
1 Monte Carlo integration

In general total crosssections are not what we are after. There are very few
experiments that measure total crosssections. Usually the part of the output
space that is covered by a detector is incomplete. If a detector covers only 80%
of the phase space one cannot just multiply the observed crosssections by 5/4 to
obtain the total crosssection. The distribution of the matrix element over the
phase space may not be uniform. In general it is not and also the phase space
integral itself may have some Jacobians when we transform it into something
that we can compute. Hence we have to emulate the restrictions of the detector
into our integrals. This can be extremely complicated, because the detectors
may have lots of little dead zones where cables have to find their way to the
outside. As theorists we usually leave the finer details of those dead zones to
the experimentalists. We will just concentrate on the broad features of the
detectors. An example could be that we assume that a photon can be observed
if Eγ > 4GeV and | cos θγ | < 0.8.

The only general way we know to do the integration over the phase space
under the above restrictions is by Monte Carlo techniques. In principle this
works as follows:

Suppose we want to integrate a function f(x) over the region between a
and b. This integral is the average value times the size of the interval. To
obtain the average value we take a number of random values between a and b,
evaluate the function in these points and then take the average. Of course in a
single dimension there are usually much better techniques, but in our case these
techniques may not be so efficient after all. We will come to that. In general
the error that we make in the integral is related to the number of sample points
N by σ/

√
N in which σ is the standard deviation in the values of the function

in the evaluation points1.
Let us have a look at a simple example. We want to integrate the function

f(x) = 3x2 over the region from 0 to 1. Because we know the answer we can
see clearly what is happening.

First we need a random number generator. A rather good one is given in the
file ranf.c. It is based on the research results of various people. The program
is given in the file test1.c and we translate the whole program with the linux
command

cc ranf.c test1.c -o test1 -lm

After the compilation we execute the program with the command

test1

and we get on the screen the answer

For 1000000 points: 1.00083843 +/- 0.00089422

1If one would like to be precise, one also has to worry about how accurate the estimate of

the standard deviation is. We will not do that here.
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Let us see whether this makes sense.
If we want to know the standard deviation we need σ2 =< f2 > − < f >2

which we can compute to be 4/5. The error is then σ/
√

N in which N is the
number of points. The value of this quantity is printed in the second output
line. It is 0.00089443. Very close! We also see that the answer of the calculation
is just within the error.

One of the advantages of the Monte Carlo integration is that this 1/
√

N
rule survives when the integral is over more than one dimension. This is not
the case for quadrature rules which in one dimension may have a much better
behavior, but as soon as the number of dimensions increases it becomes worse.
Another advantage is the behavior with respect to experimental cuts. Suppose
that in our one dimensional integral the area between c and d should be ignored.
In that case we can either split the integral into two regions: a to c and d to
b, or we can just put the function to zero when the value of a random point
is between c and d (verify this!). In principle d could be larger than b etc,
in which case we have to consider lots of special cases if we would just like
to manipulate the integration boundaries. In a multi-dimensional integral this
setting to zero can be done similarly, provided we know how the ‘dead zones’
can be described in terms of kinematical variables. Assume for instance that the
energy of one of the outcoming photons in a given reaction is not equal to one
of our integration variables, but instead it is a complicated function of them.
In that case we calculate for each Monte Carlo point what this energy is. If we
don’t see photons with an energy less than 1 GeV, we can put the integrant
to zero in the case that the computed value of the photon energy is less than
1 GeV. This introduces discontinuities in our integrant, but the Monte Carlo
integration is relatively insensitive to this. Other methods however usually
assume that the integrant is continuous and also continuous in one or more
derivatives.

Another advantage (not to be underestimated) is that while integrating a
function by means of Monte Carlo techniques, one can make distributions of
any number of variables that are functions of the integration variables. These
distributions can be presented as histograms and if done properly, they are
approximations to differential crosssections.

The great sport in doing Monte Carlo integration is to select the proper
integration variables. And we define proper integration variables as variables
in which the standard deviation is as small as possible. As an example we take
the function

f(x) = 1/(x + e) (1)

and our integration domain is from zero to one. We assume that e > 0. For
this function we can compute

σ2 = < f2 > − < f >2

=
1

e(1 + e)
− (log(

1 + e

e
))2 (2)

We see that if e becomes very small, the standard deviation increases like 1/
√

e.
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Just imagine however that we change to another variable: u = (log(x + e) −
log(e))/(log(1 + e) − log(e)). This variable will run from zero to one as well.

Homework: You are to verify that in terms of this variable the standard
deviation is actually zero!

Of course we are usually not in such a good situation. What would be more
realistic is that we integrate a function

f(x) = g(x)/(x + e) (3)

in which g(x) depends very weakly of x. Now, if we change to the variable u,
we have g(x(u)) which supposedly depends rather weakly of u as well and the
standard deviation has been improved greatly. We call this technique mapping
and the art of phase space integration is to ‘map away’ the inverse power peaks
in the integrant as much as possible.

There is a general principle about how to make such mappings. Assume
that f(x) is the function that we want to ’compensate’. This means that we
want to distribute our points according to the surface under the function. This
is done by defining

F (x) =

∫
dx f(x) (4)

u =
F (x) − F (x

−
)

F (x+) − F (x
−
)

(5)

We assume here that f is nonnegative over the integration region and that we
integrate from x

−
to x+. In that case u is a number between 0 and 1. In that

case we have
∫ x+

x
−

dx g(x)f(x) = (F (x+) − F (x
−
))

∫ 1

0

du g(x(u)) (6)

This can always be done provided we know what the primitive function F looks
like and that we can invert it. This last step can in principle also be done
numerically.

Another way to improve the standard deviation is by means of stratified
sampling. In stratified sampling we try to make the distribution of the random
points a bit more uniform than they would be if they were completely random.
This can be done for instance by dividing the integration area in 10 equal
regions and give each region 10% of the points, randomly distributed through
the region. This is like a cross-breed between a Simpson rule and a Monte Carlo.
In a D-dimensional cube one would make subdivisions in D dimensions. In a
7 dimensional space with 3 subdivisions in each direction this would give 2187
little hypercubes, which is already quite a few. It shows already that accurate
multi-dimensional integration isn’t easy.

We can illustrate this with the function of our first example. The program
is in the file test2.c and it is compiled like before with now test2 instead of
test1. The answer is

For one range of 1000000 points: 1.00083843 +/- 0.00089422

For 1000 ranges of each 1000 points: 1.00000098 +/- 0.00000100
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As you can see the stratification gives a considerably smaller error. The im-
provement is of the order of the number of strata. This is not always the case.
We just had a rather benign function. Functions like f(x) = 2 sin2(1000πx)
would give much less of an improvement.

Homework: Playing with the values of the variables np1 and np2 in the
program test2, what would be their optimal values to obtain an error of 10−6?

The program we use for the Monte Carlo integration is called VEGAS. It
is a somewhat older program, but basically it has not been possible to improve
on it in a significant way. Other general programs are variations on it with
slight improvements. There do exist dedicated programs for special cases that
may be better, but here we want a general program that is moreover easy to
understand.

VEGAS does Monte Carlo integration using two types of improvement tech-
niques to reduce the value of the error. Its main technique is based on mapping.
For this VEGAS works in iterations. It evaluates the function in a number of
points, after which it studies the results. Based on these results it adapts the
distribution of its points in the next iteration. It stops when either a maximum
number of iterations is reached or a required precision has been achieved. When
VEGAS is called we have to specify how many points we want to use in each
iteration. When VEGAS starts it begins with setting up the stratification. It
divides the unit cube (it always integrates over a unit cube) into a maximal
number of subcubes, in such a way that each subcube has at least two random
points in it. The two points guarantee that for each subcube an error can be
computed and afterwards all errors can be combined. At the same time it sets
up a system of D linear mappings. In each dimension it defines an array that
starts out evenly spaced. Hence if we assume that there are 7 dimensions, there
will be 7 such arrays. For each Monte Carlo point there will be a function
value and this value is added to the appropriate bins in the 7 arrays. This will
leave us with 7 distributions in which the function has been integrated over the
other 6 dimensions. Based on these distributions VEGAS will redistribute the
points in the next iterations in such a way that it attempts the new bins to
have equal contents. This is not quite as good as the mapping we used before
(that was continuous, while this method makes the new effective function rather
discontiuous), but it is quite an improvement. By making some bins smaller
(if they are very full) and other bins larger (if they have very little contents)
and throwing roughly equal numbers of points in each bin, one can see that in
each iteration VEGAS manages to get a smaller standard deviation and hence
a smaller error. This continues untill the grid cannot be improved. One cannot
do a perfect job this way. This would only be possible if the integrant would
be a product of one dimensional functions. Unfortunately, multi-dimensional
structures cannot be dealt with this way. Programs that do attempt to resolve
multi-dimensional structures are usually much more complicated and rely on a
very large number of integration points. Assymptotically they may win, but
we don’t always have the computer resources to evaluate the function so many
times.

Homework: Imagine the function f(x) = x in the region 0 to 1. a: What is
the standard deviation? What error should we get with 100 random points? b:
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Imagine we do stratified sampling and divide the region into two equal parts.
What should the error become now if we use 50 points in each region? c: Using
the mapping technique of VEGAS with two bins in which we try to make the
bins such that they give equal contributions to the integral, what will the error
be now (with 50 points in each bin)? d: Another option is to adjust the bins
such that they all contribute equally to the error. What is the result now?

Next we do the same for the function f(x) = 3x2. Assume we divide the
integration region in two parts: 0 to a and a to 1. What do you notice now?
What is the best value of a?

Finally we have another example of a two dimensional function in which
we have the program produce distributions. These distributions are actually
histograms. For each Monte Carlo point we compute the relevant variables and
add the value of the integral to the proper bin. Note that one has to take
into account that if we use mappings in whatever form, there will be jacobians
involved.

In principle one can just calculate the standard deviation and hence the
error of all points that end up in the bin, regardless of during which iteration.
This can cause problems with iterations in which there are one or two really bad
points. Another approach is to only take the points of the last iteration. There
exist programs that do this. The approach we take here is to weight the results
in each bin for each iteration with the inverse of the relative error obtained in
that iteration. Note: one should not use the absolute error, because if in an
early iteration Vegas gets a small result with a small error because it didn’t see
the most important part of the function yet, we would put a very heavy weight
on this unreliable iteration.

When this system of making histograms is used it produces an output file
which can directly be offered to the LATEXsystem for further processing. It uses
axodraw.sty as a style file and one has to translate it eventually into a postscript
file. Direct translation into a .pdf file is alas not possible because axodraw uses
postscript for its primitive commands. One can however use ps2pdf afterwards
to create a .pdf file. The relevant part of the example is in the file main2.c.
The way you use this histogramming is by running the program 2 with the
command

prog2 plot2.tex

This creates the LATEXfile plot2.tex with the relevant information. Its informa-
tion can be made visible with the commands

latex plot2

dvips plot2 -o

kghostview plot2.ps

It needs the file axodraw.sty which you should have installed in your current
directory. You can make the .ps file into a .pdf file with

ps2pdf plot2.ps

There is one word of caution with respect to the use of vegas. When vegas
has trouble converging on the proper answer this manifests itself in a rather
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poor value of the variable named ‘chi-squared per iteration’. This variable is
defined as

χ2 =
1

n − 1

∑
i

(< f >i − < f >)2

e2
i

(7)

in which the index i refers to the different iterations, n is the number of itera-
tions, < f >i is the answer in the i-th iteration, ei is the error in that iteration
and < f > is the combined answer of all iterations. If everything goes according
to statistics this variable should have a value of about one. If it is significantly
larger usually it means that vegas may have missed a significant part of the
function during one or more iterations. There are various corrective actions:

• Find a mapping that makes the function smoother.

• Give vegas more points in each iteration.

• Run for more iterations.

The first solution, if it exists, is the best.
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