
1 A short manual of FORM

Symbolic Manipulation for the expansion of Feynman diagrams can easiest be
done with FORM. The FORM program can bbe obtained from the form site.
Most likely the 32-bits binary should work without problems. The standard
way to install it is to have a directory named bin in your home directory and
put form in that directory. Usually there is a shell variable named path which
will contain this directory and this means that if you type in

form filename

the shell will find the form program in this bin directory and execute it. If your
path variable doesn’t contain this bin directory you have to edit the file .cshrc
or .bashrc (depending on which shell you use) and add the line

set path = (. ~/bin $path)

In the bash shell it may be sufficient to have the line

set PATH = .;~/bin;$PATH

When you pick up FORM and put it in your bin directory make sure that
its execution flag has been set. This means that when you do an ls -l in that
directory you should see something like

-rwxr-xr-x 1 user group 1331128 2007-10-21 17:55 form

If the x characters in the first part are missing you need to type the command

chmod 755 form

This make form ‘executable’. After this you can use FORM from any directory.
One prepares a file with a form program of which the extension should be

.frm, eg test.frm. This program is then executed with

form test

which produces output on the screen. In case it is executed with

form -f test

it produces both output on the screen and (more completely) in the file test.log.
This file can then be put in ones favorite editor. FORM can also produce other
files, depending on the program.

FORM programs consist of modules. Each module again consists of dec-
larations, definitions and statements. Each module is compiled when its turn
has come and then executed. Hence at the level of modules FORM acts as an
interpreter, at the level of individual statements as a compiler. This gives a
high degree of flexibility as will be seen.

Modules are ended with instructions of which the name starts with a period.
The most important instructions are for our purposes:

• .end Executes the current module and terminates the program afterwards.

• .sort Executes the current module, clears the buffers and continues with
the next module.

Other module instructions will not play a role in this course.

1

1.1 General

The names of commands and built in variables are case insensitive. The built in
variables all have a name that ends in an underscore. User defined variables are
case sensitive and are not allowed to contain the underscore character. There is
one exception to this last rule. User defined variables can have any characters
in their name provided the name starts with the character valid name for a
variable. It is different from [A + B]. The built in imaginary variable i is given
by i_ which is the same as I_. All statements inside the modules should be
terminated with a semicolon.

1.2 Modules

The contents of each module can consist of any of the following in the given
order:

• Declarations

• Settings

• Definitions

• Executable Statements

• Output control

None of these has to be present but if more than one type occurs the relative
order has to be as specified above. Generically they are all called statements
as well.

1.3 Declarations

The important declarations are:

• Symbol Declares the given objects as regular commuting variables.

• Vector Declares the given objects as vectors.

• Index Declares the given objects as indices (of vectors, functions or ten-
sors)

• CFunction Declares the given objects as commuting functions.

• Function Declares the given objects as non-commuting functions.

• Tensor Declares the given object to be a (commuting) tensor. Tensors
can have only indices or vectors for their arguments.

In addition one can put the word AutoDeclare in front of such a declaration.
This means that all variables of which the name starts with the characters given
and is not otherwise declared will become of the mentioned type. More than
one variable can be declared at the same time and the notation i1, · · ·, i12 is
understood as the sequence of the twelfe variables i1 till i12.

2

Vectors either have a single index between parentheses or are part of a
dotproduct. Functions have zero or more arguments. The arguments can be
empty. An empty argument is interpreted as zero. If a tensor has a vector for an
argument it is interpreted that there was in index there that has been contracted
with the index of the vector. Indices can have customized dimensions, but we
will not look at that here. The default dimension for indices is four.

1.4 Settings

There are not many settings that we will look at. The most important in this
course is the Format statement.

Format C;

will format potential output in such a way that a C compiler can translate the
formulas.

Format Fortran;

will format potential output in such a way that a Fortran compiler can translate
the formulas.

Format;

will switch back to the default FORM mode.

1.5 Definitions

A definition defines an expression as an object for symbolic manipulation. There
are several types of expressions, but we will only consider the local expressions.
They are defined as in

Local F = (a+b)^4;

This defines the expression F and its initial value is (a + b)4. The first thing
FORM will do is work out the power as a4 + 4a3b + · · ·. One is allowed to use
previously defined expressions in the right hand side of a definition. For reasons
of efficiency it is best that there is a .sort instruction before such a previously
defined expression is being used.

Expressions are the objects we are interested in. They consist of terms
like 4a3b. Statements act on the terms of an expression. At the end of the
module the results of these manipulations are brought together and sorted into
a ‘normal ordered’ object again.

There are two statements that have the same status as a definition and
should be used together with the definitions before the regular statements.
They are:

Drop [names of expressions];

and

Skip [names of expressions];

3

The Drop statement removes expressions from the system. The mentioned
expressions can still be used in the right hand side of expressions or statements
in the current module. After the current module there is no more memory
of the given expression(s). If no names of expressions are given all currently
defined expresseions will be dropped. This can be done as in

Drop;

Local M = Amp*AmpC;

The expressions Amp and AmpC will be dropped and a new expression that is
the product of the two will be created.

The skip command just instructs FORM that the mentioned expressions
are not to be treated by the statements in the current module. It is a way to
selectively act on some expressions while not action on others. If no expressions
are mentioned all currently active expressions will be skipped as in

Skip;

Local AmpC = Amp;

where all expressions except for AmpC will be skipped. The nskip statement
does the opposite:

Skip;

Nskip Amp;

will skip all expressions except for the expression Amp.

1.6 Executable Statements

The statements come in the largest variety. We will see however only a small
number of them. They act on the individual terms of all expressions The most
important statement is the id or identify statement as in

id pattern = expression;

In this case the pattern will be looked for in the terms of the active expressions
and replaced by the right hand side expression as in:

id a = b+c;

Notice that the pattern is matched and taken out as many times as possible
and only after that the right hand side is inseterd as many times as the pattern
fit. Hence this will cause no problems with a statement like

id a = a+1;

If repeated action is needed one should put the statement(s) inside a repeat
loop:

repeat;

id a^2 = a+1;

endrepeat;

4

Generic variables or wildcards in the pattern are indicated by a trailing ques-
tionmark. In the right hand side the questionmark is not needed:

id a^n? = a^(n+1)/(n+1);

A very special type of wildcarding is done with the arguments of functions.
These wildcards stand for an unspecified number of arguments of the function.
Example:

repeat;

id f(i1?,i2?,?a)*f(i2?,i3?,?b) = f(i1,i3,?a,?b);

endrepeat;

Here the ‘argument field’ wildcards are given by a questionmark followed by
a name. They will match with any number of arguments, also zero. Note
also that because i2 occurs twice in the pattern both occurrences have to be
identical. The above is a way of stringing matrices together.

Another useful statement is the trace statement which comes in two vari-
eties. We will use only the trace in 4 dimensions which is given by the trace4
statement. The statement

Trace4,i;

will take the 4-dimensional trace of all gamma matrices that are marked as
belonging to the fermion line i. I is either an index or a (short) positive number.

The multiply statement multiplies all terms with the expression given in the
statement:

Multiply,right,replace_(U,UB,UB,U,V,VB,VB,V);

This multiplies on the right. It is also possible to multiply on the left and if
there is no keyword the system either multiplies on the right or on the left,
whatever it likes. The replace_ function is described in the subsection on
special functions.

There is also an if-statement in which questions are asked for each term
and depending on the answer the statements between the if-statement and the
corresponding endif statement will be executed. For more details we refer to
the complete FORM manual.

1.7 Output control

Here we mention for instance whether we want the output of the current module
to be printed. We can also specify whether we want a level of brackets in the
output. The print statement has some varieties:

Print;

Print +f;

Print +s;

Print expressionnames;

5

In the first case all active expressions (that are not dropped or skipped) will
be printed. In the second case all will be printed but if FORM was called with
the -l flag they will be printed only in the log file. In the third case all will be
printed with only a single term per line. Finally in the fourth case only the
mentioned expressions will be printed. All these options can be combined. In
that case the +f and/or +s come before the name(s) of the expression(s).

The bracket statement specifies whether some objects should be taken out-
side brackets when the output is printed. This can make the output easier to
read. Each bracket is started on a new line.

Bracket x,y,f;

In this case (x and y symbols, f a function) all powers of x and y and all
occurrences of f are placed outside brackets. Each different occurrence of powers
of x and y and the function f defines a new bracket. Note that this has also
an influence on the ordering of the terms because now powers of x which go
outside the brackets are more significant than powers of a which will be inside
the brackets. Without bracket statement this might be different depending on
whether a is declared before x.

1.8 Special Functions

Amoung the various special functions in FORM are the Dirac gamma matrices
and a number of delta functions. There is also the Levi-Civita tensor and much
more. We will only need the ones mentioned here.

The Dirac gamma matrices are indicated by g_. They are noncommuting
objects that have in principle two arguments: The first argument is either an
index or a (small) positive integer that indicates to which spinline the matrix
belongs. Matrices of different spinlines will commute with each other. The
second argument is either an index or a vector. If it is a vector it is a shorthand
notation for an index that is contracted with the index of the vector. There
are several special indices for the second argument: 5_ indicates γ5 while 6_

indicates (1 + γ5) and 7_ stands for (1 − γ5). If the second argument is absent
we have the unit matrix. We have several shorthand notations:

gi_(j) = g_(j)

g5_(j) = g_(j,5_)

g6_(j) = g_(j,6_) = gi_(j)+g5_(j)

g7_(j) = g_(j,7_) = gi_(j)-g5_(j)

A string of gamma matrices can be written together as in

g_(j,nu,p1,mu,p2) = g_(j,nu)*g_(j,p1)*g_(j,mu)*g_(j,p2)

The Levi-Civita tensor e_ is a totally antisymmetric tensor. In four dimen-
sions we have e0123 = 1. It has close relations with gamma5:

Indices mu,nu,ro,si;

Local F = g5_(j)*g_(j,mu)*g_(j,nu)*g_(j,ro,)*g_(jsi);

Trace4,j;

6

Print;

.end

F = e_(mu,nu,ro,si);

For this course we need to know only two delta functions. The Dirac delta
function δµν and the replace_ function. The Dirac delta is the function d_

with two index arguments. As repeated indices are automatically summed over
most d_ functions disappear quickly and have the effect of renaming indices.
Something similar is acchieved for other objects with the replace_ function. It
should have an even number of arguments. The arguments come in pairs and
when a term has a replace function its effect is that in the term everywhere the
first element of the pair is replaced by the second element. Example

Multiply replace_(U,UB,UB,U,V,VB,VB,V);

Each term will be multiplied by this replace function after which in the term U
is replaced by UB, UB by U, V by VB and VB by V. Then the replace function
is removed as it has done its work. This works much faster and less complicated
than trying to do this with a number of id-statements.

1.9 The Preprocessor

Just like the C compiler FORM has a rather powerful preprocessor with a
whole range of preprocessor instructions and its own preprocessor variables.
Preprocessor instructions start with the character # as in

#include amplitude.h

which would be replaced by the contents of the file amplitude.h. The prepro-
cessor has its own variables. When they are used they are between a matching
set of backquote and quote. When this is encountered a textual replacement is
made and compilation continues at the beginning of the content of the variable
as in

#define MAX "20"

#do i = 1,‘MAX’

id a‘i’ = a{‘i’+‘MAX’};

#enddo

In the define instruction MAX is defined as the string 20. Preprocessor variables
contain always character strings unless the preprocessor calculator is invoked
in which case an attempt is made to interpret the string as an arithmatic ex-
pression.

In the do instruction ‘MAX’ is replaced by the string 20and the program will
go through the loop twenty times, each time generating an instruction. The
first time i is the string 1 etc. The curly brackets in the right hand side invoke
the preprocessor calculator and hence the first time {1+20} is evaluated and
replaced by the string 21 and hence we generate in total twenty statements of
the type

7

id a1 = a21;

id a2 = a22;

...

id a20 = a40;

Another preprocessor construction is the procedure. each procedure can be
part of the regular input stream and is then read into memory and kept there,
or it resides in a separate file which has the name of the procedure and the
extension .prc but in our examples we have put the procedure squareamplitude
in the header file amplitude.h. procedures can have arguments and FORM is
very careful with the syntax of the procedure instruction and the corresponding
call instruction that invokes the procedure. The procedure instruction is given
by

#procedure name(argument(s))

contents

#endprocedure

The variables in the arguments are preprocessor variables and hence when used
should be enclosed in a matching pair of backquote and quote. It is not nec-
essary to have arguments. Because the procedure is handled entirely by the
preprocessor it is actually a gigantic macro. The procedures are called by the
call instruction as in

#call squareamplitude(Amp,Mat)

in which case the instruction is replaced by the contents of squareamplitude in
which the first argument is replaced by the string Amp and the second by the
string Mat. Note that procedures can call other procedures and even recursions
are possible here provided that one takes care that the recursion terminates.

Finally one more feature of the preprocessor to make the creation of com-
plicated input easier:

Multiply replace_(<i1,i21>,...,<i20,i40>);

The pair <> is used here as a type of bracket to define a pattern and the operator
indicated by three dots indicates that we talk about a range. This notation
needs a starting pattern and a finishing pattern and then the preprocessor will
generate the whole range, in this case a replace_ function with 40 arguments.

1.10 Dollar variables

Apart from regular algebraic variables and the string valued preprocessor vari-
ables FORM knows a third type of variables that can be accessed both by the
preprocessor and the algebraic execution unit. These variables have a name
that starts with a $ sign. These variables can contain numbers or small alge-
braic expressions. When referred to between a matching pair of a backquote
and a quote, their value is translated into a string and used as a preprocessor

8

variable. Without the backquote and quote their value is substituted during
algebraic execution at the term level. These variables are given a value by the
preprocessor if preceeded by the character # and during algebraic execution
without this character. Example:

#$count = 0;

$count = $count + 1;

.sort

#do i = 1,‘$count’

etc

During compilation the variable $count gets the value zero. Then during exe-
cution each time the program passes here (for each term) its value is raised by
one. After the .sort it will contain the number of terms that FORM had before
the sort. This number is then used by the preprocessor as a parameter in the
do loop. There are more ways to give values to the dollar variables and one
can do very complicated things with them. This is however outside the scope
of this small manual.

2 Calculating Matrix elements

There are many ways to calculate Matrix elements from amplitudes. Here we
will look at one way based on the use of FORM and the procedure squaream-
plitude in the header file amplitude.h. We look at the amplitude for the calcu-
lation of the reaction e−e+

→ τ−τ+ followed by the decays τ− → e−νeντ and
τ+

→ µ+νµντ . The FORM program based on amplitude.h is

#-

#:ContinuationLines 100

*

* The matrix element for the reaction

* e-e+ -> tau-tau+ -> nu-tau e- nubar-e nu-mu mu+ nubar-tau

* At low energies there is only one diagram!

*

#include amplitude.h

*

Local Amp = VB(i1,pb,me)*g(i1,i2,j1)*U(i2,pa,me)

*phprop(j1,j2,q)

*UB(i3,p1,mnt)*g(i3,i4,j3)*g(i4,i5,k7)

*fprop(i5,i6,q1,mt)*g(i6,i7,j2)*fprop(i7,i8,-q2,mt)

*g(i8,i9,j4)*g(i9,i10,k7)*V(i10,p6,mnt)

*UB(i11,p2,me)*g(i11,i12,j3)*g(i12,i13,k7)*V(i13,p3,mne)

*UB(i14,p4,mnm)*g(i14,i15,j4)*g(i15,i16,k7)*V(i16,p5,mm)

;

#call squareamplitude(Amp,value)

.sort

Symbols widthtau,s,factor;

Format C;

9

*

* In the narrow width expansion we can replace

* the tau propagators:

*

id prop(q1.q1-mt^2)^2 = 1/2/mt/widthtau;

id prop(q2.q2-mt^2)^2 = 1/2/mt/widthtau;

id prop(q.q) = 1/s;

id 1/s^2/widthtau^2 = 4*factor*mt^2;

id p1.p1 = mt^2;

id p2.p2 = mt^2;

id mt^2 = mt2;

id me^2 = me2;

id mt2^2 = mt4;

Bracket factor;

Print +f;

.sort

#$fac = factorin_(value);

Multiply 1/(‘$fac’);

Print +f;

.sort

Skip;

#write <> " value = value * (%$);",$fac

.end

and the file amplitude.h is given by

AutoDeclare Index i,j,k;

AutoDeclare Symbol m,x;

AutoDeclare Vector p,q;

Vector q,pe,pp,pa,pb,q1,q2,p1,...,p10;

CF UB,U,VB,V,g,gstring,e;

CF fprop,phprop,gprop,prop;

*

*

#procedure squareamplitude(Amp,Mat)

.sort

*

* We skip everything but Amp. In Amp we look for the highest

* i and j indices

*

Skip;

NSkip ‘Amp’;

#$imax = 0;

#do i = 1,40

if (match(VB(i‘i’,?a)) || match(V(i‘i’,?a))

|| match(UB(i‘i’,?a)) || match(U(i‘i’,?a))

|| match(g(i‘i’,?a)) || match(g(i?,i‘i’,?a))

|| match(fprop(i‘i’,?a))

10

|| match(fprop(i?,i‘i’,?a)));

$imax = ‘i’;

endif;

#enddo

#$jmax = 0;

#do j = 1,20

if (match(g(?a,j‘j’)) ||

match(phprop(j‘j’,?a)) ||

match(phprop(j?,j‘j’,?a)));

$jmax = ‘j’;

endif;

#enddo

.sort

*

* Just for a check we print the highest i and j indices

*

#message highest i is i‘$imax’, highest j is j‘$jmax’;

*

* Now construct the conjugate

*

Skip;

L ‘Amp’C = ‘Amp’;

id i_ = -i_;

*

* Make a new set of dummy indices above $imax and $jmax.

*

Multiply replace_(

<i1,i{‘$imax’+1}>,...,<i‘$imax’,i{2*‘$imax’}>);

Multiply replace_(

<j1,j{‘$jmax’+1}>,...,<j‘$jmax’,j{2*‘$jmax’}>);

*

* Exchange rows and columns

*

id g(i1?,i2?,j?) = g(i2,i1,j);

id fprop(i1?,i2?,?a) = fprop(i2,i1,?a);

id phprop(j1?,j2?,p?) = phprop(j2,j1,p);

*

* and exchange U and UB, V and VBAR

*

Multiply replace_(UB,U,U,UB,VB,V,V,VB);

*

* gamma5 gets a minus sign. Hence k6 <--> k7

*

Multiply replace_(k6,k7,k7,k6);

id g(?a,k5) = -g(?a,k5);

.sort

*

11

* Now multiply Amp and AmpC to get the matrix element squared.

*

Skip;

Drop,‘Amp’,‘Amp’C;

L ‘Mat’ = ‘Amp’*‘Amp’C;

*

* Spin sums

*

id U(i1?,p?,m?)*UB(i2?,p?,m?) = g(i1,i2,p)+g(i1,i2)*m;

id V(i1?,p?,m?)*VB(i2?,p?,m?) = -g(i1,i2,p)+g(i1,i2)*m;

id e(j1?,p?)*e(j2?,p?) = -d_(j1,j2);

*

* Propagators

*

id fprop(i1?,i2?,p?,m?) =

(g(i1,i2,p)+g(i1,i2)*m)*prop(p.p-m^2);

id phprop(j1?,j2?,q?) = -d_(j1,j2)*prop(q.q);

*

* String the gamma matrices together in traces.

*

repeat id g(i1?,i2?,?a)*g(i2?,i3?,?b) = g(i1,i3,?a,?b);

.sort

Skip;

NSkip ‘Mat’;

*

* Now put the traces one by one in

* terms of the built in gammas

*

#do i = 1,10

id,once,g(i1?,i1?,?a) = g_(‘i’,?a);

id g_(‘i’,k7) = g7_(‘i’);

id g_(‘i’,k6) = g6_(‘i’);

id g_(‘i’,k5) = g5_(‘i’);

#enddo

.sort

*

* Finally take the traces

*

#do i = 1,10

Trace4,‘i’;

#enddo

#endprocedure

Let us discuss the various aspects of the program.
We define the gamma matrix with its two matrix indices as g(i1,i2,j1)

in which i1 and i2 are the spinor indices. The spinor indices in the amplitude
should be called i1,i2,etc. The Lorenz indices should be called j1,j2,etc. The

12

spinors are U, UB (for u), V and VB (for v). Their first argument is the spinor
index, the second argument is the fourvector and the third argument should be
the mass.

If we define pa as the momentum of the incoming electron and pp the
momentum of the incoming positron the trace on the incoming side is

VB(i1,pb,me)*g(i1,i2,j1)*U(i2,pa,me)

with j1 the Lorenz index of the s-channel photon. The photon propagator is
defined as phprop(j1,j2,q). Next comes the tau trace:

*UB(i3,p1,mnt)*g(i3,i4,j3)*g(i4,i5,k7)

*fprop(i5,i6,q1,mt)*g(i6,i7,j2)*fprop(i7,i8,-q2,mt)

*g(i8,i9,j4)*g(i9,i10,k7)*V(i10,p6,mnt)

in which fprop is a fermion propagator. It has two spinor indices, a momentum
and a mass. The variable mt is the mass of the tau and mnt is the mass of the
tau neutrino. The variable k7 takes the role of g7_ in due time. The labelling
of the momenta is

1. p1: The τ−.

2. p2: The τ+.

3. p3: The outgoing ντ .

4. p4: The outgoing electron.

5. p5: The outgoing νe.

6. p6: The outgoing νµ.

7. p7: The outgoing µ+.

8. p8: The outgoing ντ .

This leaves two traces for the electron and the µ+:

*UB(i11,p2,me)*g(i11,i12,j3)*g(i12,i13,k7)*V(i13,p3,mne)

and

*UB(i14,p4,mnm)*g(i14,i15,j4)*g(i15,i16,k7)*V(i16,p5,mm)

in which mne is the mass of the νe and mnm is the mass of the νµ. The mass
of the electron is me and the mass of the muon is mm. This gives the rules for
feeding in the amplitudes which are translations of the Feynman diagrams.

Next we look inside amplitude.h. For some declarations we have used au-
todeclare because we don’t know in advance how many of these variables we
will encounter in the main program. After the declarations we define the proce-
dure squareamplitude. The first thing this procedure does is to determine the
maximum spinor index and the maximum Lorenz index. We assume that there
will be no more than 40 spinor indices and no more than 20 Lorenz indices. To

13

exceed these limits would require some really big diagrams. This is needed to
avoid that contracted indices in the conjugate of the amplitude will be identical
to indices in the original amplitude. These maximum values are stored in the
dollar variables $imax and $jmax.

Then we define the conjugate of the amplitude and decide to only operate on
it (by skipping everything else). Then we replace the spinor and Lorenz indices
by indices that are guaranteed to be different. The next three id-statements
conjugate the matrices (ie changes the rows and the columns). Then the U etc
are conjugated. Because γ5 gets a minus sign under conjugation we have to
take care of that sign as well. This finishes the conjugation.

In the next module we construct the square of the matrix element by multi-
plying Amp and AmpC. At the same time we don’t need those two any longer.
The substitution of U()*UB() and V()*VB() are the famous spin sums and the
substitution of two e-functions with the same momentum does the same for
external photons. Next we write out the fermion propagators and the photon
propagators and finally we string the gamma matrices together.

In the next module we take each time one such string and as it has now two
identical spinor indices we have to take its trace. We write it in terms of the
built in gamma function and resolve the k5, k6 and k7 as γ5, γ6 and γ7. Each
trace will have its own spinline ‘i’. Finally we take the traces.

The trace algorithms of FORM are quite sophisticated. It knows identities
that involve more than one trace at a time and hence it is best to first write
all strings to the built in gamma matrices and then take the trace. You can
experiment with this by trying

#do i = 1,10

id,once,g(i1?,i1?,?a) = g_(‘i’,?a);

id g_(‘i’,k7) = g7_(‘i’);

id g_(‘i’,k6) = g6_(‘i’);

id g_(‘i’,k5) = g5_(‘i’);

Trace4,‘i’;

#enddo

You will get a very messy and very lengthy output with terms that contain
products of Levi-Civita tensors. When these tensors are contracted and sim-
plifications are used when needed the answer will eventually be the same but
after much more work, both of the programmer and of the computer. Hence it
is best to let FORM decide on how to do the traces.

At this point we have an expression with masses, dotproducts and some
propagators of the form prop(argument). In the current case they can all be
simplified. Finally we introduce some variables that are powers of symbols to
avoid too much use of the pow function in the language C. The output of this
program (suppression the listing of the input) is

#-

Time = 0.00 sec Generated terms = 1

Amp Terms in output = 1

Bytes used = 396

14

Time = 0.00 sec Generated terms = 1

Amp Terms in output = 1

Bytes used = 396

~~~highest i is i16, highest j is j4

Time = 0.00 sec Generated terms = 1

AmpC Terms in output = 1

Bytes used = 396

Time = 0.91 sec Generated terms = 4096

value Terms in output = 4096

Bytes used = 1257062

Time = 1.03 sec Generated terms = 128

value Terms in output = 128

Bytes used = 36814

Time = 1.04 sec Generated terms = 164

value Terms in output = 27

Bytes used = 1616

Time = 1.04 sec Generated terms = 27

value Terms in output = 27

Bytes used = 1398

value =

+ factor * ( - 524288.*pa_pb*q1_q2*p1_p2*p3_p4*p5_p6*mt2 +

524288.*pa_pb*q1_p3*q2_p4*p1_p2*p5_p6*mt2 + 524288.*pa_pb*

q1_p4*q2_p3*p1_p2*p5_p6*mt2 + 1048576.*pa_q1*pb_q2*q1_p3*q2_p4

*p1_p2*p5_p6 + 524288.*pa_q1*pb_q2*p1_p2*p3_p4*p5_p6*mt2 -

524288.*pa_q1*pb_p4*q1_p3*q2_q2*p1_p2*p5_p6 - 524288.*pa_q1*

pb_p4*q2_p3*p1_p2*p5_p6*mt2 + 1048576.*pa_q2*pb_q1*q1_p3*q2_p4

*p1_p2*p5_p6 + 524288.*pa_q2*pb_q1*p1_p2*p3_p4*p5_p6*mt2 -

524288.*pa_q2*pb_p3*q1_q1*q2_p4*p1_p2*p5_p6 - 524288.*pa_q2*

pb_p3*q1_p4*p1_p2*p5_p6*mt2 - 524288.*pa_p3*pb_q2*q1_q1*q2_p4*

p1_p2*p5_p6 - 524288.*pa_p3*pb_q2*q1_p4*p1_p2*p5_p6*mt2 +

262144.*pa_p3*pb_p4*q1_q1*q2_q2*p1_p2*p5_p6 + 524288.*pa_p3*

pb_p4*q1_q2*p1_p2*p5_p6*mt2 + 262144.*pa_p3*pb_p4*p1_p2*p5_p6*

mt4 - 524288.*pa_p4*pb_q1*q1_p3*q2_q2*p1_p2*p5_p6 - 524288.*

pa_p4*pb_q1*q2_p3*p1_p2*p5_p6*mt2 + 262144.*pa_p4*pb_p3*q1_q1*

q2_q2*p1_p2*p5_p6 + 524288.*pa_p4*pb_p3*q1_q2*p1_p2*p5_p6*mt2

+ 262144.*pa_p4*pb_p3*p1_p2*p5_p6*mt4 + 262144.*q1_q1*q2_q2*

p1_p2*p3_p4*p5_p6*me2 - 524288.*q1_q1*q2_p3*q2_p4*p1_p2*p5_p6*

me2 + 1048576.*q1_q2*q1_p3*q2_p4*p1_p2*p5_p6*me2 - 524288.*

q1_p3*q1_p4*q2_q2*p1_p2*p5_p6*me2 + 1048576.*q1_p3*q2_p4*p1_p2

*p5_p6*mt2*me2 + 262144.*p1_p2*p3_p4*p5_p6*me2*mt4 );

Time = 1.04 sec Generated terms = 27

value Terms in output = 27

Bytes used = 952

15



value =

2*pa_pb*q1_q2*p3_p4*mt2 - 2*pa_pb*q1_p3*q2_p4*mt2 - 2*pa_pb*q1_p4

*q2_p3*mt2 - 4*pa_q1*pb_q2*q1_p3*q2_p4 - 2*pa_q1*pb_q2*p3_p4*mt2

+ 2*pa_q1*pb_p4*q1_p3*q2_q2 + 2*pa_q1*pb_p4*q2_p3*mt2 - 4*pa_q2*

pb_q1*q1_p3*q2_p4 - 2*pa_q2*pb_q1*p3_p4*mt2 + 2*pa_q2*pb_p3*q1_q1

*q2_p4 + 2*pa_q2*pb_p3*q1_p4*mt2 + 2*pa_p3*pb_q2*q1_q1*q2_p4 + 2*

pa_p3*pb_q2*q1_p4*mt2 - pa_p3*pb_p4*q1_q1*q2_q2 - 2*pa_p3*pb_p4*

q1_q2*mt2 - pa_p3*pb_p4*mt4 + 2*pa_p4*pb_q1*q1_p3*q2_q2 + 2*pa_p4

*pb_q1*q2_p3*mt2 - pa_p4*pb_p3*q1_q1*q2_q2 - 2*pa_p4*pb_p3*q1_q2*

mt2 - pa_p4*pb_p3*mt4 - q1_q1*q2_q2*p3_p4*me2 + 2*q1_q1*q2_p3*

q2_p4*me2 - 4*q1_q2*q1_p3*q2_p4*me2 + 2*q1_p3*q1_p4*q2_q2*me2 - 4

*q1_p3*q2_p4*mt2*me2 - p3_p4*me2*mt4;

value = value * (-262144.*p1_p2*p5_p6*factor);

1.04 sec out of 1.15 sec

The execution time was on a pentium 2800.

16


