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1 Introdution.Euler's dilogarithm appeared very soon, even if with a di�erent name, in the evaluation of radiativeorretions in QED. The �rst ourrene is perhaps in the 1934 paper by G. Raah on the radiation1



by fast partiles [1℄, whose funtion F (x) is equal to �Li2(�x) in Euler's notation. Two loopalulations [2℄ required the polylogarithms, Nielsen's generalization [3℄ of Euler's dilogarithm.More bibliographial indiations as well as many relevant results are ontained in the popular bookby Lewin [4℄ (note the hange in the titles of the two editions of the book).While the polylogarithms are the natural analytial tool to use when dealing with the (relatively)simple integrals appearing in alulations with a few loops, it is known that they will not besuÆient when the number of loops will be larger than has been onsidered thus far or whenseveral di�erent sales are present. In a reent publiation the set of polylogarithms has beenextended into something alled `multidimensional polylogarithms' [5℄. These funtions seem tobe very useful when more than one dimensionful parameter is involved. In priniple they are adiret generalization of the de�nition of the power-series expansion of the polylogarithms to amultiparameter spae.Besides the dilogarithm, Euler studied also harmoni sums. A reent publiation by one ofus [6℄ investigated harmoni sums and their appliability, in partiular to formulas in Mellin spae.These harmoni sums seem to be the natural funtions for the results of moment alulations ofdeep inelasti struture funtions when only massless quarks are involved1. If indeed all thesemoments an be expressed in terms of harmoni sums, the lass of funtions that will represent theresults in the regular x-spae will be formed by the inverse Mellin transforms of these harmonisums. In ref [6℄ it was indiated how one ould obtain at least numerial representations of thesefuntions by means of numerial integration.In the urrent paper we study these funtions in a more systemati way. We start with areursive integral de�nition of a lass of funtions, whih we will all the harmoni polylogarithms(hpl's), whih are by onstrution a generalization of Nielsen's polylogarithms; it turns out, further,that an important subset of the hpl's is also a subset of the multidimensional polylogarithmsof ref [5℄. Then we will study a number of their properties, inluding expressions for produtsof harmoni polylogarithms with the same argument, the behaviour at x = 0; 1, the relevantexpansions around those points, the algebra of the hpl's and the identities between hpl's of relatedarguments. Then we study speial values and numerial evaluation. Finally we study the Mellintransforms of the harmoni polylogarithms and �nd that indeed they give the harmoni sums andthat there is a one to one orrespondene between them. As a onsequene the investigation alsoleads to a rather simple algorithm for the inverse Mellin transform, even though in general thelength of the resulting formulae requires a omputer implementation for dealing with the greatnumber of terms whih are generated.All algorithms that we present have been programmed in the language of FORM [7℄. Theresulting proedures an be obtained from the seond author.1This an be shown for all two loop alulations to any order in the expansion parameter �. For three loopalulations suh results do not exist yet, but a reent result by Broadhurst and Kreimer [8℄ shows that only at the7-loop level the ounter terms in the QCD beta funtion ontains non-zeta like onstants.
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2 De�nitions.The harmoni polylogarithms of weight w and argument x are identi�ed by a set of w indies,grouped into a w-dimensional vetor ~mw and are indiated by H(~mw;x).More expliitly, for w = 1 one de�nesH(0;x) = lnx ;H(1;x) = Z x0 dx01� x0 = � ln(1� x) ;H(�1;x) = Z x0 dx01 + x0 = ln(1 + x) : (1)For their derivatives, one has ddxH(a;x) = f(a;x) ; (2)where the index a an take the 3 values 0;+1;�1 and the 3 rational frations f(a;x) are given byf(0;x) = 1x ;f(1;x) = 11� x ;f(�1;x) = 11 + x : (3)Note the (minor) asymmetry of Eq.(1), in ontrast with the higher symmetry of Eq.(2).For w > 1, let us elaborate slightly the notation for the w-dimensional vetors ~mw. Quite ingeneral, let us write ~mw = (a; ~mw�1) ; (4)where a = mw is the leftmost index (taking of ourse one of the three values 0; 1;�1), and ~mw�1stands for the vetor of the remaining (w � 1) omponents. Further, ~0w will be the vetor whosew omponents are all equal to the index 0. The harmoni polylogarithms of weight w are thende�ned as follows: H(~0w;x) = 1w! lnw x ; (5)while, if ~mw 6= ~0w H(~mw;x) = Z x0 dx0 f(a;x0) H(~mw�1;x0) : (6)Quite in general the derivatives an be written in the ompat formddxH(~mw;x) = f(a;x)H(~mw�1;x) ; (7)where, again, a = mw is the leftmost omponent of ~mw.3



In analogy with Eq.(5), if ~1w; ~(�1)w are the vetors whose omponents are all equal to 1 or �1,we have by applying reursively the de�nitionsH(~1w;x) = 1w! (� ln (1� x))w ;H( ~(�1)w;x) = 1w! lnw (1 + x) : (8)Let us now have a look at the �rst few values of the indies. For w = 2 one has the 9 funtionsH(0; 0;x) = 12! ln2 x ;H(0; 1;x) = Z x0 dx0x0 H(1;x0) = � Z x0 dx0x0 ln(1� x0) ;H(0;�1;x) = Z x0 dx0x0 H(�1;x0) = Z x0 dx0x0 ln(1 + x0) ;H(1; 0;x) = Z x0 dx01� x0H(0;x0) = Z x0 dx01� x0 lnx0 ;H(1; 1;x) = Z x0 dx01� x0H(1;x0) = � Z x0 dx01� x0 ln(1� x0) ;H(1;�1;x) = Z x0 dx01� x0H(�1;x0) = Z x0 dx01� x0 ln(1 + x0) ;H(�1; 0;x) = Z x0 dx01 + x0H(0;x0) = Z x0 dx01 + x0 lnx0 ;H(�1; 1;x) = Z x0 dx01 + x0H(1;x0) = � Z x0 dx01 + x0 ln(1� x0) ;H(�1;�1;x) = Z x0 dx01 + x0H(�1;x0) = Z x0 dx1 + x0 ln(1 + x0) : (9)Those 9 funtions an all be expressed in terms of logarithmi and dilogarithmi funtions; indeed,if Li2(x) = � Z x0 dx0x0 ln(1� x0) (10)is the usual Euler's dilogarithm, one �ndsH(0; 1;x) = Li2(x) ;H(0;�1;x) = �Li2(�x) ;H(1; 0;x) = � lnx ln(1� x) + Li2(x) ;H(1; 1;x) = 12! ln2(1� x) ;H(1;�1;x) = Li2 �1� x2 �� ln 2 ln(1� x)� Li2 �12� ;H(�1; 0;x) = lnx ln(1 + x) + Li2(�x) ;H(�1; 1;x) = Li2 �1 + x2 �� ln 2 ln(1 + x)� Li2 �12� ;H(�1;�1;x) = 12! ln2(1 + x) : (11)4



Something similar happens for harmoni polylogarithms and Nielsen's polylogarithms of weight 3;that is no longer true however from weight 4 on. To make an example,H(�1; 0; 0; 1;x) = Z x0 dx01 + x0Li3(x0) (12)annot be expressed in terms of Nielsen's polylogarithms of the same weight, even allowing forslightly more general arguments (i.e. when onsidering, besides x, also �x, (1 + x)=2; (1 � x)=2et.). In other words, the set of the 3w harmoni polylogarithms of weight w is in general a muhwider set of funtions than the set of the Nielsen's polylogarithms.It follows from the de�nition that if ~mw 6= ~0w the hpl's vanish at x = 0:H(~mw; 0) = 0; ~mw 6= ~0w : (13)Likewise, if the leftmost index mw is not equal to 1, (mw 6= 1), H(~mw; 1) is �nite; it is also �nitewhen ~mw = 1, but all the remaining indies ~mw�1 are zero, (~mw�1 = ~0w�1). In the remainingases, i.e. mw = 1 and ~mw�1 6= ~0w�1, H(~mw;x) has a logarithmi behaviour at x = 1: moreexatly, if the p leftmost indies are all equal to 1, H(~mw;x) behaves for x! 1 as a ombination ofpowers of ln(1�x) ranging from the maximum value p down to 0 (the maximum power is dereasedto p� 1 if the remaining w � p indies are all equal to zero; the study of the detailed logarithmibehaviours at x = 0; 1 will be arried out in Setion 3).In dealing with spei� ases and exept for the smallest values of w, speifying expliitly all theomponents of ~m beomes quite umbersome, so that a more ompat notation is welome. In thease that we ignore the funtions of whih the last index is zero we an use the same ompati�ednotation as in ref [6℄. This is to say that, proeeding from right to left, all zeroes are simplyeliminated by adding at the same time one to the absolute value of the previous index to the right,as in H(0; 0; 1; 0;�1;x) = H3;�2(x): (14)In terms of this notation and exluding, as already stated, the ases in whih the rightmost indexis zero, one an formulate the following:theorem: If m1 6= 0 one has Hmp;���;m1(�x) = (�1)pH�mp;���;�m1(x) : (15)The proof goes by indution and follows rather trivially from the de�nition of H. In the ase thatwe use the notation in whih the mi only have the value 0; 1;�1 the power of �1 is the number ofindies that are not zero.In general we will write the indies of the H-funtions as subsripts when we use the notation of ther.h.s. of Eq.(14), while we will use the notation of the l.h.s. when the indies are supposed to havethe values 0; 1;�1 only. In that last notation, to see the relation with the polylogarithms of NielsenSn;p(x), de�ned in [3℄, let us indiate with ~0n;~1p as usual, two n-dimensional and p-dimensionalvetors whose omponents are all equal to 0 and 1 respetively; one then hasSn;p(x) = H(~0n;~1p;x) : (16)5



As an obvious extension of the terminology, the produt of two H-funtions of weight w1 and w2will be said to have total weight w = w1+w2. In the following we will often enounter homogeneous\identities of weight w", i.e. relations (or identities) involving the sum of several terms, where eahterm is equal to the produt of an integer or rational fration times a H-funtion of weight w or aprodut of several H-funtions separately of lower weight but with total weight w.While the H-funtions of weight w are linear independent, the same is not true for the widerset of all the homogeneous expressions of weight w. The redundane an be used for establishinga number of (homogeneous) identities expressing a H-funtion of some argument and weight was a homogeneous expression of the same weight involving H-funtions of the same or of relatedarguments (inluding onstant arguments, suh as for instane +1 or �1). The identities an beuseful, typially, for exhibiting expliitly the behaviour at partiular points (suh as the logarithmibehaviour at 0 or �1) or for obtaining relations between H-funtions of speial arguments. Quite ingeneral, while establishing suh identities an be more or less wearisome, there is almost always astraightforward \standard method" for heking a given identity: one �rst veri�es that the identityholds for a partiularly onvenient hoie of the variable (or variables) and then di�erentiate itwith respet to one of the arguments. In so doing one obtains another relation, however of lowerweight, aording to Eq.(7); the proedure an be iterated until a relation of weight 1 is eventuallyobtained, whose hek is trivial (beause the H-funtions of weight 1 are just logarithms).Likewise, also the mathematial onstants orresponding to the partiular values of the H-funtion of weight w (suh as the values at x = 1 when �nite) an be given the same weight w.Those values, at x = �1 or other simple arguments, are of partiular interest by themselves, as itturns out that they an be expressed in terms of a very small number of mathematial onstants,suh as Riemann �-funtions, ln 2 et. We will see that they are onneted to the sums to in�nity ofref [6℄ whih have been systematially evaluated and tabulated2 by one of us (J.V.) to weight = 9and an be evaluated basially to any weight, given enough omputer resoures3. In similar waysthese sums have been evaluated under the name of Euler/Zagier sums by the authors of ref [9℄.Hene, whenever H-funtions at x = 1 will appear in this paper they an be regarded as knownfrom ref [6℄ or ref [9℄, provided their weight is not too large. It will also be shown that one mayalternatively onsider them as unknown onstants, to be expressed in terms of that muh smallernumber of mathematial onstants by systematially exploiting the many identities among H's ofvarious arguments established in the rest of this paper.2in ref [6℄ this was done only to weight = 73An alternative method to obtain the �nite onstants onsists of their numerial evaluation to high preision andthen �tting them to a presumed basis. Using this method Broadhurst [11℄ has evaluated all �nite objets at weight= 9 and some objets at the weights 10 and 11
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3 Identities between funtions of the same argument.Let us start by the integration by parts (ibp) identities. From the very de�nition,H(m1 � � �mq;x) = Z x0 dx0 f(m1;x0)H(m2 � � �mq;x0)= H(m1;x)H(m2 � � �mq;x)�Z x0 dx0 H(m1;x0)f(m2;x0)H(m3 � � �mq;x0)= H(m1;x)H(m2 � � �mq;x)�H(m2m1;x)H(m3 � � �mq;x)+ H(m3m2m1;x)H(m4 � � �mq;x)� � � � � (�1)pH(mq � � �m1;x) : (17)The above identity an be immediately veri�ed, independently of its derivation, by the `standardmethods': it holds at x = 0; when di�erentiating with respet to x, one obtains a number of termswhih are immediately seen to anel out pairwise; therefore, the relation is true. This relationshows that in the ase that ~mq is symmetri and q is even the H-funtion redues to produts oflower weight funtions. In general the relation an be used when it is important to redue thenumber of H-funtions with the highest weight as muh as possible.Another important set of identities expresses the produt of any two H-funtions of weight w1and w2 as a linear ombination of H-funtions of weight w = w1 + w2. Let us start from the asew1 = 1; the identity readsH(a;x)H(mp; � � � ;m1;x) = H(a;mp � � � ;m1;x)+ H(mp; a;mp�1 � � � ;m1;x)+ H(mp;mp�1; a;mp�2 � � �m1;x)+ � � �+ H(mp; � � � ;m1; a;x) : (18)It an be established by indution in p. For p = 1 it is almost trivial, orresponding to Eq.(17)for q = 2. Assume then that it holds for p � 1; take the identity for p � 1, multiply by f(mp;x)and integrate over x. In the r.h.s. we an do the integral and obtain all neessary terms exept forthe one starting with a. The  l.h.s. an be integrated by parts to give the proper l.h.s. term plusanother term that an be integrated and gives indeed the missing term. This ompletes the proof.Again, one established the identity an also be veri�ed by the `standard method': it holds atx = 0; the x-derivative onsists of two groups of terms, a �rst group with the oeÆient f(a;x)ontains just two terms whih anel out immediately, plus a seond group proportional to f(mp;x),whih is nothing but the same relation at level p�1, so that the proedure an be repeated p timesuntil everything anels out.There is only one ompliation with Eq.(18). This onerns points in whih one of the objetsinvolved is divergent. Hene one annot apply this equation for x = 1 in the ase that either a = 1or mp = 1. This is explained better in the setion on the algebrai properties.Eq.(18) an be generalized to the produt of two H-funtions H(~p;x)H(~q;x); if p; q are thedimensions of ~p; ~q (or, whih is the same, the weights of the two H-funtions), the produt is equal7



to the sum of (p+ q)!=p!q! terms, eah term being an H-funtion of weight (p+ q) with oeÆient+1, obtained by hoosing p indies in all possible ways (hene the binomial oeÆients) and �llingthem from left to right with the omponents of ~p without hanging their order, while the remainingq plaes ontain the omponents of ~q, again without altering their order. This an be expressedwith the formula H(~p;x)H(~q;x) = X~r=~p℄~qH(~r;x) (19)in whih ~p ℄ ~q represents all mergers of ~p and ~q in whih the relative orders of the elements of ~pand ~q are preserved.As an example, for p = 2; ~p = (a; b) and q = 3; ~q = (r; s; t) one hasH(a; b;x)H(r; s; t;x) = H(a; b; r; s; t;x) + H(a; r; b; s; t;x)+ H(a; r; s; b; t;x) + H(a; r; s; t; b;x)+ H(r; a; b; s; t;x) + H(r; a; s; b; t;x)+ H(r; s; a; b; t;x) + H(r; a; s; t; b;x)+ H(r; s; a; t; b;x) + H(r; s; t; a; b;x) ; (20)as an be easily heked, again, by the `standard method'.The produt identities Eq.(19) an be used to single out the terms in ln(x) from H-funtionswhose indies have trailing (or rightmost) indies equal to zero (as we will see in the next setionH-funtions with no trailing zeroes an be expanded in series of x around x = 0, while H-funtionswith trailing zeroes develop logarithmi singularities at that point). For a = 0 in Eq.(18), reallingH(0;x) = ln(x), Eq.(5) and Eq.(1) one obtainsH(m1; � � � ;mp; 0;x) = ln(x)H(m1; � � � ;mp;x)�H(0;m1; � � � ;mp;x)�H(m1; 0;m2; � � � ;mp;x)� � � � �H(m1; � � � ;mp�1; 0;mp;x) : (21)In the ase that mp is also zero we an move the last term to the left, divide by two and thenuse again Eq.(18) for all the other terms, thus obtaining an identity whih extrats the logarithmisingularities due to 2 trailing zeroes. By suitably repeating the proedure as many times as needed,we an extrat in general all the powers of ln(x) from the generi H-funtion. A ouple of examples,if a; b are any non-zero indies, areH(a; b; 0; 0;x) = H(0; 0;x)H(a; b;x)� H(0;x)�H(a; 0; b;x) + H(0; a; b;x)�+ H(a; 0; 0; b;x) + H(0; a; 0; b;x) + H(0; 0; a; b;x) ;H(a; b; 0; 0; 0;x) = H(0; 0; 0;x)H(a; b;x)� H(0; 0;x)�H(a; 0; b;x) + H(0; a; b;x)�8



+ H(0;x)�H(a; 0; 0; b;x) + H(0; a; 0; b;x) + H(0; 0; a; b;x)�� �H(a; 0; 0; 0; b;x) + H(0; a; 0; 0; b;x)+H(0; 0; a; 0; b;x) + H(0; 0; 0; a; b;x)� (22)In the same way one an use the produt identities, Eq.(19) for extrating the terms singularas powers of ln(1 � x), or equivalently of H(1;x) aording to Eq.(1), around x = 1 from theH-funtions whose leading (or leftmost) indies are equal to 1. If a = 1 Eq.(18) an be rewritten asH(1;m1; � � � ;mp;x) = H(1;x)H(m1; � � � ;mp;x)�H(m1; 1;m2 � � � ;mp;x)� H(m1;m2; 1; � � �mp;x)� � � � �H(m1; � � � ;mp�1mp; 1;x) : (23)If m1 has also the value 1 we an take the seond term of the r.h.s. to the left, divide by two andobtain an identity to be used when the �rst 2 indies are both equal to 1 and so on. Let us showa ouple of examples in the ase of two indies a; b not equal to 1:H(1; 1; a; b;x) = H(1; 1;x)H(a; b;x)� H(1;x)�H(a; 1; b;x) + H(a; b; 1;x)�+ H(a; 1; 1; b;x) + H(a; 1; b; 1;x) + H(a; b; 1; 1;x) ;H(1; 1; 1; a; b;x) = H(1; 1; 1;x)H(a; b;x)� H(1; 1;x)�H(a; 1; b;x) + H(a; b; 1;x)�+ H(1;x)�H(a; 1; 1; b;x) + H(a; 1; b; 1;x) + H(a; b; 1; 1;x)�� �H(a; 1; 1; 1; b;x) + H(a; 1; 1; b; 1;x)+H(a; 1; b; 1; 1;x) + H(a; b; 1; 1; 1;x)� ; (24)the struture is very muh the same as in the equations for extrating the ln(x) singularities relatedto the trailing zeroes.It is to be noted that the two proedures { the \extration" of leading 1's and trailing 0's { anbe ombined, to give, for instaneH(1; 1;�1; 0;x) = 12H(�1;x)H(0;x)H2(1;x) �H(�1; 1;x)H(0;x)H(1;x)+ H(�1; 1; 1;x)H(0;x) � 12H(0;�1;x)H(1;x)H(1;x)+ H(0;�1; 1;x)H(1;x) �H(0;�1; 1; 1;x) ;H(1; 1; 0; 0; 0;x) = 112H3(0;x)H2(1;x)� H(0; 0; 0; 1;x)H(1;x) + H(0; 0; 0; 1; 1;x)9



+ H(0; 0; 1;x)H(0;x)H(1;x) �H(0; 0; 1; 1;x)H(0;x)� 12H(0; 1;x)H2(0;x)H(1;x)+ 12H(0; 1; 1;x)H2(0;x) : (25)Therefore, one an always express a H-funtion with leading 1's and trailing 0's in terms of produtsof powers of H(0;x) and H(1;x), whih exhibit the logarithmi singularities in those points, and ofother \irreduible" H's, i.e. H's whose �rst index is not 1 and the last index is not 0 and thereforeis �nite at both x = 1 and x = 0.We an push further this kind of redution, by writing all the possible produt identities Eq.(19)and the integration by part identities Eq.(17) and using them for expressing as many as possible H'sof weight w and \unwanted" indies in terms of produts of a \minimal" set of H's of lower weightand \aepted" indies. It is to be noted that the number of the H's in the \minimal" set is �xed,but their hoie is not unique, even if the ondition of the extration of the leading 1's and trailing0's is imposed. It is easily seen that at weight w the number of relations is nothing but the totalnumber of the di�erent produts of H's of lower weight and with total weight w. These relationsare independent when all H-funtions of lower weight belong to their respetive \minimal sets". Itis to be observed, in any ase, that the above \redution" involves only di�erent rearrangements,without any modi�ation, of the set of indies whih appear in the original H,An expliit alulation gives the set sizes of table 1.Weight Full basis Irreduible set Minimal set2 9 4 33 27 12 84 81 36 185 243 108 486 729 324 1167 2187 972 3128 6561 2916 810Table 1: Sizes of the various basesThe use of the full basis in whih eah term has only a single H-funtion gives a unique expressionin a rather simple way. This is also the preferred representation when higher weights have to bebuilt up by suessive integration. Expressions an also be given in terms of the irreduible set ina relatively easy way. This form is preferred when one has to avoid problems with divergenies. Itan also be onvenient when establishing identities for related arguments. The use of the minimalset is partiularly onvenient for the numerial evaluation of the H-funtions, when a large numberof them has to be evaluated in the same point. It should also be noted that the use of a minimalset is relatively easy for the lower weights (at weight 3 it requires only 4 substitutions) while forhigher weights it will muh less straightforward.10



4 Power series expansionsIn general the funtion H~m(x) does not have a regular Taylor series expansion. This is due to thee�et that trailing zeroes in the index �eld may ause powers of ln(x). Hene the proper expansionis one in terms of both x and ln(x). Let us �rst have a look at what happens when there are nologarithms. We will use now the other notation for the indies. In that ase we have:H1(x) = 1Xi=1 xiiH�1(x) = � 1Xi=1 (�1)ixii (26)and assuming4 that H~m(x) = 1Xi=1 �ixiia S~n(i) (27)in whih � = �1 one an write the relationsH0;~m(x) = 1Xi=1 �ixiia+1S~n(i)H1;~m(x) = 1Xi=1 xii S�a;~n(i�1)= 1Xi=1 xii S�a;~n(i) � 1Xi=1 �ixiia+1S~n(i)H�1;~m(x) = � 1Xi=1 (�1)ixii S��a;~n(i�1)= � 1Xi=1 (�1)ixii S��a;~n(i) + 1Xi=1 �ixiia+1S~n(i) (28)At this point one ould argue what is the better de�nition of the nested sums. A de�nition of thetype Za;~m(n) = nXi=1 Z~m(i�1)ia (29)will give only a single term in the expansion and is favored in the mathematial literature, beausethere one is mainly onerned with sums to in�nity. For �nite values of n however this de�nitionhas the unelegant aspet that when ~m has k omponents that are not zero, the value of Za;~m(n) iszero for n � k. We will mostly follow the onventions of ref [6℄ in whih we use the de�nition:Sa;~m(n) = nXi=1 S~m(i)ia (30)4Beause of the linearity of the problem the presene of more than one term, eah with a di�erent S~n would notmake muh of a di�erene in the following onsiderations.11



In this notation one has the property S~mk(1) = Qki=1 �i with �i being the sign of mi. These twonotations will be referred to as Z-notation and S-notation respetively. The onversion from onenotation to the other is not really very ompliated if one realizes that Pi�1j=1 =Pij=1�Æij . Henethe `leading' term has the same index �eld and the orretion terms have fewer indies in whihsome adjaent indies may have been ombined. For k nonzero indies there are in total 2k�1 � 1orretion terms.The fat that trailing zeroes in the index �eld are responsible for powers of ln(x) an be seeneasily now. Beause 1k! Z x dx xm lnk(x) = xm+1 kX�=0 (�1)k���! ln�(x)(m+ 1)k��+1 (31)we see that one we start with H(~0k;x), the subsequent integrations due to other indies (the �rstof them not being zero of ourse, and fators 1=(1� x) being expanded in x) that ome to the leftof the ~0k will always leave terms with at most k powers of ln(x) and there will be a term with kof those powers. Hene the trailing zeroes are responsible for powers of ln(x). Of ourse the exatdependene of ln(x) an be derived muh easier by applying Eq.(21) repeatedly till all trailingzeroes have been removed. This gives an expansion in terms of powers of ln(x) and H-funtionsthat are of the type we have just studied and hene an be expanded in x. It is however alsopossible to work one's way through the integrals and the various expansions. This is muh morework and leads eventually to the same result. Hene we have omitted this derivation.If we ompare the H-funtion with the multidimensional polylogarithm in ref [5℄ we may notiethat this funtion an be rewritten into the following expansion:�(z1���zkb1 ���bk ) = 1X�1>�2>���>�k>0 kYj=1 b�jj�1�zjj b�jj (32)with b0 = 1. These funtions do not ontain powers of ln(bi) and hene they annot represent allH-funtions. If we restrit ourselves to H-funtions without trailing zeroes one an write the termsin the expansion of these H-funtions as1X�1>�2>���>�k>0x�1 kYj=1 ��jj�zjj (33)if we use Z-sums and 1X�1��2������k�1x�1 kYj=1 ��jj�sjj (34)if we use S-sums. Hene it is lear that the H-funtions without trailing zeroes are speial ases ofthe multidimensional polylogarithms with bi = �1=x. For the omputation of Feynman diagramswe do however need the H-funtions with trailing zeroes beause of the presene of the logarithms(see for instane ref [10℄). 12



There is another interesting observation in the expansion. Considering that the expansion ofan H-funtion with no trailing zeroes gives terms of the type1Xx=1xi�iS~m(i)iaone an introdue another sum by dividing by either 1+x or 1�x and obtain:1Xx=1xi�iS~m(i)ia = (1�x) 1Xx=1xiS�a;~m(i)= (1+x) 1Xx=1xi(�1)iS��a;~m(i) (35)At times this notation is more onvenient. One should however remember that this notation breaksdown at either x = 1 or at x = �1, depending on the partiular form used.Finally we notie that for x = 1 we have that1Xx=1xi�iS~m(i)ia ! S�a;~m(1) (36)and hene the values of the H-funtions in x = 1 are related to the values of the S-sums in in�nity.The trailing zeroes do not ause essential problems beause when those funtions are �rst writtenin terms of powers of ln(x) these logarithms vanish in x = 1 and we keep only the terms withH-funtions without trailing zeroes. For the numerial evaluation of these objets one an use thealgorithms of ref [5℄ that relate them e�etively to ombinations of H-funtions in x = 1=2 afterthe appropriate onversions. This is partiularly interesting for the higher weights beause up toweight 7, 8 or 9 it is still possible to obtain expressions in terms of a very small number of onstants(see ref [9℄ and [6℄), but beyond these weights this beomes too time onsuming5 while an expansionin x = 1=2 is suÆiently fast for nearly all numerial appliations, provided that only a limitednumber of them is needed.5 The algebraThe harmoni sums form an algebra [6℄ in whih the produt of two sums with the same argumentand having weights w1 and w2 respetively an be written as a sum of terms, eah with a singlesum of weight w1+w2. There are two sets of algebrai relations: the relations based on the shu�ealgebra whih hold for all values of the argument, and the relations based on the triangle theoremof ref [6℄ whih hold only for values in in�nity, provided that not both harmoni sums are divergent.For the H-funtions we have the general produt formula based on Eq.(19). This formula is relatedto the algebra of the harmoni sums, beause the harmoni polylogarithms an be expressed in5Thus far the only known exat method to do this involves solving simultaneously for all 2 3w�1 H-funtions inx = 1. See also a previous footnote. 13



terms of series expansions in whih the oeÆients are harmoni sums: assume for the momentthat neither ~m nor ~n have trailing zeroes. In that ase we derive:Ha;~mp(x)H~nq(x) = 11� x 1Xi=1 S~mp(i)xiia 1Xj=1S~nq(j)xj (37)in whih one of the two powers of 1=(1 � x) has been absorbed in the sum over i. By ombiningthe powers of x this formula an be rewritten asHa;~mp(x)H~nq(x) = 11� x 1Xi=1 xi iXj=1 S~m(j)S~n(i� j)ja : (38)Note that the inner sum an be done and gives a set of terms that are all single S funtions, eventhough the expression may not be very ompat. It is alled a triangle sum and an algorithm forit is given in one of the appendies of ref [6℄. It is also available as a proedure in the languageof FORM [7℄. As a result one obtains an expression whih an be resummed and gives terms withsingle H-funtions.For H-funtions in x = 1 we have seen that they an be diretly expressed in terms of harmonisums in in�nity. Therefore the general algebrai rules for those sums that are based on the shu�ealgebra for harmoni sums an be applied. Hene we see a duality here: the general rules for theH-funtions orrespond to the speial triangle rules for the harmoni sums, and the speial rulesfor the H-funtions in x = 1 orrespond to the general shu�e rules for the harmoni sums.There is one ompliating fator when values in x = 1 are onsidered. Let us start with assumingthat the basi divergene H(1; 1) an be used as a symbol. In the ase of a `proper' limit proeduresuh things an be done and after the divergenes anel the �nite result should be orret. This isalled regularization. The general algebrai relations are based on the triangle sums, rather thanon the shu�e algebra, and the triangle sums are not orret when both objets are divergent. Thesubleading terms will be inorret. This an be illustrated easily:H1(x) = 1Xi=1 xii(H1(x))2 = 2H1;1(x)= 2 1Xi=1 xi(S1(i)i � 1i2 )H1(1) = limx!1 1Xi=1 xii= S1(1)H1;1(1) = limx!1 2 1Xi=1 xi(S1(i)i � 1i2 )= 2S1;1(1)� 2S2(1))= (S1(1))2 � S2(1)) (39)14



and we see that ( limx!1H1(x))2 6= limx!1(H1(x))2 : (40)The solution to this problem is to be found in S-spae. There it is possible to regularize the in�nitesums in a onsistent way by replaing the sum to in�nity by a sum to M with M very large but�nite, then one an have the divergenes anel and �nally take the limit M !1. This does notorrespond to anything one an do in x-spae. Beause the triangle theorem does not hold for twoS-sums that are divergent, one annot apply the regular algebrai relation for H-funtions that areboth divergent in x = 1. Hene the proper algebrai relations at x = 1 have to be derived by meansof the shu�e algebra whih holds for all S-sums:( limx!1H1(x))2 = (S1(1))2= 2S1;1(1)� S2(1)= 2 limx!1H1;1(x) + limx!1H2(x) (41)This way is onsistent and will allow us to de�ne the Mellin transform properly in one of the nextsetions. It involves the use of values in x = 1.Beause of the use of di�erent algebrai relations for x 6= 1 and x = 1, it may happen thatexpressions look rather ompliated, but the various algebrai relations between H-funtions inx = 1 ould simplify the expressions onsiderably. However at the moment there is no knownsystemati method to apply these relations in suh a way that one does not have to solve for allvalues in x = 1 �rst. This way all suh objets an be expressed in a minimal independent set ofobjets. Unfortunately there are very many of these objets for a given weight w (2 3w�1) andeven more relations and hene it is a formidable task to determine all values at x = 1 in terms of aminimal set of onstants when the weight is large. If the �nal answer is supposed to be �nite onean however extrat the powers of the basi divergenes (they orrespond to leading indies thatare 1) and hene still obtain a �nite answer that an be evaluated numerially. The oeÆients ofthe divergenes an be heked to be zero numerially as well.6 Identities between H-funtions of related arguments.In this setion we will look at the identities whih an be established for suitable hanges of theargument. The ommon feature is that any H-funtion of weight w and argument x an be expressedas an homogeneous expression of the same weight w, involving either H-funtions depending ona same argument, say t, related to x by the onsidered hange, or onstants orresponding toH-funtions of speial onstant values of the arguments (typially 1).The simplest hange of the argument is the hange x! �x. We have seen its e�et already inEq.(15).Next is the relation between H-funtions of x2 and of x. Beause 1 + x2 is not a partiularlyinteresting objet we will have to exlude indies equal to -1 in the H-funtions of x2. Restriting15



the indies to only 1 and 0, we an proeed reursively on the weight. For weight 1 we have fromEq.(1): H(0;x2) = 2H(0;x)H(1;x2) = H(1;x)�H(�1;x) ; (42)so that the H's of argument x2 are expressed in terms of H's of argument x, as required.For w > 1, if ~mw = ~0w, H(~0w;x2) = 2wH(~0w;x) ; (43)otherwise, if ~mw = (a; ~mw�1) for the two ases a = 0 and a = 1 we have, by using the hange ofvariable x0 = t02 H(0; ~mw�1;x2) = Z x20 dx0x0 H(~mw�1;x0)= 2 Z x0 dt0t0 H(~mw�1; t02) (44)H(1; ~mw�1;x2) = Z x20 dx01� x0H(~mw�1;x0)= Z x0 dt0 � 11� t0 � 11 + t0�H(~mw�1; t02) : (45)The expression of the H(~mw�1; t02) in terms of H's of the same weight and argument t0 is supposedlyknown (as we proeed reursively on the weight w); by substituting suh expression and then usingthe very de�nition Eq.(6) all the required x2 ! x identities are obtained. An example of weightw = 2 is H(0; 1;x2) = 2 Z x0 dt0t0 H(1; t02)= 2 Z x0 dt0t0 �H(1; t0)�H(�1; t0)�= 2H(0; 1;x) � 2H(0;�1;x) (46)and Eq.(15) leads to the well known relation Li2(x2) = 2Li2(x) + 2Li2(�x). We an observe herethat a limited set of x2 ! x identities ould be written only for the Nielsen's polylogarithmsorresponding to the Hn(x) in the notation of Eq.(14), while for the hpl's the set is wider; as anexample, one an derive for w = 3:H(1; 0; 1;x2) = 2�H(1; 0; 1;x)�H(�1; 0; 1;x)�H(1; 0;�1;x)+H(�1; 0;�1;x)� (47)The next transformation of the argument we onsider is x ! 1 � x whih applies again to asmaller set of Nielsen's polylogarithms. Like the previous transformation it is of interest only whenthere are no negative indies (1 + x ! 2 � x is not something we an work with). Proeeding16



reursively on w, as before, for w = 1 we haveH(0; 1 � x) = �H(1;x)H(1; 1 � x) = �H(0;x): (48)The extension to higher weights requires a minimum of are. H(a; ~mw�1; 1 � x) of weight w > 1,with the �rst index a equal to 0 or to 1 is the generi funtion. As disussed in Setion 3, if a = 1the funtion an be expressed in terms of a redued set of funtions, where the leading index 1 isarried only by H(1; 1�x), for whih Eq.(48) holds; therefore, only the ase in whih the �rst indexa is 0 is to be onsidered. In that ase, the hange of variable x0 = 1� t0 givesH(0; ~mw�1; 1� x) = Z 1�x0 dx0x0 H(~mw�1;x0)= Z 10 dx0x0 H(~mw�1;x0)� Z 11�x dx0x0 H(~mw�1;x0)= H(0; ~mw�1; 1) � Z x0 dt01� t0H(~mw�1; 1 � t0) ; (49)where the onstant H(0; ~mw�1; 1) is �nite (it an be observed here that if the �rst index is 1 oneruns into the problem that H(1; ~mw�1; 1) ould be divergent). In the general ase H(~mw�1; 1 � t0)will not be irreduible. We an express it in terms of the H's of an irreduible set of weight w� 1,use the supposedly known x = 1� t identities of weight w�1 and �nally obtain the required weightw identity by using the de�nition Eq.(6). As an example we have at weight 4H(0; 0; 1; 1; 1 � x) = H(0; 0; 1; 1; 1) �H(1;x)H(0; 1; 1; 1) + H(1; 1; 0; 0;x)= H(0; 0; 1; 1; 1) �H(0; 1; 1; 1)H(1;x) �H(0; 0; 1; 1;x)+ 14H2(0;x)H2(1;x) �H(0; 1;x)H(0;x)H(1;x)+ H(0; 0; 1;x)H(1;x) + H(0; 1; 1;x)H(0;x) : (50)A transformation whih applies to all the Nielsen's polylogarithms, Eq.(16) isx = 1=y ; y = 1=x ; (51)it will be shown that it applies as well to all the H-funtions. Before ontinuing, let us reall thatthe Nielsen's polylogarithms have a (logarithmi) branh point at x = 1, but are otherwise analytifor smaller values of x, inluding all the negative real axis; for studying the transformation Eq.(51)it an be therefore onvenient to establish the identities for negative values of x, and then ontinueanalytially to positive values. The analyti properties of the H-funtions are more ompliated.First of all, if the rightmost index is equal to 0, they have a branh point at x = 0; that is not aproblem, as we have already seen that we an express any H-funtion in terms of the funtions ofa redued set where the trailing index 0 is arried only by powers of H(0;x) = lnx, whose analytiproperties are well known. If the rightmost index is not 0 and all the indies are in general equalto 1 or 0, the H-funtions have the same analyti properties as the Nielsen's polylogarithms; but17



if some of indies are equal to �1, a branh ut at x = �1 appears. Therefore, in the general asewhen indies equal to �1 are also present (and that is the ase even of the redued and minimalsets, see Setion 3), there is no advantage in onsidering negative values of x, so that we will startfrom the beginning with an argument equal to x+ i�, where x is real and satis�es the onstraints0 � x � 1, while � is positive and in�nitesimally small; orrespondingly,y = 1=x� i� ; (52)i.e. the real part of y is also positive, but y � 1, while its in�nitesimal imaginary part is negative.As in the previous ases, we will proeed by indution on the weight w of the H-funtions. Atw = 1 we have H(0; y) = �H(0;x) ;H(1; y) = H(1;x) + H(0;x) � i� ;H(�1; y) = H(�1;x) �H(0;x) ; (53)the onstant � has appeared; it must be given weight 1, so that all the formulas will remainhomogeneous of the same weight. When ontinuing the above equations to negative values of x, inthe interval �1 � x � 0, H(0;x) = ln(x+ i�) will develop a positive imaginary part; in partiular,one has H(0;�1) = i� ; (54)so that H(1;�1) takes the real value � ln 2, as expeted.For w > 1, ~mw = (a; ~mw�1), we an proeed by indution, along the following linesH(~mw; y) = Z y0 dy0f(a; y0)H(~mw�1; y0)= Z 10 dy0f(a; y0)H(~mw�1; y0) + Z y1 dy0f(a; y0)H(~mw�1; y0)= H(~mw; 1) + Z 1x dx0x02 f �a; 1x0�H�~mw�1; 1x0� : (55)It is to be noted that one an assume that the �rst index a is di�erent from 1; indeed, as seen inSetion 3 any H-funtion of the form H(1; ~mw�1; y) an be expressed in terms of a redued set offuntions, where the leading index 1 is arried only by powers of H(1; y), whose transformation isgiven by Eq.(53). For a di�erent from 1, H(~mw; 1) is a �nite onstant and the above formulae aremeaningful. One further �ndsZ dx0x02 f �0; 1x0� = + Z dx0 1x0 ;Z dx0x02 f ��1; 1x0� = + Z dx0 � 1x0 � 11 + x0� ;substituting in the r.h.s. of Eq.(55) the identities (of weight w � 1, and therefore known in anapproah by indution) whih express H(~mw�1; y0 = 1=x0) in terms of H( ~m0w�1;x0), one obtains a18



ombination of terms of the kindZ 1x dx0 f(a;x0)H ~m0w�1(x0) = H(a; ~m0w�1; 1)�H(a; ~m0w�1;x) ;and the identities of weight w are established. As an example, we give the w = 3 identityH�0;�1; 1; 1x � i�� = �H(0;�1; 1;x) + 2H(0;�1; 1; 1)+ 2H(0; 0;�1;x) � 2H(0; 0;�1; 1) + H(0; 0; 1;x) �H(0; 0; 1; 1)� �H(0;�1;x) + H(0;�1; 1) + H(0; 1; 1)�H(0;x) + 16H3(0;x)� i� �H(�1; 1)H(0;x) + 12H2(0;x) �H(0;�1;x) +H(0;�1; 1)� : (56)Another important set of identities, whih is however valid for any set of indies and hasno ounterpart within the Nielsen's polylogarithms, applies to arguments x and t related by thetransformation x = 1� t1 + t ; (57)whose inverse is again t = 1� x1 + x : (58)Even in that ase, it turns out that any H-funtion of weight w and argument x an be expressedas a homogeneous expression of weight w, involving H-funtions of argument t, related to x byEq.(57), as well as onstants orresponding to H-funtions of argument 1. The proof is, again, byindution on the weight. If w = 1, from the very de�nition Eq.(1) one immediately �ndsH(0;x) = �H(1; t) �H(�1; t) ;H(1;x) = �H(0; t) �H(�1; 1) + H(�1; t) ;H(�1;x) = H(�1; t)�H(�1; 1) : (59)For w > 1 and ~mw = ~0w the result is trivially true, as an be veri�ed by inspetion; the same istrue also for ~mw = ~1w and ~mw = ~�1w. In the more general ase, write ~mw = (a; ~mw�1); where theindex a takes the values 0; 1;�1. As disussed in Setion 3, and already realled for the x! 1� xidentities, if a = 1 the funtion an be expressed in terms of a redued set of funtions, where theleading index 1 is arried only by H(1;x), for whih Eq.(59) holds. In the other two ases a = 0;�1the hange of variable x0 = 1� t01 + t0gives H(0; ~mw�1;x) = Z x0 dx0x0 H(~mw�1;x0)19



= H(0; ~mw�1; 1) � Z 1x dx0x0 H(~mw�1;x0)= H(0; ~mw�1; 1) � Z t0 dt0 � 11� t0 + 11 + t0�H�~mw�1; 1� t01 + t0� ;H(�1; ~mw�1;x) = Z x0 dx01 + x0H(~mw�1;x0)= H(�1; ~mw�1; 1)� Z t0 dt0 11 + t0H�~mw�1; 1� t01 + t0� : (60)At this point, one an substitute the relations already found to be valid at weight w � 1, forexpressing the funtions H (~mw�1; (1 � t0)=(1 + t0)) in terms of H's of weight w � 1 and argumentt0, and then perform the last integration in t0 aording to the de�nition Eq.(6).As an example, we give the following w = 3 identityH(�1;�1; 1;x) = �H(0;�1;�1; t) + H(�1;�1; 1; 1)+ H(0;�1; t)H(�1; t) + 16H3(�1; t)� 12H2(�1; t)H(0; t)� 12H(�1; 1)H2(�1; t) �H(�1; 1; 1)H(�1; t) : (61)7 Identities between H's and related funtions.Let us introdue a related set of funtions G(~mw;x), where ~mw has almost the same meaning asfor the H's, but the �rst index mw is always equal to 1, i.e. ~m = (1; ~mw�1), through the de�nitionsG(1;x) = � Z 10 dtt� 1=x (62)for w = 1 and G(1; ~mw�1;x) = � Z 10 dtt� 1=xH(~mw�1; t) (63)for w > 1.The G(~mw;x) are nothing but homogeneous ombination of H-funtions of weight w. As bynow usual, we will show it proeeding by indution on w. For w = 1, by performing expliitly theelementary integration we obtain from Eq.(62)G(1;x) = H(1;x) : (64)Next, assume that the identities are established for w; put ~m = (a; ~mw�1), and onsider thefuntions of weight w + 1 given byG(1; a; ~mw�1;x) = � Z 10 dtt� 1=xH(a; ~mw�1; t) : (65)20



One an di�erentiate with respet to x, then integrate by parts in t, using of ourse Eq.(63) whenrelevant; onsidering for instane the ase a = �1 one obtains��xG(1;�1; ~mw�1;x) = [f(�1; x)� f(0; x)℄ G(1; ~mw�1;x)+ [f(�1; x) + f(1; x)℄ H(�1; ~mw�1; 1) : (66)Similarly, one has ��xG(1; 0; ~mw�1;x) = �f(0; x)G(1; ~mw�1;x)+ f(�1; x)H(0; ~mw�1; 1)��xG(1; 1; ~mw�1;x) = [f(0; x) + f(1; x)℄ G(1; ~mw�1;x) : (67)One an substitute the already obtained identities expressing G(1; ~mw�1;x) in terms of H's ofweight w and then integrate in x between 0 and x by using the very de�nition Eq.(6) (aordingto Eq.(63) the G-funtions vanish at x = 0). The required identities of weight w + 1 are thenestablished. As an example, we give one of the identities of weight w = 4G(1; 0;�1; 1;x) = �H(0;�1; 0; 1;x) �H(0;�1; 1; 1;x)+ H(0; 0; 0; 1;x) + H(0; 0; 1; 1;x)� H(�1; 1; 1)H(0;�1;x) �H(�1; 1; 1)H(0; 1;x)+ H(0;�1; 1; 1)H(1;x) : (68)In the same way one an work out the similar identities existing for several related lasses offuntions suh as, for instane, � Z 10 dtt� 1=xH(~a; t)H(~b;xt)or Z 10 dtf(a; t)H(~a; t)H(~b;xt) : (69)8 Speial values of the H's and their numerial evaluation.It is known that the Nielsen's polylogarithms for the speial values of the arguments equal to+1;�1 and 1=2 an be expressed in terms of a few mathematial onstants, typially Riemann�-funtions of integer arguments; the representations whih they provide for those onstants asde�nite integrals an be manipulated by means of integration by parts, hanges of variables andthe like providing the analyti values of a number of de�nite integrals of speial interest. The sameapplies, and in muh more systemati way, to the H-funtions, thanks to the greater and wider setsof identities whih they satisfy. 21



In the ase of the H's, it is not neessary to onsider as independent the values orresponding tothe argument equal to �1; indeed, one an always express any H-funtion in terms of the reduedset of funtions in whih trailing indies equal to 0 are missing, so that by using Eq.(15) one anreplae a value at x = �1 with the value at x = 1 of a related funtion. In analogy with the Nielsen'spolylogarithms ase, it is onvenient to onsider also the values at x = 1=2 of the funtions whoseindies are equal to 0 or 1 (i.e. when the index �1 is missing).More spei�ally, one an onsider:� the x2 ! x identities, Eq.s(42-47), for x = 1 ;� the 1 � x ! x identities, Eq.s(48-50). They an be used at x = 1=2, providing a �rst setof identities for the values at x = 1=2, but also at x = �1; in the seond ase, one getsvalues at x = 2, whih are onverted into values at x = 1=2 by using the x! 1=x identities,Eq.s(51-56), as well as values at x = �1, whih are onverted into values at x = 1 by Eq.(15);� the just realled x! 1=x identities, Eq.s(51-56), at x = 1 and x = �1, followed by the usualonversion to x = 1 through Eq.(15);� the x ! (1 � t)=(1 + t) identities, Eq.s(57- 61), at x = 0 orresponding to t = 1 (they areautomatially satis�ed, by onstrution, at x = 1; t = 0);� one more set of identities is obtained by writing the identities between G-funtions and H-funtions,disussed in Setion 8, at the speial value x = �1, by using the relation, whihfollows from the de�nition Eq.(63)G(1; ~m;�1) = H(�1; ~m; 1)and onverting one more the values at x = �1 of the H's into values at x = 1 by means ofEq.(15).The set of relations obtained in that way is highly redundant; it has been heked expliitly thatthey generate the table of the w = 4 de�nite integrals given in Appendix B of the seond refereneof [2℄. It has not yet been investigated whether they are suÆient, by themselves, to generate alsothe tables of higher weights obtained in [6℄.Another powerful method to obtain the values at x = 1=2 when there are no negative indiesis by onsidering the transformation x ! z=(1 + z), whih orresponds to a suitable ombinationof the transformations x ! 1=x and x ! (1 � x). Using the same tehniques as in the setionon related arguments, all these objets are diretly expressed in terms of H-funtions in x = 1.Suh expressions an then be used in reverse to obtain the numerial values of the `independentonstants' that our in the expressions for the H-funtions at x = 1. As an example we haveLi3�12� = 78�3 � 12�2 ln(2) + 16 ln3(2) (70)22



whih is of ourse well known. We have alsoH2;1�12� = 18�3 � 16 ln3(2) (71)Both relations provide a power series for the evaluation of �3. The method gives also an expressionof s6 = S�5;�1(1) in terms of H5;1(1=2), H6(1=2) and ombinations of onstants of a lower weight.Similar dependenies an be derived for the higher weight onstants.Let us �nish with a few remarks on the numerial evaluation of the H's for arbitrary values ofx. Aording to the disussion of Setion 3, it is suÆient to restrit ourselves to the H's eitherof the redued set or of a minimal set, as all the others an be obtained from them as suitableombinations. The H's of suh a set have no trailing indies equal to 0, so that they an be expandedin series of x around x = 0. For small values of x the series will be rapidly onvergent, but theonvergene will slow down approahing the uts at x = �1. But for x approahing 1 we an usethe transformation Eq.(57), so that the orresponding t = (1 � x)=(1 + x) will fall in the regionnear 0 and the expansion in t will be rapidly onverging.More exatly, the equation r = 1� r1 + r (72)has the two solutions r = �1 � p2 and r = �1 + p2. Therefore, we an use the expansionaround x = 0 in the interval �(p2 � 1) < x < p2 � 1, where jxj < p2 � 1 < 1=2, swithing forp2� 1 < x < p2 + 1 to t = (1� x)=(1 + x), whih orresponds to jtj < p2� 1 < 1=2. For greatervalues of x, one an use the x ! 1=x identities. For large negative values of x, i.e. x < 1 � p2,one an ip the sign of x with Eq.(15) and then proeed as above.In pratie the transformation of Eq.(57) an lead to a large number of funtions to be evaluatedand hene it may be more pro�table to apply this transformation only for values of x that are muhloser to one. If, on the other hand, nearly all H-funtions of a given weight have to be evaluatedfor some value of x one an use the turnover value of p2� 1 in a rather pro�table way.The values in x = 1 require some extra attention. These are atually needed rather frequentlyand hene there exists some literature on them. From Eq.(28) it should be lear that an H-funtionin x = 1 an be expressed in terms of either S-sums or Z-sums in in�nity. Hene muh informationan be found in [9℄, [5℄ and the papers they refer to. Ref. [6℄ gives a di�erent method to evaluatethese sums. Reently this method has been used by one of us (J.V.) to obtain all suh sums upto weight 9 (see also footnote 2). For only nonnegative indies results have been obtained up toweight 11 [11℄. When the �rst index of the H-funtion (or the S-sum) is one, the value in x = 1 (orthe sum in in�nity) will be divergent. Yet we have to onsider these objets. As mentioned in thesetion on the algebra this an be done onsistently only in terms of the sums. Hene the safestmethod is to rewrite the H-funtions in x = 1 immediately in terms of either S-sums or Z-sums.In the ase that the weights are low enough, these an then be rewritten in terms of a limited setof `fundamental onstants'. 23



9 Mellin transformsAt times one may need the Mellin transform of the Harmoni polylogarithms. In ref [6℄ a methodis given to evaluate suh transforms for a lass of funtions whih is more or less the lass of H-funtions. There is however one ompliation with Mellin transforms. Divergenies at x = 1 mustbe extrated. This is beause the Mellin transform is de�ned byM(f(x); N) = Z 10 dx xNf(x)M( f(x)(1�x)+ ; N) = Z 10 dx xNf(x)� f(1)1�xM(f(x) lnp(1�x)(1�x)+ ; N) = Z 10 dx �xNf(x)� f(1)� lnp(1�x)1�x (73)in whih the funtion f is supposed to be �nite for x = 1 when the fator 1=(1�x)+ is present.Hene we have to pay attention to the powers of ln(1�x). They an be isolated with Eq.(23). Afterthis extration the remaining H-funtions are �nite in x = 1.At this point we an attak the Mellin transforms. It is easy to obtain the lowest weight results:Z 10 dxxnH(0;x) = � 1(n+ 1)2Z 10 dxxnH(1;x) = S1(n+ 1)n+ 1Z 10 dxxnH(�1;x) = (�1)nS�1(n+ 1)n+ 1 + ln(2)n+ 1 (1 + (�1)n) (74)in whih we have used that H(�1; 1) = �S�1(1) = ln(2). The higher weight results an beobtained by reursion. Like in ref [6℄ this is done by partial integration. We also exhange the sumsimmediately after eah step so that we may do one of them immediately. The result is:Z 10 dx 1Xi=n�ixiH0;~m(x)S~p(i+1)(i+1)k = �H0;~m(1)�S�(k+1);~p(1)� S�(k+1);~p(n)�� Z 10 dx 1Xi=n�ixiH~m(x) S~p(i+1)(i+1)k+1 (75)Z 10 dx 1Xi=n�ixiH1;~m(x)S~p(i+1)(i+1)k = �H1;~m(1)�S�(k+1);~p(1)� S�(k+1);~p(n)�� Z 10 dx 1Xi=nxiH~m(x)��S�(k+1);~p(i+1)��i S~p(i+1)(i+1)k+1 � �S�(k+1);~p(n)� (76)Z 10 dx 1Xi=n�ixiH�1;~m(x)S~p(i+1)(i+1)k = �H�1;~m(1)�S�(k+1);~p(1)� S�(k+1);~p(n)�24



� Z 10 dx 1Xi=nxiH~m(x)��(�1)iS��(k+1);~p(i+1)+�i S~p(i+1)(i+1)k+1 � �(�1)iS��(k+1);~p(n)� (77)The variable � is either 1 or �1. This leaves only the evaluation of the H-funtions in x = 1. Thesevalues do not have to be �nite. Only the H-funtions that are used in the subtration in Eq.(73)are �nite. This auses no problems provided the divergenies are regularized in the representationin terms of S-sums as explained before.As an example we show here a nontrivial Mellin transform:M H1;�2;1;0(x)1� x ;N! = S1;�2;�1;2(N) + S1;1(N) 4Li4�12�+ 16 ln4(2)� �2 ln2(2)� 1340�22!+S1;�2(N) �12�2 ln(2) + �3!+ S1;2(N) 12�2 ln(2)� �3!+18�2 ln4(2) + 716�2�3 ln(2) + 3�2Li4�12�� 34�22 ln2(2)+3128�32 � 1516�23 + 72S�5;�1(1) (78)The sum in the last term is irreduible.In the ase that the weight of the terms too large (urrently larger than 9) it beomes ratherhard to obtain the values for the H-funtions in x = 1 or alternatively for the S-sums in in�nity.Beause the algebra for the H-funtions in x = 1 is di�erent from the algebra for the H-funtionsfor general values of x there may be large numbers of H-funtions left that eah are divergent atx = 1. The reason is that some algebrai work is done �rst with the general algebrai rules andhas to be `undone' with the rules for x = 1. The relations that make the divergenes anel maynot be easy to �nd. One an still obtain numerial results however.If one is faed with higher weights one may proeed as follows. The H-funtions in x = 1 are�rst expressed in terms of S-sums in in�nity. Then the shu�e algebra for the S-sums is used toextrat the divergenies in a way that is similar to how this is done for the powers of ln(1 � x)for the H-funtions. Beause the divergenes have to anel eah other, all divergent terms shoulddisappear, even though we may not have the algebrai methods to prove this for the ase at hand.The remaining �nite expression an in priniple be evaluated numerially.Inverse Mellin transforms are now relatively easy. As pointed out in ref [6℄ eah S-sum hasa single most ompliated original funtion in terms of H-funtions in whih we an de�ne `mostompliated' by the funtion with the largest weight. And atually one an obtain the relationbetween the S-sum of whih one needs the inverse Mellin transform and this most ompliatedH-funtion from the reursion relations in Eq.(75). Hene the algorithm is lear:� Loate the S-sum(s) with the highest weight.� Construt the orresponding H-funtion(s) in x-spae.25



� Add it and subtrat it.� Make the Mellin transform of the subtrated version. This will anel the original S-sum.� Repeat the above steps until there are no more S-sums remaining.� Multiply the remaining onstant terms by Æ(1�x).This algorithm will properly terminate. It has only one problem: Some Mellin transforms have afator (�1)N and some don't. What if we take an S-sum whih should have a fator (�1)N but weomit it? Here we have to realize that the inverse Mellin transform is to be onstruted from eitherall even or from all odd moments only. Hene we have to speify whether N is even or odd. Thiswill give a value to (�1)N . Hene the only thing that remains is to give the relation between anS-sum and the most ompliated H-funtion that ontributes to it.� If the number of negative indies is odd, there will be a fator (�1)N=(1+x) and � will startout as �1, otherwise there will be a fator �1=(1�x)+ and � will start with the value 1.� Next opy the index �eld to the H-funtion, dropping the last index.� Working from left to right in the index �eld, replae an index 1 by �, leave zeroes untouhedand replae an index �1 by ��. In the last ase � is replaed by ��.� Multiply the term by (�1)z+m in whih z is the number of zeroes and m is the number ofnegative indies in the new index �eld.� Remaining fators (�1)N indiate the validity regarding even or odd values of N .We will give two examples of weight 7 funtions. First an example that involves subtrations withln2(1�x) in the Mellin transform:S1;1;2;1;2(N) ! 11�x �H1;1;2;1;0(x)� 12H1;1(x)�22!+Æ(1�x) �6�2�5 � 25�22�3 + 17�7! (79)In this ase there is no di�erene for even values of N and for odd values of N . However the nextexample is di�erent. For even values of N we haveS�1;1;�2;1;2(N) ! 11�x �H�1;�1;2;1;0(x)� 12H�1;�1(x)�22+H�1(x)(� 116�2�3 + 5364�5)+ 61560�32 � 35128�23 � 9364�5 ln(2) + 34�6!26



+ 11+x H1(x)( 116 �2�3 � 5364�5)+ 61560�32 � 35128�23 � 9364�5 ln(2) + 34�6 !+Æ(1�x) � 116�2�3 ln2(2)� 957224�2�5 + 1120�2 ln5(2)� �2Li5(12)� 93140�22�3 � 112�22 ln3(2) � 29280�32 ln(2)� 1355896 �23 ln(2)�19764 �5 ln2(2) + 372153584 �7 + 1928 ln(2)�6 � 107 �7;a + 2914�7;b ! (80)in whih �6 = S�5;�1(1)�7;a = S�5;1;1(1)�7;b = S5;�1;�1(1) (81)In the ase of odd N the terms with 1=(1+x) hange sign. As one an see these formulae anbeome rather involved, even though the number of terms is rather small ompared to the numberof funtions that exist in x-spae for this weight.In the ase that sums of a higher weight are onsidered one may not be able to substitute thevalues of the H-funtions at x = 1. The same onsiderations as for the Mellin transforms an beused to obtain an answer that an at least be evaluated numerially. In general the formulae willof ourse be muh lengthier.
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