Laureate and personal friend of 

T 



Einstein, gave the following quote in the Introduction. “Relativity actually ought not be 

connected with a single name or with a single date. It was in the air about 1900 and several great 

mathematicians and physicists- Larmor, Fitzgerald, Lorentz, Poincare´, to mention a few- were 

in possession of many of its contents. In 1905 Albert Einstein based the theory on very general 

principles of a philosophical character, and a few years later Hermann Minkowski gave it final 

logical and mathematical expression.” In chapter VI Born developed Einstein’s kinematics and 

did not use the technique given in the 1905 paper. Instead he used a different approach to 

develop the Lorentz transformations.     
 

 

MATH 

The Lorentz transformations are as follows: 
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The constant  is given the symbol  in modern notation; but we are adhering to Einstein’s 

notation. The rest frame uses coordinates           while the frame moving at speed ‘v’ to the 

right uses (,,,). By definition x and t are independent variables as are  and . The scheme 

considers two mirrors stationary in the moving frame. They are parallel to the -axis and 

separated by an unspecified distance (which is chosen as ‘d’ for the moment). The lower edge of 

the left mirror is at the origin of the (,) plane. Now consider three successive events. They are: 

emission of a photon from the left mirror, reflection at the right mirror, and then returning to the 

left one. Assume the time instants recorded in the moving frame are 0, 1, 2. For an observer in 

the moving frame the time intervals for the photon to traverse the distance between the mirrors 

are equal, thus
1201   , then rearrange to   120 ][2/1   . Next assume the time instants for 

 may be expressed as a function in terms of x and t. That is: at Event 0,  000 , tx   where x0 

and t0 are coordinates of Event 0 as measured in the rest frame. Similarly  111 , tx  , etc. Next he 

states instead of solving for (x,t), solve for (x´,t) where x´ will be prescribed later.   



Now the procedure for developing x´; start with    2/, cvxttx   , replace x with (x´ + vt), then 
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These manipulations have rearranged things so that only x´ and t appear on the right side. Can 

we say this is (x´,t)? If we do, can we also say x´ and t can then be treated as independent 

variables? Since x´= x-vt, it appears x´ must depend on t. However if one assumes the values for 

x are only those that keep x´ a constant, then x´ (being a constant) is independent of t. Thus we 

attempt to justify the independence of x´ and t by stating: we are now following a point fixed in 

the moving system. Let  /1a , then the last line of (2) is exactly the expression for (x´,t) as 

given by Einstein. Thus    txtx ,,  , where a different interpretation must be given for each 

side of the equation. On the left x and t are independent whereas on the right x´ and t are treated 

as independent as we are following a fixed point in the moving system. The function (x´,t) was 

given as the solution of the following equation. 
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The steps to arrive at (3) were not given and an attempt will be made to provide them later. 

     Now the times of flight for a photon moving between the mirrors as perceived by the rest 

observer will be developed.  For the rest observer the mirror separation is not assumed to be ‘d’ 

but some value to be determined. For now let the separation be ‘L’ as measured in the rest 

system. At the instant of emission the right mirror is L units away. During the flight it moves the 

distance vtr where tr is the flight time. The photon must travel the total distance L + vtr. The 

photon always moves at speed c, so the total distance traveled is ctr.  Equating distances we find

 vcLtr  / . For the return trip after reflection, the total distance is now L - vtL. Again the 

photon’s speed is c, thus the total flight time while moving to the left is  vcLtL  / . The 

denominators in the previous expressions are the closing speeds between a moving mirror and a 

photon.   

     Next Einstein fills out the equation for the three time instants 
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A self-consistent interpretation is as follows. The right side indicates the first slot is for x´. The 



last slot is for the t as measured by the rest observer. The first term on the left means the photon 

emission occurs at some arbitrary time, which is event 0. The right side is event 1, and the 

photon is the distance x´ from the left mirror and the time is now t + x´/(c-v), where the second 

term is tr found earlier. The second term on the left is the return with the time now being the 

previous value with tL added. The photon is again at the left mirror so its distance from that 

mirror is zero (the first slot).  Thus at events 0 and 1 the photon’s distance from the first mirror is 

the appropriate value for x´. Therefore x´ must be the photon’s distance from the left mirror at 

different instants as measured in the rest frame. Thus the mirrors are separated the distance x´ in 

the rest frame. The next step is to show the steps to move from (4) to (3). These steps were not 

given by Einstein, and only one source has been found that shows some of them [3].  In his 

appendix Prokhovnik says take the partial with respect to x´ of (4), and he gives 
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This equation may be developed as follows. Start with the first term on the left side of (4),

   txt ,0,0,0,0,0,00   . Its partial is   0/ 
 xx where the subscript means evaluate the 

partial derivative at x´= 0. The second term on the left 

of (4) is 
 

    vcxvcxtx  //,0,0,02                         (6) 

 

For notational convenience write this as (x´= 0,u) where u is the argument in the last slot. Then 

      xuuxxux x
  ////, 02  where we have applied the chain rule. From (6) 

 

    vcxvcxtu  //   

 

so    vcvcxu  /1/1/ , since 0/  xt , as x´ and t are assumed to be independent. Then 

the left hand side is 
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Working on the right side of (4); here let  vcxtw  / , then using the chain rule again we find

    vcwx  /1//  . Assembling all terms we have 
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Inspection of (5) and (8) shows they can be equal under the following conditions. First u = w = t.  

This will be the case as x´ approaches zero. However, the second necessary condition 

 

0|/ 0 xx                         (9) 

 

 



causes a major problem. By inspection of (2), using the form where (1/) = a, 
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We see that (9) can only be satisfied if 0v . This is the fatal error which shows the entire 

derivation is invalid. It is interesting that 0v will allow x´ and t to be independent, for then x´ is 

just x.   

     By inspection, rearrangement of (5) results in (3). Since the previous steps do not get us to the 

desired result without internal inconsistencies, let us try another path. For x´ small, perhaps a 

Taylor expansion might work. Start with       00 ,0,0,0,0,0,0,0,0,0  xttxt   

Write 2 as 
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Recall for a Taylor series 
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Collecting all terms for (4) yields 
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Observe (0,0,0,t) cancels which leaves 
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Since t is arbitrary, choose it as zero, then 
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Therefore we are expanding about the point  0,0  tx .  Then if we restrict 0x , then we may 

divide it out of the above and arrive at 
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Which we observe is (5) of Prokhovnik. Therefore the same problem mentioned earlier is still 



present. This approach also shows an additional problem. Here we must expand about 0x but 

we also must divide by x´! Even if this problem can be argued away by a limiting explanation, 

the issue of requiring 0v cannot be overcome. The primary conclusion is therefore; one cannot 

arrive at (3) starting from (4).  This is the path stated in the paper; thus the derivation is invalid.   

     If, however, one just starts with (10) and takes partials assuming x´ and t to be independent, 

then 
 22//
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Multiply the first line by  22/ vcv   and then add this line to the second one and arrive at (3). 

However, (2) and (10) were developed by starting with the known expression for . 

   

Conclusion 

     The results of the analysis show that the derivation given in the 1905 paper is invalid.  It is 

flawed for several reasons.  The most serious is the contradictory requirement that the partial of 

with respect to x´ must be zero to arrive at the partial differential equation for determining .  

But the solution for  from that equation does not allow this to be the case.  The only way it 

could be satisfied is for v to be zero.  Another problem is that with a Taylor expansion 

attempting to get the defining partial differential equation, one must divide by x´ while starting 

with x´ equal to zero.  A third problem is the inconsistent reassignment of independence and 

dependence between the three variables x, t, and x´.  The derivation starts with x and t as 

independent, then defines x´ as being dependent on both.  Then later treats x´ and t as 

independent so x is then dependent.  Later after determining (x´,t) he writes x´ in its original 

form and goes back to x and t being independent.  The reason for this switching back and forth is 

supposedly justified by stating that in some places in the derivation one is following a fixed 

point, while in others one is no longer doing that.  Another problem is the interpretation of x´.  If 

it is indeed the distance from the left mirror as perceived by the rest observer, then we have 

apparently set  to unity (since x  ).  It () is then brought back in the undetermined constant 

‘a’ after tacitly assuming directions perpendicular to the translational motion are the same for 

both observers.  Then for a photon moving vertically along the surface of the left mirror in the 

moving frame, the rest observer perceives 0x .  Also the photon is perceived to move in a 

straight line sloped upward and to the right.  The length is ct, while the horizontal displacement 

is vt.  The vertical distance is c as both observers agree on this length to be the same.  Using this 

right triangle one finds the relationship between t and  for the case when 0x .  This then shows

a/1 , which we knew already after (2). 

     It is hoped that the history of the development of special relativity will be somewhat clarified 

by considering the above results.  In [4] it was stated that the definitive history of special 

relativity was yet to be written; so some new information here may be helpful.  It seems that 

Einstein knew the Lorentz transformations and was attempting to develop them using a 

kinematic derivation.  However, the attempt was flawed.  As the paper gave no references, many 

subsequent authors have incorrectly assumed he probably was not aware of many of the ideas 

that were “in the air” as stated by Born.     



APPENDIX 

 Professor A. A. Martinez has developed an equation that will replace (4) when only x and t are 

used (x´ not used).   
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Notice that the function (x, t) is assumed to be linear in both variables, and in the above 

equation the function is that of variables in terms of both x and t.  Under the linear assumption 

the following relationships are true. 
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Where j and k are constants.  After expanding (A-1) in Taylor series, a long but straightforward 

calculation using the above relationships will show that one must assume 0|/ 0 xx   to arrive 

at the final equation 

 

   0/// 2  tcvx                 (A-2) 

 

Which one can easily show to be the equation satisfied by (1).  Inspection of (1) shows  
2

0 /|/ cx x   
. This necessitates again that one needs 0 .  Thus the method of following 

the photon between moving mirrors cannot develop the Lorentz transformations.   
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