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1 IntrodutionThe omputation of Feynman diagrams has onfronted physiists with lasses of integrals that areusually hard to be evaluated, both analytially and numerially. Also the newer tehniques appliedin the more popular omputer algebra pakages do not o�er muh relief. Therefore it is good tooasionally study some alternative methods to ome to a result. In the ase of the omputationof struture funtions in deep inelasti sattering one is often interested in their Mellin moments.Eah individual moment an be omputed diretly in ways that are muh easier than omputingthe whole struture funtion and taking its moments afterwards. There exist however also instanesin the literature in whih all moments were evaluated in a symboli way [1℄ [2℄ [3℄ [4℄. One allpositive even moments are known, one an reonstrut the omplete struture funtions. Hene suhalulations ontain the full information and are in priniple as valuable as the diret evaluationof the omplete integrals. In these alulations the integrals beome muh simpler at the ost ofhaving to do a number of symboli sums over harmoni series. The draw-bak of the method isthat although muh e�ort has been put in improving tehniques of integration over the past years,very little is known about these lasses of sums. A short introdution is given for instane inref [5℄. In addition suh alulations are of a nature that one needs to do them usually by meansof a omputer algebra program. This means that when algorithms are developed, they should besuitable for implementation in the language of suh programs.This paper desribes a framework in whih suh alulations an be done. As suh it gives aonsistent notation that is suited for a omputer program. It shows a number of sums that anbe handled to any level of omplexity and desribes an implementation of them in the languageof the program FORM [6℄. Then the formalism is applied to the problem of Mellin transforms ofa lass of funtions that traditionally ours in the alulation of Feynman diagrams. This in itsturn needs harmoni series in in�nity and hene there is a setion on this speial ase. Next theproblem of the inverse Mellin transform is dealt with. With the results of the series at in�nity onean suddenly evaluate a whole lass of integrals symbolialy. This is explained in the next setionwhere some examples are given.The paper is �nished with a number of appendies. They desribe the details of some of thealgorithms and their implementation. Additionally there is an appendix with lists of symboli sumsthat are not diretly treated by the `general' algorithms. These sums were obtained during variousphases of the projet and many of them do not seem to our in the literature.2 NotationsThe notation that is used for the various funtions and series in this paper is losely related to howuseful it an be for a omputer program. This notation stays as losely as possible to existing ones.The harmoni series is de�ned by Sm(n) = nXi=1 1im (1)S�m(n) = nXi=1 (�1)iim (2)in whih m > 0. One an de�ne higher harmoni series bySm;j1;���;jp(n) = nXi=1 1imSj1;���;jp(i) (3)1



S�m;j1;���;jp(n) = nXi=1 (�1)iim Sj1;���;jp(i) (4)with the same onditions on m. The m and the ji are referred to as the indies of the harmoniseries. Hene S1;�5;3(n) = nXi=1 1i iXj=1 (�1)jj5 jXk=1 1k3 (5)In the literature the alternating sums are usually indiated by a bar over the index. The advantageof this notation is that it an be extended easily for use in a omputer algebra program, eg.:Si1;���;im(n)! S(R(i1,...,im),n).Suh objets an be easily manipulated in the more modern versions of the program FORM.The argument of a harmoni series whih has only positive indies an be doubled with theformula: Sm1;���;mp(n) =X� 2m1+���+mp�pS�j1;���;�jp(2n) (6)in whih the sum is over all 2p ombinations of + and � signs.The weight of a harmoni series is de�ned as the sum of the absolute values of its indies.W (Sj1;���;jm(n)) = mXi=1 jjij (7)For any positive weight w there are 2 � 3w�1 linearly independent harmoni series. The fatthat for eah next weight there are three times as many an be seen easily: One an extend theseries of the previous weight either by putting an extra index 1 or �1 in front, or by raising theabsolute value of the �rst index by one.The set of all harmoni series with the same weight is alled the `natural' basis for that weight.The extended weight of the ompound objet of a series and denominators is the weight of theseries plus the number of powers of denominators that are idential to the argument of the series.Hene S1;�5;3(n)=n4 has the extended weight 13.The total weight of a term is the sum of all extended weights of all the series in that term.Hene the total weight of S2;3(n)S�2(m) is 7.The value 0 for an index is reserved for an appliation that is typial for omputers. If theresults of a given weight need to be tabulated, the above notation would require a table in whihthe number of indies is not �xed. This an be remedied by a modi�ed notation whih is onlyused in spei� stages of the program. An index that is zero whih is followed by an index that isnonzero indiates that one should be added to the absolute value of the nonzero index. Hene:S0;1;0;0;�1;1(n) = S2;�3;1(n) (8)This way one an express all series of weight w into funtions with w indies of whih the �rst w�1an take the values 1, 0 and �1, while the last one an take the values 1 and �1.Consider the following identity whih an be obtained by exhanging the order of summation:Sj;k(n) + Sk;j(n) = Sj(n)Sk(n) + Sj&k(n) (9)in whih the pseudo addition operator & adds the absolute values and gives the result a positivevalue if j and k have the same sign and otherwise the result will have a negative value. One ould2



selet a basis in whih one keeps produts of harmoni series with as simple a weight as possible.The above equation would indiate that in that ase one of the left terms should be exluded fromthe basis in favor of the �rst term on the right hand side. Although the hoie of whih of thehigher harmoni series to keep and whih to drop in favor of the produt terms is not unique, thereare ases in whih suh a basis is to be preferred. In partiular when n ! 1 one an hoose abasis in whih all divergent objets are expressed as powers of S1(1) multiplied by �nite harmoniseries. In general however the summation formulae are muh simpler in the natural basis in whiheah element is a single higher harmoni series. This an be seen rather easily when looking at thesum: nXi=1 Sj(i)Sk(i)im = nXj=1 Sj;k(i) + Sk;j(i)� Sj&k(i)im= Sm;j;k(n) + Sm;k;j(n)� Sm;j&k(n) (10)In order to be able to do the sum one has to onvert to the natural basis anyway. After the summa-tion one would have to onvert bak to whatever other basis one happens to work with. AppendixA presents an algorithm by whih ombinations of harmoni series with the same argument an beexpressed in the natural basis.Additionally there an be denominators ontaining the summation parameter. There arisesimmediately a problem when there is more than one denominator. Traditionally one an split thefrations with 1i+ a 1i+ b = 1b� a( 1i+ a � 1i+ b) (11)Unfortunately this formula is not orret when a = b. Beause often there will be nested sums andsums with symboli parameters, a and b an be funtions of summation or other parameters andhene it will not be obvious when a = b. In FORM this an be repaired in priniple with one ofthe speial funtions: 1i+a 1i+b = Æa;b 1(i+a)2 + (1� Æa;b) 1b� a( 1i+ a � 1i+ b) (12)Here Æa;b = 1 when a = b and zero otherwise. In the language of FORM it is represented by thebuilt in objet delta_. Unfortunately this form of the partial frationing is not very useful, beauseit still evaluates into terms involving 1/(b-a) in whih a an be equal to b. Hene an even moreompliated form is needed:1i+a 1i+b = Æa;b 1(i+a)2 + (�(a�b�1) + �(b�a�1)) 1b� a( 1i+ a � 1i+ b) (13)in whih one has to assume that a and b only take integer values. The funtion �(x) (in FORMtheta\_(x)) is zero when x is negative and one when x is zero or positive. These �-funtions ful�llthe rôle of onditions like a � b+1 plus b � a+1 and are worked out �rst. Hene this should notbe read as 0=0 for the ase that a = b. The omplete and proper equation would involve a newfuntion: 1i+a 1i+b = Æa;b 1(i+a)2 + (�0(a�b) + �0(b�a)) 1b� a( 1i+ a � 1i+ b) (14)with �0(x) (in FORM thetap\_(x)) is one when x > 0 and zero when x � 0. Atually �0(x) =1��(�x), but this annot be used for the same reason that the equation (12) ould not be used.Beause it is rather ompliated to manipulate both the funtions �(x) and �0(x) simultaneously, andbeause one has almost always integer values of the parameter, the omputer program uses mostlythe formula (13) whih assumes the integer values. It should be lear that muh attention shouldbe given to theta and delta funtions, their ombinations and their interations with summations.3



3 SynhronizationWhen one has to do sums over a ombination of objets one of the problems is that suh objetsdo not always have idential arguments. If this is the ase one would have to program many moresums than often is neessary. Whenever it is possible one should `synhronize' the arguments.This means that one tries to make the arguments of the various harmoni series, the denominatorsand the fatorials equal to eah other. This an be illustrated with one harmoni series and onedenominator: nXi=1 S1(i+1)i = nXi=1 S1(i)i + nXi=1 1i+1 1i= nXi=1 S1(i)i + nXi=1 1i � nXi=1 1i+1 (15)In this equation and the sequel it is assumed that the left most index is positive. If it is negativethere will be the extra (�1)i and one has to be more areful with the signs of the terms, but thepriniple is always the same.Of ourse, when the di�erene between some arguments is symboli like in S1(i+k)=i, suh triksdo not work, but for di�erenes that are integer onstants one an de�ne a sheme that onverges.Let m be a positive integer onstant in the remaining part of this setion. In that ase one anwrite: Sj;r1;���;rs(i+m)i = Sj;r1;���;rs(i+m�1)i + Sr1;���;rs(i+m)i(i+m)j (16)The partial frationing of the denominators in the last term results in terms that have only a powerof 1=(i+m) and one term whih has a fator 1=i. This last term however has a simpler harmoniseries in the numerator. Hene this relation de�nes a reursion that terminates. Similarly one anwrite: Sj;r1;���;rs(i)i+m = Sj;r1;���;rs(i+1)i+m � Sr1;���;rs(i+1)(i+m)(i+1)j (17)and partial frationing results again in terms in whih the arguments either are the same, or loserto eah other, or the harmoni series has beome simpler.Next is the interation between two harmoni series:Sj;r1;���;rs(i)Sp1;���;pq(i+m) = Sj;r1;���;rs(i+1)Sp1;���;pq(i+m)�Sr1;���;rs(i+1)Sp1;���;pq(i+m) 1(i+1)j (18)This relation de�nes, in ombination with the previous two equations, also a proper reursion. Inthe last term one an synhronize the argument of the seond harmoni series with that of thedenominator, giving (potentially many) terms with either 1=(i+m) or an argument that is loserto i+1. In all ases the arguments are at least one loser to eah other. In addition some of theharmoni series have beome simpler.One two harmoni series have the same arguments this produt an be rewritten into the basisof single higher harmoni series (see appendix A). Hene produts of more than two harmoni serieswith di�erent arguments an be dealt with suessively.4



At this point there an still be fatorials. The beginning is easy:1i (i+m)! = 1i (i+m) (i+m�1)!= 1m 1i (i+m�1)! � 1m 1(i+m)! (19)and 1(i+m) i! = i+1(i+m) (i+1)!= 1(i+1)! � m�1(i+m) (i+1)! (20)Beause of these two equations one an also synhronize ombinations of harmoni series andfatorials.The problem is that usually one annot do very muh with the produt of two fatorials.This means that if one has more than one fatorial, one may be left with fatorials with di�erentarguments.Another problem exists with arguments of the type i versus arguments of the type n�i. Thesean of ourse not be synhronized ompletely, but if n is the upper limit of the summation over i,one an try to make a synhronization that exludes other nonsymboli onstants. This is slightlymore ompliated than what was done before:1n�iSj;r1;���;rs(i+1) = 1n�iSj;r1;���;rs(i) + 1(n�i)(i+1)j Sr1;���;rs(i+1) (21)Partial frationing of the last term will leave something simpler. Similarly there is:1n�iSj;r1;���;rs(i�1) = 1n�iSj;r1;���;rs(i)� 1(n�i)(i�1)j Sr1;���;rs(i�1) (22)For two S-funtions one an write:Sj;r1;���;rs(n�i)Sk;p1;���;ps(i+1) = Sj;r1;���;rs(n�i)Sk;p1;���;ps(i)+ 1(i+1)kSj;r1;���;rs(n�i)Sp1;���;ps(i+1)= Sj;r1;���;rs(n�i)Sk;p1;���;ps(i)+ 1(i+1)kSj;r1;���;rs(n�i�1)Sp1;���;ps(i+1)+ 1(i+1)k(n�i)j Sr1;���;rs(n�i)Sp1;���;ps(i+1) (23)Again partial frationing of the last term leads to a simpler objet. One an derive equivalentrelations for ombinations involving fatorials. In this ase also pairs of fatorials an be dealtwith: 1(n�i)! (i+1)! = 1(n�i�1)! i! 1n+1( 1n�i + 1i+1)= 1n+1( 1(n�i)! i! + 1(n�i�1)! (i+1)! ) (24)All the above relations an be ombined into one reursion that leaves all S-funtions, all denomina-tors and at least one fatorial properly synhronized. Additionally one has a proper adjustment tothe boundaries of the summation, and therefore the fatorials an often be ombined into binomialoeÆients. 5



4 Mellin TransformsThe Mellin operator M is de�ned byM(f(x)) = Z 10 dx xmf(x) (25)and the operator M+ by M+(f(x)) = Z 10 dx xm f(x)(1�x)+ (26)with Z 10 dx f(x)(1�x)+ = Z 10 dxf(x)� f(1)1�x (27)when f(1) is �nite. When there is a power of ln(1�x) present it beomesM+((ln(1�x))kf(x)) = Z 10 dx xm (ln(1�x))kf(x)(1�x)+ (28)= Z 10 dx(f(x)� f(1))(ln(1�x))k1�x (29)These are the traditional operations. In the literature one often de�nes the transform shifted overone as in M(f(x)) = Z 10 dx xN�1f(x) (30)In the ontext of this paper the notation will be the one of equation (25). The `Mellin parameter'is given in that ase in lower ase variables. Hene the translation to the shifted notation shouldbe of the nature n! N�1.For Mellin transforms of formulas resulting from Feynman diagrams one has to onsider thetransforms of funtions that are ombinations of 1=(1�x)+, 1=(1+x), ln(x), ln(1+x), ln(1�x), powersof these logarithms, and various polylogarithms of whih the arguments are rational funtions ofx. Powers of x just hange the moment of the funtion. Hene they do not have to be onsidered.Additionally one an always assume that either 1=(1�x)+ or 1=(1 + x) is present, beause thefuntions without suh a term an be written as two funtions in the lass that is being onsidered:1 = 11+x + x1+x (31)The algorithm that obtains the Mellin transform of any ombination of suh funtions is ratherdiret. Consider the following steps:1. If there is a power of 1=(1�x) or 1=(1+x), replae it by a sum aording to the formulasxm1�x = 1Xi=mxi (32)xm1+x = (�1)m 1Xi=m(�1)ixi (33)2. If the funtion to be transformed ontains powers of ln(1�x), split it into its powers of ln(1�x)and F (x) whih represents the rest and has a �nite value at x = 1. Then one writesZ 10 dx xm lnp(1�x) F (x) = Z 10 dx xm lnp(1�x) (F (x)� F (1))+F (1) Z 10 dx xm lnp(1�x) (34)6



3. The Mellin transform of just a power of ln(1�x) an be replaed immediately using theformula Z 10 dx xm lnp(1�x) = (�1)pp!m+1 S1;���;1(m+1) (35)in whih the S-funtion has p indies that are all 1. This avoids divergene problems duringthe next step. Similarly one an apply:Z 10 dx xm lnp(x) = (�1)pp!(m+1)p+1 (36)when there is only a power of ln(x) left, but this step is not essential; it only makes thealgorithm a bit faster. Due to the powers of x there will be no divergene problems nearx = 0.4. Do a partial integration on the powers of x. Beause of the seond step, the values at x = 0and x = 1 never present any problems.5. If there is only a power of x left one an integrate and the integration phase is �nished.Otherwise one should repeat the previous steps until all funtions have been broken down.Note that for this to work all funtions have to break down properly. Hene one annot usefrational powers of the funtions involved.6. At this point the terms may ontain nested sums, either to a �nite upper limit or to in�nity.These sums do not present any ompliations one produts of two S-funtions with identialarguments an be ombined into elements of the natural basis (see appendix A).The main ompliation in the above algorithm is the treatment of the in�nities that may arise inthe summations. Many of the terms develop a divergene. These are all of a rather soft natureand hene their regularization is relatively easy. All divergenes in the sums are of a logarithminature and hene, if one onsiders the sum to go to a rather large integer L, the divergent sumsbehave like powers of lnL up to terms of order 1=L1. Beause all transforms should be �nite theterms in lnL should anel. After that one an safely take the limit L ! 1. Taking this all inonsideration, all sums that ontain a divergene an be rewritten into powers of one single basidivergent sum (S1(1)) and �nite terms. After that there are no more problems of this nature.The result of the above algorithm is an expression with many harmoni series of whih theargument is a funtion of m and others of whih the argument is in�nity. These last sums aretreated in the next setion.5 Values at In�nityIn the previous setion the results of the Mellin transforms were harmoni series in the Mellinparameter m and harmoni series at in�nity. In order to solve the problem ompletely one has to�nd the values for these series at in�nity. After all they represent �nite numbers and the number ofseries is muh larger than the number of transendental numbers that our one they are evaluated.The sums to be onsidered are related to the Euler-Zagier sums [9℄ [10℄ [11℄ whih are de�ned as�(s1; : : : ; sk;�1; : : : ; �k) = Xnj>nj+1>0 kYj=1 �njjnsjj : (37)1In priniple there is also an Euler onstant, but when the logarithms anel, also the Euler onstants anel andhene they are not onsidered here 7



These sums are however not idential to the S-funtions at in�nity beause for them the sum isSs1;:::;sk(1) = Xnj�nj+1�1 kYj=1 [(�1)nj ℄sj<0njsjjj : (38)The notation [ ℄s1<0 indiates that this part is present only when s1 < 0. Here a method ispresented to evaluate these sums that is ompletely di�erent from the one in referene [11℄.The �rst step in the evaluation of the sums is to express the sums as muh as possible in termsof produts of harmoni series with a lower weight. This an be done up to a point. One will alwaysneed a number of series with the weight one is onsidering. This step is basially the inverse of thealgorithm of appendix A. It is harder to be implemented in a deterministi way, beause the hoieof the basis is not unique. But this an be solved in a di�erent way as will be seen below.Next there are two types of extra identities one an onsider. The �rst set omes from lookingat the series with only positive indies and applying the doubling formula (6) to it. For all theseries that are �nite it makes no di�erene whether the argument is in�nity or two times in�nity. Ifthe seleted basis is suh that all divergenes are powers of S1(1) one only has to make the extraadjustment S1(21) ! S1(1) + ln(2). This gives a number of extra equations that orrespond tonew relations between the series. Unfortunately this does not give enough relations, but some areinteresting in their own right. For instaneSm(1) = 2m�1(Sm(21) + S�m(21)) (39)gives immediately the well known relationsS�m(1) = �(1� 21�m)Sm(1) m > 1 (40)S�1(1) = � ln(2) (41)The more powerful onsideration however is the following: Suppose one is summing over asquare grid of size n � n. Under what onditions is the sum over the upper right diagonal halfof the square (i1 + i2 > n) zero in the limit n ! 1? If this sum is zero, the produt over twoindividual sums an be replaed by a sum over the lower left diagonal triangle (i1 + i2 � n). Thisleads to the following theorem:Theorem: When not both m1 = 1 and k1 = 1 the following identity holds:Sm1;���;mp(1)Sk1;���;kq(1) = limn!1 nXi=1 Sm1;���;mp(n�i)Sk2;���;kq(i) [(�1)i℄k1<0ijk1j (42)The proof is rather trivial, onsidering that all mi and ki are integers and that alternate series with(�1)i atually onverge one power of i better than they seem to at �rst sight. This an be seenwhen the terms are grouped in pairs. The sums an be estimated by integrals and the numeratorsan only give powers of logarithms. Hene the presene of at least three powers of denominators(exluding m1 = k1 = 1) will make the limit go to zero.The sum an be readily worked out with the algorithm desribed in appendix C.Assume that all sums up to weight n have been determined. The omplete algorithm for weightn+ 1 is now:1. Construt all pairs of S-funtions for whih the sum of the two weights is n+ 1.2. Eah pair is used to onstrut two equations (unless both S-funtions have their �rst indexequal to one in whih ase the seond equation that would have been based on the above8



theorem is not made). The �rst equation is made by taking S(1)S(2) � S(1)S(2) and applyingthe routine (see appendix A) that onverts the S-funtions to the basis to the �rst pair.These are the `shu�e algebra' relations. The seond set of equations is reated by takingS(1)S(2) � S(1)S(2) and then applying the formula of the theorem to the �rst pair. After thisthe routine of appendix C is applied.3. Substitute the values for the lower S-funtions.4. Eliminate now the `unknown' S-funtions of weight n + 1 as muh as possible as if one issolving a linear set of equations (whih is what it is). Apply the same set of substitutionsthat will eliminate the equations to the series that need to be evaluated.5. Inspet the result and see whih sums should be onsidered as new independent variablesbeause they were not eliminated. If one insists on a given sum to be among the variable(s)not to be eliminated one an substitute it by a di�erent variable before the eliminationproedure.It is not so diÆult to onstrut a program in the language of FORM that an exeute this proedureall the way to S-funtions of weight 7. Suh a program takes just a few hours (< 6 without speialoptimizations) on a Pentium-II-300 proessor. When a series diverges one uses the basi divergeneS1(1) as if it were a regular variable. This presents no problems.The variables that one needs at the di�erent weights are: S1(1), ln(2), �2, �3, Li4(12 ), �5,Li5(12), Li6(12 ), S�5;�1(1), �7, Li7(12), S�5;1;1(1), S5;�1;�1(1). The hoie of the S-funtions thatremain is not unique. Here the seletion is suh that they ontain as few indies as possible andare as onvergent as possible. Numerial values for these quantities an be obtained by standardtehniques. Li4(1=2) = 0:51747906167389938633Li5(1=2) = 0:50840057924226870746Li6(1=2) = 0:50409539780398855069Li7(1=2) = 0:50201456332470849457S�5;�1(1) = 0:98744142640329971377�S�5;1;1(1) = 0:95296007575629860341S5;�1;�1(1) = 1:02912126296432453422 (43)It should be noted however that aording to the work by Broadhurst and Kreimer [12℄ most of theseonstants should not appear in the omputation of massless Feynman diagrams. The �rst non-zetaonstant should be S5;3(1) whih is an objet of weight 8. This indiates that in x-spae thefuntions an only our in suh ombinations that these onstants anel in Mellin spae. Heneone may not need to know their values for many appliations. In the ase of massive Feynmandiagrams the situation is di�erent. The onstant Li4(1=2) does our in the three loop orretionsto the g�2 of the eletron [13℄.The results of the runs up to weight 7 have been tabulated and put in the FORM program. Themain problem in making the tables is that the objets with idential weights may have di�erentnumbers of indies. Hene the notation of indies that are either �1, 1 or 0 of equation (8) is usedfor the tables. The onversion to and from this notation is rather simple.
9



6 Inverse Mellin TransformsIf one an obtain a result in Mellin spae (as a funtion of n) in priniple it is possible to onvertto the funtion in x-spae. This is however a rather ompliated operation. There exists someliterature about it [2℄ [7℄ but it remains rather diÆult. Also onsidering it as some type of Laplaetransform does not give muh relief [8℄. In many ases one an employ a di�erent strategy. Given aresult in Mellin spae with a set of series, one an try to �nd a set of funtions in x-spae for whihthe Mellin transforms span the spae of the funtions in Mellin spae. After that one only has tosolve a set of linear equations to make the inverse transform. In the ase of two loop moments ofstruture funtions in deep inelasti sattering, the results in Mellin spae are just S-funtions ofweight 4. Beause the whole spae of suh S-funtions is 54 dimensional (a basis has 54 elements)one has to �nd 54 funtions in x-spae that map into the Mellin spae in a linearly independent way.This does not present too many problems. One should of ourse note that this method depends onhaving routines to do the Mellin transforms automatially.For higher weights it may not be so easy to �nd a omplete set of funtions in x-spae. This anbe illustrated by a simple alulation. To obtain a omplete set of funtions in x-spae for whihthe Mellin transforms over the natural basis of weight w one needs 2� 3w�1 funtions in x-spae.Beause this number an be divided by two (the relevant funtions are of the types f(x)=(1 � x))only 3w�1 funtions have to be onsidered. A number of these an be onstruted by taking produtsof funtions that ontribute to lower weights. That leaves a number of funtions that are new atthe given weight. This number inreases rapidly with the weight. They are 3; 8; 18; 48; 116 forthe weights 3; 4; 5; 6; 7 respetively. Hene one has to ome up with a rather large number of newfuntions when the weight beomes large. Fortunately there is a method that will work providedonly a numerial answer is needed for any value of x.Assume that for a given weight w all neessary funtions in x-spae are known. Assume alsothat the Mellin transform of some F is given byZ 10 dx xnF (x) = S�!m (n+1)(n+1)p (44)in whih �!m represents any allowable series of the type m1; � � � ;mq and p > 0. For this funtion Fone has Z 10 dx xnF (x)1+x = (�1)nS�p;�!m (n)� (�1)nS�p;�!m (1) (45)Z 10 dx xnF (x)(1�x)+ = Sp;�!m (1)� Sp;�!m (n)� S1(1)F (1) (46)In the seond expression one an see that F (1) will be nonzero when p = 1 and zero otherwise.This is needed to keep the expression �nite. It is assumed here that F (x) does not ontain a fatorln(1�x) or that if it does the other omponents of F still make that F (1) = 0. If this is not thease there will be more ompliated sums of the type of appendix D and the right hand side willhave more terms to anel the divergenes that are due to Sp;�!m (1) having more than one powerof S1(1). Rather than using the sums of appendix D one an also use the algorithms of setion 4to break down the funtion F ompletely.Considering that a knowledge of all odd or all even moments is suÆient to reonstrut F thepresene of (�1)n should not be a problem in the end. It does not lead to a doubling of the neessaryfuntions {even moments in terms of N orrespond to odd moments in terms of n{. One shouldalso observe now that the funtions F (x)=(1+x) and F (x)=(1�x) are related to the inverse Mellintransforms of S�p;�!m (n) and Sp;�!m (n) respetively. Assume now that the Sp;�!m (n) are of weight w.10



How does one onstrut the inverse Mellin transforms of funtions of weight w+1? For this oneshould have a look at the funtions F+(x) = Z x0 dxF (x)1+x (47)F�(x) = Z x0 dxF (x)1�x (48)F 0(x) = Z 1x dxF (x)x (49)For these funtions one an derive readily by means of partial integrationZ 10 dx xnF+(x) = �(�1)n+1n+1 S�p;�!m (n+1) + 1n+1((�1)n+1 � 1)S�p;�!m (1) (50)Z 10 dx xnF�(x) = 1n+1Sp;�!m (n+1) (51)Z 10 dx xnF 0(x) = � 1(n+1)p+1S�!m (n+1) (52)With the aid of equations (45) and (46) one derives now the relationsZ 10 dx xnF+(x)1+x = �(�1)nS1;�p;�!m (n) + (�1)n(S1;�p;�!m (1)� S1(1)S�p;�!m (1))+(�1)nS�p;�!m (1)(S1(n)� S�1(n) + S�1(1)) (53)Z 10 dx xnF�(x)1+x = (�1)n(S�1;p;�!m (n)� S�1;p;�!m (1)) (54)Z 10 dx xnF 0(x)1+x = (�1)n(�S�(p+1);�!m (n) + S�(p+1);�!m (1)) (55)Z 10 dxxnF+(x)(1�x)+ = S�1;�p;�!m (n)� S�1;�p;�!m (1)+S�p;�!m (1)(S�1(1)� S�1(n) + S1(n)) (56)Z 10 dxxnF�(x)(1�x)+ = �S1;p;�!m (n) + S1;p;�!m (1)� S1(1)Sp;�!m (1) (57)Z 10 dxxnF 0(x)(1�x)+ = S(p+1);�!m (n)� S(p+1);�!m (1) (58)In these expressions is assumed that F (x) ontains no fators ln(1�x). In that ase it is notdiÆult to see that all divergenes anel. When there are fators ln(1�x) the expressions beomea bit more ompliated in the onstant terms in order to obtain a omplete anellation of thedivergenes. The �rst terms of the right hand side expressions form indeed a omplete set of S-funtions of weight w+1 when all possible values of p and all possible S-funtions in equation (44)are onsidered. Beause all other terms in the right hand side expressions are of a lower weight interms of the argument n, their inverse Mellin transforms are supposed to be known and hene allinverse Mellin transforms of weight w+1 an be onstruted. If the integrals in the de�nitions of F+,F� and F 0 annot be solved analytially, one an still obtain their values numerially by standardintegration tehniques. If one has to go more than one weight beyond what is analytially possible,one obtains multiple integrals. Many of these an of ourse be simpli�ed by partial integrations asan be seen in the following formula:F++(x) = Z x0 dx1+x Z x0 dx1+xF (x) (59)11



= ln(1+x) Z x0 dx1+xF (x)� Z x0 ln(1+x) F (x)1+x dx (60)At this point it seems best to give some examples. First look at the onstant funtion in Mellinspae. It is the only funtion with weight zero and its inverse Mellin transform is Æ(1�x). HereÆ(x) is the Dira delta funtion. Hene the inverse Mellin transforms for funtions with weight oneare: (�1)nS�1(n) ! 11+x + (�1)n ln(2) Æ(1�x) (61)S1(n) ! � 11�x (62)The fator (�1)n in the right hand side indiates that the reonstrution from the even momentsdi�erent from the reonstrution from the odd moments. This means that if the moments areobtained for even values of N (whih means odd values for n) one should treat the terms in S�!m (n)di�erently from the terms in S�!m (n+1).Next are the funtions with weight 2. The only funtion with weight one that an our inequation (44) is 1=(n+1) and its inverse Mellin transform is given by F (x) = 1. From this one anonstrut F+(x) = ln(1+x), F�(x) = � ln(1�x) and F 0(x) = ln(x). One an now work out theequations (53 - 58) to obtain the inverse Mellin transforms for the weight two funtions.For the weight three funtions one obtains dilogarithms with the arguments x,�x and (1+x)=2as new objets. For the weight four funtions the funtions F�(x) and F 0(x) an have trilogs withthe arguments x,�x, (1+x)=2, 1=(1+x), 1�x, 2x=(1+x), (1�x)=(1+x) and�(1�x)=(1+x). Of ourseone may hoose a di�erent representation in whih the funtion S1;2(x) plays a rôle (see referenes[14℄ and [15℄).There is one more important observation to be made. The expressions (53-58) have just a singleS-funtion of weight w+1 in the right hand side. This means that one an obtain the inverse Mellintransforms of the various S-funtions without having to solve sets of equations. One only has tomove terms from the right hand side and put their inverse Mellin transform (whih is muh simpler)into the various F -funtions. This an be done systematially and it an be heked by the Mellintransformation program. The approah of looking for whih funtions an our and then makingtheir Mellin transform and inverting the set of equations would lead to very ompliated sets ofequations when the weights beome large. Hene the interesting funtions are more or less the onesthat have been built up from the original weight one funtions by omposing higher and higherintegrals like F+�0++0(x) et. without writing the result in terms of individual polylogarithms.7 Some appliationsThe values at in�nity of the previous setion have some rather relevant appliations for ertainlasses of integrals. This an best be illustrated with some examples. The following integral wouldunder normal irumstanes be rather diÆult, but with all the above tools it beomes rathertrivial: Z 10 dx ln(x) ln2(1�x) ln(1+x)x = � 1Xi=0 1i+1 Z 10 dx xi ln(x) ln(1�x) ln(1+x) (63)The integral is just one of the Mellin transformations, and hene the program will handle it. Thesum is of the same type as all other sums in the Mellin transformation and hene will be done also12



by the program. In the end the answer is expressed in terms of S-funtions at in�nity whih aremaximally of weight 5 and hene they an be substituted from the tables. The �nal result is:Z 10 dx ln(x) ln2(1�x) ln(1+x)x = �38�2�3 � 23�2 ln3(2) + 74�3 ln2(2)� 72�5+4 ln(2) Li4(1=2) + 215 ln5(2) + 4 Li5 (1=2) (64)Similarly one obtainsZ 10 dx ln(x) ln2(1�x) ln2(1+x)x = �12�2 ln4(2) � 129140�32 + 76�3 ln3(2)�3716�23 � 318 �5 ln(2) + 8 ln(2) Li5(1=2) + 4 ln2(2) Li4(1=2)+19 ln6(2) + 8 Li6(1=2) + 2 S�5;�1(1) (65)and the even more diÆult integralZ 10 dx ln(1�x)Li2(1+x2 )Li3(1�x1+x )1+x = �74�2�3 ln2(2)� 5673448 �2�5 � 5�2 ln(2) Li4(1=2) � 17120�2 ln5(2)�5�2Li5(1=2) + 15171120�22�3 + 56�22 ln3(2)� 184�32 ln(2)� 796�3 ln4(2) � 34�3Li4(1=2) � 1563448 �23 ln(2) � 9332�5 ln2(2)+744151792 �7 � 18 ln(2) Li6(1=2) � 4314 ln(2) S�5;�1(1)�6 ln2(2) Li5(1=2) � ln3(2) Li4(1=2) � 184 ln7(2)�24 Li7(1=2) � 457 S�5;1;1(1) + 327 S5;�1;�1(1) (66)As one an see, this tehnique allows the evaluation of whole lasses of integrals that go onsiderablybeyond the integrals in ref [14℄.Another appliation of the tehniques of the previous setions onerns the evaluation of er-tain lasses of Feynman diagrams. When one tries to evaluate moments of struture funtions inperturbative QCD one has Feynman diagrams whih ontain the momenta P and Q. Assumingthat the partons are massless one has that P 2 = 0 and beause all dimensions are pulled out ofthe integral in the form of powers of Q2, there is only a single dimensionless kinemati variable leftwhih is x = 2P�Q=Q2. The power series expansion in terms of P before integration orresponds tothe expansion in terms of Mellin moments of the omplete funtion after integration. The ompletefuntions have been alulated for the two loop level [15℄ but for the three loop level the alulationould only be done for a small number of �xed moments 2; 4; 6; 8 and in one ase also 10 [16℄. Toevaluate all these moments requires that the expansion in P should be in terms of a symboli powerN . This will introdue sums and these sums will be expressed in terms of harmoni series. After allintegrals have been done all attention has to be foussed on the summations and it is atually forthis purpose that the program SUMMER has been developed. By now a general two loop programhas been onstruted [17℄ and studies are on their way to reate a three loop program. It should benoted that in the two loop program no series at in�nity an our. This puts a restrition on thefuntions that an our in x-spae. They have to appear in suh linear ombinations that all theonstants (with the exeption of �3 whih omes from expansions of the �-funtion) should anelin the Mellin transform. 13



8 ConlusionsThe algorithms presented in this paper provide a base for working with the sums that an our inmany types of alulations, one of whih is the evaluation of Feynman diagrams in deep inelastisattering. Additionally they allow the analyti evaluation of whole lasses of integrals. Theproblem of the Mellin transforms of whole ategories of funtions has been solved, and a numerialsolution for inverse Mellin transforms has been given. Most of the algorithms and tables have beenprogrammed in the language of FORM version 3 and are available from the homepage of the author(http://norma.nikhef.nl/�t68/summer).The author wishes to thank D.J. Broadhurst, T. van Ritbergen and F.J. Yndur�ain for disussionsand support during the various phases of this projet. He is also indebted to S.A. Larin for thesuggestion to have a look at these sums.A Conversion to the BasisTo onvert produts of S-funtions with an idential last argument to the basis of single higherS-funtions one an use a reursion. If one starts with the funtions S(1) and S(2) and aumulatesthe results into the funtion S(3) the reursion reads:S(1)m1j1���jr(n)S(2)m2p1���ps(n)S(3)q1���qt(n) ! S(1)m1j1���jr(n)S(2)p1���ps(n)S(3)q1���qtm2(n)+S(1)j1���jr(n)S(2)m2p1���ps(n)S(3)q1���qtm1(n)�S(1)j1���jr(n)S(2)p1���ps(n)S(3)q1���qt(m1&m2)(n) (67)The reursion starts with S(3)(n) = 1 and the reursion terminates when either S(1)(n) or S(2)(n)has no more indies and hene an be replaed by 1 after whihS(a)j1���jr(n)S(3)q1���qt(n) ! Sq1���qtj1���jr(n) (68)with a = 1; 2. Beause this is a diret onstrution of the result, it is rather fast. It an beimplemented in the language of FORM (version 3 or higher) very eÆiently:repeat;id,one,S(R(?a),n?)*S(R(?b),n?) = SS(R(?a),R,R(?b),n);repeat id SS(R(m1?,?a),R(?b),R(m2?,?),n?) =+SS(R(m1,?a),R(?b,m2),R(?),n)+SS(R(?a),R(?b,m1),R(m2,?),n)-SS(R(?a),R(?b,m1*sig_(m2)+m2*sig_(m1)),R(?),n);id,SS(R(?a),R(?b),R(?),n?) = S(R(?b,?a,?),n);endrepeat;Note that the funtion SS arries the indies of S(1), S(3) and S(2) in this order. The funtion sig_returns the sign of its argument. Hene the expression that uses this funtion is one way of writingthe pseudo addition &.The above ode has been made into a FORM proedure. A rather nontrivial test program ouldbe:#-#inlude nndel.h.global 14



L F = S(R(1,1,1,1,1),n)*S(R(-1,-1,-1,-1,-1),n);#all basis(S);.endIt gives the resultTime = 0.64 se Generated terms = 1683F Terms in output = 1683Bytes used = 85104The run was made on a Pentium Pro 200 hip running the NeXTstep operating system. As onean see, these expressions an beome rather ompliated. On the other hand, weight 10 funtionsare of ourse not trivial. It should be noted that it is relatively easy to test routines like the oneabove. One an try them out for any funtions and any values of the argument and evaluate theorresponding harmoni series into a rational number and see that they are idential.B ConjugationsFor the onjugations one should onsider only S-funtions with positive indies. The onjugationis de�ned with the sum (f(n))C = � nXi=1(�1)i(ni )f(i) (69)That this is a onjugation an be shown easily by applying it twie. This gives the original funtion.For the funtion f one an use S-funtions or the ombination of an S-funtion and a negativepower of the argument of the S-funtion as in Sj1���jr(n)=nk. For these funtions one has:Theorem: The onjugate funtion of an element of the natural basis with only positive indies isa single S-funtion of a lower weight with only positive indies, ombined with enough negativepowers of its argument to give the omplete term the same extended weight as the original funtion.Proof: First look at the weights one and two:(S1(n))C = 1=n (70)(S2(n))C = S1(n)=n (71)(S1;1(n))C = 1=n2 (72)They learly ful�ll the theorem. Then write(Smj1���jr(n))C = 1n(Sj1���jr(n)=nm�1)C (73)This identity an be obtained by writing the outermost sum and then exhanging it with the sumof the onjugation. Assume now that the theorem holds for all funtions with a lower weight.There are two ases: m = 1 and m > 1. When m = 1 the problem has been redued to the sameproblem of �nding the onjugate but now for a funtion with a lower extended weight. Hene,if the theorem holds for all simpler funtions it holds also at the urrent weight. For m > 1 theonjugate of Sj1���jr(n)=nm�1 must be a single harmoni funtion of weight m�1. This an be seenwhen one realizes that for eah extended weight there are as many funtions with their `proper'weight equal to this extended weight as with their `proper' weight less than the extended weight.Hene the funtion must have a onjugate that is a single S-funtion. Together with the fat thattwo onjugations give the original funtion, and the fat that all S-funtions of a given weight arelinearly independent this ompletes the proof of the theorem.15



Next is the derivation of an algorithm to �nd the onjugate of Sj1���jr(n)=nm�1. One way wouldbe to suessively build up the algorithm by �rst deriving all onjugates up to a given weight. Afterthat one an obtain the needed onjugates by reading the formulae bakwards. This is not veryelegant. For a more diret way one an de�ne the onept of the assoiate funtion.SAj1���jr(n) = nXi=1(Sj1���jr(i))C (74)Note that beause X = Sj1���jr is an element of the basis, (X(i))C ontains powers of 1=i and thesum gives again a single harmoni funtion of the same weight as X. It is rather easy to provethat (XA)A = X. The task of �nding the onjugate an now be redued to the task of �nding theassoiate funtion. If this assoiate funtion an be written as Smj1���jr(n) the onjugate will beSj1���jr(n)=nm. Similarly a funtion in ombination with negative powers of n an be rewritten asa sum (Sj1���jr(n)=nm ! Smj1���jr(n)), and then the assoiate funtion of this funtion will be theneeded onjugate funtion.The assoiate funtion an be found by onstrution. Assume that (Sj1���jr(n))A = Smp1���ps(n).Then (S1j1���jr(n))A = nXi=1(S1j1���jr(i))C= nXi=1 1i (Sj1���jr(i))C= nXi=1 1i Sp1���ps(i)im= S(m+1)p1���ps(n) (75)and similarly for k > 1: (Skj1���jr(n))A = nXi=1(Skj1���jr(i))C= nXi=1 1i (Sj1���jr(n)(i)ik�1 )C= nXi=1 1i (S(k�1)j1���jr(i))A= S1q1���qt(n) (76)with (S(k�1)j1���jr(n))A = Sq1���qt(n). Considering that (S1(n))A = S1(n) assoiate funtions to anyweight an now be onstruted. This algorithm is also easy to implement in a program like FORM.C Sums involving n� iIn this appendix sums of the type n�1Xi=1 Sp1���ps(n�i)Sq1���qt(i)ik (77)16



will be onsidered. It is impossible to ombine the sums to a single basis element. Hene a di�erentmethod is alled for. Assume �rst that k > 0 and m > 0 (below). Writing out the outermost sumof the S-funtion with the argument n�i leads ton�1Xi=1 Smp1���ps(n�i)Sq1���qt(i)ik = nXi=1 n�iXj=1 Sp1���ps(j)jm Sq1���qt(i)ik= nXi=1 nXj=i+1 Sp1���ps(j�i)(j�i)m Sq1���qt(i)ik= nXj=1 j�1Xi=1 Sp1���ps(j�i)(j�i)m Sq1���qt(i)ik= nXi=1 i�1Xj=1Sp1���ps(i�j)Sq1���qt(j) 1(i�j)mjk (78)Partial frationing of the denominators gives sums in whih the denominator is a power k0 � k ofj and sums in whih the denominator is a power m0 � m of i�j. These last sums an be doneimmediately by reverting the diretion of summation. Hene:n�1Xi=1 Smp1���ps(n�i)Sq1���qt(i)ik = kXa=1(k+m�1�am�1 ) nXi=1 i�1Xj=1Sp1���ps(i�j)Sq1���qt(j) 1im+k�aja+ mXa=1(k+m�1�ak�1 ) nXi=1 i�1Xj=1Sp1���ps(j)Sq1���qt(i�j) 1im+k�aja (79)Now the innermost sum is of a simpler type. Hene eventually one an do this sum, and after thatall remaining sums are rather simple. Therefore this de�nes a useful reursion. When a negativevalue ofm or a fator (�1)i is involved things are only marginally more ompliated. This algorithmhas been programmed in FORM and arries the name sumnmii. An example of its appliation is#-#inlude nndel.h.globalL F = sum(j,1,n-1)*S(R(1,2,1),n-j)*S(R(-2,-1,-2),j)/j^2;#all sumnmii().endwith the outputTime = 0.28 se Generated terms = 478F Terms in output = 208Bytes used = 9148whih are all terms with a single funtion of weight 11.The algorithm for doing the sums of the typeGq1���qtp1���ps(k; n) = � n�1Xi=1(�1)i(ni )Sp1���ps(n�i)Sq1���qt(i)ik (80)
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is more ompliated. First one has to assume that all pj and qj are positive. Assuming also thatk � 0, one an deriveGq1���qtmp1���ps(k; n) = Gq1���qtmp1���ps(k; n�1) + 1nGq1���qtmp1���ps(k � 1; n)+ 1n nXi=1(�1)i+1(ni )Sp1���ps(n�i)Sq1���qt(i)(n�i)m�ik (81)Beause the weight of the G-funtion in the seond term is one less, and beause one an partialfration the last term in the end all terms have a sum over a ombination with a lower weight. Thismeans that one an use this equation for a reursion, provided one knows how to deal with the asek = 0 whih is not handled by the above equation. For k = 0 one obtains after some algebraGm2q1���qtm1p1���ps(0; n) = +1n nXi=1(�1)i+1(ni )Sm1p1���ps(n�i)Sq1���qt(i)im2�1+1n nXi=1(�1)i+1(ni )Sp1���ps(n�i)Sm2q1���qt(i)(n�i)m1�1 (82)Hene also here the weight has been dereased and one an use it for a reursion. The �nalexpression for G an be obtained by an extra sum, beause G(k; 0) = 0 for all indies and oneobtains an expression for G(k; n) � G(k; n�1). One should also realize that in some ases it isneessary to hange the diretion of the sum (i ! n�i) whih will introdue terms of the type(�1)n and hene this last sum an give S-funtions with a negative index.The routine that implements these algorithms (sumnmi) is a bit lengthy. A test run gives#-#inlude nndel.h.globalL F = sum(j,1,n)*sign(j)*bino(n,j)*S(R(1,2,1),n-j)*S(R(2,1,2),j)/j^2;#all sumnmi().endwith the resultTime = 0.36 se Generated terms = 238F Terms in output = 131Bytes used = 6478and a simpler example gives#-#inlude nndel.h.globalL F = sum(j,1,n)*sign(j)*bino(n,j)*S(R(2),n-j)/j;#all sumnmi()Print;.endF = - S(R(-3),n) - 2*S(R(-2,1),n) - S(R(1,2),n) - S(R(2,1),n)- S(R(3),n); 18



D Some sums to in�nityThere are speial lasses of sums for whih the upper bound is in�nity. A number of them an beevaluated to any level of omplexity. Consider for instane the following sum (with p1 > 0; negativevalues just give extra powers of �1):F (m) = 1Xj=1 Sp1���pr(j+m)jk (83)Suh sums an be evaluated by setting up a sum over m:F (m) = F (m�1) + 1Xj=1 Sp2���pr(j+m)(m+j)p1jk= F (m�1) + p1Xi=1(p1+k�1�ik�1 ) 1mp1+k�i (Si;p2;���;pr(1)� Si;p2;���;pr(m))+ kXi=1(p1+k�1�ip1�1 )(�1)p1+k�imp1+k�i 1Xj=1 Sp2���pr(j+m)ji (84)The sum in the last term is of the same type as the original sum, but it is of a simpler nature.The sum over i an just be worked out, beause k and p1 are just numbers. Hene this de�nes areursion whih an be worked out, if not by hand, then by omputer. In the end one obtains anexpression for F (m)� F (m�1) whih an be summed:F (m) = F (0) + mXi=1(F (i) � F (i�1))= Skp1���pr(1) + mXi=1(F (i) � F (i�1)) (85)Similarly one an onsider sums of the typeF (m) = 1Xj=1 Sp1���pr(j)(j+m)k (86)The tehnique to onstrut a reursive solution for these sums is similar. One an study the funtionF (m)� F (m�1) = 1Xj=1 Sp1���pr(j)(j+m)k � 1Xj=0 Sp1���pr(j+1)(j+m)k= �Sp1���pr(1)mk � 1Xj=0 Sp2���pr(j+1)(j+1)p1(j+m)k= �Sp1���pr(1)mk � p1Xi=1(p1+k�1�ik�1 ) (�1)p1+k�i(m�1)p1+k�iSi;p2;���;pr(1)� kXi=1(p1+k�1�ip1�1 ) 1(m�1)p1+k�i 1Xj=0 Sp2���pr(j+1)(j+m)i (87)and again the last term is of a simpler nature. Hene there is a useful reursion and these sumsan be solved.In both ases there will be some S-funtions in the answer that have the argument in�nity.These should not present any speial problems as they have been disussed before.19



E Misellaneous SumsIn this setion some sums are given that an be worked out to any level of omplexity, but theyare not representing whole lasses. Neither is there any proof for the algorithms. The algorithmspresented have just been heked up to some rather large values of the parameters.The sums that are treated here involve two binomial oeÆients. There are quite a few of thesesums in appendix F, but here are the ones that an be done to any order. The �rst relation thatis needed is: mXj=0(�1)j(m+i+ji+j )(m+2i+jm+i+j ) = (�1)m(m+ii )(m+2ii ) (88)Taking m = n�i leads to:nXj=0(�1)j(nj )( n+jm+j )fC(m+j) = �(�1)n+m nXj=0(�1)j(nj )( n+jm+j )f(m+j) (89)for 0 � m � n. Here fC indiates the onjugation of appendix B. This is a rather useful identityas it divides the neessary amount of work by two. Alternatively it may even make terms aneland hene make further evaluation unneessary.A new funtion is needed to keep the notation short:Uk(n;m) = Sk(n+m)� (�1)kSk(n�m)� Sk(m�1) (90)for k; n � 0 and m > 0. U0(n;m) is de�ned to be one.One of the ways the harmoni series an be introdued in many alulations is by expansion ofthe �-funtion. At the negative side its expansion is:�(�n+ �) = (�1)n�n! �(1 + �)(1 + S1(n)�+ S1;1(n)�2 + S1;1;1(n)�3 + S1;1;1;1(n)�4 + � � �) (91)Atually these speial harmoni series an be written as a sum of terms that ontain only produtsof harmoni series with a single sum as in:2S1;1(n) = (S1(n))2 + S2(n) (92)6S1;1;1(n) = (S1(n))3 + 3S1(n)S2(n) + 2S3(n) (93)24S1;1;1;1(n) = (S1(n))4 + 6(S1(n))2S2(n) + 8S1(n)S3(n) + 3(S2(n))2 + 6S4(n) (94)Notie that the fators are related to the yle struture of the permutation group. One an de�nethe higher U funtions by analogy:2U1;1(n;m) = (U1(n;m))2 + U2(n;m) (95)6U1;1;1(n;m) = (U1(n;m))3 + 3U1(n;m)U2(n;m) + 2U3(n;m) (96)24U1;1;1;1(n;m) = (U1(n;m))4 + 6(U1(n;m))2U2(n;m) + 8U1(n;m)U3(n;m)+3(U2(n;m))2 + 6U4(n;m) (97)With these de�nitions one an write (0 < m � n):nXj=0(�1)j(nj )( n+jm+j ) 1(m+j)1 = n! (m�1)!(n+m)! (98)20



nXj=0(�1)j(nj )( n+jm+j ) 1(m+j)2 = n! (m�1)!(n+m)! U1(n;m) (99)nXj=0(�1)j(nj )( n+jm+j ) 1(m+j)3 = n! (m�1)!(n+m)! U1;1(n;m) (100)nXj=0(�1)j(nj )( n+jm+j ) 1(m+j)4 = n! (m�1)!(n+m)! U1;1;1(n;m) (101)et. In the ase that m is zero there are di�erent expressions:nXj=1(�1)j(nj )(n+jj )1j = �2S1(n) (102)nXj=1(�1)j(nj )(n+jj ) 1j2 = �4S1;1(n) + 2S2(n) (103)nXj=1(�1)j(nj )(n+jj ) 1j3 = �8S1;1;1(n) + 4S1;2(n) + 4S2;1(n)� 2S3(n) (104)nXj=1(�1)j(nj )(n+jj ) 1j4 = �16S1;1;1;1(n) + 8(S1;1;2(n) + S1;2;1(n) + S2;1;1(n))�4(S1;3(n) + S2;2(n) + S3;1(n)) + 2S4(n) (105)and the pattern should be lear: For 1=jk there will be all funtions with weight k. The ones withm nested sums have a oeÆient �(�1)k�m2m. A reipe of a similar type is found for the followingsums: nXj=1(�1)j(nj )(n+jj )S1(j) = 2(�1)nS1(n) (106)nXj=1(�1)j(nj )(n+jj )S2(j) = �2(�1)nS�2(n) (107)nXj=1(�1)j(nj )(n+jj )S3(j) = (�1)n(2S�3(n)�4S�2;1(n)) (108)nXj=1(�1)j(nj )(n+jj )S4(j) = (�1)n(�2S�4(n)+4(S�3;1(n)+S�2;2(n))�8S�2;1;1(n)) (109)and the pattern here is that one should make all higher series that start with a negative index thathas a value of at most �2, after whih there are only positive indies. All funtions are of weightk (for Sk inside the sum), and for m nested sums the oeÆient is (�1)n+k�m2m. The exeption isk = 1 but that is beause S1 is its own assoiated funtion and its onjugate is purely of the type1=jk .F Summation tablesDuring the work that inspired this paper quite a few other sums were evaluated that are notrepresented by the above algorithms. Many of these sums an only be done for a �xed weight andmost of them were not readily available in the literature. Hene they are presented here in a number21



of tables, even though eventually many of these sums were not needed in the �nal version of theprogram. For ompleteness also a large number of sums are presented that are already available inthe literature. A number of these sums an be derived formally. Some were derived by `guessing'and then trying the resulting formula for a large number of values.In all sums it is assumed that all parameters i,j,k,l,m,n are integers and have values � 0. Insome ases the formulae an be extended to noninteger values.It should be noted that all sums that an be handled by the proedures of the previous appen-dies are not in the tables. They would make the tables unneessarily lengthy.Some formulae that are used very often are presented �rst:nXi=0 (m+i)!i! = (n+m+1)!n!(m+1) (110)nXi=0 (m+i)!(k+i)! = (n+m+1)!(n+k)!(m+1�k) � m!(k�1)!(m+1�k) (111)nXj=0(�1)j(nj ) = Æ(n) (112)mXj=0(�1)j(nj ) = (�1)m(n�1m ) (113)nXj=0(nj )(m+j)! (k+n�j)! = m! k! (m+k+n+1)!(m+k+1)! (114)nXj=0(�1)j(nj ) (m+j)!(m+k+j)! = (n+k�1)!(k�1)! m!(m+n+k)! (115)nXj=0(�1)j(nj )(n+m+k+jm+j ) = (�1)n(n+m+kk ) (116)The last three formulae an be extended to noninteger values of m and k. They an be usedoasionally before �-funtions are expanded to yield harmoni series.At times some auxiliary funtions were needed. They are de�ned byAk(n;m) = nXj=1(�1)j(n+mj ) 1jk (117)�(1; 1; a; b) = bXi=a a+b�iXj=a 1i j (118)Rm;k(n) = nXj=1 Sm(2j)jk (119)Sometimes � is not always the easiest funtion to manipulate. Therefore the funtion �0 is some-times handy: �0(1; 1; a; b) = 12�(b�a)(�(1; 1; a; b) � (S1(a�1) � S1(b))2)�12�(a�b�1)�(1; 1; b+1; a�1) (120)Both funtions involve summations over triangles in the two dimensional plane. These triangles donot touh the origin. 22



F.1 Sums without (�1)jFirst is a number of expressions that are at the lowest level of omplexity.A1(n; 1) = �S1(n+1) + (�1)nn+1 (121)A1(n; 2) = �S1(n+2) + (�1)n(n+1)(n+2) + (�1)n (122)A1(1;m) = �(m+1) (123)A1(2;m) = 14(m+2)(m�3) (124)A1(n;m+ 1) = A1(n;m) + (�1)n(n+mn ) 1n+m+1 � 1n+m+1 (125)A1(n+ 1;m) = A1(n;m+ 1)� (�1)n(n+m+1m ) 1n+1 (126)Ak(n;m+1) = kXi=1(n+m+1)i�kAi(n;m) + ((�1)n(n+mn )� 1) 1(n+m+1)k (127)Ak(n;m+1) = Ak(n;m) + nXj=1(�1)j(n+m+1j )Sk(j) � (�1)n(n+mn )Sk(n) (128)Next are some misellaneous sums:aXj=1 1j S1(b+j) = (S1(a)� S1(b))S1(a+b) + 2S1;1(b)� 12S2(b)+�0(1; 1; a; b) (129)mXj=0(n�1+jj ) 1n+j = (n+mn ) 1n � (�1)nA1(n;m)� (�1)nS1(n+m) (130)nXj=1 S1(n+j)j = 2S1;1(n)� 12S2(n) (131)nXj=1 S1(j)n+j = S1(2n)S1(n�1)� 2S1;1(n�1) + 12S2(n) (132)nXj=1 S�1(n+j)j = S�1;�1(n) + S1;�1(n)� 12S2(n) (133)nXj=1 S1(n+j)j2 = S1;2(n)� 2S2;1(n)� 12S3(n) + 2R1;2(n) (134)nXj=1 S�1(n+j)j2 = 2S2;1(n)� S�2;�1(n) + S�1;�2(n)� S2;�1(n)� 12S3(n)� 2R1;2(n)(135)nXj=1 S�2(n+j)j = S�2;�1(n) + S1;�2(n) + S2;�1(n)� S2;1(n)� 14S3(n) +R1;2(n) (136)mXj=1 1n+j+2S1(j) = S1(m)S1(n+m+2)� mXj=1 1j S1(n+j+1) (137)23



mXj=1 1n+j+2S1(j+1) = � mXj=1 1j+1S1(n+1+j) + S1(m+1)S1(n+m+2)� S1(n+2) (138)The last two equations are not solving anything, but they are useful in the derivation of some ofthe next sums. First an equation that is like a partial integration.nXj=0(m+jj )f(n+1�j) = nXj=0(m�1+jj ) n+1�jXi=1 f(i) (139)It is entral in the derivation of the next equationsnXj=0(m+jj ) 1n+1�j = (n+m+1n+1 )(S1(n+m+1)� S1(m)) (140)nXj=0(m+jj ) 1(n+1�j)2 = (n+m+1n+1 )(S1(n+1)(S1(n+m+1)� S1(m�1))+2S2(n+m+1)� 2S1;1(n+m+1) + m�1Xi=1 S1(n+m+1�i)i ) (141)nXj=0(m+jj )Sk(n+1�j) = n+m+2m+1 nXj=0(m+j�1j )Sk(n+1�j)� 1m+1 nXj=0(m+j�1j )Sk�1(n+1�j) (142)nXj=0(m+jj )S1(n+1�j) = (n+m+2n+1 )(S1(n+m+2)� S1(m+1)) (143)nXj=0(m+jj )S1;1(n+1�j) = 12(n+m+2n+1 )(2S1;1(m+1)� 2S1;1(n+1) + S2(n+1)� 1(n+m+2)(m+1) ��0(1; 1;m; n+1) ��0(1; 1;m+1; n+1)+(2S1(n+m+2)� 1n+m+2)(S1(n+1)� S1(m+1)) ) (144)nXj=0(m+jj )S2(n+1�j) = (n+m+2n+1 )(S2(n+m+2)� S1;1(n+m+2)+S1(n+m+1)S1(n+1) + S1(m)n+m+2 + 12S2(n+1)�S1;1(n+1)��0(1; 1;m; n+1) ) (145)Similarly one an derive:nXj=0(m+jj )S1(m+j) = (n+m+1n )(S1(n+m+1)� 1m+1) (146)nXj=0(m+jj )S21(m+j) = (n+m+1n )((S1(n+m)� 1m+1)( 1n+m+1 � 1m+1)+S1;1(n+m))� (�1)m 1m+1(S1(n+m) +A1(m;n)) (147)24



nXj=0(m+jj )S2(m+j) = (n+m+1n )S2(n+m)� (�1)mm+1 (S1(n+m) +A1(m;n)) (148)These formulae give also some 'partial integration':n�1Xj=0 (m+j)!j! S1(m+j)f(n�j) = n�1Xj=0m(m+j�1)!j! S1(m+j�1) n�jXi=1 f(i)+ n�1Xj=0 (m+j)!j! m f(n�j) (149)nXj=0 (m�1+j)!j! S1(m+j)f(n+1�j) = �(m�1) n+1Xj=0 (m�2+j)!j! S1(m�1+j)f(n+2�j)+ n+1Xj=0 (m�1+j)!j! S1(m�1+j)f(n+2�j) (150)This is used for the next equationsn�1Xj=0(m+jj )S1(m+j)n�j = (m+nn )(2S1;1(m+n)� 2S2(m+n)+S2(m)� S1(m+n)S1(m)) (151)n�1Xj=0(m+jj )S1(m+j)S1(n�j) = (n+m+1n )(�(S2(n+m+1)� S2(m+1))+(S1(n+m+1)�S1(m+1))(S1(n+m+1)� 1m+1)) (152)F.2 Sums with (�1)jThe next sums all ontain a fator (�1)j and hene they give ompletely di�erent results than theorresponding set of sums without the (�1)j . The most important ones have been treated in theappendies B and C. nXj=0(nj )(�1)j 1m+j = (n+mn )�1 1m (153)nXj=0(nj )(�1)jS1(m+j) = �(n+mn )�1 1n (154)nXj=0(nj )(�1)j 1(m+j)2 = (n+mn )�1 1m(S1(m+n)� S1(m�1)) (155)nXj=0(nj )(�1)j S1(m+j)m+j = (n+mn )�1 1m(S1(m+n)� S1(n)) (156)nXj=0(nj )(�1)jS2(m+j) = �(n+mn )�1 1n(S1(n+m)� S1(m)) (157)nXj=0(nj )(�1)jS1;1(m+j) = �(n+mn )�1 1n(S1(n+m)� S1(n�1)) (158)25



nXj=0(�1)j(nj )S1(n�j)m+j = �A1(n;m)( (n+m)(n+m�1n ) )�1 (159)There is also a number of sums with more than one binomial oeÆient. First a few generalones. nXj=0(�1)j(nj )(m+jj ) = (�1)n(mn ) m � n (160)nXj=0(�1)j(nj )(m+jj ) = 0 m < n (161)nXj=0(�1)j(nj )(m+jj ) j = (�1)n(m+1n ) n m � n�1= 0 m < n�1 (162)nXj=0(nj )( n+jm+j )(�1)j = 0 0 < m < n (163)nXj=0(nj )(n+m+jm+j )(�1)j = (�1)n m � 0 (164)nXj=0 1j!(n+1�j)! (2n+2�j)!(n+1�j)! (�1)j = 1 + (�1)n (165)n�1Xj=0 1j!(n�1�j)! (n�1+j)!j!(j+2) (�1)j = 12Æ(n�1) � 16Æ(n�2) (166)And now the sums with two binomial oeÆients and an argument j in the extra piee (see alsoappendix E):nXj=1(nj )(n+jj )(�1)jS1;1(j) = (�1)n(4S1;1(n)� 2S2(n)) (167)nXj=1(nj )(n+jj )(�1)j 1j S1(j) = 2S�2(n) (168)nXj=1(nj )(n+jj )(�1)jS1;2(j) = (�1)n(2S�3(n)� 4S1;�2(n)) (169)nXj=1(nj )(n+jj )(�1)jS2;1(j) = (�1)n(2S3(n)) (170)nXj=1(nj )(n+jj )(�1)jS1;1;1(j) = (�1)n(2S3(n)� 4S1;2(n)� 4S2;1(n) + 8S1;1;1(n)) (171)nXj=1(nj )(n+jj )(�1)j 1j S2(j) = �2S3(n) (172)nXj=1(nj )(n+jj )(�1)j 1j S1;1(j) = 4S�2;1(n)� 2S�3(n) (173)nXj=1(nj )(n+jj )(�1)j 1j2S1(j) = 4S1;�2(n)� 2S�3(n) (174)26



Similarly there are formulae with j + 1 (see also appendix E).nXj=0(nj )(n+jj+1 )(�1)jS1(j+1) = (�1)n 1n+1 (175)nXj=0(nj )(n+jj+1 )(�1)j S1(j+1)j+1 = �(�1)n 1n(n+1)2 (176)nXj=0(nj )(n+jj+1 )(�1)jS1;1(j+1) = (�1)nn+1 (S1(n+1) + S1(n�1)) (177)nXj=0(nj )(n+jj+1 )(�1)jS2(j+1) = � 1n(n+1)2 (178)nXj=0(nj )(n+jj+1 )(�1)j S1(j+1)(j+1)2 = � 1n+1(S�2(n+1) + S�2(n�1) + (�1)nn(n+1)) (179)nXj=0(nj )(n+jj+1 )(�1)j S1;1(j+1)j+1 = (�1)nn(n+1)2 (1� S1(n+1)� S1(n�1)) (180)nXj=0(nj )(n+jj+1 )(�1)j S2(j+1)j+1 = 1n2(n+1)2 + 1(n+1)3 (181)nXj=0(nj )(n+jj+1 )(�1)jS3(j+1) = 1n(n+1)2 (1� S1(n+1)� S1(n�1)) (182)And the formulae with j + 2 (see also appendix E).nXj=0(nj )(n+jj+2 )(�1)jS1(j+2) = �(�1)n 1(n+1)(n+2) (183)nXj=0(nj )(n+jj+2 )(�1)jS2(j+2) = � 2(n2+n+1)(n�1)n(n+1)2(n+2)2 (184)nXj=0(nj )(n+jj+2 )(�1)jS3(j+2) = 1(n+1)(n+2)(11=6n�1 � 5=2n + 5=2n+1 � 11=6n+2 + (�1)n ��(S1(n+2) + S1(n�2))(S�1(n+2)� S�1(n�2)) ) (185)nXj=0(nj )(n+jj+2 )(�1)j S2(j+2)j+2 = 1(n+1)(n+2)(S2(n+2)� S2(n�2)�56 1n�1 + 12 1n � 12 1n+1 + 56 1n+2) (186)The formulae with j + n: nXj=0(nj )(n+jj )(�1)j 1n+j = 0 (187)nXj=0(nj )(n+jj )(�1)jS1(n+j) = 2(�1)nS1(n) (188)nXj=0(nj )(n+jj )(�1)j 1(n+j)2 = �(�1)n (n�1)!(n�1)!(2n)! (189)27



nXj=0(nj )(n+jj )(�1)j(S1;1(n+j)� S2(n+j)) = (�1)n(4S1;1(n)� 3S2(n)) (190)nXj=1(nj )(n+jj )(�1)j 1j S1(n+j) = 3S2(n) + 2S�2(n)� 4S1;1(n) (191)nXj=0(nj )(n+jj )(�1)j 1j+1S1(n+j) = (�1)n 1n(n+1) (192)nXj=0(nj )(n+j1+j )(�1)jS1(n+j) = (�1)n 1n+1 (193)nXj=0(nj )(n+j1+j )(�1)jS2(n+j) = (�1)nn! (n�1)!(2n)! 1n+1 (194)nXj=0(nj )(n+j2+j )(�1)jS2(n+j) = (�1)nn! (n�1)!(2n)! (13 1n+2 � 1n+1 � 13 1n�1) (195)nXj=0(nj )(n+j3+j )(�1)jS2(n+j) = (�1)nn! (n�1)!(2n)! ( 110 1n+3 � 23 1n+2+ 1n+1 + 16 1n�1 + 25 1n�2) (196)nXj=0(nj )(n+jj )(�1)j 1(j+1)2S1(n+j) = 1n(n+1)S1(n�1)� (�1)n 1n2(n+1)2 (197)nXj=0(nj )(n+jj )(�1)j 1j+2S1(n+j) = (�1)n(16 1n�1 + 12 1n � 12 1n+1 � 16 1n+2) (198)nXj=0(nj )(n+j2+j )(�1)j 1j+2S1(n+j) = n!(n+2)! (S1(n�2) + 2(�1)n(n2+n+1)(n�2)!(n+2)!) (199)nXj=0(nj )(n+j3+j )(�1)j 1j+3S1(n+j) = 2 n!(n+3)! (S1(n�3)� (S�1(n+3)� S�1(n�3)) ) (200)nXj=0(nj )(n+j1+j )(�1)j 1(j+1)2S1(n+j) = 1n+1(2S1;1(n�1)� 2S2(n�1)� S�2(n+1)�S�2(n�1) + S1(n+1)S1(n�1)� (�1)nn(n+1)) ) (201)nXj=0(nj )(n+j2+j )(�1)j 1(j+2)2S1(n+j) = n!(n+2)! (2S1;1(n�2)� 2S2(n�2)� S1(n�2)�S�2(n+2)� S�2(n�2) + S1(n+2)S1(n�2)+(�1)n(n2+n+3)(n�2)!(n+2)! ) (202)And some mixed formulae.nXj=0(nj )(n+jj )(�1)j 1m+j = 0 (m � n)= (�1)n (m�1)!(m�1)!(n+m)!(m�n�1)! (m > n) (203)28



nXj=0(nj )(n+jj )(�1)j 1(m+j)2 = �(�1)m (m�1)!(m�1)!(n�m)!(n+m)! (n � m) (204)nXj=0(nj )( n+jm+j )(�1)jS2(m+j) = (�1)n+m (m�1)! n!(n+m)! (S�1(n+m)� S�1(n�m))(n � m) (205)nXj=0(nj )( n+jm+j )(�1)jS1(n+j) = �(�1)n+mn! (m�1)!(n+m)! (n � m) (206)There are also sums with two fatorials in the numerator.nXj=0 j!(m�j)!(�1)j = (m+1)!m+2 + (�1)n (n+1)! (m�n)!m+2 (207)nXj=1 j! (m�j)!(�1)jS1(j) = (�1)n (n+1)! (m�n)!m+2 (S1(n+1)� 1m+2)� (m+1)!(m+2)2 (208)nXj=0 j! (n�j)!(�1)j 1j+1 = �(n+1)! (S2(n+1) + 2S�2(n+1)) (209)nXj=1 j! (n�j)!(�1)j 1j2 = n! (S2(n) + 2S�2(n)) (210)mXj=0(�1)jj! (n+m�j)!2+m�j = (�1)m(m+2)! (n�2)! (A1(m+3; n�2) + S1(m+2))+(m+n+1)!(m+3)2 + (�1)m(m+1)! (n�1)! (211)nXj=0(�1)j(n+m�j)! j! A1(j; n�j) = (n+m+1)!n+m+2 (S1(n+m+1)� S1(m+1))�(�1)n (n+1)! m!n+m+2 S1(n) (212)F.3 Partial sumsFor derivations the use of partial sums (sums of only part of the range of the binomial oeÆients)are very useful. Unfortunately these are hard to obtain and hene only a limited number of theman be presented here. mXj=0(�1)j(nj ) = (�1)m(n�1m ) (213)mXj=1(�1)j(nj ) 1jk = Ak(m;n�m) (214)mXj=0(�1)j(nj )S1(j) = (�1)m(n�1m )(S1(m) + 1n)� 1n (215)mXj=0(�1)j(nj )S1(n�j) = (�1)m(n�1m )(S1(n�m�1) + 1n) (216)29
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