
1

Tuning FORM with large calculations

J.A.M. Vermaserena

aNIKHEF, P.O. Box 41882,
1009 DB, Amsterdam

Some recent additions to FORM are discussed. In particular large file support and the tablebases are presented.

1. introduction

Traditionally FORM [1] is called a program for
particle theory. This is however a misconception
that follows from a desire of putting labels on
things. FORM is a program for many fields of sci-
ence in which large formulae occur, like in deep
perturbative expansions. Its dealing with non-
commutative objects makes it also very suitable
for mathematics calculations [2,3]. And it has
also been used successfully in the field of Euler-
Zagier sums [4] in which the results of certain
categories of sums can only be obtained by solv-
ing large sets of equations. Of course FORM has
been mostly tested in perturbative quantum field
theory. However its speed and the potential size
of its expressions should make FORM very at-
tractive for many scientists.

New features are always looked at from a more
generic viewpoint. This makes them useful for
as many people as possible. Some of these new
features are:

• $-variables which allow a high level of con-
trol over the organisation of a program.
Version 1 and 2 of FORM never had this
flexibility.

• Write to file facilities. This allows even dy-
namical addition to running programs.

• Large file support. Now also 32-bits proces-
sors can deal with intermediate expressions
and files of more than 2 Gbytes, provided
the operating system supports this (as in
the ext-3 file-system versions of Linux).

• Better support for large tables.
• The tablebase. This is a database-like fa-

cility for extremely large tables. It was in-

spired by a calculation [5] in which there
were more than 20000 table elements, each
of which occupied on average more than 20
Kbytes. To compile all these table elements
in each program that might need some of
the elements would be wasteful and slow,
even in FORM. Now there are facilities by
which the program can determine what is
needed and when, and only those elements
will be compiled at the proper moment.

2. Some examples

The first example concerns a run which is much
like a benchmark used originally by D. Fliegner [6]
to test the parallel version of FORM. Later this
test was taken over by R. Kreckel [7] to compare
the GiNaC system with other symbolic systems.
Here we have modified it somewhat to allow the
intermediate expression to surpass 4 Gbytes1.

FORM by J.Vermaseren,version 3.1(Jul 22 2002)

Run at: Mon Jul 22 15:06:39 2002

#: SmallSize 10000000

#: LargeSize 100000000

#: TermsInSmall 1000000

#define MAX "700"

S a0,...,a‘MAX’;

L F = (a0+...+a‘MAX’)^3;

id a1 = -a2-...-a‘MAX’;

Print +f;

.end

Time = 1.73 sec Generated terms = 417057

F 1 Terms left = 133668

Bytes used = 1882524

.

.

1A direct extension of the original test in which the power
is 2 would run into the limit of 6000 variables (on 32-bit
systems) before the 4 Gbyte limit would be reached

2

.

Time = 2611.92 sec Generated terms = 457333100

F 1 Terms left = 390169111

Bytes used = 5494312698

Time = 2613.52 sec

F Terms active = 390169111

Bytes used = 5496905398

Time = 2959.48 sec Generated terms = 457333100

F Terms in output = 1

Bytes used = 18

F =

a0^3;

The run was on a notebook computer with a
850 MHz pentium, 500 Mbytes memory and Red-
Hat 7.3 Linux.

The next example shows the dynamic extension
of tables during a run. It uses the $-variables and
the resulting table elements are also appended
to a file. This way each new run can start by
reading all results of the previous jobs. This
mechanism was used to run and tabulate more
than 20000 integrals in the computation of ba-
sic building blocks for the three loop structure
functions in deep inelastic scattering. Sometimes
more than 1000 integrals were done in a single
(rather lengthy) run.

#include BE88fill.h

#do NUM = 1,500

L FFK =

* get an integral from a list

#call intlist(BE88,‘NUM’)

;

* for example this one:

* +BE(0,1,1,1,1,2,1,3+N,0,1,0,0,0,0,0,N,0)

*

* Here we compute the integral. Next we do

*

L FFL =

* get the integral again

#call intlist(BE88,‘NUM’)

;

id BE(n1?,...,n7?,n8?!number_,k1?,k2?

,0,0,0,0,0,N?!number_,k9?) =

BE88fil(n1,...,n7,n8-N,k1,k2,k9,N)*f(be88);

* load arguments into $args and type into $ltype

id fx?{...,BE88fil,...}(?a$args,N)*f(x?$ltype)

= 0;

.sort

* put the result in $expr

#$expr = FFK;

* ’construct’ a fill statement to add to table

Fill ‘$ltype’fill(‘$args’) = ‘$expr’;

.global

* make sure file is ready for appending

#append <‘$ltype’fill.h>

* and append to file

#write <‘$ltype’fill.h> \

"Fill ‘$ltype’fill(‘$args’) = %E;",FFK

.store

#enddo

.end

3. The tablebase

Faced with hundreds of megabytes of table ele-
ments of which we may typically need only a few
in each job (but we cannot say in advance which)
we need a special database structure. We want a
database for FORM with the features:

• FORM reads at first only an index of the
database.

• At a specified time FORM can determine
which elements are actually needed.

• At a specified time FORM will load and
compile these elements.

• When the user speciefies it, the elements
will be used.

• The elements can be stored in gzipped [8]
form (saves a factor 4).

Of course such ‘tablebases’ need a number of
control commands amoung which should be com-
mands for

• Creating a new tablebase

• Adding tables and table elements to the
tablebase.

• Investigating what is in the tablebase

• Removing elements from the tablebase

• Cleaning up a tablebase

• Loading the index and compiling ‘stubbs’

• Loading and compiling individual elements.

• Loading and compiling complete tables.

• Loading and compiling indicated elements.

3

• · · · and probably more · · ·.

The stubbs are intermediate expressions. They
replace an object by an indicator that this table
element exists in the tablebase. The advantage
of this is that the object does not need to be ma-
nipulated by other routines that would deal with
cases that are not in the tablebase, but yet we do
not replace it by potentially lots of terms until we
are ready for manipulating those terms. Let us
see how this works out.

#-

#define EXPANDEP "6"

#include ensum.h

#if ‘EXPANDEP’ > 0

S ep(:‘EXPANDEP’);

#endif

.global

L F = x1+x2;

.sort:start;

#include be11fill.h

#include be22fill.h

#include be55fill.h

#include be66fill.h

#include be88fil1.h

#include be88fil2.h

#include be88fil3.h

#include be88fil4.h

#include la11fill.h

#include la22fill.h

#include la77fill.h

#include no11fill.h

#include no22fill.h

.sort:after 4;

.sort:complete reading;

TableBase "three.tbl" create;

.sort:create;

TableBase "three.tbl" addto be11fill,be22fill

,be55fill,be66fill,be88fill

,la11fill,la22fill,la77fill

,no11fill,no22fill;

.sort:addto;

.end

This program gives the output

Time = 0.04 sec Generated terms = 2

F Terms in output = 2

start Bytes used = 32

Time = 148.75 sec Generated terms = 2

F Terms in output = 2

after 4 Bytes used = 32

Time = 148.76 sec Generated terms = 2

F Terms in output = 2

complete reading Bytes used = 32

Time = 148.76 sec Generated terms = 2

F Terms in output = 2

create Bytes used = 32

We add the name be11fill

We add the name be22fill

We add the name be55fill

We add the name be66fill

We add the name be88fill

We add the name la11fill

We add the name la22fill

We add the name la77fill

We add the name no11fill

We add the name no22fill

Time = 241.65 sec Generated terms = 2

F Terms in output = 2

addto Bytes used = 32

Time = 241.65 sec Generated terms = 2

F Terms in output = 2

Bytes used = 32

The running times refer to a pentium 850. The
first part shows the reading and compilation of
the entire tables. The second part is the com-
pression and the writing into the tablebase. How
big are these files?

lines bytes

21527 1665848 be11fill.h

13123 1030971 be22fill.h

12420 968211 be55fill.h

19035 1486649 be66fill.h

679908 53221903 be88fil1.h

490372 38477216 be88fil2.h

410549 32158987 be88fil3.h

165495 12920526 be88fil4.h

798355 61843593 la11fill.h

37895 2896918 la22fill.h

120615 9421657 la77fill.h

48035 3647629 no11fill.h

14177 1090916 no22fill.h

2831506 220831024 total

---> 51875476 three.tbl

254795 20008483 ta0fill.h

66790 5270950 ta1fill.h

317318 24834908 ta2fill.h

553843 43037497 ta3fill.h

252002 19610471 ta5fill.h

568589 44627190 tb0fill.h

277903 21738353 tb1fill.h

21553 1689338 tb5fill.h

2312793 180817190 total

---> 38599445 two.tbl

4

35338 2348216 gtab00.prc

49784 3313386 gtab01.prc

48620 3065428 gtab10.prc

68647 4383913 gtab11.prc

51825 3283619 gtab20.prc

51077 3401328 gtab02.prc

305291 19795890 total

---> 5005177 one.tbl

These are the three loop, two loop and one loop
tabulated integrals respectively.

There is already one pleasant spinoff. When
we just load this one file three.tbl and enter and
compile all elements we have

Time = 0.07 sec Generated terms = 2

F Terms in output = 2

start Bytes used = 32

Time = 0.20 sec Generated terms = 2

F Terms in output = 2

open Bytes used = 32

Time = 0.59 sec Generated terms = 2

F Terms in output = 2

load Bytes used = 32

Time = 124.80 sec Generated terms = 2

F Terms in output = 2

enter Bytes used = 32

Time = 124.80 sec Generated terms = 2

F Terms in output = 2

Bytes used = 32

and we see that the fact that the file is com-
pressed saves much time on the reading. Loading
alone, the process of reading the index and com-
piling a complete list of ‘stubbs’ takes about 0.4
sec. which indicates that we have eliminated the
whole problem of slow startup.

Let us now try to use this.

#-

.global

L F = LA(1,N+1,1,1,1,1,1,1,0,N,0,0,0,0,0,0,3)

+LA(1,N+1,1,8,1,1,1,1,0,N,0,0,0,0,0,0,3);

Print +f +s;

.sort

Time = 0.03 sec Generated terms = 2

F Terms in output = 2

Bytes used = 172

F=

+LA(1,1+N,1,1,1,1,1,1,0,N,0,0,0,0,0,0,3)

+LA(1,1+N,1,8,1,1,1,1,0,N,0,0,0,0,0,0,3)

;

TableBase "three.tbl" open;

TableBase "three.tbl" load;

.sort

Time = 0.40 sec Generated terms = 2

F Terms in output = 2

Bytes used = 172

id LA(n1?pos_,n2?!number_,<n3?pos_>,...,

<n8?pos_>,k1?,k2?!number_,k3?,0,0,0,0,

0,k9?) = LA22(n1,...,n8,k1,k2,k3,k9);

Print +f +s;

.sort

F=

+LA22(1,1+N,1,1,1,1,1,1,0,N,0,3)

+LA22(1,1+N,1,8,1,1,1,1,0,N,0,3)

;

*

* Shift to table notation and back

* Whatever is in the table will be intercepted

*

id LA22(n1?,...,n8?,k1?,k2?,k3?,k9?) =

la22fill(n1,n2-k2,n3,...,n8,k1,k3,k9,k2);

id la22fill(n1?,...,n8?,k1?,k3?,k9?,k2?) =

LA22(n1,n2+k2,n3,...,n8,k1,k2,k3,k9);

Print +f +s;

.sort

F=

+tbl_(la22fill,1,1,1,1,1,1,1,1,0,0,3,N)

+LA22(1,1+N,1,8,1,1,1,1,0,N,0,3)

;

TestUse la22fill;

Print +f +s;

.sort

F=

+tbl_(la22fill,1,1,1,1,1,1,1,1,0,0,3,N)

+LA22(1,1+N,1,8,1,1,1,1,0,N,0,3)

;

TableBase "three.tbl" use;

Print +f +s;

.sort

Time = 0.45 sec Generated terms = 2

F Terms in output = 2

Bytes used = 152

F=

+tbl_(la22fill,1,1,1,1,1,1,1,1,0,0,3,N)

+LA22(1,1+N,1,8,1,1,1,1,0,N,0,3)

;

PolyFun acc;

Apply;

id Nval(N?)*R(n?,x?) = den(x+N)^n;

id Nval(N?)*R(n?,x?,?a) =

den(x+N)^n*S(R(?a),x+N);

id S(R,x?) = 1;

5

id Nval(N?) = 1;

id z3?{z3,z4,z5,z6} = acc(z3);

id ep^n? = acc(ep^n);

Print +f +s;

B theta,delta;

.end

Time = 0.45 sec Generated terms = 50

F Terms in output = 32

Bytes used = 2550

F=

+theta(-2+N)*(

+den(-1+N)*acc(23/8+ep^-2+1/3*ep^-1+4/3*z3)

+den(-1+N)^2*acc(-7/2-ep^-1)

+den(-1+N)^3*acc(3)

+den(-1+N)^3*S(R(1),-1+N)*acc(2/3)

+den(-1+N)^2*S(R(1),-1+N)*acc(-31/18)

+den(-1+N)*S(R(1),-1+N)*acc(37/36+ep^-1)

+den(-1+N)*S(R(1,1),-1+N)*acc(1)

+den(-1+N)*S(R(2),-1+N)*acc(-29/18)

+den(-1+N)*S(R(3),-1+N)*acc(-2/3))

+theta(-1+N)*(

+den(N)*acc(-17/18-ep^-2-1/3*ep^-1+16/3*z3)

+den(N)^2*acc(-73/18+ep^-1)

+den(N)^3*acc(11/3)

+den(N)^3*S(R(1),N)*acc(8/3)

+den(N)^2*S(R(1),N)*acc(-29/9)

+den(N)*S(R(1),N)*acc(23/9-ep^-1)

+den(N)*S(R(1,1),N)*acc(-1)

+den(N)*S(R(2),N)*acc(5/9)

+den(N)*S(R(3),N)*acc(-8/3))

+theta(N)*(

+den(1+N)*acc(4*z3)

+den(1+N)^2*acc(8*z3)

+den(1+N)^4*S(R(1),1+N)*acc(4)

+den(1+N)^3*S(R(1),1+N)*acc(2/3)

+den(1+N)^2*S(R(2),1+N)*acc(-2/3)

+den(1+N)^2*S(R(3),1+N)*acc(-4)

+den(1+N)*S(R(1),1+N)*acc(-8*z3)

+den(1+N)*S(R(1,2),1+N)*acc(2/3)

+den(1+N)*S(R(1,3),1+N)*acc(4)

+den(1+N)*S(R(2,1),1+N)*acc(-2/3)

+den(1+N)*S(R(3,1),1+N)*acc(-4))

+delta(-1+N)*(

+acc(1001/648+4/3*ep^-3-2/9*ep^-2

-13/108*ep^-1-1/3*z3)

)

+delta(N)*(

+acc(-1087/81-1/3*ep^-3-1/9*ep^-2

-97/54*ep^-1+20/3*z3)

)

+LA22(1,1+N,1,8,1,1,1,1,0,N,0,3)*acc(1);

4. Some extra remarks

The above features are released in ver-
sion 3.1 of FORM at its regular address
http://www.nikhef.nl/∼form.

Of course there are still features that FORM
does not have and would be much appreciated.
One would be proper GCD and factorization algo-
rithms. This would make it much easier to solve
sets of equations. These are anticipated, but lack
of manpower is the main problem.

It seems that the inherent speed of FORM
comes from its internal data representation. The
locality of its operations seems to be less impor-
tant in this matter than was previously believed.
This plays mainly a role when expressions are so
big that they reside on disk. But even in that
case a good use of the .sort instructions helps.

Currently a study is under way to see whether
FORM can be made into an open source project.
This would need a considerable amount of man-
power, because the sources may have to be re-
programmed, several levels of documentation will
have to be made and a number of additions will
have to made.

REFERENCES

1. J. A. M. Vermaseren, math-ph/0010025
2. Beffa G. Maŕı, J. A. Sanders and Jing

Ping Wang, ”Integrable systems in three-
dimensional Riemannian geometry”, J. Non-
linear Sci., 12 (2002) 143–167.

3. Jan A. Sanders and Jing Ping Wang, ”Com-
bining Maple and Form to decide on integra-
bility questions” Comput. Phys. Comm. 115
(1998) 447–459.

4. J. A. M. Vermaseren, Int. J. Mod. Phys. A14
(1999) 2037

5. S. Moch, J. A. M. Vermaseren and A. Vogt
hep-ph/0209100

6. D. Fliegner, A. Retey, and J. A. M. Ver-
maseren hep-ph/9906426,

7. R. Kreckel, PhD thesis ”Algorithmische
Methoden zur Berechnung von Vierbeinfunk-
tionen”, Mainz 2002.

8. Gzip was written by Jean-loup Gailly and
Mark Adler. Here we use version 1.1.3.

