1 Very Short Linux Manual

Assume you have a computer that runs (any flavor) of Linux. The programs we would like to be
able to run in this course are FORM, IXTgXand whatever C programs we make. The first thing is
that we need to be able to create directories and move around them. When you log in, you are
usually in what is called your home directory. You create new directories with the command
mkdir nameofnewdirectory

This command is to be typed in in a so-called terminal window. There are also ways by which to
make new directories with the mouse, but we will need the terminal window anyway. Usually you
find the terminal program with the mouse in the menu under System. You can open any number
of terminal windows. The ones that you keep open when you log out will open again automatically
the next time you log in. With the mouse you select in which terminal window you want to issue
commands. You can see which files and/or subdirectories you have with the Is command. There
are several useful varieties of this command:

e Is Just list what files and directories there are

e Is -1 Give more details in the listing.

e Is -la Also show the hidden files (names starting with a period)
e Is -ltr Order the files such that they are in order of last access.
e Is name Give an Is of the named directory or file.

There are more options. One can obtain information about any command with the man command
e.g.:

man Is
To change directory, use the cd command as in

cd nameofsubdirectory
To go to the parent directory use the command

cd ..
and to go to your home directory simply type

cd
Unlike MS/DOS or windows the drectory separator is the / symbol as in bin/form
If this is your first time with Linux and you have to install FORM, please go to your home directory
and type the Is command. This should show you whether there is a subdirectory called bin. If not,
please create this directory with the command

mkdir bin
Next you are advised to start up FireFox or any other web browser and connect with the FORM
site (http://www.nikhef.nl/ form) and move to the binaries directory where you should select the
proper type of binary (this depends on whether you have a computer with a 32-bits architecture
or a 64-bits architecture, but usually the 32-bits version will also run on the 64-bits computer).
You download the FORM program, if possible directly into the bin directory. Next there is an
important step to make. Go back to the terminal. If the form file is in your home directory you
move it to the bin directory. This can be done with

cd

mv form bin

cd bin
The important step is now to make the file executable. If you type the command

Is -1 form
you may find something that starts with

-TW-T-T—
In that case you and others can read the file and you can write to it, but you cannot execute it.
Type the command

chmod 755 form
and after the next ’Is -1 form’ you will see

-I'WXIr-Xr-X
indicating that the execution flag has been set. And as usual you can find more information about
the chmod command by typing

man chmod
The next thing you have to do is a bit trickier. You will need a text editor. The Linux system
has a variety of them. The two main editors are based on either emacs or vi. If you are familiar
with one of those you will have an easy time. There are also the products of the ’office’ family, but
those are usually not suitable for preparing programs. There is also an editor (with explanations
of how to install it) in the FORM distribution. It is called stedi. Below I will assume that you are
capable of running an editor of your choice. I will call it ’editor’ in the commands and we will not
discuss what commands you should type exactly inside the editor; we will only tell you what has
to be done.
Now go to your home directory and type

editor .cshrc
Look whether there is a line that says something like

set path = (. "/bin $path)

If not, add such a line. This will make the shell program in the terminal find the FORM executable
from any directory that you are working in. It means that you need only one copy of FORM.
The above .cshrc file works properly if the shell program that is run inside your terminal windows
is for instance the tcshell (tcsh). With the bash shell you may have to edit the .bashrc file. There
the syntax is slightly different. Best is to ask a fellow student who is used to Linux and the bash
shell.
Next you can make a subdirectory in your homedirectory that you can use for this course e.g.:

cd

mkdir course
and you can pick up the other files and put them in this directory. I will keep adding files to the
dirctory in the FORM distribution. Hence you are advised to check regularly whether there is
something new.
Sometimes you find a so-called tar file. The word tar stands for tape archive. Of course we don’t
have tapes anymore but the name has stayed. It is a file that can contain whole directories and lots
of other files and its purpose is to make file transfers easier. It takes much less effort to transfer
one file in this way than to try to transfer thousands of small files spread over many directories.
Also it makes it easier to compress the files with the gzip program. These files can be recognized
by the extensions .tar for the tar file, .gz for a gzipped file and .tar.gz or .tgz for a tar file that has
been gzipped. As an example let us take the file kinc.tar.gz which you can pick up from the site.
You are to put this file in the subdirectory course and then go to this directory with the command

cd course
Then you can do either of two things. The first is

gunzip kinc.tar.gz

tar -xf kinc.tar
or in one command

tar -xzf kinc.tar.gz
In the first case we first uncompress the file, recreating the .tar file and then we unpack its contents.
The -xf tells the tar command that you want to extract (x) the contents of the file (f) of which the
name follows. In the second command the extra character z says that the name of the file refers to
a gzipped file and tar can do everything in one step.
The ungzipping and untarring of the kinc.tar.gz file will create a subdirectory kinc with a number
of files in it. You can enter this directory with the command

cd kinc
For the moment we will worry only about the first few examples. You can compile the first example
with the command

cc testl.c ranf.c -0 testl -lm
This command calls the C compiler (called cc) and tells it to translate the files testl.c and ranf.c.
It then has to produce an executable by the name testl (-o indicates the name of the output file.
If it is omitted the default name will be a.out) and the -lm means that the math library should
be included (-1 stands for library and the library that will be searched for in the system is the file
libm.a). The math library is needed when we use functions like the square root etc.
The program can now be executed with the command

testl
Similarly the second example can be compiled with

cc test2.c ranf.c -0 test2 -lm
The third example involves the files mainl.c, vegas.c , inplot.c, boundaries.c, ranf.c, funl.c, iipow.c
and ipow.c. This is a bit much to type all the time. Moreover we don’t want to recompile all
routines each time we change someting in only one of them. For this any unix system is equipped
with a facility named 'make’. In a file named the makefile we tell the system about what files
belong to our project and how they should be translated. In the case of this example we have done
that in the file makel. Then all we have to do is type

make -f makel
and the system looks which files will have to be translated. By looking at the dates of the source
files and the object files (the translated files) it can see which source files have been changed since
the previous compilation.
If you have done all this and there were no problems you should have a file progl which contains the
executable file of this example which is the first example run of the vegas Monte Carlo integration
program. You execute it with the command

progl
For prog2 (the second example) we become a little bit fancier. Again, you can make it with

make -f make2
but for the execution this program needs an argument as in

prog2 pict2.tex
We want here the name of a future file that has the extension .tex because this file will contain
IXTEXcode. If everything has gone well, this code can be processed with the commands

latex pict2

dvips pict2 -o

kghostview pict2.ps
The last command starts up the postscript viewer and will show you some of the histograms
that were made during the running of the Monte Carlo integration. The first command lets the
TEXsystem (using the I¥TEXpackage) translate the .tex code into a device independent file with

the extension .dvi which in its turn can be translated into a postscript (.ps) file with the dvips

command in which the -0 option at the end tells that the output file should be called pict2.ps.

kghostview is the postscript viewer. If you prefer to have a .pdf file you can use the command
ps2pdf pict2.ps

and you will get a file pict2.pdf

2 Mail

Sometimes there is a spam filter active that may send e-mail that comes from ’suspected’ sites to
the spam. One way to prevent this is to whitelist a given sender. I don’t know whether this is
Linux-flavor dependent. Under the Nikhef version of Scientific Linux it works as follows:
In your home directory, do an

Is -a
Look whether there is a directory named .spamassassin and if this is the case go to this directory
with

cd .spamassassin
There should be a file user_prefs which you can see with the command

Is -1
To this file you have to add the line

whitelist_from t68@nikhef.nl
There are various ways by which you can do this. Just for security sake we first make a copy of the
file. This you do with

cp user_prefs old_user_prefs
Then you type

echo whitelist_from t68@nikhef.nl >> user_prefs
Make sure that you use two > signs without a space between them or you loose the previous
contents of the file. You can restore the old file with

cp old_user_prefs user_prefs

