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tThis paper des
ribes algorithms to deal with nested symboli
 sums over 
ombinations of har-moni
 series, binomial 
oeÆ
ients and denominators. In addition it treats Mellin transformsand the inverse Mellin transformation for fun
tions that are en
ountered in Feynman diagram
al
ulations. Together with results for the values of the higher harmoni
 series at in�nity thepresented algorithms 
an be used for the symboli
 evaluation of whole 
lasses of integrals thatwere thus far intra
table. Also many of the sums that had to be evaluated seem to involve newresults. Most of the algorithms have been programmed in the language of FORM. The resultingset of pro
edures is 
alled SUMMER.



1 Introdu
tionThe 
omputation of Feynman diagrams has 
onfronted physi
ists with 
lasses of integrals that areusually hard to be evaluated, both analyti
ally and numeri
ally. Also the newer te
hniques appliedin the more popular 
omputer algebra pa
kages do not o�er mu
h relief. Therefore it is good too

asionally study some alternative methods to 
ome to a result. In the 
ase of the 
omputationof stru
ture fun
tions in deep inelasti
 s
attering one is often interested in their Mellin moments.Ea
h individual moment 
an be 
omputed dire
tly in ways that are mu
h easier than 
omputingthe whole stru
ture fun
tion and taking its moments afterwards. There exist however also instan
esin the literature in whi
h all moments were evaluated in a symboli
 way [1℄ [2℄ [3℄ [4℄. On
e allpositive even moments are known, one 
an re
onstru
t the 
omplete stru
ture fun
tions. Hen
e su
h
al
ulations 
ontain the full information and are in prin
iple as valuable as the dire
t evaluationof the 
omplete integrals. In these 
al
ulations the integrals be
ome mu
h simpler at the 
ost ofhaving to do a number of symboli
 sums over harmoni
 series. The draw-ba
k of the method isthat although mu
h e�ort has been put in improving te
hniques of integration over the past years,very little is known about these 
lasses of sums. A short introdu
tion is given for instan
e inref [5℄. In addition su
h 
al
ulations are of a nature that one needs to do them usually by meansof a 
omputer algebra program. This means that when algorithms are developed, they should besuitable for implementation in the language of su
h programs.This paper des
ribes a framework in whi
h su
h 
al
ulations 
an be done. As su
h it gives a
onsistent notation that is suited for a 
omputer program. It shows a number of sums that 
anbe handled to any level of 
omplexity and des
ribes an implementation of them in the languageof the program FORM [6℄. Then the formalism is applied to the problem of Mellin transforms ofa 
lass of fun
tions that traditionally o

urs in the 
al
ulation of Feynman diagrams. This in itsturn needs harmoni
 series in in�nity and hen
e there is a se
tion on this spe
ial 
ase. Next theproblem of the inverse Mellin transform is dealt with. With the results of the series at in�nity one
an suddenly evaluate a whole 
lass of integrals symboli
aly. This is explained in the next se
tionwhere some examples are given.The paper is �nished with a number of appendi
es. They des
ribe the details of some of thealgorithms and their implementation. Additionally there is an appendix with lists of symboli
 sumsthat are not dire
tly treated by the `general' algorithms. These sums were obtained during variousphases of the proje
t and many of them do not seem to o

ur in the literature.2 NotationsThe notation that is used for the various fun
tions and series in this paper is 
losely related to howuseful it 
an be for a 
omputer program. This notation stays as 
losely as possible to existing ones.The harmoni
 series is de�ned by Sm(n) = nXi=1 1im (1)S�m(n) = nXi=1 (�1)iim (2)in whi
h m > 0. One 
an de�ne higher harmoni
 series bySm;j1;���;jp(n) = nXi=1 1imSj1;���;jp(i) (3)1



S�m;j1;���;jp(n) = nXi=1 (�1)iim Sj1;���;jp(i) (4)with the same 
onditions on m. The m and the ji are referred to as the indi
es of the harmoni
series. Hen
e S1;�5;3(n) = nXi=1 1i iXj=1 (�1)jj5 jXk=1 1k3 (5)In the literature the alternating sums are usually indi
ated by a bar over the index. The advantageof this notation is that it 
an be extended easily for use in a 
omputer algebra program, eg.:Si1;���;im(n)! S(R(i1,...,im),n).Su
h obje
ts 
an be easily manipulated in the more modern versions of the program FORM.The argument of a harmoni
 series whi
h has only positive indi
es 
an be doubled with theformula: Sm1;���;mp(n) =X� 2m1+���+mp�pS�j1;���;�jp(2n) (6)in whi
h the sum is over all 2p 
ombinations of + and � signs.The weight of a harmoni
 series is de�ned as the sum of the absolute values of its indi
es.W (Sj1;���;jm(n)) = mXi=1 jjij (7)For any positive weight w there are 2 � 3w�1 linearly independent harmoni
 series. The fa
tthat for ea
h next weight there are three times as many 
an be seen easily: One 
an extend theseries of the previous weight either by putting an extra index 1 or �1 in front, or by raising theabsolute value of the �rst index by one.The set of all harmoni
 series with the same weight is 
alled the `natural' basis for that weight.The extended weight of the 
ompound obje
t of a series and denominators is the weight of theseries plus the number of powers of denominators that are identi
al to the argument of the series.Hen
e S1;�5;3(n)=n4 has the extended weight 13.The total weight of a term is the sum of all extended weights of all the series in that term.Hen
e the total weight of S2;3(n)S�2(m) is 7.The value 0 for an index is reserved for an appli
ation that is typi
al for 
omputers. If theresults of a given weight need to be tabulated, the above notation would require a table in whi
hthe number of indi
es is not �xed. This 
an be remedied by a modi�ed notation whi
h is onlyused in spe
i�
 stages of the program. An index that is zero whi
h is followed by an index that isnonzero indi
ates that one should be added to the absolute value of the nonzero index. Hen
e:S0;1;0;0;�1;1(n) = S2;�3;1(n) (8)This way one 
an express all series of weight w into fun
tions with w indi
es of whi
h the �rst w�1
an take the values 1, 0 and �1, while the last one 
an take the values 1 and �1.Consider the following identity whi
h 
an be obtained by ex
hanging the order of summation:Sj;k(n) + Sk;j(n) = Sj(n)Sk(n) + Sj&k(n) (9)in whi
h the pseudo addition operator & adds the absolute values and gives the result a positivevalue if j and k have the same sign and otherwise the result will have a negative value. One 
ould2



sele
t a basis in whi
h one keeps produ
ts of harmoni
 series with as simple a weight as possible.The above equation would indi
ate that in that 
ase one of the left terms should be ex
luded fromthe basis in favor of the �rst term on the right hand side. Although the 
hoi
e of whi
h of thehigher harmoni
 series to keep and whi
h to drop in favor of the produ
t terms is not unique, thereare 
ases in whi
h su
h a basis is to be preferred. In parti
ular when n ! 1 one 
an 
hoose abasis in whi
h all divergent obje
ts are expressed as powers of S1(1) multiplied by �nite harmoni
series. In general however the summation formulae are mu
h simpler in the natural basis in whi
hea
h element is a single higher harmoni
 series. This 
an be seen rather easily when looking at thesum: nXi=1 Sj(i)Sk(i)im = nXj=1 Sj;k(i) + Sk;j(i)� Sj&k(i)im= Sm;j;k(n) + Sm;k;j(n)� Sm;j&k(n) (10)In order to be able to do the sum one has to 
onvert to the natural basis anyway. After the summa-tion one would have to 
onvert ba
k to whatever other basis one happens to work with. AppendixA presents an algorithm by whi
h 
ombinations of harmoni
 series with the same argument 
an beexpressed in the natural basis.Additionally there 
an be denominators 
ontaining the summation parameter. There arisesimmediately a problem when there is more than one denominator. Traditionally one 
an split thefra
tions with 1i+ a 1i+ b = 1b� a( 1i+ a � 1i+ b) (11)Unfortunately this formula is not 
orre
t when a = b. Be
ause often there will be nested sums andsums with symboli
 parameters, a and b 
an be fun
tions of summation or other parameters andhen
e it will not be obvious when a = b. In FORM this 
an be repaired in prin
iple with one ofthe spe
ial fun
tions: 1i+a 1i+b = Æa;b 1(i+a)2 + (1� Æa;b) 1b� a( 1i+ a � 1i+ b) (12)Here Æa;b = 1 when a = b and zero otherwise. In the language of FORM it is represented by thebuilt in obje
t delta_. Unfortunately this form of the partial fra
tioning is not very useful, be
auseit still evaluates into terms involving 1/(b-a) in whi
h a 
an be equal to b. Hen
e an even more
ompli
ated form is needed:1i+a 1i+b = Æa;b 1(i+a)2 + (�(a�b�1) + �(b�a�1)) 1b� a( 1i+ a � 1i+ b) (13)in whi
h one has to assume that a and b only take integer values. The fun
tion �(x) (in FORMtheta\_(x)) is zero when x is negative and one when x is zero or positive. These �-fun
tions ful�llthe rôle of 
onditions like a � b+1 plus b � a+1 and are worked out �rst. Hen
e this should notbe read as 0=0 for the 
ase that a = b. The 
omplete and proper equation would involve a newfun
tion: 1i+a 1i+b = Æa;b 1(i+a)2 + (�0(a�b) + �0(b�a)) 1b� a( 1i+ a � 1i+ b) (14)with �0(x) (in FORM thetap\_(x)) is one when x > 0 and zero when x � 0. A
tually �0(x) =1��(�x), but this 
annot be used for the same reason that the equation (12) 
ould not be used.Be
ause it is rather 
ompli
ated to manipulate both the fun
tions �(x) and �0(x) simultaneously, andbe
ause one has almost always integer values of the parameter, the 
omputer program uses mostlythe formula (13) whi
h assumes the integer values. It should be 
lear that mu
h attention shouldbe given to theta and delta fun
tions, their 
ombinations and their intera
tions with summations.3



3 Syn
hronizationWhen one has to do sums over a 
ombination of obje
ts one of the problems is that su
h obje
tsdo not always have identi
al arguments. If this is the 
ase one would have to program many moresums than often is ne
essary. Whenever it is possible one should `syn
hronize' the arguments.This means that one tries to make the arguments of the various harmoni
 series, the denominatorsand the fa
torials equal to ea
h other. This 
an be illustrated with one harmoni
 series and onedenominator: nXi=1 S1(i+1)i = nXi=1 S1(i)i + nXi=1 1i+1 1i= nXi=1 S1(i)i + nXi=1 1i � nXi=1 1i+1 (15)In this equation and the sequel it is assumed that the left most index is positive. If it is negativethere will be the extra (�1)i and one has to be more 
areful with the signs of the terms, but theprin
iple is always the same.Of 
ourse, when the di�eren
e between some arguments is symboli
 like in S1(i+k)=i, su
h tri
ksdo not work, but for di�eren
es that are integer 
onstants one 
an de�ne a s
heme that 
onverges.Let m be a positive integer 
onstant in the remaining part of this se
tion. In that 
ase one 
anwrite: Sj;r1;���;rs(i+m)i = Sj;r1;���;rs(i+m�1)i + Sr1;���;rs(i+m)i(i+m)j (16)The partial fra
tioning of the denominators in the last term results in terms that have only a powerof 1=(i+m) and one term whi
h has a fa
tor 1=i. This last term however has a simpler harmoni
series in the numerator. Hen
e this relation de�nes a re
ursion that terminates. Similarly one 
anwrite: Sj;r1;���;rs(i)i+m = Sj;r1;���;rs(i+1)i+m � Sr1;���;rs(i+1)(i+m)(i+1)j (17)and partial fra
tioning results again in terms in whi
h the arguments either are the same, or 
loserto ea
h other, or the harmoni
 series has be
ome simpler.Next is the intera
tion between two harmoni
 series:Sj;r1;���;rs(i)Sp1;���;pq(i+m) = Sj;r1;���;rs(i+1)Sp1;���;pq(i+m)�Sr1;���;rs(i+1)Sp1;���;pq(i+m) 1(i+1)j (18)This relation de�nes, in 
ombination with the previous two equations, also a proper re
ursion. Inthe last term one 
an syn
hronize the argument of the se
ond harmoni
 series with that of thedenominator, giving (potentially many) terms with either 1=(i+m) or an argument that is 
loserto i+1. In all 
ases the arguments are at least one 
loser to ea
h other. In addition some of theharmoni
 series have be
ome simpler.On
e two harmoni
 series have the same arguments this produ
t 
an be rewritten into the basisof single higher harmoni
 series (see appendix A). Hen
e produ
ts of more than two harmoni
 serieswith di�erent arguments 
an be dealt with su

essively.4



At this point there 
an still be fa
torials. The beginning is easy:1i (i+m)! = 1i (i+m) (i+m�1)!= 1m 1i (i+m�1)! � 1m 1(i+m)! (19)and 1(i+m) i! = i+1(i+m) (i+1)!= 1(i+1)! � m�1(i+m) (i+1)! (20)Be
ause of these two equations one 
an also syn
hronize 
ombinations of harmoni
 series andfa
torials.The problem is that usually one 
annot do very mu
h with the produ
t of two fa
torials.This means that if one has more than one fa
torial, one may be left with fa
torials with di�erentarguments.Another problem exists with arguments of the type i versus arguments of the type n�i. These
an of 
ourse not be syn
hronized 
ompletely, but if n is the upper limit of the summation over i,one 
an try to make a syn
hronization that ex
ludes other nonsymboli
 
onstants. This is slightlymore 
ompli
ated than what was done before:1n�iSj;r1;���;rs(i+1) = 1n�iSj;r1;���;rs(i) + 1(n�i)(i+1)j Sr1;���;rs(i+1) (21)Partial fra
tioning of the last term will leave something simpler. Similarly there is:1n�iSj;r1;���;rs(i�1) = 1n�iSj;r1;���;rs(i)� 1(n�i)(i�1)j Sr1;���;rs(i�1) (22)For two S-fun
tions one 
an write:Sj;r1;���;rs(n�i)Sk;p1;���;ps(i+1) = Sj;r1;���;rs(n�i)Sk;p1;���;ps(i)+ 1(i+1)kSj;r1;���;rs(n�i)Sp1;���;ps(i+1)= Sj;r1;���;rs(n�i)Sk;p1;���;ps(i)+ 1(i+1)kSj;r1;���;rs(n�i�1)Sp1;���;ps(i+1)+ 1(i+1)k(n�i)j Sr1;���;rs(n�i)Sp1;���;ps(i+1) (23)Again partial fra
tioning of the last term leads to a simpler obje
t. One 
an derive equivalentrelations for 
ombinations involving fa
torials. In this 
ase also pairs of fa
torials 
an be dealtwith: 1(n�i)! (i+1)! = 1(n�i�1)! i! 1n+1( 1n�i + 1i+1)= 1n+1( 1(n�i)! i! + 1(n�i�1)! (i+1)! ) (24)All the above relations 
an be 
ombined into one re
ursion that leaves all S-fun
tions, all denomina-tors and at least one fa
torial properly syn
hronized. Additionally one has a proper adjustment tothe boundaries of the summation, and therefore the fa
torials 
an often be 
ombined into binomial
oeÆ
ients. 5



4 Mellin TransformsThe Mellin operator M is de�ned byM(f(x)) = Z 10 dx xmf(x) (25)and the operator M+ by M+(f(x)) = Z 10 dx xm f(x)(1�x)+ (26)with Z 10 dx f(x)(1�x)+ = Z 10 dxf(x)� f(1)1�x (27)when f(1) is �nite. When there is a power of ln(1�x) present it be
omesM+((ln(1�x))kf(x)) = Z 10 dx xm (ln(1�x))kf(x)(1�x)+ (28)= Z 10 dx(f(x)� f(1))(ln(1�x))k1�x (29)These are the traditional operations. In the literature one often de�nes the transform shifted overone as in M(f(x)) = Z 10 dx xN�1f(x) (30)In the 
ontext of this paper the notation will be the one of equation (25). The `Mellin parameter'is given in that 
ase in lower 
ase variables. Hen
e the translation to the shifted notation shouldbe of the nature n! N�1.For Mellin transforms of formulas resulting from Feynman diagrams one has to 
onsider thetransforms of fun
tions that are 
ombinations of 1=(1�x)+, 1=(1+x), ln(x), ln(1+x), ln(1�x), powersof these logarithms, and various polylogarithms of whi
h the arguments are rational fun
tions ofx. Powers of x just 
hange the moment of the fun
tion. Hen
e they do not have to be 
onsidered.Additionally one 
an always assume that either 1=(1�x)+ or 1=(1 + x) is present, be
ause thefun
tions without su
h a term 
an be written as two fun
tions in the 
lass that is being 
onsidered:1 = 11+x + x1+x (31)The algorithm that obtains the Mellin transform of any 
ombination of su
h fun
tions is ratherdire
t. Consider the following steps:1. If there is a power of 1=(1�x) or 1=(1+x), repla
e it by a sum a

ording to the formulasxm1�x = 1Xi=mxi (32)xm1+x = (�1)m 1Xi=m(�1)ixi (33)2. If the fun
tion to be transformed 
ontains powers of ln(1�x), split it into its powers of ln(1�x)and F (x) whi
h represents the rest and has a �nite value at x = 1. Then one writesZ 10 dx xm lnp(1�x) F (x) = Z 10 dx xm lnp(1�x) (F (x)� F (1))+F (1) Z 10 dx xm lnp(1�x) (34)6



3. The Mellin transform of just a power of ln(1�x) 
an be repla
ed immediately using theformula Z 10 dx xm lnp(1�x) = (�1)pp!m+1 S1;���;1(m+1) (35)in whi
h the S-fun
tion has p indi
es that are all 1. This avoids divergen
e problems duringthe next step. Similarly one 
an apply:Z 10 dx xm lnp(x) = (�1)pp!(m+1)p+1 (36)when there is only a power of ln(x) left, but this step is not essential; it only makes thealgorithm a bit faster. Due to the powers of x there will be no divergen
e problems nearx = 0.4. Do a partial integration on the powers of x. Be
ause of the se
ond step, the values at x = 0and x = 1 never present any problems.5. If there is only a power of x left one 
an integrate and the integration phase is �nished.Otherwise one should repeat the previous steps until all fun
tions have been broken down.Note that for this to work all fun
tions have to break down properly. Hen
e one 
annot usefra
tional powers of the fun
tions involved.6. At this point the terms may 
ontain nested sums, either to a �nite upper limit or to in�nity.These sums do not present any 
ompli
ations on
e produ
ts of two S-fun
tions with identi
alarguments 
an be 
ombined into elements of the natural basis (see appendix A).The main 
ompli
ation in the above algorithm is the treatment of the in�nities that may arise inthe summations. Many of the terms develop a divergen
e. These are all of a rather soft natureand hen
e their regularization is relatively easy. All divergen
es in the sums are of a logarithmi
nature and hen
e, if one 
onsiders the sum to go to a rather large integer L, the divergent sumsbehave like powers of lnL up to terms of order 1=L1. Be
ause all transforms should be �nite theterms in lnL should 
an
el. After that one 
an safely take the limit L ! 1. Taking this all in
onsideration, all sums that 
ontain a divergen
e 
an be rewritten into powers of one single basi
divergent sum (S1(1)) and �nite terms. After that there are no more problems of this nature.The result of the above algorithm is an expression with many harmoni
 series of whi
h theargument is a fun
tion of m and others of whi
h the argument is in�nity. These last sums aretreated in the next se
tion.5 Values at In�nityIn the previous se
tion the results of the Mellin transforms were harmoni
 series in the Mellinparameter m and harmoni
 series at in�nity. In order to solve the problem 
ompletely one has to�nd the values for these series at in�nity. After all they represent �nite numbers and the number ofseries is mu
h larger than the number of trans
endental numbers that o

ur on
e they are evaluated.The sums to be 
onsidered are related to the Euler-Zagier sums [9℄ [10℄ [11℄ whi
h are de�ned as�(s1; : : : ; sk;�1; : : : ; �k) = Xnj>nj+1>0 kYj=1 �njjnsjj : (37)1In prin
iple there is also an Euler 
onstant, but when the logarithms 
an
el, also the Euler 
onstants 
an
el andhen
e they are not 
onsidered here 7



These sums are however not identi
al to the S-fun
tions at in�nity be
ause for them the sum isSs1;:::;sk(1) = Xnj�nj+1�1 kYj=1 [(�1)nj ℄sj<0njsjjj : (38)The notation [ ℄s1<0 indi
ates that this part is present only when s1 < 0. Here a method ispresented to evaluate these sums that is 
ompletely di�erent from the one in referen
e [11℄.The �rst step in the evaluation of the sums is to express the sums as mu
h as possible in termsof produ
ts of harmoni
 series with a lower weight. This 
an be done up to a point. One will alwaysneed a number of series with the weight one is 
onsidering. This step is basi
ally the inverse of thealgorithm of appendix A. It is harder to be implemented in a deterministi
 way, be
ause the 
hoi
eof the basis is not unique. But this 
an be solved in a di�erent way as will be seen below.Next there are two types of extra identities one 
an 
onsider. The �rst set 
omes from lookingat the series with only positive indi
es and applying the doubling formula (6) to it. For all theseries that are �nite it makes no di�eren
e whether the argument is in�nity or two times in�nity. Ifthe sele
ted basis is su
h that all divergen
es are powers of S1(1) one only has to make the extraadjustment S1(21) ! S1(1) + ln(2). This gives a number of extra equations that 
orrespond tonew relations between the series. Unfortunately this does not give enough relations, but some areinteresting in their own right. For instan
eSm(1) = 2m�1(Sm(21) + S�m(21)) (39)gives immediately the well known relationsS�m(1) = �(1� 21�m)Sm(1) m > 1 (40)S�1(1) = � ln(2) (41)The more powerful 
onsideration however is the following: Suppose one is summing over asquare grid of size n � n. Under what 
onditions is the sum over the upper right diagonal halfof the square (i1 + i2 > n) zero in the limit n ! 1? If this sum is zero, the produ
t over twoindividual sums 
an be repla
ed by a sum over the lower left diagonal triangle (i1 + i2 � n). Thisleads to the following theorem:Theorem: When not both m1 = 1 and k1 = 1 the following identity holds:Sm1;���;mp(1)Sk1;���;kq(1) = limn!1 nXi=1 Sm1;���;mp(n�i)Sk2;���;kq(i) [(�1)i℄k1<0ijk1j (42)The proof is rather trivial, 
onsidering that all mi and ki are integers and that alternate series with(�1)i a
tually 
onverge one power of i better than they seem to at �rst sight. This 
an be seenwhen the terms are grouped in pairs. The sums 
an be estimated by integrals and the numerators
an only give powers of logarithms. Hen
e the presen
e of at least three powers of denominators(ex
luding m1 = k1 = 1) will make the limit go to zero.The sum 
an be readily worked out with the algorithm des
ribed in appendix C.Assume that all sums up to weight n have been determined. The 
omplete algorithm for weightn+ 1 is now:1. Constru
t all pairs of S-fun
tions for whi
h the sum of the two weights is n+ 1.2. Ea
h pair is used to 
onstru
t two equations (unless both S-fun
tions have their �rst indexequal to one in whi
h 
ase the se
ond equation that would have been based on the above8



theorem is not made). The �rst equation is made by taking S(1)S(2) � S(1)S(2) and applyingthe routine (see appendix A) that 
onverts the S-fun
tions to the basis to the �rst pair.These are the `shu�e algebra' relations. The se
ond set of equations is 
reated by takingS(1)S(2) � S(1)S(2) and then applying the formula of the theorem to the �rst pair. After thisthe routine of appendix C is applied.3. Substitute the values for the lower S-fun
tions.4. Eliminate now the `unknown' S-fun
tions of weight n + 1 as mu
h as possible as if one issolving a linear set of equations (whi
h is what it is). Apply the same set of substitutionsthat will eliminate the equations to the series that need to be evaluated.5. Inspe
t the result and see whi
h sums should be 
onsidered as new independent variablesbe
ause they were not eliminated. If one insists on a given sum to be among the variable(s)not to be eliminated one 
an substitute it by a di�erent variable before the eliminationpro
edure.It is not so diÆ
ult to 
onstru
t a program in the language of FORM that 
an exe
ute this pro
edureall the way to S-fun
tions of weight 7. Su
h a program takes just a few hours (< 6 without spe
ialoptimizations) on a Pentium-II-300 pro
essor. When a series diverges one uses the basi
 divergen
eS1(1) as if it were a regular variable. This presents no problems.The variables that one needs at the di�erent weights are: S1(1), ln(2), �2, �3, Li4(12 ), �5,Li5(12), Li6(12 ), S�5;�1(1), �7, Li7(12), S�5;1;1(1), S5;�1;�1(1). The 
hoi
e of the S-fun
tions thatremain is not unique. Here the sele
tion is su
h that they 
ontain as few indi
es as possible andare as 
onvergent as possible. Numeri
al values for these quantities 
an be obtained by standardte
hniques. Li4(1=2) = 0:51747906167389938633Li5(1=2) = 0:50840057924226870746Li6(1=2) = 0:50409539780398855069Li7(1=2) = 0:50201456332470849457S�5;�1(1) = 0:98744142640329971377�S�5;1;1(1) = 0:95296007575629860341S5;�1;�1(1) = 1:02912126296432453422 (43)It should be noted however that a

ording to the work by Broadhurst and Kreimer [12℄ most of these
onstants should not appear in the 
omputation of massless Feynman diagrams. The �rst non-zeta
onstant should be S5;3(1) whi
h is an obje
t of weight 8. This indi
ates that in x-spa
e thefun
tions 
an only o

ur in su
h 
ombinations that these 
onstants 
an
el in Mellin spa
e. Hen
eone may not need to know their values for many appli
ations. In the 
ase of massive Feynmandiagrams the situation is di�erent. The 
onstant Li4(1=2) does o

ur in the three loop 
orre
tionsto the g�2 of the ele
tron [13℄.The results of the runs up to weight 7 have been tabulated and put in the FORM program. Themain problem in making the tables is that the obje
ts with identi
al weights may have di�erentnumbers of indi
es. Hen
e the notation of indi
es that are either �1, 1 or 0 of equation (8) is usedfor the tables. The 
onversion to and from this notation is rather simple.
9



6 Inverse Mellin TransformsIf one 
an obtain a result in Mellin spa
e (as a fun
tion of n) in prin
iple it is possible to 
onvertto the fun
tion in x-spa
e. This is however a rather 
ompli
ated operation. There exists someliterature about it [2℄ [7℄ but it remains rather diÆ
ult. Also 
onsidering it as some type of Lapla
etransform does not give mu
h relief [8℄. In many 
ases one 
an employ a di�erent strategy. Given aresult in Mellin spa
e with a set of series, one 
an try to �nd a set of fun
tions in x-spa
e for whi
hthe Mellin transforms span the spa
e of the fun
tions in Mellin spa
e. After that one only has tosolve a set of linear equations to make the inverse transform. In the 
ase of two loop moments ofstru
ture fun
tions in deep inelasti
 s
attering, the results in Mellin spa
e are just S-fun
tions ofweight 4. Be
ause the whole spa
e of su
h S-fun
tions is 54 dimensional (a basis has 54 elements)one has to �nd 54 fun
tions in x-spa
e that map into the Mellin spa
e in a linearly independent way.This does not present too many problems. One should of 
ourse note that this method depends onhaving routines to do the Mellin transforms automati
ally.For higher weights it may not be so easy to �nd a 
omplete set of fun
tions in x-spa
e. This 
anbe illustrated by a simple 
al
ulation. To obtain a 
omplete set of fun
tions in x-spa
e for whi
hthe Mellin transforms 
over the natural basis of weight w one needs 2� 3w�1 fun
tions in x-spa
e.Be
ause this number 
an be divided by two (the relevant fun
tions are of the types f(x)=(1 � x))only 3w�1 fun
tions have to be 
onsidered. A number of these 
an be 
onstru
ted by taking produ
tsof fun
tions that 
ontribute to lower weights. That leaves a number of fun
tions that are new atthe given weight. This number in
reases rapidly with the weight. They are 3; 8; 18; 48; 116 forthe weights 3; 4; 5; 6; 7 respe
tively. Hen
e one has to 
ome up with a rather large number of newfun
tions when the weight be
omes large. Fortunately there is a method that will work providedonly a numeri
al answer is needed for any value of x.Assume that for a given weight w all ne
essary fun
tions in x-spa
e are known. Assume alsothat the Mellin transform of some F is given byZ 10 dx xnF (x) = S�!m (n+1)(n+1)p (44)in whi
h �!m represents any allowable series of the type m1; � � � ;mq and p > 0. For this fun
tion Fone has Z 10 dx xnF (x)1+x = (�1)nS�p;�!m (n)� (�1)nS�p;�!m (1) (45)Z 10 dx xnF (x)(1�x)+ = Sp;�!m (1)� Sp;�!m (n)� S1(1)F (1) (46)In the se
ond expression one 
an see that F (1) will be nonzero when p = 1 and zero otherwise.This is needed to keep the expression �nite. It is assumed here that F (x) does not 
ontain a fa
torln(1�x) or that if it does the other 
omponents of F still make that F (1) = 0. If this is not the
ase there will be more 
ompli
ated sums of the type of appendix D and the right hand side willhave more terms to 
an
el the divergen
es that are due to Sp;�!m (1) having more than one powerof S1(1). Rather than using the sums of appendix D one 
an also use the algorithms of se
tion 4to break down the fun
tion F 
ompletely.Considering that a knowledge of all odd or all even moments is suÆ
ient to re
onstru
t F thepresen
e of (�1)n should not be a problem in the end. It does not lead to a doubling of the ne
essaryfun
tions {even moments in terms of N 
orrespond to odd moments in terms of n{. One shouldalso observe now that the fun
tions F (x)=(1+x) and F (x)=(1�x) are related to the inverse Mellintransforms of S�p;�!m (n) and Sp;�!m (n) respe
tively. Assume now that the Sp;�!m (n) are of weight w.10



How does one 
onstru
t the inverse Mellin transforms of fun
tions of weight w+1? For this oneshould have a look at the fun
tions F+(x) = Z x0 dxF (x)1+x (47)F�(x) = Z x0 dxF (x)1�x (48)F 0(x) = Z 1x dxF (x)x (49)For these fun
tions one 
an derive readily by means of partial integrationZ 10 dx xnF+(x) = �(�1)n+1n+1 S�p;�!m (n+1) + 1n+1((�1)n+1 � 1)S�p;�!m (1) (50)Z 10 dx xnF�(x) = 1n+1Sp;�!m (n+1) (51)Z 10 dx xnF 0(x) = � 1(n+1)p+1S�!m (n+1) (52)With the aid of equations (45) and (46) one derives now the relationsZ 10 dx xnF+(x)1+x = �(�1)nS1;�p;�!m (n) + (�1)n(S1;�p;�!m (1)� S1(1)S�p;�!m (1))+(�1)nS�p;�!m (1)(S1(n)� S�1(n) + S�1(1)) (53)Z 10 dx xnF�(x)1+x = (�1)n(S�1;p;�!m (n)� S�1;p;�!m (1)) (54)Z 10 dx xnF 0(x)1+x = (�1)n(�S�(p+1);�!m (n) + S�(p+1);�!m (1)) (55)Z 10 dxxnF+(x)(1�x)+ = S�1;�p;�!m (n)� S�1;�p;�!m (1)+S�p;�!m (1)(S�1(1)� S�1(n) + S1(n)) (56)Z 10 dxxnF�(x)(1�x)+ = �S1;p;�!m (n) + S1;p;�!m (1)� S1(1)Sp;�!m (1) (57)Z 10 dxxnF 0(x)(1�x)+ = S(p+1);�!m (n)� S(p+1);�!m (1) (58)In these expressions is assumed that F (x) 
ontains no fa
tors ln(1�x). In that 
ase it is notdiÆ
ult to see that all divergen
es 
an
el. When there are fa
tors ln(1�x) the expressions be
omea bit more 
ompli
ated in the 
onstant terms in order to obtain a 
omplete 
an
ellation of thedivergen
es. The �rst terms of the right hand side expressions form indeed a 
omplete set of S-fun
tions of weight w+1 when all possible values of p and all possible S-fun
tions in equation (44)are 
onsidered. Be
ause all other terms in the right hand side expressions are of a lower weight interms of the argument n, their inverse Mellin transforms are supposed to be known and hen
e allinverse Mellin transforms of weight w+1 
an be 
onstru
ted. If the integrals in the de�nitions of F+,F� and F 0 
annot be solved analyti
ally, one 
an still obtain their values numeri
ally by standardintegration te
hniques. If one has to go more than one weight beyond what is analyti
ally possible,one obtains multiple integrals. Many of these 
an of 
ourse be simpli�ed by partial integrations as
an be seen in the following formula:F++(x) = Z x0 dx1+x Z x0 dx1+xF (x) (59)11



= ln(1+x) Z x0 dx1+xF (x)� Z x0 ln(1+x) F (x)1+x dx (60)At this point it seems best to give some examples. First look at the 
onstant fun
tion in Mellinspa
e. It is the only fun
tion with weight zero and its inverse Mellin transform is Æ(1�x). HereÆ(x) is the Dira
 delta fun
tion. Hen
e the inverse Mellin transforms for fun
tions with weight oneare: (�1)nS�1(n) ! 11+x + (�1)n ln(2) Æ(1�x) (61)S1(n) ! � 11�x (62)The fa
tor (�1)n in the right hand side indi
ates that the re
onstru
tion from the even momentsdi�erent from the re
onstru
tion from the odd moments. This means that if the moments areobtained for even values of N (whi
h means odd values for n) one should treat the terms in S�!m (n)di�erently from the terms in S�!m (n+1).Next are the fun
tions with weight 2. The only fun
tion with weight one that 
an o

ur inequation (44) is 1=(n+1) and its inverse Mellin transform is given by F (x) = 1. From this one 
an
onstru
t F+(x) = ln(1+x), F�(x) = � ln(1�x) and F 0(x) = ln(x). One 
an now work out theequations (53 - 58) to obtain the inverse Mellin transforms for the weight two fun
tions.For the weight three fun
tions one obtains dilogarithms with the arguments x,�x and (1+x)=2as new obje
ts. For the weight four fun
tions the fun
tions F�(x) and F 0(x) 
an have trilogs withthe arguments x,�x, (1+x)=2, 1=(1+x), 1�x, 2x=(1+x), (1�x)=(1+x) and�(1�x)=(1+x). Of 
ourseone may 
hoose a di�erent representation in whi
h the fun
tion S1;2(x) plays a rôle (see referen
es[14℄ and [15℄).There is one more important observation to be made. The expressions (53-58) have just a singleS-fun
tion of weight w+1 in the right hand side. This means that one 
an obtain the inverse Mellintransforms of the various S-fun
tions without having to solve sets of equations. One only has tomove terms from the right hand side and put their inverse Mellin transform (whi
h is mu
h simpler)into the various F -fun
tions. This 
an be done systemati
ally and it 
an be 
he
ked by the Mellintransformation program. The approa
h of looking for whi
h fun
tions 
an o

ur and then makingtheir Mellin transform and inverting the set of equations would lead to very 
ompli
ated sets ofequations when the weights be
ome large. Hen
e the interesting fun
tions are more or less the onesthat have been built up from the original weight one fun
tions by 
omposing higher and higherintegrals like F+�0++0(x) et
. without writing the result in terms of individual polylogarithms.7 Some appli
ationsThe values at in�nity of the previous se
tion have some rather relevant appli
ations for 
ertain
lasses of integrals. This 
an best be illustrated with some examples. The following integral wouldunder normal 
ir
umstan
es be rather diÆ
ult, but with all the above tools it be
omes rathertrivial: Z 10 dx ln(x) ln2(1�x) ln(1+x)x = � 1Xi=0 1i+1 Z 10 dx xi ln(x) ln(1�x) ln(1+x) (63)The integral is just one of the Mellin transformations, and hen
e the program will handle it. Thesum is of the same type as all other sums in the Mellin transformation and hen
e will be done also12



by the program. In the end the answer is expressed in terms of S-fun
tions at in�nity whi
h aremaximally of weight 5 and hen
e they 
an be substituted from the tables. The �nal result is:Z 10 dx ln(x) ln2(1�x) ln(1+x)x = �38�2�3 � 23�2 ln3(2) + 74�3 ln2(2)� 72�5+4 ln(2) Li4(1=2) + 215 ln5(2) + 4 Li5 (1=2) (64)Similarly one obtainsZ 10 dx ln(x) ln2(1�x) ln2(1+x)x = �12�2 ln4(2) � 129140�32 + 76�3 ln3(2)�3716�23 � 318 �5 ln(2) + 8 ln(2) Li5(1=2) + 4 ln2(2) Li4(1=2)+19 ln6(2) + 8 Li6(1=2) + 2 S�5;�1(1) (65)and the even more diÆ
ult integralZ 10 dx ln(1�x)Li2(1+x2 )Li3(1�x1+x )1+x = �74�2�3 ln2(2)� 5673448 �2�5 � 5�2 ln(2) Li4(1=2) � 17120�2 ln5(2)�5�2Li5(1=2) + 15171120�22�3 + 56�22 ln3(2)� 184�32 ln(2)� 796�3 ln4(2) � 34�3Li4(1=2) � 1563448 �23 ln(2) � 9332�5 ln2(2)+744151792 �7 � 18 ln(2) Li6(1=2) � 4314 ln(2) S�5;�1(1)�6 ln2(2) Li5(1=2) � ln3(2) Li4(1=2) � 184 ln7(2)�24 Li7(1=2) � 457 S�5;1;1(1) + 327 S5;�1;�1(1) (66)As one 
an see, this te
hnique allows the evaluation of whole 
lasses of integrals that go 
onsiderablybeyond the integrals in ref [14℄.Another appli
ation of the te
hniques of the previous se
tions 
on
erns the evaluation of 
er-tain 
lasses of Feynman diagrams. When one tries to evaluate moments of stru
ture fun
tions inperturbative QCD one has Feynman diagrams whi
h 
ontain the momenta P and Q. Assumingthat the partons are massless one has that P 2 = 0 and be
ause all dimensions are pulled out ofthe integral in the form of powers of Q2, there is only a single dimensionless kinemati
 variable leftwhi
h is x = 2P�Q=Q2. The power series expansion in terms of P before integration 
orresponds tothe expansion in terms of Mellin moments of the 
omplete fun
tion after integration. The 
ompletefun
tions have been 
al
ulated for the two loop level [15℄ but for the three loop level the 
al
ulation
ould only be done for a small number of �xed moments 2; 4; 6; 8 and in one 
ase also 10 [16℄. Toevaluate all these moments requires that the expansion in P should be in terms of a symboli
 powerN . This will introdu
e sums and these sums will be expressed in terms of harmoni
 series. After allintegrals have been done all attention has to be fo
ussed on the summations and it is a
tually forthis purpose that the program SUMMER has been developed. By now a general two loop programhas been 
onstru
ted [17℄ and studies are on their way to 
reate a three loop program. It should benoted that in the two loop program no series at in�nity 
an o

ur. This puts a restri
tion on thefun
tions that 
an o

ur in x-spa
e. They have to appear in su
h linear 
ombinations that all the
onstants (with the ex
eption of �3 whi
h 
omes from expansions of the �-fun
tion) should 
an
elin the Mellin transform. 13



8 Con
lusionsThe algorithms presented in this paper provide a base for working with the sums that 
an o

ur inmany types of 
al
ulations, one of whi
h is the evaluation of Feynman diagrams in deep inelasti
s
attering. Additionally they allow the analyti
 evaluation of whole 
lasses of integrals. Theproblem of the Mellin transforms of whole 
ategories of fun
tions has been solved, and a numeri
alsolution for inverse Mellin transforms has been given. Most of the algorithms and tables have beenprogrammed in the language of FORM version 3 and are available from the homepage of the author(http://norma.nikhef.nl/�t68/summer).The author wishes to thank D.J. Broadhurst, T. van Ritbergen and F.J. Yndur�ain for dis
ussionsand support during the various phases of this proje
t. He is also indebted to S.A. Larin for thesuggestion to have a look at these sums.A Conversion to the BasisTo 
onvert produ
ts of S-fun
tions with an identi
al last argument to the basis of single higherS-fun
tions one 
an use a re
ursion. If one starts with the fun
tions S(1) and S(2) and a

umulatesthe results into the fun
tion S(3) the re
ursion reads:S(1)m1j1���jr(n)S(2)m2p1���ps(n)S(3)q1���qt(n) ! S(1)m1j1���jr(n)S(2)p1���ps(n)S(3)q1���qtm2(n)+S(1)j1���jr(n)S(2)m2p1���ps(n)S(3)q1���qtm1(n)�S(1)j1���jr(n)S(2)p1���ps(n)S(3)q1���qt(m1&m2)(n) (67)The re
ursion starts with S(3)(n) = 1 and the re
ursion terminates when either S(1)(n) or S(2)(n)has no more indi
es and hen
e 
an be repla
ed by 1 after whi
hS(a)j1���jr(n)S(3)q1���qt(n) ! Sq1���qtj1���jr(n) (68)with a = 1; 2. Be
ause this is a dire
t 
onstru
tion of the result, it is rather fast. It 
an beimplemented in the language of FORM (version 3 or higher) very eÆ
iently:repeat;id,on
e,S(R(?a),n?)*S(R(?b),n?) = SS(R(?a),R,R(?b),n);repeat id SS(R(m1?,?a),R(?b),R(m2?,?
),n?) =+SS(R(m1,?a),R(?b,m2),R(?
),n)+SS(R(?a),R(?b,m1),R(m2,?
),n)-SS(R(?a),R(?b,m1*sig_(m2)+m2*sig_(m1)),R(?
),n);id,SS(R(?a),R(?b),R(?
),n?) = S(R(?b,?a,?
),n);endrepeat;Note that the fun
tion SS 
arries the indi
es of S(1), S(3) and S(2) in this order. The fun
tion sig_returns the sign of its argument. Hen
e the expression that uses this fun
tion is one way of writingthe pseudo addition &.The above 
ode has been made into a FORM pro
edure. A rather nontrivial test program 
ouldbe:#-#in
lude nnde
l.h.global 14



L F = S(R(1,1,1,1,1),n)*S(R(-1,-1,-1,-1,-1),n);#
all basis(S);.endIt gives the resultTime = 0.64 se
 Generated terms = 1683F Terms in output = 1683Bytes used = 85104The run was made on a Pentium Pro 200 
hip running the NeXTstep operating system. As one
an see, these expressions 
an be
ome rather 
ompli
ated. On the other hand, weight 10 fun
tionsare of 
ourse not trivial. It should be noted that it is relatively easy to test routines like the oneabove. One 
an try them out for any fun
tions and any values of the argument and evaluate the
orresponding harmoni
 series into a rational number and see that they are identi
al.B ConjugationsFor the 
onjugations one should 
onsider only S-fun
tions with positive indi
es. The 
onjugationis de�ned with the sum (f(n))C = � nXi=1(�1)i(ni )f(i) (69)That this is a 
onjugation 
an be shown easily by applying it twi
e. This gives the original fun
tion.For the fun
tion f one 
an use S-fun
tions or the 
ombination of an S-fun
tion and a negativepower of the argument of the S-fun
tion as in Sj1���jr(n)=nk. For these fun
tions one has:Theorem: The 
onjugate fun
tion of an element of the natural basis with only positive indi
es isa single S-fun
tion of a lower weight with only positive indi
es, 
ombined with enough negativepowers of its argument to give the 
omplete term the same extended weight as the original fun
tion.Proof: First look at the weights one and two:(S1(n))C = 1=n (70)(S2(n))C = S1(n)=n (71)(S1;1(n))C = 1=n2 (72)They 
learly ful�ll the theorem. Then write(Smj1���jr(n))C = 1n(Sj1���jr(n)=nm�1)C (73)This identity 
an be obtained by writing the outermost sum and then ex
hanging it with the sumof the 
onjugation. Assume now that the theorem holds for all fun
tions with a lower weight.There are two 
ases: m = 1 and m > 1. When m = 1 the problem has been redu
ed to the sameproblem of �nding the 
onjugate but now for a fun
tion with a lower extended weight. Hen
e,if the theorem holds for all simpler fun
tions it holds also at the 
urrent weight. For m > 1 the
onjugate of Sj1���jr(n)=nm�1 must be a single harmoni
 fun
tion of weight m�1. This 
an be seenwhen one realizes that for ea
h extended weight there are as many fun
tions with their `proper'weight equal to this extended weight as with their `proper' weight less than the extended weight.Hen
e the fun
tion must have a 
onjugate that is a single S-fun
tion. Together with the fa
t thattwo 
onjugations give the original fun
tion, and the fa
t that all S-fun
tions of a given weight arelinearly independent this 
ompletes the proof of the theorem.15



Next is the derivation of an algorithm to �nd the 
onjugate of Sj1���jr(n)=nm�1. One way wouldbe to su

essively build up the algorithm by �rst deriving all 
onjugates up to a given weight. Afterthat one 
an obtain the needed 
onjugates by reading the formulae ba
kwards. This is not veryelegant. For a more dire
t way one 
an de�ne the 
on
ept of the asso
iate fun
tion.SAj1���jr(n) = nXi=1(Sj1���jr(i))C (74)Note that be
ause X = Sj1���jr is an element of the basis, (X(i))C 
ontains powers of 1=i and thesum gives again a single harmoni
 fun
tion of the same weight as X. It is rather easy to provethat (XA)A = X. The task of �nding the 
onjugate 
an now be redu
ed to the task of �nding theasso
iate fun
tion. If this asso
iate fun
tion 
an be written as Smj1���jr(n) the 
onjugate will beSj1���jr(n)=nm. Similarly a fun
tion in 
ombination with negative powers of n 
an be rewritten asa sum (Sj1���jr(n)=nm ! Smj1���jr(n)), and then the asso
iate fun
tion of this fun
tion will be theneeded 
onjugate fun
tion.The asso
iate fun
tion 
an be found by 
onstru
tion. Assume that (Sj1���jr(n))A = Smp1���ps(n).Then (S1j1���jr(n))A = nXi=1(S1j1���jr(i))C= nXi=1 1i (Sj1���jr(i))C= nXi=1 1i Sp1���ps(i)im= S(m+1)p1���ps(n) (75)and similarly for k > 1: (Skj1���jr(n))A = nXi=1(Skj1���jr(i))C= nXi=1 1i (Sj1���jr(n)(i)ik�1 )C= nXi=1 1i (S(k�1)j1���jr(i))A= S1q1���qt(n) (76)with (S(k�1)j1���jr(n))A = Sq1���qt(n). Considering that (S1(n))A = S1(n) asso
iate fun
tions to anyweight 
an now be 
onstru
ted. This algorithm is also easy to implement in a program like FORM.C Sums involving n� iIn this appendix sums of the type n�1Xi=1 Sp1���ps(n�i)Sq1���qt(i)ik (77)16



will be 
onsidered. It is impossible to 
ombine the sums to a single basis element. Hen
e a di�erentmethod is 
alled for. Assume �rst that k > 0 and m > 0 (below). Writing out the outermost sumof the S-fun
tion with the argument n�i leads ton�1Xi=1 Smp1���ps(n�i)Sq1���qt(i)ik = nXi=1 n�iXj=1 Sp1���ps(j)jm Sq1���qt(i)ik= nXi=1 nXj=i+1 Sp1���ps(j�i)(j�i)m Sq1���qt(i)ik= nXj=1 j�1Xi=1 Sp1���ps(j�i)(j�i)m Sq1���qt(i)ik= nXi=1 i�1Xj=1Sp1���ps(i�j)Sq1���qt(j) 1(i�j)mjk (78)Partial fra
tioning of the denominators gives sums in whi
h the denominator is a power k0 � k ofj and sums in whi
h the denominator is a power m0 � m of i�j. These last sums 
an be doneimmediately by reverting the dire
tion of summation. Hen
e:n�1Xi=1 Smp1���ps(n�i)Sq1���qt(i)ik = kXa=1(k+m�1�am�1 ) nXi=1 i�1Xj=1Sp1���ps(i�j)Sq1���qt(j) 1im+k�aja+ mXa=1(k+m�1�ak�1 ) nXi=1 i�1Xj=1Sp1���ps(j)Sq1���qt(i�j) 1im+k�aja (79)Now the innermost sum is of a simpler type. Hen
e eventually one 
an do this sum, and after thatall remaining sums are rather simple. Therefore this de�nes a useful re
ursion. When a negativevalue ofm or a fa
tor (�1)i is involved things are only marginally more 
ompli
ated. This algorithmhas been programmed in FORM and 
arries the name sumnmii. An example of its appli
ation is#-#in
lude nnde
l.h.globalL F = sum(j,1,n-1)*S(R(1,2,1),n-j)*S(R(-2,-1,-2),j)/j^2;#
all sumnmii().endwith the outputTime = 0.28 se
 Generated terms = 478F Terms in output = 208Bytes used = 9148whi
h are all terms with a single fun
tion of weight 11.The algorithm for doing the sums of the typeGq1���qtp1���ps(k; n) = � n�1Xi=1(�1)i(ni )Sp1���ps(n�i)Sq1���qt(i)ik (80)
17



is more 
ompli
ated. First one has to assume that all pj and qj are positive. Assuming also thatk � 0, one 
an deriveGq1���qtmp1���ps(k; n) = Gq1���qtmp1���ps(k; n�1) + 1nGq1���qtmp1���ps(k � 1; n)+ 1n nXi=1(�1)i+1(ni )Sp1���ps(n�i)Sq1���qt(i)(n�i)m�ik (81)Be
ause the weight of the G-fun
tion in the se
ond term is one less, and be
ause one 
an partialfra
tion the last term in the end all terms have a sum over a 
ombination with a lower weight. Thismeans that one 
an use this equation for a re
ursion, provided one knows how to deal with the 
asek = 0 whi
h is not handled by the above equation. For k = 0 one obtains after some algebraGm2q1���qtm1p1���ps(0; n) = +1n nXi=1(�1)i+1(ni )Sm1p1���ps(n�i)Sq1���qt(i)im2�1+1n nXi=1(�1)i+1(ni )Sp1���ps(n�i)Sm2q1���qt(i)(n�i)m1�1 (82)Hen
e also here the weight has been de
reased and one 
an use it for a re
ursion. The �nalexpression for G 
an be obtained by an extra sum, be
ause G(k; 0) = 0 for all indi
es and oneobtains an expression for G(k; n) � G(k; n�1). One should also realize that in some 
ases it isne
essary to 
hange the dire
tion of the sum (i ! n�i) whi
h will introdu
e terms of the type(�1)n and hen
e this last sum 
an give S-fun
tions with a negative index.The routine that implements these algorithms (sumnmi
) is a bit lengthy. A test run gives#-#in
lude nnde
l.h.globalL F = sum(j,1,n)*sign(j)*bino(n,j)*S(R(1,2,1),n-j)*S(R(2,1,2),j)/j^2;#
all sumnmi
().endwith the resultTime = 0.36 se
 Generated terms = 238F Terms in output = 131Bytes used = 6478and a simpler example gives#-#in
lude nnde
l.h.globalL F = sum(j,1,n)*sign(j)*bino(n,j)*S(R(2),n-j)/j;#
all sumnmi
()Print;.endF = - S(R(-3),n) - 2*S(R(-2,1),n) - S(R(1,2),n) - S(R(2,1),n)- S(R(3),n); 18



D Some sums to in�nityThere are spe
ial 
lasses of sums for whi
h the upper bound is in�nity. A number of them 
an beevaluated to any level of 
omplexity. Consider for instan
e the following sum (with p1 > 0; negativevalues just give extra powers of �1):F (m) = 1Xj=1 Sp1���pr(j+m)jk (83)Su
h sums 
an be evaluated by setting up a sum over m:F (m) = F (m�1) + 1Xj=1 Sp2���pr(j+m)(m+j)p1jk= F (m�1) + p1Xi=1(p1+k�1�ik�1 ) 1mp1+k�i (Si;p2;���;pr(1)� Si;p2;���;pr(m))+ kXi=1(p1+k�1�ip1�1 )(�1)p1+k�imp1+k�i 1Xj=1 Sp2���pr(j+m)ji (84)The sum in the last term is of the same type as the original sum, but it is of a simpler nature.The sum over i 
an just be worked out, be
ause k and p1 are just numbers. Hen
e this de�nes are
ursion whi
h 
an be worked out, if not by hand, then by 
omputer. In the end one obtains anexpression for F (m)� F (m�1) whi
h 
an be summed:F (m) = F (0) + mXi=1(F (i) � F (i�1))= Skp1���pr(1) + mXi=1(F (i) � F (i�1)) (85)Similarly one 
an 
onsider sums of the typeF (m) = 1Xj=1 Sp1���pr(j)(j+m)k (86)The te
hnique to 
onstru
t a re
ursive solution for these sums is similar. One 
an study the fun
tionF (m)� F (m�1) = 1Xj=1 Sp1���pr(j)(j+m)k � 1Xj=0 Sp1���pr(j+1)(j+m)k= �Sp1���pr(1)mk � 1Xj=0 Sp2���pr(j+1)(j+1)p1(j+m)k= �Sp1���pr(1)mk � p1Xi=1(p1+k�1�ik�1 ) (�1)p1+k�i(m�1)p1+k�iSi;p2;���;pr(1)� kXi=1(p1+k�1�ip1�1 ) 1(m�1)p1+k�i 1Xj=0 Sp2���pr(j+1)(j+m)i (87)and again the last term is of a simpler nature. Hen
e there is a useful re
ursion and these sums
an be solved.In both 
ases there will be some S-fun
tions in the answer that have the argument in�nity.These should not present any spe
ial problems as they have been dis
ussed before.19



E Mis
ellaneous SumsIn this se
tion some sums are given that 
an be worked out to any level of 
omplexity, but theyare not representing whole 
lasses. Neither is there any proof for the algorithms. The algorithmspresented have just been 
he
ked up to some rather large values of the parameters.The sums that are treated here involve two binomial 
oeÆ
ients. There are quite a few of thesesums in appendix F, but here are the ones that 
an be done to any order. The �rst relation thatis needed is: mXj=0(�1)j(m+i+ji+j )(m+2i+jm+i+j ) = (�1)m(m+ii )(m+2ii ) (88)Taking m = n�i leads to:nXj=0(�1)j(nj )( n+jm+j )fC(m+j) = �(�1)n+m nXj=0(�1)j(nj )( n+jm+j )f(m+j) (89)for 0 � m � n. Here fC indi
ates the 
onjugation of appendix B. This is a rather useful identityas it divides the ne
essary amount of work by two. Alternatively it may even make terms 
an
eland hen
e make further evaluation unne
essary.A new fun
tion is needed to keep the notation short:Uk(n;m) = Sk(n+m)� (�1)kSk(n�m)� Sk(m�1) (90)for k; n � 0 and m > 0. U0(n;m) is de�ned to be one.One of the ways the harmoni
 series 
an be introdu
ed in many 
al
ulations is by expansion ofthe �-fun
tion. At the negative side its expansion is:�(�n+ �) = (�1)n�n! �(1 + �)(1 + S1(n)�+ S1;1(n)�2 + S1;1;1(n)�3 + S1;1;1;1(n)�4 + � � �) (91)A
tually these spe
ial harmoni
 series 
an be written as a sum of terms that 
ontain only produ
tsof harmoni
 series with a single sum as in:2S1;1(n) = (S1(n))2 + S2(n) (92)6S1;1;1(n) = (S1(n))3 + 3S1(n)S2(n) + 2S3(n) (93)24S1;1;1;1(n) = (S1(n))4 + 6(S1(n))2S2(n) + 8S1(n)S3(n) + 3(S2(n))2 + 6S4(n) (94)Noti
e that the fa
tors are related to the 
y
le stru
ture of the permutation group. One 
an de�nethe higher U fun
tions by analogy:2U1;1(n;m) = (U1(n;m))2 + U2(n;m) (95)6U1;1;1(n;m) = (U1(n;m))3 + 3U1(n;m)U2(n;m) + 2U3(n;m) (96)24U1;1;1;1(n;m) = (U1(n;m))4 + 6(U1(n;m))2U2(n;m) + 8U1(n;m)U3(n;m)+3(U2(n;m))2 + 6U4(n;m) (97)With these de�nitions one 
an write (0 < m � n):nXj=0(�1)j(nj )( n+jm+j ) 1(m+j)1 = n! (m�1)!(n+m)! (98)20



nXj=0(�1)j(nj )( n+jm+j ) 1(m+j)2 = n! (m�1)!(n+m)! U1(n;m) (99)nXj=0(�1)j(nj )( n+jm+j ) 1(m+j)3 = n! (m�1)!(n+m)! U1;1(n;m) (100)nXj=0(�1)j(nj )( n+jm+j ) 1(m+j)4 = n! (m�1)!(n+m)! U1;1;1(n;m) (101)et
. In the 
ase that m is zero there are di�erent expressions:nXj=1(�1)j(nj )(n+jj )1j = �2S1(n) (102)nXj=1(�1)j(nj )(n+jj ) 1j2 = �4S1;1(n) + 2S2(n) (103)nXj=1(�1)j(nj )(n+jj ) 1j3 = �8S1;1;1(n) + 4S1;2(n) + 4S2;1(n)� 2S3(n) (104)nXj=1(�1)j(nj )(n+jj ) 1j4 = �16S1;1;1;1(n) + 8(S1;1;2(n) + S1;2;1(n) + S2;1;1(n))�4(S1;3(n) + S2;2(n) + S3;1(n)) + 2S4(n) (105)and the pattern should be 
lear: For 1=jk there will be all fun
tions with weight k. The ones withm nested sums have a 
oeÆ
ient �(�1)k�m2m. A re
ipe of a similar type is found for the followingsums: nXj=1(�1)j(nj )(n+jj )S1(j) = 2(�1)nS1(n) (106)nXj=1(�1)j(nj )(n+jj )S2(j) = �2(�1)nS�2(n) (107)nXj=1(�1)j(nj )(n+jj )S3(j) = (�1)n(2S�3(n)�4S�2;1(n)) (108)nXj=1(�1)j(nj )(n+jj )S4(j) = (�1)n(�2S�4(n)+4(S�3;1(n)+S�2;2(n))�8S�2;1;1(n)) (109)and the pattern here is that one should make all higher series that start with a negative index thathas a value of at most �2, after whi
h there are only positive indi
es. All fun
tions are of weightk (for Sk inside the sum), and for m nested sums the 
oeÆ
ient is (�1)n+k�m2m. The ex
eption isk = 1 but that is be
ause S1 is its own asso
iated fun
tion and its 
onjugate is purely of the type1=jk .F Summation tablesDuring the work that inspired this paper quite a few other sums were evaluated that are notrepresented by the above algorithms. Many of these sums 
an only be done for a �xed weight andmost of them were not readily available in the literature. Hen
e they are presented here in a number21



of tables, even though eventually many of these sums were not needed in the �nal version of theprogram. For 
ompleteness also a large number of sums are presented that are already available inthe literature. A number of these sums 
an be derived formally. Some were derived by `guessing'and then trying the resulting formula for a large number of values.In all sums it is assumed that all parameters i,j,k,l,m,n are integers and have values � 0. Insome 
ases the formulae 
an be extended to noninteger values.It should be noted that all sums that 
an be handled by the pro
edures of the previous appen-di
es are not in the tables. They would make the tables unne
essarily lengthy.Some formulae that are used very often are presented �rst:nXi=0 (m+i)!i! = (n+m+1)!n!(m+1) (110)nXi=0 (m+i)!(k+i)! = (n+m+1)!(n+k)!(m+1�k) � m!(k�1)!(m+1�k) (111)nXj=0(�1)j(nj ) = Æ(n) (112)mXj=0(�1)j(nj ) = (�1)m(n�1m ) (113)nXj=0(nj )(m+j)! (k+n�j)! = m! k! (m+k+n+1)!(m+k+1)! (114)nXj=0(�1)j(nj ) (m+j)!(m+k+j)! = (n+k�1)!(k�1)! m!(m+n+k)! (115)nXj=0(�1)j(nj )(n+m+k+jm+j ) = (�1)n(n+m+kk ) (116)The last three formulae 
an be extended to noninteger values of m and k. They 
an be usedo

asionally before �-fun
tions are expanded to yield harmoni
 series.At times some auxiliary fun
tions were needed. They are de�ned byAk(n;m) = nXj=1(�1)j(n+mj ) 1jk (117)�(1; 1; a; b) = bXi=a a+b�iXj=a 1i j (118)Rm;k(n) = nXj=1 Sm(2j)jk (119)Sometimes � is not always the easiest fun
tion to manipulate. Therefore the fun
tion �0 is some-times handy: �0(1; 1; a; b) = 12�(b�a)(�(1; 1; a; b) � (S1(a�1) � S1(b))2)�12�(a�b�1)�(1; 1; b+1; a�1) (120)Both fun
tions involve summations over triangles in the two dimensional plane. These triangles donot tou
h the origin. 22



F.1 Sums without (�1)jFirst is a number of expressions that are at the lowest level of 
omplexity.A1(n; 1) = �S1(n+1) + (�1)nn+1 (121)A1(n; 2) = �S1(n+2) + (�1)n(n+1)(n+2) + (�1)n (122)A1(1;m) = �(m+1) (123)A1(2;m) = 14(m+2)(m�3) (124)A1(n;m+ 1) = A1(n;m) + (�1)n(n+mn ) 1n+m+1 � 1n+m+1 (125)A1(n+ 1;m) = A1(n;m+ 1)� (�1)n(n+m+1m ) 1n+1 (126)Ak(n;m+1) = kXi=1(n+m+1)i�kAi(n;m) + ((�1)n(n+mn )� 1) 1(n+m+1)k (127)Ak(n;m+1) = Ak(n;m) + nXj=1(�1)j(n+m+1j )Sk(j) � (�1)n(n+mn )Sk(n) (128)Next are some mis
ellaneous sums:aXj=1 1j S1(b+j) = (S1(a)� S1(b))S1(a+b) + 2S1;1(b)� 12S2(b)+�0(1; 1; a; b) (129)mXj=0(n�1+jj ) 1n+j = (n+mn ) 1n � (�1)nA1(n;m)� (�1)nS1(n+m) (130)nXj=1 S1(n+j)j = 2S1;1(n)� 12S2(n) (131)nXj=1 S1(j)n+j = S1(2n)S1(n�1)� 2S1;1(n�1) + 12S2(n) (132)nXj=1 S�1(n+j)j = S�1;�1(n) + S1;�1(n)� 12S2(n) (133)nXj=1 S1(n+j)j2 = S1;2(n)� 2S2;1(n)� 12S3(n) + 2R1;2(n) (134)nXj=1 S�1(n+j)j2 = 2S2;1(n)� S�2;�1(n) + S�1;�2(n)� S2;�1(n)� 12S3(n)� 2R1;2(n)(135)nXj=1 S�2(n+j)j = S�2;�1(n) + S1;�2(n) + S2;�1(n)� S2;1(n)� 14S3(n) +R1;2(n) (136)mXj=1 1n+j+2S1(j) = S1(m)S1(n+m+2)� mXj=1 1j S1(n+j+1) (137)23



mXj=1 1n+j+2S1(j+1) = � mXj=1 1j+1S1(n+1+j) + S1(m+1)S1(n+m+2)� S1(n+2) (138)The last two equations are not solving anything, but they are useful in the derivation of some ofthe next sums. First an equation that is like a partial integration.nXj=0(m+jj )f(n+1�j) = nXj=0(m�1+jj ) n+1�jXi=1 f(i) (139)It is 
entral in the derivation of the next equationsnXj=0(m+jj ) 1n+1�j = (n+m+1n+1 )(S1(n+m+1)� S1(m)) (140)nXj=0(m+jj ) 1(n+1�j)2 = (n+m+1n+1 )(S1(n+1)(S1(n+m+1)� S1(m�1))+2S2(n+m+1)� 2S1;1(n+m+1) + m�1Xi=1 S1(n+m+1�i)i ) (141)nXj=0(m+jj )Sk(n+1�j) = n+m+2m+1 nXj=0(m+j�1j )Sk(n+1�j)� 1m+1 nXj=0(m+j�1j )Sk�1(n+1�j) (142)nXj=0(m+jj )S1(n+1�j) = (n+m+2n+1 )(S1(n+m+2)� S1(m+1)) (143)nXj=0(m+jj )S1;1(n+1�j) = 12(n+m+2n+1 )(2S1;1(m+1)� 2S1;1(n+1) + S2(n+1)� 1(n+m+2)(m+1) ��0(1; 1;m; n+1) ��0(1; 1;m+1; n+1)+(2S1(n+m+2)� 1n+m+2)(S1(n+1)� S1(m+1)) ) (144)nXj=0(m+jj )S2(n+1�j) = (n+m+2n+1 )(S2(n+m+2)� S1;1(n+m+2)+S1(n+m+1)S1(n+1) + S1(m)n+m+2 + 12S2(n+1)�S1;1(n+1)��0(1; 1;m; n+1) ) (145)Similarly one 
an derive:nXj=0(m+jj )S1(m+j) = (n+m+1n )(S1(n+m+1)� 1m+1) (146)nXj=0(m+jj )S21(m+j) = (n+m+1n )((S1(n+m)� 1m+1)( 1n+m+1 � 1m+1)+S1;1(n+m))� (�1)m 1m+1(S1(n+m) +A1(m;n)) (147)24



nXj=0(m+jj )S2(m+j) = (n+m+1n )S2(n+m)� (�1)mm+1 (S1(n+m) +A1(m;n)) (148)These formulae give also some 'partial integration':n�1Xj=0 (m+j)!j! S1(m+j)f(n�j) = n�1Xj=0m(m+j�1)!j! S1(m+j�1) n�jXi=1 f(i)+ n�1Xj=0 (m+j)!j! m f(n�j) (149)nXj=0 (m�1+j)!j! S1(m+j)f(n+1�j) = �(m�1) n+1Xj=0 (m�2+j)!j! S1(m�1+j)f(n+2�j)+ n+1Xj=0 (m�1+j)!j! S1(m�1+j)f(n+2�j) (150)This is used for the next equationsn�1Xj=0(m+jj )S1(m+j)n�j = (m+nn )(2S1;1(m+n)� 2S2(m+n)+S2(m)� S1(m+n)S1(m)) (151)n�1Xj=0(m+jj )S1(m+j)S1(n�j) = (n+m+1n )(�(S2(n+m+1)� S2(m+1))+(S1(n+m+1)�S1(m+1))(S1(n+m+1)� 1m+1)) (152)F.2 Sums with (�1)jThe next sums all 
ontain a fa
tor (�1)j and hen
e they give 
ompletely di�erent results than the
orresponding set of sums without the (�1)j . The most important ones have been treated in theappendi
es B and C. nXj=0(nj )(�1)j 1m+j = (n+mn )�1 1m (153)nXj=0(nj )(�1)jS1(m+j) = �(n+mn )�1 1n (154)nXj=0(nj )(�1)j 1(m+j)2 = (n+mn )�1 1m(S1(m+n)� S1(m�1)) (155)nXj=0(nj )(�1)j S1(m+j)m+j = (n+mn )�1 1m(S1(m+n)� S1(n)) (156)nXj=0(nj )(�1)jS2(m+j) = �(n+mn )�1 1n(S1(n+m)� S1(m)) (157)nXj=0(nj )(�1)jS1;1(m+j) = �(n+mn )�1 1n(S1(n+m)� S1(n�1)) (158)25



nXj=0(�1)j(nj )S1(n�j)m+j = �A1(n;m)( (n+m)(n+m�1n ) )�1 (159)There is also a number of sums with more than one binomial 
oeÆ
ient. First a few generalones. nXj=0(�1)j(nj )(m+jj ) = (�1)n(mn ) m � n (160)nXj=0(�1)j(nj )(m+jj ) = 0 m < n (161)nXj=0(�1)j(nj )(m+jj ) j = (�1)n(m+1n ) n m � n�1= 0 m < n�1 (162)nXj=0(nj )( n+jm+j )(�1)j = 0 0 < m < n (163)nXj=0(nj )(n+m+jm+j )(�1)j = (�1)n m � 0 (164)nXj=0 1j!(n+1�j)! (2n+2�j)!(n+1�j)! (�1)j = 1 + (�1)n (165)n�1Xj=0 1j!(n�1�j)! (n�1+j)!j!(j+2) (�1)j = 12Æ(n�1) � 16Æ(n�2) (166)And now the sums with two binomial 
oeÆ
ients and an argument j in the extra pie
e (see alsoappendix E):nXj=1(nj )(n+jj )(�1)jS1;1(j) = (�1)n(4S1;1(n)� 2S2(n)) (167)nXj=1(nj )(n+jj )(�1)j 1j S1(j) = 2S�2(n) (168)nXj=1(nj )(n+jj )(�1)jS1;2(j) = (�1)n(2S�3(n)� 4S1;�2(n)) (169)nXj=1(nj )(n+jj )(�1)jS2;1(j) = (�1)n(2S3(n)) (170)nXj=1(nj )(n+jj )(�1)jS1;1;1(j) = (�1)n(2S3(n)� 4S1;2(n)� 4S2;1(n) + 8S1;1;1(n)) (171)nXj=1(nj )(n+jj )(�1)j 1j S2(j) = �2S3(n) (172)nXj=1(nj )(n+jj )(�1)j 1j S1;1(j) = 4S�2;1(n)� 2S�3(n) (173)nXj=1(nj )(n+jj )(�1)j 1j2S1(j) = 4S1;�2(n)� 2S�3(n) (174)26



Similarly there are formulae with j + 1 (see also appendix E).nXj=0(nj )(n+jj+1 )(�1)jS1(j+1) = (�1)n 1n+1 (175)nXj=0(nj )(n+jj+1 )(�1)j S1(j+1)j+1 = �(�1)n 1n(n+1)2 (176)nXj=0(nj )(n+jj+1 )(�1)jS1;1(j+1) = (�1)nn+1 (S1(n+1) + S1(n�1)) (177)nXj=0(nj )(n+jj+1 )(�1)jS2(j+1) = � 1n(n+1)2 (178)nXj=0(nj )(n+jj+1 )(�1)j S1(j+1)(j+1)2 = � 1n+1(S�2(n+1) + S�2(n�1) + (�1)nn(n+1)) (179)nXj=0(nj )(n+jj+1 )(�1)j S1;1(j+1)j+1 = (�1)nn(n+1)2 (1� S1(n+1)� S1(n�1)) (180)nXj=0(nj )(n+jj+1 )(�1)j S2(j+1)j+1 = 1n2(n+1)2 + 1(n+1)3 (181)nXj=0(nj )(n+jj+1 )(�1)jS3(j+1) = 1n(n+1)2 (1� S1(n+1)� S1(n�1)) (182)And the formulae with j + 2 (see also appendix E).nXj=0(nj )(n+jj+2 )(�1)jS1(j+2) = �(�1)n 1(n+1)(n+2) (183)nXj=0(nj )(n+jj+2 )(�1)jS2(j+2) = � 2(n2+n+1)(n�1)n(n+1)2(n+2)2 (184)nXj=0(nj )(n+jj+2 )(�1)jS3(j+2) = 1(n+1)(n+2)(11=6n�1 � 5=2n + 5=2n+1 � 11=6n+2 + (�1)n ��(S1(n+2) + S1(n�2))(S�1(n+2)� S�1(n�2)) ) (185)nXj=0(nj )(n+jj+2 )(�1)j S2(j+2)j+2 = 1(n+1)(n+2)(S2(n+2)� S2(n�2)�56 1n�1 + 12 1n � 12 1n+1 + 56 1n+2) (186)The formulae with j + n: nXj=0(nj )(n+jj )(�1)j 1n+j = 0 (187)nXj=0(nj )(n+jj )(�1)jS1(n+j) = 2(�1)nS1(n) (188)nXj=0(nj )(n+jj )(�1)j 1(n+j)2 = �(�1)n (n�1)!(n�1)!(2n)! (189)27



nXj=0(nj )(n+jj )(�1)j(S1;1(n+j)� S2(n+j)) = (�1)n(4S1;1(n)� 3S2(n)) (190)nXj=1(nj )(n+jj )(�1)j 1j S1(n+j) = 3S2(n) + 2S�2(n)� 4S1;1(n) (191)nXj=0(nj )(n+jj )(�1)j 1j+1S1(n+j) = (�1)n 1n(n+1) (192)nXj=0(nj )(n+j1+j )(�1)jS1(n+j) = (�1)n 1n+1 (193)nXj=0(nj )(n+j1+j )(�1)jS2(n+j) = (�1)nn! (n�1)!(2n)! 1n+1 (194)nXj=0(nj )(n+j2+j )(�1)jS2(n+j) = (�1)nn! (n�1)!(2n)! (13 1n+2 � 1n+1 � 13 1n�1) (195)nXj=0(nj )(n+j3+j )(�1)jS2(n+j) = (�1)nn! (n�1)!(2n)! ( 110 1n+3 � 23 1n+2+ 1n+1 + 16 1n�1 + 25 1n�2) (196)nXj=0(nj )(n+jj )(�1)j 1(j+1)2S1(n+j) = 1n(n+1)S1(n�1)� (�1)n 1n2(n+1)2 (197)nXj=0(nj )(n+jj )(�1)j 1j+2S1(n+j) = (�1)n(16 1n�1 + 12 1n � 12 1n+1 � 16 1n+2) (198)nXj=0(nj )(n+j2+j )(�1)j 1j+2S1(n+j) = n!(n+2)! (S1(n�2) + 2(�1)n(n2+n+1)(n�2)!(n+2)!) (199)nXj=0(nj )(n+j3+j )(�1)j 1j+3S1(n+j) = 2 n!(n+3)! (S1(n�3)� (S�1(n+3)� S�1(n�3)) ) (200)nXj=0(nj )(n+j1+j )(�1)j 1(j+1)2S1(n+j) = 1n+1(2S1;1(n�1)� 2S2(n�1)� S�2(n+1)�S�2(n�1) + S1(n+1)S1(n�1)� (�1)nn(n+1)) ) (201)nXj=0(nj )(n+j2+j )(�1)j 1(j+2)2S1(n+j) = n!(n+2)! (2S1;1(n�2)� 2S2(n�2)� S1(n�2)�S�2(n+2)� S�2(n�2) + S1(n+2)S1(n�2)+(�1)n(n2+n+3)(n�2)!(n+2)! ) (202)And some mixed formulae.nXj=0(nj )(n+jj )(�1)j 1m+j = 0 (m � n)= (�1)n (m�1)!(m�1)!(n+m)!(m�n�1)! (m > n) (203)28



nXj=0(nj )(n+jj )(�1)j 1(m+j)2 = �(�1)m (m�1)!(m�1)!(n�m)!(n+m)! (n � m) (204)nXj=0(nj )( n+jm+j )(�1)jS2(m+j) = (�1)n+m (m�1)! n!(n+m)! (S�1(n+m)� S�1(n�m))(n � m) (205)nXj=0(nj )( n+jm+j )(�1)jS1(n+j) = �(�1)n+mn! (m�1)!(n+m)! (n � m) (206)There are also sums with two fa
torials in the numerator.nXj=0 j!(m�j)!(�1)j = (m+1)!m+2 + (�1)n (n+1)! (m�n)!m+2 (207)nXj=1 j! (m�j)!(�1)jS1(j) = (�1)n (n+1)! (m�n)!m+2 (S1(n+1)� 1m+2)� (m+1)!(m+2)2 (208)nXj=0 j! (n�j)!(�1)j 1j+1 = �(n+1)! (S2(n+1) + 2S�2(n+1)) (209)nXj=1 j! (n�j)!(�1)j 1j2 = n! (S2(n) + 2S�2(n)) (210)mXj=0(�1)jj! (n+m�j)!2+m�j = (�1)m(m+2)! (n�2)! (A1(m+3; n�2) + S1(m+2))+(m+n+1)!(m+3)2 + (�1)m(m+1)! (n�1)! (211)nXj=0(�1)j(n+m�j)! j! A1(j; n�j) = (n+m+1)!n+m+2 (S1(n+m+1)� S1(m+1))�(�1)n (n+1)! m!n+m+2 S1(n) (212)F.3 Partial sumsFor derivations the use of partial sums (sums of only part of the range of the binomial 
oeÆ
ients)are very useful. Unfortunately these are hard to obtain and hen
e only a limited number of them
an be presented here. mXj=0(�1)j(nj ) = (�1)m(n�1m ) (213)mXj=1(�1)j(nj ) 1jk = Ak(m;n�m) (214)mXj=0(�1)j(nj )S1(j) = (�1)m(n�1m )(S1(m) + 1n)� 1n (215)mXj=0(�1)j(nj )S1(n�j) = (�1)m(n�1m )(S1(n�m�1) + 1n) (216)29
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