
Introduction to FORM

Jos Vermaseren

Part 4: The preprocessor and $-variables.

Thus far we have seen the manipulation of terms in expressions. Actually this doesn’t

give full flexibility yet. We have to be able to manipulate the program itself. We must

have subroutines, loops and other control mechanisms. And above all, we must have

string variables. This is all controled by the preprocessor.

Preprocessor commands are called instructions. They start with the character #,

followed by a keyword. The preprocessor manipulates the input, usually at the string

level. But this manipulation can be based on results from previous parts of the program.

The preprocessor has also variables. In principle these variables contain character

strings. When they are used, we distinguish them from the symbolic variables by

enclosing them in a matching backquote (‘), quote (’) pair. These act as a kind of

parentheses and can be nested.

S x;

L F = x;

#do i = 1,5

id x = x+1;

#enddo

Print;

.end

F =

5 + x;

Actually this is clearer in the next example:

CF f;

L F = f;

#do i = 1,5

id f(?a) = f(‘i’,?a);

#enddo

Print;

.end

F =

f(5,4,3,2,1);

The use of the do-loop is as in fortran. If we specify a third variable in the RHS of the

= sign, it will be the increment. If there is no increment it is supposed to be one.

There is a second way to use the do-loop. This is called a ‘listed’ loop. We list the

string values that the loop parameter should take. This list is enclosed in a pair of

curly brackets and the elements are separated by comma’s (in an old notation by the

| character).

S a,b,c;

CF f;

L F = f;

#do i = {a,b,c}

id f(?a) = f(‘i’,?a)+1;

#enddo

Print;

.end

F =

3 + f(c,b,a);

If we like to include a comma in the string we should ‘escape’ it with the character \

in front:

S a,b,c;

CF f;

L F = f;

#do i = {a\,b,c}

id f(?a) = f(‘i’,?a)+1;

#enddo

Print;

.end

F =

2 + f(c,a,b);

It is of course up to the user to make sure that the resulting strings that are substituted

can be interpreted properly by the symbolic part of the program.

One can also define preprocessor variables directly. This is done with the #define

and/or #redefine instructions as in:

#define a1 "x1"

#define a2 "x2"

#define a3 "x3"

Symbols x1,x2,x3;

CFunction f;

Local F =

#do i = 1,3

+ f(‘a‘i’’)

#enddo

;

Print;

.end

F =

f(x1) + f(x2) + f(x3);

Note that unlike in the language C, F = +1; is allowed in FORM. C does not accept

the leading + sign.

Preprocessor variables are stored in a stack. Hence they can be defined several times

and FORM will use the last definition. Under some circumstances the stack will be

popped and the older definition will become active again.

#define i "-5*a"

Symbol a;

CF f;

#do i = 1,2

L F‘i’ = f(‘i’);

#enddo

L F = f(‘i’);

Print;

.end

F1 = f(1);

F2 = f(2);

F = f(- 5*a);

If one would like to overwrite an existing definition one should use the #redefine

instruction. We will see examples of this later when we treat the procedures.

If necessary one can also remove preprocessor variables from the list by the use of the

#undefine instruction.

If one would like to inspect which preprocessor variables have been defined and what

their values are one can use the #show instruction:

#define i "-5*a"

Symbol a;

CF f;

#do i = 1,1

#show

#The preprocessor variables:

0: VERSION_ = "3"

1: SUBVERSION_ = "1"

2: NAMEVERSION_ = ""

3: DATE_ = "Tue Jan 10 13:24:52 2006"

4: PARALLELTASK_ = "0"

5: NPARALLELTASKS_ = "1"

6: NAME_ = "progs4/ex1.frm"

7: NTHREADS_ = "1"

8: CMODULE_ = "1"

9: i = "-5*a"

10: i = "1"

L F‘i’ = f(‘i’);

#enddo

L F = f(‘i’);

Print;

.end

F1 = f(1);

F = f(- 5*a);

One gets to see all variables, including the built in ones. We can see the double

definition of the variable i.

It should be clear that this facility can be very useful for debugging.

If we want to know the contents of a single variable, or we like to have a message

printed when the program reaches a given point, we have the #message instruction. It

prints everything that follows, till the end of the line, as interpreted by the preprocessor.

Hence preprocessor variables are substituted.

#define i "-5*a"

Symbol a;

CF f;

#message The value of i is ‘i’

~~~The value of i is -5*a

#do i = 1,3

L F‘i’ = f(‘i’);

#message The value of i is ‘i’

~~~The value of i is 1

#enddo

~~~The value of i is 2

~~~The value of i is 3

L F = f(‘i’);

#message The value of i is ‘i’

~~~The value of i is -5*a

.end



The lines starting with ~~~ are the results of the printing of the message. Note that

the contents of the loop are listed only once, but the message is printed each time we

go through the loop.

The next useful feature, which is present in nearly any programming language, is the

#include instruction. The syntax is rather simple. Let us assume we have a file decl.h

which contains

Symbols x1,...,x10;

Symbols y1,...,y10;

CFunctions f1,...,f10;

while the program contains:

#include decl.h

L F = (x1+x2+f3(x3))^2;

Print;

.end



Running this program gives:

#include decl.h

Symbols x1,...,x10;

Symbols y1,...,y10;

CFunctions f1,...,f10;

L F = (x1+x2+f3(x3))^2;

Print;

.end

F =

x2^2 + 2*x1*x2 + x1^2 + 2*f3(x3)*x2 + 2*f3(x3)*x1 + f3(x3)^2;

Notice that the contents of the include file are listed in the output. If we don’t want

that we should specify a minus sign, appended to the #include as in:



#include- decl.h

L F = (x1+x2+f3(x3))^2;

Print;

.end

F =

x2^2 + 2*x1*x2 + x1^2 + 2*f3(x3)*x2 + 2*f3(x3)*x1 + f3(x3)^2;

It should also be noted that the convention for include files is to have the extension .h

as it is in many other languages. If one is mixing various languages (like C, Fortran and

FORM) and one would like to keep the naming of the FORM header files separately,

one could use .hh as an emergency measure.

Of course one can put include instructions inside include files.

The #include instruction has some options which can be looked up in the reference

manual. They concern including only parts of a file. As there is nowadays a #switch

instruction (still to be shown) these options have become obsolete. At times they are

however still encountered in existing code.



A more important feature concerns procedures. Procedures are technically macro’s

which reside in separate files. They act a bit like subroutines. Let us assume that we

have the file dalemb.prc with the contents

#procedure dalemb(Q,t1,t2,m)

*

* Procedure takes m powers of d’Alembertians in Q.

* It uses t1 and t2 as temporary tensors. n and Dalemb should be symbols.

*

Multiply Dalemb^‘m’;

Totensor ‘Q’,‘t1’;

id Dalemb^n?*‘t1’(?a) = distrib_(1,2*n,‘t1’,‘t2’,?a);

ToVector,‘Q’,‘t2’;

id ‘t1’(?a) = dd_(?a);

#endprocedure

The file should begin with #procedure as its first characters. This should be followed

by a name that corresponds exactly to the name of the file, except for that the file should

have the extension .prc. After that there can be some parameters. These parameters

will be preprocessor variables with string values. They will have to be referred to in the

same way as regular preprocessor variables. As with the #define instruction, they are

placed on a stack and will be popped again when the procedure has been completed.

Notice that commentary helps to explain what the procedure does and how it should



The way we use the procedure is as in:

Vectors P,p1,p2,p3;

Tensors f1,f2;

Symbol Dalemb,n;

Local F = P.p1^3*P.p2^5*P.p3^2;

#call dalemb(P,f1,f2,3)

.end

Time = 0.00 sec Generated terms = 27

F Terms in output = 27

Bytes used = 902

We see here the same result as we had previously with one of the earlier d’Alembertian

programs. At the moment it is a bit friendlier though, because we don’t have to think

each time we need d’Alembertians. It is only necessary to prepare the procedure once

and for all.

As the parameters are string variables, in special cases we might want to include

comma’s in them. This is done by placing the backslash character \ in front of the

comma. The same holds for parentheses.

And of course procedures can be nested.



How does FORM locate procedures? There is a sequence of possible actions.

• First FORM looks whether the procedure is inside memory. This can be done for

instance by having the text of the complete procedure inside the .frm file, before

the place where it is used.

• If not inside the memory, FORM looks looks inside the current diretory for the file

procname.prc (we assume that procname is the name of the procedure).

• Next FORM checks whether a directory was specified in the command that started

FORM (see manual). If so, it will look in that directory.

• Finally it checks whether the environment variable FORMPATH was defined, using

the same syntax as the other path variables under UNIX. If so it will look in the

directories specified (in the order specified).

• If still not encountered, an errormessage will be printed and execution will be halted.

One can also put one or more procedures inside a header file and load them into the

memory via the #include instruction.



Here we see an example of a procedure inside a header file. Assume the file vectors.h

with the contents:

*

Tensors dalembf1,dalembf2;

Symbol Dalemb,dalembn;

*

#procedure dalemb(Q,m)

*

* Procedure takes m powers of d’Alembertians in Q.

* n and Dalemb should have been declared as symbols.

*

Multiply Dalemb^‘m’;

Totensor ‘Q’,dalembf1;

id Dalemb^dalembn?*dalembf1(?a) =

distrib_(1,2*dalembn,dalembf1,dalembf2,?a);

ToVector,‘Q’,dalembf2;

id dalembf1(?a) = dd_(?a);

#endprocedure

This way we put both the necessary declarations and the procedure in one file. That

can make life much easier.



The use of the above is even shorter now:

Vectors P,p1,p2,p3;

#include- vectors.h

*

Local F = P.p1^3*P.p2^5*P.p3^2;

*

#call dalemb(P,3)

.end

Time = 0.00 sec Generated terms = 27

F Terms in output = 27

Bytes used = 902

Notice that we don’t need to know about the variables that are used locally. The

files vectors.h has names for them that should be relatively safe against interfering with

other names in the program.

The careful design of proceures and include files can make for very powerful and

userfriendly libraries.



Now we can see easily that it is very efficient to take the three d’Alembertians all at

the same time:

Vectors P,p1,p2,p3;

#include- vectors.h

*

Local F = P.p1^3*P.p2^5*P.p3^2;

*

#do i = 1,3

#call dalemb(P,1)

#enddo

.end

Time = 0.00 sec Generated terms = 115

F Terms in output = 27

Bytes used = 902

Here we took the three d’Alembertians separately. As can be seen, there is now quite

some duplicity, even though the answer is the same (one could inspect this better by

listing the output).



Just for fun, the other example with d’Alembertians.

Vectors P,p1,p2,p3,p4;

#include- vectors.h

*

Local F = P.p1^12*P.p2^14*P.p3^16*P.p3^18;

*

#do i = 1,20

#call dalemb(P,1)

.sort

#enddo

.end

Time = 5.20 sec Generated terms = 10599

F Terms in output = 10599

Bytes used = 828824

When done in one pass, the execution time was 0.09 sec! And here we helped FORM

actually by placing the .sort instruction inside the loop to remove duplicity after each

d’Alembertian. With this .sort the situation is much worse:



With just 10 derivatives one gets

Vectors P,p1,p2,p3,p4;

#include- vectors.h

*

Local F = P.p1^12*P.p2^14*P.p3^16*P.p3^18;

*

#do i = 1,10

#call dalemb(P,1)

#enddo

.end

Time = 2096.42 sec Generated terms = 59891496

F Terms in output = 2745

Bytes used = 167262

With 20 derivatives the situation would be much worse!

Of course this doesn’t mean that one should put .sort instructions after each operation.

The proper placement of the .sort instructions is actually something for which one have

to develop a feeling. The general rule is that if it resolves a sufficient amount of duplicity,

it can be worth the cost of the sorting.

It also shows that a proper design of algorithms is very important.



Of course also the preprocessor needs some conditional flow control. We have the #if

family and the #switch family.

#define MAX "5"

Symbols a1,...,a‘MAX’;

#if ( ‘MAX’ < 5 )

Local F = (a1+...+a‘MAX’)^2;

#else

Local F = (a1+...+a‘MAX’)^1;

#endif

Print;

.end

F =

a5 + a4 + a3 + a2 + a1;

We see here that if the string ‘MAX’ has a numerical interpretation we can use it as

such in the #if instruction.



If the object to be compared with is not a number but a string one has to be careful

that this string doesn’t have an interpretation in the syntax. Hence we have to enclose

the string in double quotation marks:

#define MAX "5ab"

Symbols a1,...,a5;

#if ( ‘MAX’ != "3ba" )

Local F = (a1+...+a5)^2;

#else

Local F = (a1+...+a5)^1;

#endif

Print;

.end

F =

a5^2 + 2*a4*a5 + a4^2 + 2*a3*a5 + 2*a3*a4 + a3^2 + 2*a2*a5 + 2*a2*a4 + 2

*a2*a3 + a2^2 + 2*a1*a5 + 2*a1*a4 + 2*a1*a3 + 2*a1*a2 + a1^2;

This is particularly important when the string contains comma’s or parentheses.



Of course there is also an #elseif instruction:

#define MAX "5ab"

Symbols a1,...,a5;

#if ( ‘MAX’ == "3ab" )

Local F = (a1+...+a5)^2;

#elseif ( ‘MAX’ == "4ab" )

Local F = (a1+...+a5)^1;

#elseif ( ‘MAX’ == "5ab" )

Local F = (a1+...+a5)^0;

#endif

Print;

.end

F =

1;



Finally there is are also the #ifdef and the #ifndef instructions:

If the following program is called normally as in ”form prog” we obtain:

#ifndef ‘MAX’

#define MAX "6"

#endif

Symbols a1,...,a‘MAX’;

Local F = a1+...+a‘MAX’;

Print;

.end

F =

a6 + a5 + a4 + a3 + a2 + a1;



If on the other hand it is called as in ”form -d MAX=4 prog” we obtain:

#ifndef ‘MAX’

#define MAX "6"

#endif

Symbols a1,...,a‘MAX’;

Local F = a1+...+a‘MAX’;

Print;

.end

F =

a4 + a3 + a2 + a1;

It should be obvious that one can make rather general programs this way.



The other control structure concerns the #switch family. Let us construct the file

tryout.prc with the contents:

#procedure tryout(j)

#switch ‘j’

#case 0

Multiply 10;

#break

#case 1

Multiply 1/10;

#break

#case 2

Multiply 105;

#break

#endswitch

#endprocedure



This can be used as in:

Symbol a;

Local F = 1+a+a^2;

if ( count(a,1) == 0 );

#call tryout(2)

elseif ( count(a,1) == 1 );

#call tryout(0)

else;

#call tryout(1)

endif;

Print;

.end

F =

105 + 10*a + 1/10*a^2;

One can see that procedures can be called from inside if and other constructions,

provided that the procedure doesn’t contain .sort instructions. If it does, one is more

limited in its use.



Finally the preprocessor has another important feature: the preprocessor calculator.

If an expression is enclosed in curly brackets and it can be interpreted as a numerical

expression, it will be evaluated over the ‘short’ integers. ‘short’ means that it should

fit inside a 32 bits word on a 32 bits processor and inside a 64 bits word on a 64 bits

processor. It works basically over the integers, hence 3/2 → 1. If the expression cannot

be evaluated as a numerical expression it will be left untouched and be interpreted as

a set.

Symbols a1,...,a5;

L F =

#do i = 1,3

+a‘i’*a{‘i’+1}*a{‘i’+2}

#enddo

;

Print;

.end

F =

a3*a4*a5 + a2*a3*a4 + a1*a2*a3;

What are the possible operations that are allowed is explained in the manual. There

exist some postfix operators for square roots and binary logarithms. Parentheses are

allowed.



The object in an #if instruction can be a number, a string or a special function. These

special functions are different from the ones encountered in the if statement, as at the

level of the preprocessor we don’t have individual terms. They are:

• termsin(nameofexpression) to give the number of terms in the indicated expression.

• maxpowerof(nameofsymbol) to give the maximum power of a symbol as potentially

given in its declaration.

• minpowerof(nameofsymbol) to give the minimum power of a symbol as potentially

given in its declaration.

The maximum and minimum powers need some extra explanation. One can declare a

symbol in one of the following ways:

Symbol x;

Symbol a(:5);

Symbol b(-2:);

Symbol c(-2:5);

In this case terms that have a power of a or c that are is than 5 will be discarded. The

same will happen to terms with a power of b or c that is lower than -2. The maxpowerof

and minpowerof refer to these restrictions.



Considering that we have the symbolic part that operates on the level of terms and the

preprocessor that manipulates the input, how do we get information about the terms

and the contents of expressions to the preprocessor?

This is done with a special type of variables, named the dollar variables or in short

the $-variables. These are variables that contain symbolic objects that can also be

interpreted as strings when they are used as preprocessor variables. They can contain

a number, a symbol, an index, a whole term or even short expressions.

With short expression we mean expressions for which memory allocations are made.

They don’t reside on disk. Hence one should not make them too big or the system will

eventually run out of memory and start swapping, seriously deteriorating performance.

One can set the value of a $-variable in the preprocessor with

#$name = value;

while one sets the $-variable in the symbolic part on a term by term basis with

$name = value;

There are more ways to set them at the symbolic level as we will see.



Symbols a1,a2,a3;

L F = (a1+a2)^4;

repeat id a2^2 = a2*a3;

#$maxi3 = 0;

if ( count(a3,1) > $maxi3 ) $maxi3 = count_(a3,1);

.sort

#message The maximum power of a3 is ‘$maxi3’

~~~The maximum power of a3 is 3

Print;

.end

F =

a2*a3^3 + 4*a1*a2*a3^2 + 6*a1^2*a2*a3 + 4*a1^3*a2 + a1^4;

The count function returns the same value as the count object in the if statement.

The .sort is essential as we have only the maximum once all terms have been processed.

If we omit it we would get 0 in the message (try to figure out why).

After the .sort we can use the $-variable either as a preprocessor variable or as a mini-

expression in the RHS of a substitution. At times it can also be used as a parameter in

a statement.

There is yet another mechanism to feed information back to the preprocessor. One can

redefine preprocessor variables at the symbolic level. Note however that a new value

will only be seen after the next .sort instruction. First we look at a simple program:

CF den;

S x,n1,n2;

Local F = den(x+1)^1*den(x+2)^2*den(x+3)^3*den(x+4)^4*den(x+5)^5*den(x+6)^6;

SplitArg,((x)),den;

repeat;

id den(n1?!{n2?},x)*den(n2?!{n1?},x) = (den(n1,x)-den(n2,x))*den(n2-n1);

id den(x?number_) = 1/x;

endrepeat;

id den(n1?,x?) = den(n1+x);

.end

Time = 1.86 sec Generated terms = 65973

F Terms in output = 21

Bytes used = 920

We see an enormous duplicity. Of course we can make a #do loop instead of the repeat

and include a .sort, but how many times should we go through the loop?

CF den;

S x,n1,n2;

Local F = den(x+1)^1*den(x+2)^2*den(x+3)^3*den(x+4)^4*den(x+5)^5*den(x+6)^6;

SplitArg,((x)),den;

#do i = 1,1

id,den(n1?!{n2?},x)*den(n2?!{n1?},x) = (den(n1,x)-den(n2,x))*den(n2-n1);

id den(x?number_) = 1/x;

if (match(den(n1?!{n2?},x)*den(n2?!{n1?},x))) redefine i "0";

.sort

#enddo

id den(n1?,x?) = den(n1+x);

.end

Time = 0.12 sec Generated terms = 21

F Terms in output = 21

Bytes used = 920

We have suppressed most of the statistics here, but one can see in them that there is

far less duplicity. Also the running time indicates this.

We can improve this program:

CF den;

S x,n1,n2;

Local F = den(x+1)^1*den(x+2)^2*den(x+3)^3*den(x+4)^4*den(x+5)^5*den(x+6)^6;

SplitArg,((x)),den;

#do i = 1,1

id,once,den(n1?!{n2?},x)*den(n2?!{n1?},x) = (den(n1,x)-den(n2,x))*den(n2-n1);

id den(x?number_) = 1/x;

if (match(den(n1?!{n2?},x)*den(n2?!{n1?},x))) redefine i "0";

.sort

#enddo

id den(n1?,x?) = den(n1+x);

.end

Time = 0.01 sec Generated terms = 21

F Terms in output = 21

Bytes used = 920

Now it does only a single substitution and then immediately resolves the duplicity. It

does however need far more sort operations, but they have only very few terms.

It is possible to improve it even further but that takes us beyond the level for beginners.

