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1 Introdu
tion.Euler's dilogarithm appeared very soon, even if with a di�erent name, in the evaluation of radiative
orre
tions in QED. The �rst o

urren
e is perhaps in the 1934 paper by G. Ra
ah on the radiation1



by fast parti
les [1℄, whose fun
tion F (x) is equal to �Li2(�x) in Euler's notation. Two loop
al
ulations [2℄ required the polylogarithms, Nielsen's generalization [3℄ of Euler's dilogarithm.More bibliographi
al indi
ations as well as many relevant results are 
ontained in the popular bookby Lewin [4℄ (note the 
hange in the titles of the two editions of the book).While the polylogarithms are the natural analyti
al tool to use when dealing with the (relatively)simple integrals appearing in 
al
ulations with a few loops, it is known that they will not besuÆ
ient when the number of loops will be larger than has been 
onsidered thus far or whenseveral di�erent s
ales are present. In a re
ent publi
ation the set of polylogarithms has beenextended into something 
alled `multidimensional polylogarithms' [5℄. These fun
tions seem tobe very useful when more than one dimensionful parameter is involved. In prin
iple they are adire
t generalization of the de�nition of the power-series expansion of the polylogarithms to amultiparameter spa
e.Besides the dilogarithm, Euler studied also harmoni
 sums. A re
ent publi
ation by one ofus [6℄ investigated harmoni
 sums and their appli
ability, in parti
ular to formulas in Mellin spa
e.These harmoni
 sums seem to be the natural fun
tions for the results of moment 
al
ulations ofdeep inelasti
 stru
ture fun
tions when only massless quarks are involved1. If indeed all thesemoments 
an be expressed in terms of harmoni
 sums, the 
lass of fun
tions that will represent theresults in the regular x-spa
e will be formed by the inverse Mellin transforms of these harmoni
sums. In ref [6℄ it was indi
ated how one 
ould obtain at least numeri
al representations of thesefun
tions by means of numeri
al integration.In the 
urrent paper we study these fun
tions in a more systemati
 way. We start with are
ursive integral de�nition of a 
lass of fun
tions, whi
h we will 
all the harmoni
 polylogarithms(hpl's), whi
h are by 
onstru
tion a generalization of Nielsen's polylogarithms; it turns out, further,that an important subset of the hpl's is also a subset of the multidimensional polylogarithmsof ref [5℄. Then we will study a number of their properties, in
luding expressions for produ
tsof harmoni
 polylogarithms with the same argument, the behaviour at x = 0; 1, the relevantexpansions around those points, the algebra of the hpl's and the identities between hpl's of relatedarguments. Then we study spe
ial values and numeri
al evaluation. Finally we study the Mellintransforms of the harmoni
 polylogarithms and �nd that indeed they give the harmoni
 sums andthat there is a one to one 
orresponden
e between them. As a 
onsequen
e the investigation alsoleads to a rather simple algorithm for the inverse Mellin transform, even though in general thelength of the resulting formulae requires a 
omputer implementation for dealing with the greatnumber of terms whi
h are generated.All algorithms that we present have been programmed in the language of FORM [7℄. Theresulting pro
edures 
an be obtained from the se
ond author.1This 
an be shown for all two loop 
al
ulations to any order in the expansion parameter �. For three loop
al
ulations su
h results do not exist yet, but a re
ent result by Broadhurst and Kreimer [8℄ shows that only at the7-loop level the 
ounter terms in the QCD beta fun
tion 
ontains non-zeta like 
onstants.
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2 De�nitions.The harmoni
 polylogarithms of weight w and argument x are identi�ed by a set of w indi
es,grouped into a w-dimensional ve
tor ~mw and are indi
ated by H(~mw;x).More expli
itly, for w = 1 one de�nesH(0;x) = lnx ;H(1;x) = Z x0 dx01� x0 = � ln(1� x) ;H(�1;x) = Z x0 dx01 + x0 = ln(1 + x) : (1)For their derivatives, one has ddxH(a;x) = f(a;x) ; (2)where the index a 
an take the 3 values 0;+1;�1 and the 3 rational fra
tions f(a;x) are given byf(0;x) = 1x ;f(1;x) = 11� x ;f(�1;x) = 11 + x : (3)Note the (minor) asymmetry of Eq.(1), in 
ontrast with the higher symmetry of Eq.(2).For w > 1, let us elaborate slightly the notation for the w-dimensional ve
tors ~mw. Quite ingeneral, let us write ~mw = (a; ~mw�1) ; (4)where a = mw is the leftmost index (taking of 
ourse one of the three values 0; 1;�1), and ~mw�1stands for the ve
tor of the remaining (w � 1) 
omponents. Further, ~0w will be the ve
tor whosew 
omponents are all equal to the index 0. The harmoni
 polylogarithms of weight w are thende�ned as follows: H(~0w;x) = 1w! lnw x ; (5)while, if ~mw 6= ~0w H(~mw;x) = Z x0 dx0 f(a;x0) H(~mw�1;x0) : (6)Quite in general the derivatives 
an be written in the 
ompa
t formddxH(~mw;x) = f(a;x)H(~mw�1;x) ; (7)where, again, a = mw is the leftmost 
omponent of ~mw.3



In analogy with Eq.(5), if ~1w; ~(�1)w are the ve
tors whose 
omponents are all equal to 1 or �1,we have by applying re
ursively the de�nitionsH(~1w;x) = 1w! (� ln (1� x))w ;H( ~(�1)w;x) = 1w! lnw (1 + x) : (8)Let us now have a look at the �rst few values of the indi
es. For w = 2 one has the 9 fun
tionsH(0; 0;x) = 12! ln2 x ;H(0; 1;x) = Z x0 dx0x0 H(1;x0) = � Z x0 dx0x0 ln(1� x0) ;H(0;�1;x) = Z x0 dx0x0 H(�1;x0) = Z x0 dx0x0 ln(1 + x0) ;H(1; 0;x) = Z x0 dx01� x0H(0;x0) = Z x0 dx01� x0 lnx0 ;H(1; 1;x) = Z x0 dx01� x0H(1;x0) = � Z x0 dx01� x0 ln(1� x0) ;H(1;�1;x) = Z x0 dx01� x0H(�1;x0) = Z x0 dx01� x0 ln(1 + x0) ;H(�1; 0;x) = Z x0 dx01 + x0H(0;x0) = Z x0 dx01 + x0 lnx0 ;H(�1; 1;x) = Z x0 dx01 + x0H(1;x0) = � Z x0 dx01 + x0 ln(1� x0) ;H(�1;�1;x) = Z x0 dx01 + x0H(�1;x0) = Z x0 dx1 + x0 ln(1 + x0) : (9)Those 9 fun
tions 
an all be expressed in terms of logarithmi
 and dilogarithmi
 fun
tions; indeed,if Li2(x) = � Z x0 dx0x0 ln(1� x0) (10)is the usual Euler's dilogarithm, one �ndsH(0; 1;x) = Li2(x) ;H(0;�1;x) = �Li2(�x) ;H(1; 0;x) = � lnx ln(1� x) + Li2(x) ;H(1; 1;x) = 12! ln2(1� x) ;H(1;�1;x) = Li2 �1� x2 �� ln 2 ln(1� x)� Li2 �12� ;H(�1; 0;x) = lnx ln(1 + x) + Li2(�x) ;H(�1; 1;x) = Li2 �1 + x2 �� ln 2 ln(1 + x)� Li2 �12� ;H(�1;�1;x) = 12! ln2(1 + x) : (11)4



Something similar happens for harmoni
 polylogarithms and Nielsen's polylogarithms of weight 3;that is no longer true however from weight 4 on. To make an example,H(�1; 0; 0; 1;x) = Z x0 dx01 + x0Li3(x0) (12)
annot be expressed in terms of Nielsen's polylogarithms of the same weight, even allowing forslightly more general arguments (i.e. when 
onsidering, besides x, also �x, (1 + x)=2; (1 � x)=2et
.). In other words, the set of the 3w harmoni
 polylogarithms of weight w is in general a mu
hwider set of fun
tions than the set of the Nielsen's polylogarithms.It follows from the de�nition that if ~mw 6= ~0w the hpl's vanish at x = 0:H(~mw; 0) = 0; ~mw 6= ~0w : (13)Likewise, if the leftmost index mw is not equal to 1, (mw 6= 1), H(~mw; 1) is �nite; it is also �nitewhen ~mw = 1, but all the remaining indi
es ~mw�1 are zero, (~mw�1 = ~0w�1). In the remaining
ases, i.e. mw = 1 and ~mw�1 6= ~0w�1, H(~mw;x) has a logarithmi
 behaviour at x = 1: moreexa
tly, if the p leftmost indi
es are all equal to 1, H(~mw;x) behaves for x! 1 as a 
ombination ofpowers of ln(1�x) ranging from the maximum value p down to 0 (the maximum power is de
reasedto p� 1 if the remaining w � p indi
es are all equal to zero; the study of the detailed logarithmi
behaviours at x = 0; 1 will be 
arried out in Se
tion 3).In dealing with spe
i�
 
ases and ex
ept for the smallest values of w, spe
ifying expli
itly all the
omponents of ~m be
omes quite 
umbersome, so that a more 
ompa
t notation is wel
ome. In the
ase that we ignore the fun
tions of whi
h the last index is zero we 
an use the same 
ompa
ti�ednotation as in ref [6℄. This is to say that, pro
eeding from right to left, all zeroes are simplyeliminated by adding at the same time one to the absolute value of the previous index to the right,as in H(0; 0; 1; 0;�1;x) = H3;�2(x): (14)In terms of this notation and ex
luding, as already stated, the 
ases in whi
h the rightmost indexis zero, one 
an formulate the following:theorem: If m1 6= 0 one has Hmp;���;m1(�x) = (�1)pH�mp;���;�m1(x) : (15)The proof goes by indu
tion and follows rather trivially from the de�nition of H. In the 
ase thatwe use the notation in whi
h the mi only have the value 0; 1;�1 the power of �1 is the number ofindi
es that are not zero.In general we will write the indi
es of the H-fun
tions as subs
ripts when we use the notation of ther.h.s. of Eq.(14), while we will use the notation of the l.h.s. when the indi
es are supposed to havethe values 0; 1;�1 only. In that last notation, to see the relation with the polylogarithms of NielsenSn;p(x), de�ned in [3℄, let us indi
ate with ~0n;~1p as usual, two n-dimensional and p-dimensionalve
tors whose 
omponents are all equal to 0 and 1 respe
tively; one then hasSn;p(x) = H(~0n;~1p;x) : (16)5



As an obvious extension of the terminology, the produ
t of two H-fun
tions of weight w1 and w2will be said to have total weight w = w1+w2. In the following we will often en
ounter homogeneous\identities of weight w", i.e. relations (or identities) involving the sum of several terms, where ea
hterm is equal to the produ
t of an integer or rational fra
tion times a H-fun
tion of weight w or aprodu
t of several H-fun
tions separately of lower weight but with total weight w.While the H-fun
tions of weight w are linear independent, the same is not true for the widerset of all the homogeneous expressions of weight w. The redundan
e 
an be used for establishinga number of (homogeneous) identities expressing a H-fun
tion of some argument and weight was a homogeneous expression of the same weight involving H-fun
tions of the same or of relatedarguments (in
luding 
onstant arguments, su
h as for instan
e +1 or �1). The identities 
an beuseful, typi
ally, for exhibiting expli
itly the behaviour at parti
ular points (su
h as the logarithmi
behaviour at 0 or �1) or for obtaining relations between H-fun
tions of spe
ial arguments. Quite ingeneral, while establishing su
h identities 
an be more or less wearisome, there is almost always astraightforward \standard method" for 
he
king a given identity: one �rst veri�es that the identityholds for a parti
ularly 
onvenient 
hoi
e of the variable (or variables) and then di�erentiate itwith respe
t to one of the arguments. In so doing one obtains another relation, however of lowerweight, a

ording to Eq.(7); the pro
edure 
an be iterated until a relation of weight 1 is eventuallyobtained, whose 
he
k is trivial (be
ause the H-fun
tions of weight 1 are just logarithms).Likewise, also the mathemati
al 
onstants 
orresponding to the parti
ular values of the H-fun
tion of weight w (su
h as the values at x = 1 when �nite) 
an be given the same weight w.Those values, at x = �1 or other simple arguments, are of parti
ular interest by themselves, as itturns out that they 
an be expressed in terms of a very small number of mathemati
al 
onstants,su
h as Riemann �-fun
tions, ln 2 et
. We will see that they are 
onne
ted to the sums to in�nity ofref [6℄ whi
h have been systemati
ally evaluated and tabulated2 by one of us (J.V.) to weight = 9and 
an be evaluated basi
ally to any weight, given enough 
omputer resour
es3. In similar waysthese sums have been evaluated under the name of Euler/Zagier sums by the authors of ref [9℄.Hen
e, whenever H-fun
tions at x = 1 will appear in this paper they 
an be regarded as knownfrom ref [6℄ or ref [9℄, provided their weight is not too large. It will also be shown that one mayalternatively 
onsider them as unknown 
onstants, to be expressed in terms of that mu
h smallernumber of mathemati
al 
onstants by systemati
ally exploiting the many identities among H's ofvarious arguments established in the rest of this paper.2in ref [6℄ this was done only to weight = 73An alternative method to obtain the �nite 
onstants 
onsists of their numeri
al evaluation to high pre
ision andthen �tting them to a presumed basis. Using this method Broadhurst [11℄ has evaluated all �nite obje
ts at weight= 9 and some obje
ts at the weights 10 and 11
6



3 Identities between fun
tions of the same argument.Let us start by the integration by parts (ibp) identities. From the very de�nition,H(m1 � � �mq;x) = Z x0 dx0 f(m1;x0)H(m2 � � �mq;x0)= H(m1;x)H(m2 � � �mq;x)�Z x0 dx0 H(m1;x0)f(m2;x0)H(m3 � � �mq;x0)= H(m1;x)H(m2 � � �mq;x)�H(m2m1;x)H(m3 � � �mq;x)+ H(m3m2m1;x)H(m4 � � �mq;x)� � � � � (�1)pH(mq � � �m1;x) : (17)The above identity 
an be immediately veri�ed, independently of its derivation, by the `standardmethods': it holds at x = 0; when di�erentiating with respe
t to x, one obtains a number of termswhi
h are immediately seen to 
an
el out pairwise; therefore, the relation is true. This relationshows that in the 
ase that ~mq is symmetri
 and q is even the H-fun
tion redu
es to produ
ts oflower weight fun
tions. In general the relation 
an be used when it is important to redu
e thenumber of H-fun
tions with the highest weight as mu
h as possible.Another important set of identities expresses the produ
t of any two H-fun
tions of weight w1and w2 as a linear 
ombination of H-fun
tions of weight w = w1 + w2. Let us start from the 
asew1 = 1; the identity readsH(a;x)H(mp; � � � ;m1;x) = H(a;mp � � � ;m1;x)+ H(mp; a;mp�1 � � � ;m1;x)+ H(mp;mp�1; a;mp�2 � � �m1;x)+ � � �+ H(mp; � � � ;m1; a;x) : (18)It 
an be established by indu
tion in p. For p = 1 it is almost trivial, 
orresponding to Eq.(17)for q = 2. Assume then that it holds for p � 1; take the identity for p � 1, multiply by f(mp;x)and integrate over x. In the r.h.s. we 
an do the integral and obtain all ne
essary terms ex
ept forthe one starting with a. The  l.h.s. 
an be integrated by parts to give the proper l.h.s. term plusanother term that 
an be integrated and gives indeed the missing term. This 
ompletes the proof.Again, on
e established the identity 
an also be veri�ed by the `standard method': it holds atx = 0; the x-derivative 
onsists of two groups of terms, a �rst group with the 
oeÆ
ient f(a;x)
ontains just two terms whi
h 
an
el out immediately, plus a se
ond group proportional to f(mp;x),whi
h is nothing but the same relation at level p�1, so that the pro
edure 
an be repeated p timesuntil everything 
an
els out.There is only one 
ompli
ation with Eq.(18). This 
on
erns points in whi
h one of the obje
tsinvolved is divergent. Hen
e one 
annot apply this equation for x = 1 in the 
ase that either a = 1or mp = 1. This is explained better in the se
tion on the algebrai
 properties.Eq.(18) 
an be generalized to the produ
t of two H-fun
tions H(~p;x)H(~q;x); if p; q are thedimensions of ~p; ~q (or, whi
h is the same, the weights of the two H-fun
tions), the produ
t is equal7



to the sum of (p+ q)!=p!q! terms, ea
h term being an H-fun
tion of weight (p+ q) with 
oeÆ
ient+1, obtained by 
hoosing p indi
es in all possible ways (hen
e the binomial 
oeÆ
ients) and �llingthem from left to right with the 
omponents of ~p without 
hanging their order, while the remainingq pla
es 
ontain the 
omponents of ~q, again without altering their order. This 
an be expressedwith the formula H(~p;x)H(~q;x) = X~r=~p℄~qH(~r;x) (19)in whi
h ~p ℄ ~q represents all mergers of ~p and ~q in whi
h the relative orders of the elements of ~pand ~q are preserved.As an example, for p = 2; ~p = (a; b) and q = 3; ~q = (r; s; t) one hasH(a; b;x)H(r; s; t;x) = H(a; b; r; s; t;x) + H(a; r; b; s; t;x)+ H(a; r; s; b; t;x) + H(a; r; s; t; b;x)+ H(r; a; b; s; t;x) + H(r; a; s; b; t;x)+ H(r; s; a; b; t;x) + H(r; a; s; t; b;x)+ H(r; s; a; t; b;x) + H(r; s; t; a; b;x) ; (20)as 
an be easily 
he
ked, again, by the `standard method'.The produ
t identities Eq.(19) 
an be used to single out the terms in ln(x) from H-fun
tionswhose indi
es have trailing (or rightmost) indi
es equal to zero (as we will see in the next se
tionH-fun
tions with no trailing zeroes 
an be expanded in series of x around x = 0, while H-fun
tionswith trailing zeroes develop logarithmi
 singularities at that point). For a = 0 in Eq.(18), re
allingH(0;x) = ln(x), Eq.(5) and Eq.(1) one obtainsH(m1; � � � ;mp; 0;x) = ln(x)H(m1; � � � ;mp;x)�H(0;m1; � � � ;mp;x)�H(m1; 0;m2; � � � ;mp;x)� � � � �H(m1; � � � ;mp�1; 0;mp;x) : (21)In the 
ase that mp is also zero we 
an move the last term to the left, divide by two and thenuse again Eq.(18) for all the other terms, thus obtaining an identity whi
h extra
ts the logarithmi
singularities due to 2 trailing zeroes. By suitably repeating the pro
edure as many times as needed,we 
an extra
t in general all the powers of ln(x) from the generi
 H-fun
tion. A 
ouple of examples,if a; b are any non-zero indi
es, areH(a; b; 0; 0;x) = H(0; 0;x)H(a; b;x)� H(0;x)�H(a; 0; b;x) + H(0; a; b;x)�+ H(a; 0; 0; b;x) + H(0; a; 0; b;x) + H(0; 0; a; b;x) ;H(a; b; 0; 0; 0;x) = H(0; 0; 0;x)H(a; b;x)� H(0; 0;x)�H(a; 0; b;x) + H(0; a; b;x)�8



+ H(0;x)�H(a; 0; 0; b;x) + H(0; a; 0; b;x) + H(0; 0; a; b;x)�� �H(a; 0; 0; 0; b;x) + H(0; a; 0; 0; b;x)+H(0; 0; a; 0; b;x) + H(0; 0; 0; a; b;x)� (22)In the same way one 
an use the produ
t identities, Eq.(19) for extra
ting the terms singularas powers of ln(1 � x), or equivalently of H(1;x) a

ording to Eq.(1), around x = 1 from theH-fun
tions whose leading (or leftmost) indi
es are equal to 1. If a = 1 Eq.(18) 
an be rewritten asH(1;m1; � � � ;mp;x) = H(1;x)H(m1; � � � ;mp;x)�H(m1; 1;m2 � � � ;mp;x)� H(m1;m2; 1; � � �mp;x)� � � � �H(m1; � � � ;mp�1mp; 1;x) : (23)If m1 has also the value 1 we 
an take the se
ond term of the r.h.s. to the left, divide by two andobtain an identity to be used when the �rst 2 indi
es are both equal to 1 and so on. Let us showa 
ouple of examples in the 
ase of two indi
es a; b not equal to 1:H(1; 1; a; b;x) = H(1; 1;x)H(a; b;x)� H(1;x)�H(a; 1; b;x) + H(a; b; 1;x)�+ H(a; 1; 1; b;x) + H(a; 1; b; 1;x) + H(a; b; 1; 1;x) ;H(1; 1; 1; a; b;x) = H(1; 1; 1;x)H(a; b;x)� H(1; 1;x)�H(a; 1; b;x) + H(a; b; 1;x)�+ H(1;x)�H(a; 1; 1; b;x) + H(a; 1; b; 1;x) + H(a; b; 1; 1;x)�� �H(a; 1; 1; 1; b;x) + H(a; 1; 1; b; 1;x)+H(a; 1; b; 1; 1;x) + H(a; b; 1; 1; 1;x)� ; (24)the stru
ture is very mu
h the same as in the equations for extra
ting the ln(x) singularities relatedto the trailing zeroes.It is to be noted that the two pro
edures { the \extra
tion" of leading 1's and trailing 0's { 
anbe 
ombined, to give, for instan
eH(1; 1;�1; 0;x) = 12H(�1;x)H(0;x)H2(1;x) �H(�1; 1;x)H(0;x)H(1;x)+ H(�1; 1; 1;x)H(0;x) � 12H(0;�1;x)H(1;x)H(1;x)+ H(0;�1; 1;x)H(1;x) �H(0;�1; 1; 1;x) ;H(1; 1; 0; 0; 0;x) = 112H3(0;x)H2(1;x)� H(0; 0; 0; 1;x)H(1;x) + H(0; 0; 0; 1; 1;x)9



+ H(0; 0; 1;x)H(0;x)H(1;x) �H(0; 0; 1; 1;x)H(0;x)� 12H(0; 1;x)H2(0;x)H(1;x)+ 12H(0; 1; 1;x)H2(0;x) : (25)Therefore, one 
an always express a H-fun
tion with leading 1's and trailing 0's in terms of produ
tsof powers of H(0;x) and H(1;x), whi
h exhibit the logarithmi
 singularities in those points, and ofother \irredu
ible" H's, i.e. H's whose �rst index is not 1 and the last index is not 0 and thereforeis �nite at both x = 1 and x = 0.We 
an push further this kind of redu
tion, by writing all the possible produ
t identities Eq.(19)and the integration by part identities Eq.(17) and using them for expressing as many as possible H'sof weight w and \unwanted" indi
es in terms of produ
ts of a \minimal" set of H's of lower weightand \a

epted" indi
es. It is to be noted that the number of the H's in the \minimal" set is �xed,but their 
hoi
e is not unique, even if the 
ondition of the extra
tion of the leading 1's and trailing0's is imposed. It is easily seen that at weight w the number of relations is nothing but the totalnumber of the di�erent produ
ts of H's of lower weight and with total weight w. These relationsare independent when all H-fun
tions of lower weight belong to their respe
tive \minimal sets". Itis to be observed, in any 
ase, that the above \redu
tion" involves only di�erent rearrangements,without any modi�
ation, of the set of indi
es whi
h appear in the original H,An expli
it 
al
ulation gives the set sizes of table 1.Weight Full basis Irredu
ible set Minimal set2 9 4 33 27 12 84 81 36 185 243 108 486 729 324 1167 2187 972 3128 6561 2916 810Table 1: Sizes of the various basesThe use of the full basis in whi
h ea
h term has only a single H-fun
tion gives a unique expressionin a rather simple way. This is also the preferred representation when higher weights have to bebuilt up by su

essive integration. Expressions 
an also be given in terms of the irredu
ible set ina relatively easy way. This form is preferred when one has to avoid problems with divergen
ies. It
an also be 
onvenient when establishing identities for related arguments. The use of the minimalset is parti
ularly 
onvenient for the numeri
al evaluation of the H-fun
tions, when a large numberof them has to be evaluated in the same point. It should also be noted that the use of a minimalset is relatively easy for the lower weights (at weight 3 it requires only 4 substitutions) while forhigher weights it will mu
h less straightforward.10



4 Power series expansionsIn general the fun
tion H~m(x) does not have a regular Taylor series expansion. This is due to thee�e
t that trailing zeroes in the index �eld may 
ause powers of ln(x). Hen
e the proper expansionis one in terms of both x and ln(x). Let us �rst have a look at what happens when there are nologarithms. We will use now the other notation for the indi
es. In that 
ase we have:H1(x) = 1Xi=1 xiiH�1(x) = � 1Xi=1 (�1)ixii (26)and assuming4 that H~m(x) = 1Xi=1 �ixiia S~n(i) (27)in whi
h � = �1 one 
an write the relationsH0;~m(x) = 1Xi=1 �ixiia+1S~n(i)H1;~m(x) = 1Xi=1 xii S�a;~n(i�1)= 1Xi=1 xii S�a;~n(i) � 1Xi=1 �ixiia+1S~n(i)H�1;~m(x) = � 1Xi=1 (�1)ixii S��a;~n(i�1)= � 1Xi=1 (�1)ixii S��a;~n(i) + 1Xi=1 �ixiia+1S~n(i) (28)At this point one 
ould argue what is the better de�nition of the nested sums. A de�nition of thetype Za;~m(n) = nXi=1 Z~m(i�1)ia (29)will give only a single term in the expansion and is favored in the mathemati
al literature, be
ausethere one is mainly 
on
erned with sums to in�nity. For �nite values of n however this de�nitionhas the unelegant aspe
t that when ~m has k 
omponents that are not zero, the value of Za;~m(n) iszero for n � k. We will mostly follow the 
onventions of ref [6℄ in whi
h we use the de�nition:Sa;~m(n) = nXi=1 S~m(i)ia (30)4Be
ause of the linearity of the problem the presen
e of more than one term, ea
h with a di�erent S~n would notmake mu
h of a di�eren
e in the following 
onsiderations.11



In this notation one has the property S~mk(1) = Qki=1 �i with �i being the sign of mi. These twonotations will be referred to as Z-notation and S-notation respe
tively. The 
onversion from onenotation to the other is not really very 
ompli
ated if one realizes that Pi�1j=1 =Pij=1�Æij . Hen
ethe `leading' term has the same index �eld and the 
orre
tion terms have fewer indi
es in whi
hsome adja
ent indi
es may have been 
ombined. For k nonzero indi
es there are in total 2k�1 � 1
orre
tion terms.The fa
t that trailing zeroes in the index �eld are responsible for powers of ln(x) 
an be seeneasily now. Be
ause 1k! Z x dx xm lnk(x) = xm+1 kX�=0 (�1)k���! ln�(x)(m+ 1)k��+1 (31)we see that on
e we start with H(~0k;x), the subsequent integrations due to other indi
es (the �rstof them not being zero of 
ourse, and fa
tors 1=(1� x) being expanded in x) that 
ome to the leftof the ~0k will always leave terms with at most k powers of ln(x) and there will be a term with kof those powers. Hen
e the trailing zeroes are responsible for powers of ln(x). Of 
ourse the exa
tdependen
e of ln(x) 
an be derived mu
h easier by applying Eq.(21) repeatedly till all trailingzeroes have been removed. This gives an expansion in terms of powers of ln(x) and H-fun
tionsthat are of the type we have just studied and hen
e 
an be expanded in x. It is however alsopossible to work one's way through the integrals and the various expansions. This is mu
h morework and leads eventually to the same result. Hen
e we have omitted this derivation.If we 
ompare the H-fun
tion with the multidimensional polylogarithm in ref [5℄ we may noti
ethat this fun
tion 
an be rewritten into the following expansion:�(z1���zkb1 ���bk ) = 1X�1>�2>���>�k>0 kYj=1 b�jj�1�zjj b�jj (32)with b0 = 1. These fun
tions do not 
ontain powers of ln(bi) and hen
e they 
annot represent allH-fun
tions. If we restri
t ourselves to H-fun
tions without trailing zeroes one 
an write the termsin the expansion of these H-fun
tions as1X�1>�2>���>�k>0x�1 kYj=1 ��jj�zjj (33)if we use Z-sums and 1X�1��2������k�1x�1 kYj=1 ��jj�sjj (34)if we use S-sums. Hen
e it is 
lear that the H-fun
tions without trailing zeroes are spe
ial 
ases ofthe multidimensional polylogarithms with bi = �1=x. For the 
omputation of Feynman diagramswe do however need the H-fun
tions with trailing zeroes be
ause of the presen
e of the logarithms(see for instan
e ref [10℄). 12



There is another interesting observation in the expansion. Considering that the expansion ofan H-fun
tion with no trailing zeroes gives terms of the type1Xx=1xi�iS~m(i)iaone 
an introdu
e another sum by dividing by either 1+x or 1�x and obtain:1Xx=1xi�iS~m(i)ia = (1�x) 1Xx=1xiS�a;~m(i)= (1+x) 1Xx=1xi(�1)iS��a;~m(i) (35)At times this notation is more 
onvenient. One should however remember that this notation breaksdown at either x = 1 or at x = �1, depending on the parti
ular form used.Finally we noti
e that for x = 1 we have that1Xx=1xi�iS~m(i)ia ! S�a;~m(1) (36)and hen
e the values of the H-fun
tions in x = 1 are related to the values of the S-sums in in�nity.The trailing zeroes do not 
ause essential problems be
ause when those fun
tions are �rst writtenin terms of powers of ln(x) these logarithms vanish in x = 1 and we keep only the terms withH-fun
tions without trailing zeroes. For the numeri
al evaluation of these obje
ts one 
an use thealgorithms of ref [5℄ that relate them e�e
tively to 
ombinations of H-fun
tions in x = 1=2 afterthe appropriate 
onversions. This is parti
ularly interesting for the higher weights be
ause up toweight 7, 8 or 9 it is still possible to obtain expressions in terms of a very small number of 
onstants(see ref [9℄ and [6℄), but beyond these weights this be
omes too time 
onsuming5 while an expansionin x = 1=2 is suÆ
iently fast for nearly all numeri
al appli
ations, provided that only a limitednumber of them is needed.5 The algebraThe harmoni
 sums form an algebra [6℄ in whi
h the produ
t of two sums with the same argumentand having weights w1 and w2 respe
tively 
an be written as a sum of terms, ea
h with a singlesum of weight w1+w2. There are two sets of algebrai
 relations: the relations based on the shu�ealgebra whi
h hold for all values of the argument, and the relations based on the triangle theoremof ref [6℄ whi
h hold only for values in in�nity, provided that not both harmoni
 sums are divergent.For the H-fun
tions we have the general produ
t formula based on Eq.(19). This formula is relatedto the algebra of the harmoni
 sums, be
ause the harmoni
 polylogarithms 
an be expressed in5Thus far the only known exa
t method to do this involves solving simultaneously for all 2 3w�1 H-fun
tions inx = 1. See also a previous footnote. 13



terms of series expansions in whi
h the 
oeÆ
ients are harmoni
 sums: assume for the momentthat neither ~m nor ~n have trailing zeroes. In that 
ase we derive:Ha;~mp(x)H~nq(x) = 11� x 1Xi=1 S~mp(i)xiia 1Xj=1S~nq(j)xj (37)in whi
h one of the two powers of 1=(1 � x) has been absorbed in the sum over i. By 
ombiningthe powers of x this formula 
an be rewritten asHa;~mp(x)H~nq(x) = 11� x 1Xi=1 xi iXj=1 S~m(j)S~n(i� j)ja : (38)Note that the inner sum 
an be done and gives a set of terms that are all single S fun
tions, eventhough the expression may not be very 
ompa
t. It is 
alled a triangle sum and an algorithm forit is given in one of the appendi
es of ref [6℄. It is also available as a pro
edure in the languageof FORM [7℄. As a result one obtains an expression whi
h 
an be resummed and gives terms withsingle H-fun
tions.For H-fun
tions in x = 1 we have seen that they 
an be dire
tly expressed in terms of harmoni
sums in in�nity. Therefore the general algebrai
 rules for those sums that are based on the shu�ealgebra for harmoni
 sums 
an be applied. Hen
e we see a duality here: the general rules for theH-fun
tions 
orrespond to the spe
ial triangle rules for the harmoni
 sums, and the spe
ial rulesfor the H-fun
tions in x = 1 
orrespond to the general shu�e rules for the harmoni
 sums.There is one 
ompli
ating fa
tor when values in x = 1 are 
onsidered. Let us start with assumingthat the basi
 divergen
e H(1; 1) 
an be used as a symbol. In the 
ase of a `proper' limit pro
eduresu
h things 
an be done and after the divergen
es 
an
el the �nite result should be 
orre
t. This is
alled regularization. The general algebrai
 relations are based on the triangle sums, rather thanon the shu�e algebra, and the triangle sums are not 
orre
t when both obje
ts are divergent. Thesubleading terms will be in
orre
t. This 
an be illustrated easily:H1(x) = 1Xi=1 xii(H1(x))2 = 2H1;1(x)= 2 1Xi=1 xi(S1(i)i � 1i2 )H1(1) = limx!1 1Xi=1 xii= S1(1)H1;1(1) = limx!1 2 1Xi=1 xi(S1(i)i � 1i2 )= 2S1;1(1)� 2S2(1))= (S1(1))2 � S2(1)) (39)14



and we see that ( limx!1H1(x))2 6= limx!1(H1(x))2 : (40)The solution to this problem is to be found in S-spa
e. There it is possible to regularize the in�nitesums in a 
onsistent way by repla
ing the sum to in�nity by a sum to M with M very large but�nite, then one 
an have the divergen
es 
an
el and �nally take the limit M !1. This does not
orrespond to anything one 
an do in x-spa
e. Be
ause the triangle theorem does not hold for twoS-sums that are divergent, one 
annot apply the regular algebrai
 relation for H-fun
tions that areboth divergent in x = 1. Hen
e the proper algebrai
 relations at x = 1 have to be derived by meansof the shu�e algebra whi
h holds for all S-sums:( limx!1H1(x))2 = (S1(1))2= 2S1;1(1)� S2(1)= 2 limx!1H1;1(x) + limx!1H2(x) (41)This way is 
onsistent and will allow us to de�ne the Mellin transform properly in one of the nextse
tions. It involves the use of values in x = 1.Be
ause of the use of di�erent algebrai
 relations for x 6= 1 and x = 1, it may happen thatexpressions look rather 
ompli
ated, but the various algebrai
 relations between H-fun
tions inx = 1 
ould simplify the expressions 
onsiderably. However at the moment there is no knownsystemati
 method to apply these relations in su
h a way that one does not have to solve for allvalues in x = 1 �rst. This way all su
h obje
ts 
an be expressed in a minimal independent set ofobje
ts. Unfortunately there are very many of these obje
ts for a given weight w (2 3w�1) andeven more relations and hen
e it is a formidable task to determine all values at x = 1 in terms of aminimal set of 
onstants when the weight is large. If the �nal answer is supposed to be �nite one
an however extra
t the powers of the basi
 divergen
es (they 
orrespond to leading indi
es thatare 1) and hen
e still obtain a �nite answer that 
an be evaluated numeri
ally. The 
oeÆ
ients ofthe divergen
es 
an be 
he
ked to be zero numeri
ally as well.6 Identities between H-fun
tions of related arguments.In this se
tion we will look at the identities whi
h 
an be established for suitable 
hanges of theargument. The 
ommon feature is that any H-fun
tion of weight w and argument x 
an be expressedas an homogeneous expression of the same weight w, involving either H-fun
tions depending ona same argument, say t, related to x by the 
onsidered 
hange, or 
onstants 
orresponding toH-fun
tions of spe
ial 
onstant values of the arguments (typi
ally 1).The simplest 
hange of the argument is the 
hange x! �x. We have seen its e�e
t already inEq.(15).Next is the relation between H-fun
tions of x2 and of x. Be
ause 1 + x2 is not a parti
ularlyinteresting obje
t we will have to ex
lude indi
es equal to -1 in the H-fun
tions of x2. Restri
ting15



the indi
es to only 1 and 0, we 
an pro
eed re
ursively on the weight. For weight 1 we have fromEq.(1): H(0;x2) = 2H(0;x)H(1;x2) = H(1;x)�H(�1;x) ; (42)so that the H's of argument x2 are expressed in terms of H's of argument x, as required.For w > 1, if ~mw = ~0w, H(~0w;x2) = 2wH(~0w;x) ; (43)otherwise, if ~mw = (a; ~mw�1) for the two 
ases a = 0 and a = 1 we have, by using the 
hange ofvariable x0 = t02 H(0; ~mw�1;x2) = Z x20 dx0x0 H(~mw�1;x0)= 2 Z x0 dt0t0 H(~mw�1; t02) (44)H(1; ~mw�1;x2) = Z x20 dx01� x0H(~mw�1;x0)= Z x0 dt0 � 11� t0 � 11 + t0�H(~mw�1; t02) : (45)The expression of the H(~mw�1; t02) in terms of H's of the same weight and argument t0 is supposedlyknown (as we pro
eed re
ursively on the weight w); by substituting su
h expression and then usingthe very de�nition Eq.(6) all the required x2 ! x identities are obtained. An example of weightw = 2 is H(0; 1;x2) = 2 Z x0 dt0t0 H(1; t02)= 2 Z x0 dt0t0 �H(1; t0)�H(�1; t0)�= 2H(0; 1;x) � 2H(0;�1;x) (46)and Eq.(15) leads to the well known relation Li2(x2) = 2Li2(x) + 2Li2(�x). We 
an observe herethat a limited set of x2 ! x identities 
ould be written only for the Nielsen's polylogarithms
orresponding to the Hn(x) in the notation of Eq.(14), while for the hpl's the set is wider; as anexample, one 
an derive for w = 3:H(1; 0; 1;x2) = 2�H(1; 0; 1;x)�H(�1; 0; 1;x)�H(1; 0;�1;x)+H(�1; 0;�1;x)� (47)The next transformation of the argument we 
onsider is x ! 1 � x whi
h applies again to asmaller set of Nielsen's polylogarithms. Like the previous transformation it is of interest only whenthere are no negative indi
es (1 + x ! 2 � x is not something we 
an work with). Pro
eeding16



re
ursively on w, as before, for w = 1 we haveH(0; 1 � x) = �H(1;x)H(1; 1 � x) = �H(0;x): (48)The extension to higher weights requires a minimum of 
are. H(a; ~mw�1; 1 � x) of weight w > 1,with the �rst index a equal to 0 or to 1 is the generi
 fun
tion. As dis
ussed in Se
tion 3, if a = 1the fun
tion 
an be expressed in terms of a redu
ed set of fun
tions, where the leading index 1 is
arried only by H(1; 1�x), for whi
h Eq.(48) holds; therefore, only the 
ase in whi
h the �rst indexa is 0 is to be 
onsidered. In that 
ase, the 
hange of variable x0 = 1� t0 givesH(0; ~mw�1; 1� x) = Z 1�x0 dx0x0 H(~mw�1;x0)= Z 10 dx0x0 H(~mw�1;x0)� Z 11�x dx0x0 H(~mw�1;x0)= H(0; ~mw�1; 1) � Z x0 dt01� t0H(~mw�1; 1 � t0) ; (49)where the 
onstant H(0; ~mw�1; 1) is �nite (it 
an be observed here that if the �rst index is 1 oneruns into the problem that H(1; ~mw�1; 1) 
ould be divergent). In the general 
ase H(~mw�1; 1 � t0)will not be irredu
ible. We 
an express it in terms of the H's of an irredu
ible set of weight w� 1,use the supposedly known x = 1� t identities of weight w�1 and �nally obtain the required weightw identity by using the de�nition Eq.(6). As an example we have at weight 4H(0; 0; 1; 1; 1 � x) = H(0; 0; 1; 1; 1) �H(1;x)H(0; 1; 1; 1) + H(1; 1; 0; 0;x)= H(0; 0; 1; 1; 1) �H(0; 1; 1; 1)H(1;x) �H(0; 0; 1; 1;x)+ 14H2(0;x)H2(1;x) �H(0; 1;x)H(0;x)H(1;x)+ H(0; 0; 1;x)H(1;x) + H(0; 1; 1;x)H(0;x) : (50)A transformation whi
h applies to all the Nielsen's polylogarithms, Eq.(16) isx = 1=y ; y = 1=x ; (51)it will be shown that it applies as well to all the H-fun
tions. Before 
ontinuing, let us re
all thatthe Nielsen's polylogarithms have a (logarithmi
) bran
h point at x = 1, but are otherwise analyti
for smaller values of x, in
luding all the negative real axis; for studying the transformation Eq.(51)it 
an be therefore 
onvenient to establish the identities for negative values of x, and then 
ontinueanalyti
ally to positive values. The analyti
 properties of the H-fun
tions are more 
ompli
ated.First of all, if the rightmost index is equal to 0, they have a bran
h point at x = 0; that is not aproblem, as we have already seen that we 
an express any H-fun
tion in terms of the fun
tions ofa redu
ed set where the trailing index 0 is 
arried only by powers of H(0;x) = lnx, whose analyti
properties are well known. If the rightmost index is not 0 and all the indi
es are in general equalto 1 or 0, the H-fun
tions have the same analyti
 properties as the Nielsen's polylogarithms; but17



if some of indi
es are equal to �1, a bran
h 
ut at x = �1 appears. Therefore, in the general 
asewhen indi
es equal to �1 are also present (and that is the 
ase even of the redu
ed and minimalsets, see Se
tion 3), there is no advantage in 
onsidering negative values of x, so that we will startfrom the beginning with an argument equal to x+ i�, where x is real and satis�es the 
onstraints0 � x � 1, while � is positive and in�nitesimally small; 
orrespondingly,y = 1=x� i� ; (52)i.e. the real part of y is also positive, but y � 1, while its in�nitesimal imaginary part is negative.As in the previous 
ases, we will pro
eed by indu
tion on the weight w of the H-fun
tions. Atw = 1 we have H(0; y) = �H(0;x) ;H(1; y) = H(1;x) + H(0;x) � i� ;H(�1; y) = H(�1;x) �H(0;x) ; (53)the 
onstant � has appeared; it must be given weight 1, so that all the formulas will remainhomogeneous of the same weight. When 
ontinuing the above equations to negative values of x, inthe interval �1 � x � 0, H(0;x) = ln(x+ i�) will develop a positive imaginary part; in parti
ular,one has H(0;�1) = i� ; (54)so that H(1;�1) takes the real value � ln 2, as expe
ted.For w > 1, ~mw = (a; ~mw�1), we 
an pro
eed by indu
tion, along the following linesH(~mw; y) = Z y0 dy0f(a; y0)H(~mw�1; y0)= Z 10 dy0f(a; y0)H(~mw�1; y0) + Z y1 dy0f(a; y0)H(~mw�1; y0)= H(~mw; 1) + Z 1x dx0x02 f �a; 1x0�H�~mw�1; 1x0� : (55)It is to be noted that one 
an assume that the �rst index a is di�erent from 1; indeed, as seen inSe
tion 3 any H-fun
tion of the form H(1; ~mw�1; y) 
an be expressed in terms of a redu
ed set offun
tions, where the leading index 1 is 
arried only by powers of H(1; y), whose transformation isgiven by Eq.(53). For a di�erent from 1, H(~mw; 1) is a �nite 
onstant and the above formulae aremeaningful. One further �ndsZ dx0x02 f �0; 1x0� = + Z dx0 1x0 ;Z dx0x02 f ��1; 1x0� = + Z dx0 � 1x0 � 11 + x0� ;substituting in the r.h.s. of Eq.(55) the identities (of weight w � 1, and therefore known in anapproa
h by indu
tion) whi
h express H(~mw�1; y0 = 1=x0) in terms of H( ~m0w�1;x0), one obtains a18




ombination of terms of the kindZ 1x dx0 f(a;x0)H ~m0w�1(x0) = H(a; ~m0w�1; 1)�H(a; ~m0w�1;x) ;and the identities of weight w are established. As an example, we give the w = 3 identityH�0;�1; 1; 1x � i�� = �H(0;�1; 1;x) + 2H(0;�1; 1; 1)+ 2H(0; 0;�1;x) � 2H(0; 0;�1; 1) + H(0; 0; 1;x) �H(0; 0; 1; 1)� �H(0;�1;x) + H(0;�1; 1) + H(0; 1; 1)�H(0;x) + 16H3(0;x)� i� �H(�1; 1)H(0;x) + 12H2(0;x) �H(0;�1;x) +H(0;�1; 1)� : (56)Another important set of identities, whi
h is however valid for any set of indi
es and hasno 
ounterpart within the Nielsen's polylogarithms, applies to arguments x and t related by thetransformation x = 1� t1 + t ; (57)whose inverse is again t = 1� x1 + x : (58)Even in that 
ase, it turns out that any H-fun
tion of weight w and argument x 
an be expressedas a homogeneous expression of weight w, involving H-fun
tions of argument t, related to x byEq.(57), as well as 
onstants 
orresponding to H-fun
tions of argument 1. The proof is, again, byindu
tion on the weight. If w = 1, from the very de�nition Eq.(1) one immediately �ndsH(0;x) = �H(1; t) �H(�1; t) ;H(1;x) = �H(0; t) �H(�1; 1) + H(�1; t) ;H(�1;x) = H(�1; t)�H(�1; 1) : (59)For w > 1 and ~mw = ~0w the result is trivially true, as 
an be veri�ed by inspe
tion; the same istrue also for ~mw = ~1w and ~mw = ~�1w. In the more general 
ase, write ~mw = (a; ~mw�1); where theindex a takes the values 0; 1;�1. As dis
ussed in Se
tion 3, and already re
alled for the x! 1� xidentities, if a = 1 the fun
tion 
an be expressed in terms of a redu
ed set of fun
tions, where theleading index 1 is 
arried only by H(1;x), for whi
h Eq.(59) holds. In the other two 
ases a = 0;�1the 
hange of variable x0 = 1� t01 + t0gives H(0; ~mw�1;x) = Z x0 dx0x0 H(~mw�1;x0)19



= H(0; ~mw�1; 1) � Z 1x dx0x0 H(~mw�1;x0)= H(0; ~mw�1; 1) � Z t0 dt0 � 11� t0 + 11 + t0�H�~mw�1; 1� t01 + t0� ;H(�1; ~mw�1;x) = Z x0 dx01 + x0H(~mw�1;x0)= H(�1; ~mw�1; 1)� Z t0 dt0 11 + t0H�~mw�1; 1� t01 + t0� : (60)At this point, one 
an substitute the relations already found to be valid at weight w � 1, forexpressing the fun
tions H (~mw�1; (1 � t0)=(1 + t0)) in terms of H's of weight w � 1 and argumentt0, and then perform the last integration in t0 a

ording to the de�nition Eq.(6).As an example, we give the following w = 3 identityH(�1;�1; 1;x) = �H(0;�1;�1; t) + H(�1;�1; 1; 1)+ H(0;�1; t)H(�1; t) + 16H3(�1; t)� 12H2(�1; t)H(0; t)� 12H(�1; 1)H2(�1; t) �H(�1; 1; 1)H(�1; t) : (61)7 Identities between H's and related fun
tions.Let us introdu
e a related set of fun
tions G(~mw;x), where ~mw has almost the same meaning asfor the H's, but the �rst index mw is always equal to 1, i.e. ~m = (1; ~mw�1), through the de�nitionsG(1;x) = � Z 10 dtt� 1=x (62)for w = 1 and G(1; ~mw�1;x) = � Z 10 dtt� 1=xH(~mw�1; t) (63)for w > 1.The G(~mw;x) are nothing but homogeneous 
ombination of H-fun
tions of weight w. As bynow usual, we will show it pro
eeding by indu
tion on w. For w = 1, by performing expli
itly theelementary integration we obtain from Eq.(62)G(1;x) = H(1;x) : (64)Next, assume that the identities are established for w; put ~m = (a; ~mw�1), and 
onsider thefun
tions of weight w + 1 given byG(1; a; ~mw�1;x) = � Z 10 dtt� 1=xH(a; ~mw�1; t) : (65)20



One 
an di�erentiate with respe
t to x, then integrate by parts in t, using of 
ourse Eq.(63) whenrelevant; 
onsidering for instan
e the 
ase a = �1 one obtains��xG(1;�1; ~mw�1;x) = [f(�1; x)� f(0; x)℄ G(1; ~mw�1;x)+ [f(�1; x) + f(1; x)℄ H(�1; ~mw�1; 1) : (66)Similarly, one has ��xG(1; 0; ~mw�1;x) = �f(0; x)G(1; ~mw�1;x)+ f(�1; x)H(0; ~mw�1; 1)��xG(1; 1; ~mw�1;x) = [f(0; x) + f(1; x)℄ G(1; ~mw�1;x) : (67)One 
an substitute the already obtained identities expressing G(1; ~mw�1;x) in terms of H's ofweight w and then integrate in x between 0 and x by using the very de�nition Eq.(6) (a

ordingto Eq.(63) the G-fun
tions vanish at x = 0). The required identities of weight w + 1 are thenestablished. As an example, we give one of the identities of weight w = 4G(1; 0;�1; 1;x) = �H(0;�1; 0; 1;x) �H(0;�1; 1; 1;x)+ H(0; 0; 0; 1;x) + H(0; 0; 1; 1;x)� H(�1; 1; 1)H(0;�1;x) �H(�1; 1; 1)H(0; 1;x)+ H(0;�1; 1; 1)H(1;x) : (68)In the same way one 
an work out the similar identities existing for several related 
lasses offun
tions su
h as, for instan
e, � Z 10 dtt� 1=xH(~a; t)H(~b;xt)or Z 10 dtf(a; t)H(~a; t)H(~b;xt) : (69)8 Spe
ial values of the H's and their numeri
al evaluation.It is known that the Nielsen's polylogarithms for the spe
ial values of the arguments equal to+1;�1 and 1=2 
an be expressed in terms of a few mathemati
al 
onstants, typi
ally Riemann�-fun
tions of integer arguments; the representations whi
h they provide for those 
onstants asde�nite integrals 
an be manipulated by means of integration by parts, 
hanges of variables andthe like providing the analyti
 values of a number of de�nite integrals of spe
ial interest. The sameapplies, and in mu
h more systemati
 way, to the H-fun
tions, thanks to the greater and wider setsof identities whi
h they satisfy. 21



In the 
ase of the H's, it is not ne
essary to 
onsider as independent the values 
orresponding tothe argument equal to �1; indeed, one 
an always express any H-fun
tion in terms of the redu
edset of fun
tions in whi
h trailing indi
es equal to 0 are missing, so that by using Eq.(15) one 
anrepla
e a value at x = �1 with the value at x = 1 of a related fun
tion. In analogy with the Nielsen'spolylogarithms 
ase, it is 
onvenient to 
onsider also the values at x = 1=2 of the fun
tions whoseindi
es are equal to 0 or 1 (i.e. when the index �1 is missing).More spe
i�
ally, one 
an 
onsider:� the x2 ! x identities, Eq.s(42-47), for x = 1 ;� the 1 � x ! x identities, Eq.s(48-50). They 
an be used at x = 1=2, providing a �rst setof identities for the values at x = 1=2, but also at x = �1; in the se
ond 
ase, one getsvalues at x = 2, whi
h are 
onverted into values at x = 1=2 by using the x! 1=x identities,Eq.s(51-56), as well as values at x = �1, whi
h are 
onverted into values at x = 1 by Eq.(15);� the just re
alled x! 1=x identities, Eq.s(51-56), at x = 1 and x = �1, followed by the usual
onversion to x = 1 through Eq.(15);� the x ! (1 � t)=(1 + t) identities, Eq.s(57- 61), at x = 0 
orresponding to t = 1 (they areautomati
ally satis�ed, by 
onstru
tion, at x = 1; t = 0);� one more set of identities is obtained by writing the identities between G-fun
tions and H-fun
tions,dis
ussed in Se
tion 8, at the spe
ial value x = �1, by using the relation, whi
hfollows from the de�nition Eq.(63)G(1; ~m;�1) = H(�1; ~m; 1)and 
onverting on
e more the values at x = �1 of the H's into values at x = 1 by means ofEq.(15).The set of relations obtained in that way is highly redundant; it has been 
he
ked expli
itly thatthey generate the table of the w = 4 de�nite integrals given in Appendix B of the se
ond referen
eof [2℄. It has not yet been investigated whether they are suÆ
ient, by themselves, to generate alsothe tables of higher weights obtained in [6℄.Another powerful method to obtain the values at x = 1=2 when there are no negative indi
esis by 
onsidering the transformation x ! z=(1 + z), whi
h 
orresponds to a suitable 
ombinationof the transformations x ! 1=x and x ! (1 � x). Using the same te
hniques as in the se
tionon related arguments, all these obje
ts are dire
tly expressed in terms of H-fun
tions in x = 1.Su
h expressions 
an then be used in reverse to obtain the numeri
al values of the `independent
onstants' that o

ur in the expressions for the H-fun
tions at x = 1. As an example we haveLi3�12� = 78�3 � 12�2 ln(2) + 16 ln3(2) (70)22



whi
h is of 
ourse well known. We have alsoH2;1�12� = 18�3 � 16 ln3(2) (71)Both relations provide a power series for the evaluation of �3. The method gives also an expressionof s6 = S�5;�1(1) in terms of H5;1(1=2), H6(1=2) and 
ombinations of 
onstants of a lower weight.Similar dependen
ies 
an be derived for the higher weight 
onstants.Let us �nish with a few remarks on the numeri
al evaluation of the H's for arbitrary values ofx. A

ording to the dis
ussion of Se
tion 3, it is suÆ
ient to restri
t ourselves to the H's eitherof the redu
ed set or of a minimal set, as all the others 
an be obtained from them as suitable
ombinations. The H's of su
h a set have no trailing indi
es equal to 0, so that they 
an be expandedin series of x around x = 0. For small values of x the series will be rapidly 
onvergent, but the
onvergen
e will slow down approa
hing the 
uts at x = �1. But for x approa
hing 1 we 
an usethe transformation Eq.(57), so that the 
orresponding t = (1 � x)=(1 + x) will fall in the regionnear 0 and the expansion in t will be rapidly 
onverging.More exa
tly, the equation r = 1� r1 + r (72)has the two solutions r = �1 � p2 and r = �1 + p2. Therefore, we 
an use the expansionaround x = 0 in the interval �(p2 � 1) < x < p2 � 1, where jxj < p2 � 1 < 1=2, swit
hing forp2� 1 < x < p2 + 1 to t = (1� x)=(1 + x), whi
h 
orresponds to jtj < p2� 1 < 1=2. For greatervalues of x, one 
an use the x ! 1=x identities. For large negative values of x, i.e. x < 1 � p2,one 
an 
ip the sign of x with Eq.(15) and then pro
eed as above.In pra
ti
e the transformation of Eq.(57) 
an lead to a large number of fun
tions to be evaluatedand hen
e it may be more pro�table to apply this transformation only for values of x that are mu
h
loser to one. If, on the other hand, nearly all H-fun
tions of a given weight have to be evaluatedfor some value of x one 
an use the turnover value of p2� 1 in a rather pro�table way.The values in x = 1 require some extra attention. These are a
tually needed rather frequentlyand hen
e there exists some literature on them. From Eq.(28) it should be 
lear that an H-fun
tionin x = 1 
an be expressed in terms of either S-sums or Z-sums in in�nity. Hen
e mu
h information
an be found in [9℄, [5℄ and the papers they refer to. Ref. [6℄ gives a di�erent method to evaluatethese sums. Re
ently this method has been used by one of us (J.V.) to obtain all su
h sums upto weight 9 (see also footnote 2). For only nonnegative indi
es results have been obtained up toweight 11 [11℄. When the �rst index of the H-fun
tion (or the S-sum) is one, the value in x = 1 (orthe sum in in�nity) will be divergent. Yet we have to 
onsider these obje
ts. As mentioned in these
tion on the algebra this 
an be done 
onsistently only in terms of the sums. Hen
e the safestmethod is to rewrite the H-fun
tions in x = 1 immediately in terms of either S-sums or Z-sums.In the 
ase that the weights are low enough, these 
an then be rewritten in terms of a limited setof `fundamental 
onstants'. 23



9 Mellin transformsAt times one may need the Mellin transform of the Harmoni
 polylogarithms. In ref [6℄ a methodis given to evaluate su
h transforms for a 
lass of fun
tions whi
h is more or less the 
lass of H-fun
tions. There is however one 
ompli
ation with Mellin transforms. Divergen
ies at x = 1 mustbe extra
ted. This is be
ause the Mellin transform is de�ned byM(f(x); N) = Z 10 dx xNf(x)M( f(x)(1�x)+ ; N) = Z 10 dx xNf(x)� f(1)1�xM(f(x) lnp(1�x)(1�x)+ ; N) = Z 10 dx �xNf(x)� f(1)� lnp(1�x)1�x (73)in whi
h the fun
tion f is supposed to be �nite for x = 1 when the fa
tor 1=(1�x)+ is present.Hen
e we have to pay attention to the powers of ln(1�x). They 
an be isolated with Eq.(23). Afterthis extra
tion the remaining H-fun
tions are �nite in x = 1.At this point we 
an atta
k the Mellin transforms. It is easy to obtain the lowest weight results:Z 10 dxxnH(0;x) = � 1(n+ 1)2Z 10 dxxnH(1;x) = S1(n+ 1)n+ 1Z 10 dxxnH(�1;x) = (�1)nS�1(n+ 1)n+ 1 + ln(2)n+ 1 (1 + (�1)n) (74)in whi
h we have used that H(�1; 1) = �S�1(1) = ln(2). The higher weight results 
an beobtained by re
ursion. Like in ref [6℄ this is done by partial integration. We also ex
hange the sumsimmediately after ea
h step so that we may do one of them immediately. The result is:Z 10 dx 1Xi=n�ixiH0;~m(x)S~p(i+1)(i+1)k = �H0;~m(1)�S�(k+1);~p(1)� S�(k+1);~p(n)�� Z 10 dx 1Xi=n�ixiH~m(x) S~p(i+1)(i+1)k+1 (75)Z 10 dx 1Xi=n�ixiH1;~m(x)S~p(i+1)(i+1)k = �H1;~m(1)�S�(k+1);~p(1)� S�(k+1);~p(n)�� Z 10 dx 1Xi=nxiH~m(x)��S�(k+1);~p(i+1)��i S~p(i+1)(i+1)k+1 � �S�(k+1);~p(n)� (76)Z 10 dx 1Xi=n�ixiH�1;~m(x)S~p(i+1)(i+1)k = �H�1;~m(1)�S�(k+1);~p(1)� S�(k+1);~p(n)�24



� Z 10 dx 1Xi=nxiH~m(x)��(�1)iS��(k+1);~p(i+1)+�i S~p(i+1)(i+1)k+1 � �(�1)iS��(k+1);~p(n)� (77)The variable � is either 1 or �1. This leaves only the evaluation of the H-fun
tions in x = 1. Thesevalues do not have to be �nite. Only the H-fun
tions that are used in the subtra
tion in Eq.(73)are �nite. This 
auses no problems provided the divergen
ies are regularized in the representationin terms of S-sums as explained before.As an example we show here a nontrivial Mellin transform:M H1;�2;1;0(x)1� x ;N! = S1;�2;�1;2(N) + S1;1(N) 4Li4�12�+ 16 ln4(2)� �2 ln2(2)� 1340�22!+S1;�2(N) �12�2 ln(2) + �3!+ S1;2(N) 12�2 ln(2)� �3!+18�2 ln4(2) + 716�2�3 ln(2) + 3�2Li4�12�� 34�22 ln2(2)+3128�32 � 1516�23 + 72S�5;�1(1) (78)The sum in the last term is irredu
ible.In the 
ase that the weight of the terms too large (
urrently larger than 9) it be
omes ratherhard to obtain the values for the H-fun
tions in x = 1 or alternatively for the S-sums in in�nity.Be
ause the algebra for the H-fun
tions in x = 1 is di�erent from the algebra for the H-fun
tionsfor general values of x there may be large numbers of H-fun
tions left that ea
h are divergent atx = 1. The reason is that some algebrai
 work is done �rst with the general algebrai
 rules andhas to be `undone' with the rules for x = 1. The relations that make the divergen
es 
an
el maynot be easy to �nd. One 
an still obtain numeri
al results however.If one is fa
ed with higher weights one may pro
eed as follows. The H-fun
tions in x = 1 are�rst expressed in terms of S-sums in in�nity. Then the shu�e algebra for the S-sums is used toextra
t the divergen
ies in a way that is similar to how this is done for the powers of ln(1 � x)for the H-fun
tions. Be
ause the divergen
es have to 
an
el ea
h other, all divergent terms shoulddisappear, even though we may not have the algebrai
 methods to prove this for the 
ase at hand.The remaining �nite expression 
an in prin
iple be evaluated numeri
ally.Inverse Mellin transforms are now relatively easy. As pointed out in ref [6℄ ea
h S-sum hasa single most 
ompli
ated original fun
tion in terms of H-fun
tions in whi
h we 
an de�ne `most
ompli
ated' by the fun
tion with the largest weight. And a
tually one 
an obtain the relationbetween the S-sum of whi
h one needs the inverse Mellin transform and this most 
ompli
atedH-fun
tion from the re
ursion relations in Eq.(75). Hen
e the algorithm is 
lear:� Lo
ate the S-sum(s) with the highest weight.� Constru
t the 
orresponding H-fun
tion(s) in x-spa
e.25



� Add it and subtra
t it.� Make the Mellin transform of the subtra
ted version. This will 
an
el the original S-sum.� Repeat the above steps until there are no more S-sums remaining.� Multiply the remaining 
onstant terms by Æ(1�x).This algorithm will properly terminate. It has only one problem: Some Mellin transforms have afa
tor (�1)N and some don't. What if we take an S-sum whi
h should have a fa
tor (�1)N but weomit it? Here we have to realize that the inverse Mellin transform is to be 
onstru
ted from eitherall even or from all odd moments only. Hen
e we have to spe
ify whether N is even or odd. Thiswill give a value to (�1)N . Hen
e the only thing that remains is to give the relation between anS-sum and the most 
ompli
ated H-fun
tion that 
ontributes to it.� If the number of negative indi
es is odd, there will be a fa
tor (�1)N=(1+x) and � will startout as �1, otherwise there will be a fa
tor �1=(1�x)+ and � will start with the value 1.� Next 
opy the index �eld to the H-fun
tion, dropping the last index.� Working from left to right in the index �eld, repla
e an index 1 by �, leave zeroes untou
hedand repla
e an index �1 by ��. In the last 
ase � is repla
ed by ��.� Multiply the term by (�1)z+m in whi
h z is the number of zeroes and m is the number ofnegative indi
es in the new index �eld.� Remaining fa
tors (�1)N indi
ate the validity regarding even or odd values of N .We will give two examples of weight 7 fun
tions. First an example that involves subtra
tions withln2(1�x) in the Mellin transform:S1;1;2;1;2(N) ! 11�x �H1;1;2;1;0(x)� 12H1;1(x)�22!+Æ(1�x) �6�2�5 � 25�22�3 + 17�7! (79)In this 
ase there is no di�eren
e for even values of N and for odd values of N . However the nextexample is di�erent. For even values of N we haveS�1;1;�2;1;2(N) ! 11�x �H�1;�1;2;1;0(x)� 12H�1;�1(x)�22+H�1(x)(� 116�2�3 + 5364�5)+ 61560�32 � 35128�23 � 9364�5 ln(2) + 34�6!26



+ 11+x H1(x)( 116 �2�3 � 5364�5)+ 61560�32 � 35128�23 � 9364�5 ln(2) + 34�6 !+Æ(1�x) � 116�2�3 ln2(2)� 957224�2�5 + 1120�2 ln5(2)� �2Li5(12)� 93140�22�3 � 112�22 ln3(2) � 29280�32 ln(2)� 1355896 �23 ln(2)�19764 �5 ln2(2) + 372153584 �7 + 1928 ln(2)�6 � 107 �7;a + 2914�7;b ! (80)in whi
h �6 = S�5;�1(1)�7;a = S�5;1;1(1)�7;b = S5;�1;�1(1) (81)In the 
ase of odd N the terms with 1=(1+x) 
hange sign. As one 
an see these formulae 
anbe
ome rather involved, even though the number of terms is rather small 
ompared to the numberof fun
tions that exist in x-spa
e for this weight.In the 
ase that sums of a higher weight are 
onsidered one may not be able to substitute thevalues of the H-fun
tions at x = 1. The same 
onsiderations as for the Mellin transforms 
an beused to obtain an answer that 
an at least be evaluated numeri
ally. In general the formulae willof 
ourse be mu
h lengthier.
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