
Contents

1 A preface to stedi 7

1.1 A General Orientation To Stedi . 8

1.1.1 The Keyboard Commands . 8

1.1.2 The Command-Line . 8

1.1.3 Advanced Features . 9

1.1.4 The Manual . 9

1.1.5 A note on key notation . 9

2 Getting acquainted 11

2.1 Running the editor . 11

2.1.1 Starting up the editor . 11

2.2 Creating a file . 13

2.3 Moving around . 13

2.3.1 Using the arrow keys . 13

2.3.2 Using the command line Commands 16

2.4 Options and the status bar . 17

2.4.1 Choosing Screen Colors . 17

2.4.2 Insert and Overwrite mode . 18

2.5 Basic editing . 19

2.5.1 Using the character delete keys . 20

2.5.2 Using the Search and Overwrite Routine 20

2.5.3 Using the Search and Replace Routine 21

2.5.4 The Alt-T Toggle and Virtual Space 22

2.6 Reading, writing, printing . 24

2.6.1 Writing out or Saving files . 24

2.6.2 Reading In Files . 26

2.6.3 Printing . 26

2.7 Cutting, copying, pasting . 27

2.8 The folds . 30

2.9 Advanced topics . 33

2.9.1 Learn Buffers . 33

2.9.2 External Program Execution . 34

2.9.3 Miscellaneous Commands . 35

2.10 Conclusion . 35

1

2 CONTENTS

3 Basic operations 37

3.1 The screen . 37

3.2 Moving the cursor . 38

3.2.1 Keyboard commands . 38

3.2.2 Command line commands . 39

3.3 Entering text . 40

3.4 Deleting text . 42

3.5 Exchange operations . 43

4 The status bar and options 45

4.1 The status bar . 45

4.1.1 Insert and Overwrite mode . 45

4.1.2 The Write Mode . 46

4.1.3 The Search Direction mode . 46

4.1.4 Case Sensitivity . 46

4.1.5 Yank buffer . 47

4.1.6 Caps Lock . 47

4.1.7 Backup Mode . 47

4.1.8 The buffer number . 47

4.1.9 ‘Dirty Bit’ . 48

5 The command line 49

5.1 The regular commands . 50

5.2 Special commands . 52

6 Reading, Writing and Printing 55

6.1 Reading a file . 55

6.2 Writing out a file . 57

6.2.1 The write mode . 58

6.2.2 The backup mode. 59

6.2.3 The View-Only mode . 59

6.2.4 Messages concerning file output . 60

6.3 Printing . 60

6.3.1 Messages concerning printing . 61

6.4 Free disk space . 62

7 Default settings 63

8 The mark 67

8.1 Tags . 68

9 Buffers 69

9.1 Switching between buffers . 69

10 Cutting and Pasting 71

CONTENTS 3

11 Folds 73

11.1 Fold line syntax . 73

11.2 Opening and closing folds . 74

11.2.1 Function key commands . 74

11.2.2 Command line commands . 74

11.3 Miscellaneous . 75

12 Search and Replace 77

12.1 The search command . 77

12.2 The search and replace command . 78

12.3 Related commands . 80

12.4 Special characters . 80

12.4.1 Special search commands . 81

13 Regular expressions 83

13.1 Single objects . 83

13.1.1 Groups . 84

13.2 Repetitors . 85

13.3 Or and If . 86

13.4 Additional special characters . 86

13.5 Replacements . 87

13.5.1 Substitution variables . 87

13.6 Overview . 89

13.7 Efficiency . 89

14 Tabs 91

14.1 Defining tab stops . 91

14.2 Tabbing, expanding, trimming . 92

15 Word-oriented commands 95

15.1 Words . 95

15.2 Commands related to words . 96

15.3 Word searches . 97

15.3.1 Find current word . 97

15.3.2 Repeat current word search . 97

15.3.3 Replace current word . 97

15.4 Word wrapping . 98

15.4.1 The word wrap command . 98

15.4.2 The rewrap commands . 99

15.5 The auto-indent mode . 99

16 The undo feature 101

16.1 The Undo key . 101

16.1.1 Characters and words . 101

16.1.2 Lines . 102

16.1.3 Buffers . 102

16.2 Cutting and pasting . 102

4 CONTENTS

17 The learn buffers 103

17.1 Filling a learn buffer . 103

17.2 Replaying a learn buffer . 103

18 Variables 107

19 Macro’s 113

19.1 Operators . 114

19.2 Flow control . 117

19.3 The ‘first’ command . 118

20 Stream editing 119

21 Execute an external command 123

21.1 Escape to shell . 124

22 Screen control 125

22.1 Screen color . 125

22.2 Split screen . 126

22.3 Special representations . 127

23 The sort command 129

23.1 About the algorithm . 130

24 Miscellaneous commands 131

24.1 Yank . 131

24.2 Get . 131

24.3 Date . 131

24.4 Display last message . 132

24.5 File searches . 132

24.6 Garbage collections . 132

24.7 Message . 133

24.8 Pause . 133

25 Hex code 135

25.1 Binary editing . 136

26 Keyboard transformations 139

26.1 Syntax . 140

26.1.1 Mnemonics . 142

26.1.2 The meaning of the codes . 147

26.1.3 Flags and masks . 148

26.2 The K command and keycomp . 151

27 Running STedi 153

27.1 Starting up STedi . 153

27.1.1 From a desktop . 153

27.1.2 From a command processor . 153

CONTENTS 5

27.2 Exiting STedi . 155
27.3 The help facility . 156

28 List of messages and their meanings 157

6 CONTENTS

Chapter 1

A preface to stedi

The past years have seen an explosive development of powerful computers and workstations.
The availability of these computers for the use at home has posed completely new demands on
their software. In addition the computer has become less than previously a limitation on the
possible programs that can be created. The way is open for programs that are increasingly
able to take over small chores which traditionally are handled by the user, and leave the user
free to concentrate on the larger task at hand. Programs can also become more and more user
friendly, efficient to operate and easy to learn. Thus with a task like editing, the computer
can help with many of the tasks of internal organization and checking, leaving the user free to
concentrate on his work as a whole. Speed is also important so that minimum time is spent
waiting for the computer to perform the various operations, and the time gained can be put
to productive work.

A program that is both truly user-friendly and powerful should not only be relatively
easy to learn and to remember, but it should be designed in such a way that a minimum
of the user’s actions are necessary for performing any given task. However even this latter
criterion should not be used blindly. There are some instances when an extra key stroke or
two are called for to guard against accidental loss of work. After all, what is really behind all
requirements of user-friendliness and power is how productive a program will be for the user
in the long run. Ultimately it is not only the time spent learning the program or the time
spent performing individual tasks alone that counts; what really matters is the overall time
required to start a project and get all the way to the end of it.

Hence there are certain protections that ought to be built into a program so that the user
will not be liable to make serious and irreversible mistakes which may cause him to lose large
amounts of work in the process. Thus for an editor, the program should not allow the user to
quit and leave unsaved files behind, without at least asking the user whether these files are
meant to be abandoned. If the program allows such a mistake, it would not be maximizing
the user’s time at all but may cost the user a lot of extra work in spite of how fast individual
tasks are performed.

It was with these thoughts in mind that stedi was created. On the one hand, careful
attention has been paid to speed in every detail of the program so that individual actions can
be performed with maximum efficiency. On the other hand, thoughtful consideration was put
into the design of the keyboard usage and the user interface to minimize mistakes that cannot
be easily reversed. Flexibility was also a major consideration. There are many options open
to the user to determine the default actions of commands, and stedi’s keyboard actions can

7

8 CHAPTER 1. A PREFACE TO STEDI

be completely reprogrammed by the user as desired. In addition a powerful macro language
enables the user to design his own composite commands. These features allow the user to
create an environment tailored to his individual needs and tastes.

Many people work nowadays on more than one computer. This means that they may be
confronted with different systems and different software on each computer. In the worst case
they have to work with completely different editors for their program development. This can
be very annoying. Stedi has been programmed to allow it to run on different computers. It
will run best on the rather small computers with their flexible screen and keyboard control,
but it is also possible to use it with a standard terminal on mainframe computers. It depends
on the flexibility of the terminal and the operating system how well the superior workstation
and micro computer environment can be approached.

Because of these considerations, stedi makes as little use as possible of native operating
systems without suffering an unbearable loss of efficiency. The exception to this rule is the
support of X-windows which has become a de facto standard. Rather than the usual windows,
menus and dialog boxes, stedi makes use of a command line interface that gives the user the
capability of entering very powerful commands with only a few key strokes; this leaves most
of the screen available for displaying text.

1.1 A General Orientation To Stedi

Stedi makes use of keyboard commands and a command line which replaces the normal menu
bar of the native window system. The keyboard commands take care of most of the basic
editing operations, such as the insertion and deletion of text and movements within the file
being edited, while the command line is used for executing more powerful commands. A
number of other operations such as cutting and pasting are programmed into the function
keys and hence can also be performed without using command line commands.

1.1.1 The Keyboard Commands

With this organization, the editor maximizes the use of direct keyboard commands for execut-
ing common functions and makes these commands as intuitive as possible. Where possible,
commands are given mnemonic key assignments and the key layout has been carefully chosen
to minimize the possibility of making an irreversible mistake by accidentally hitting the wrong
key. In addition, care has been taken to make as much use of the keyboard layout as possible
so that learning how to use the editor would be speedy and require little effort. In this regard
function keys have been utilized to perform some of the most frequently used commands, and
whenever possible specific keys such as <insert>, <help> and <undo> have been given their
intuitive meanings.

1.1.2 The Command-Line

The normal menu bar that is provided by many systems has been replaced by a command line
which appears at the bottom of the screen and which serves both as a source of information
about the current status of the editor settings as well as a means for entering commands with
key strokes. Whenever the <escape> key is pressed, the cursor moves to the command line
where the commands are then entered. For example, this is the method for searching and
replacing text strings. The command line also serves as the medium of communication from

1.1. A GENERAL ORIENTATION TO STEDI 9

the editor to the user - all warnings, error messages and other helpful messages indicating
what the editor is doing at any given time are printed there. Another function of the command
line is to serve as a status line to remind the user of the status of the various settings of the
option flags.

1.1.3 Advanced Features

Stedi has a number of advanced features which make it one of the more powerful editors in
existence today. A rich number of options exist for creating one’s own personal environment
while using the editor. These are stored if desired in a file which can be read at startup
to recreate the environment each time the editor is used. Stedi also contains a very flexible
buffer system with up to ten different buffers available for editing purposes, and a number
of commands which are not normally found in other editors but which can be invaluable to
programmers. In addition, there are ten ‘learn buffers’ which can remember up to 100 key
strokes each for replaying, and the keyboard can be completely reconfigured so that a key can
perform multiple actions if desired. Macro’s can be created as text files and executed either
from memory or from file. The ‘folds’ feature allows the user to organize his file according to
segments which can selectively be displayed or hidden for editing purposes. The language for
its regular expressions that can be used to define search patterns is very extensive.

1.1.4 The Manual

The first chapter of the manual, entitled ‘Getting Acquainted’, is an overview of the editor
and provides a tour through the basics of using the program. It serves both as a tutorial
and as an introduction to some of the advanced features of the editor. Next come chapters,
arranged topically, which treat the various features of the editor in detail. A list of error
messages is included with explanations. Finally there is an index.

It is not necessary to read the entire manual prior to using stedi because many of the
editor’s commands do exactly what one might expect them to do. For some users, a cursory
glance through the chapters on various commands may suffice to get started. Alternatively,
a reading of the first chapter of the manual should be sufficient to get an overview of the
basic features of the editor. However, for greater versatility and more exhaustive use of the
advanced features that set this editor apart from others, a thorough reading of the manual is
recommended.

1.1.5 A note on key notation

Before ending this section, a few words are in order about the notation used in the manual
to refer to the keys of the keyboard. All standard keys are referred to by the symbols which
appear on them. For example, in referring to the T key or the $ key, the use of the Shift
key is implied in the latter but not in the former. A number of keys may be labeled with
words such as ‘Help’ and ‘Return’. These keys will be referred to by enclosing the labels (or
obvious short forms) in <>, such as <Help>, <Return>, <Esc>, etc. Among these keys are also
some which can be used in combination with others to create a greater range of possible key
commands. Such keys are the <Control> key, the <Alternate> key and the <Shift> key. When
these keys are used in combination with others, the notation Ctrl-A, Alt-B, and Shift-C, etc.
will generally be used. The notation sh-F1 may sometimes be used as an abbreviation of

10 CHAPTER 1. A PREFACE TO STEDI

Shift-F1. The arrow keys will generally be spelled out, for example Shift-left-arrow or Shift-
down-arrow, etc. Lastly, it should be mentioned that the keys of the numerical key pad to
the right of the keyboard are not used at all except when they are equivalent to the normal
keyboard keys, or when they are used in key redefinitions; also, the <Clr/Home> key is mostly
used in a way related to the <Home> designation rather than in any capacity related to the
word ‘clear’. Hence this key will be referred to as <Home> instead.

Chapter 2

Getting acquainted

Nearly every programmer has at one time or another gone through the exercise of writing a
simple “Hello World” program in order to get acquainted with the main steps of using an
unfamiliar compiler. This section is meant as a “Hello stedi” session in a similar sense. We
will enter the editor, try out some of the major commands and explore the basic features of
the program as part of the process of getting acquainted. After completing the exercise, the
beginner should be able to create or edit programs with some confidence. The more detailed
and advanced sections of the manual can then be read as needed.

2.1 Running the editor

If you are working with a color monitor, before starting the editor, you should set your screen
resolution to medium. This is because the editor needs medium or high resolution for all its
features to work properly.

2.1.1 Starting up the editor

If you are working from a shell, you need only type ‘stedi’ or its alias, provided a proper
environment has been established.

Once the editor is started in one of these ways, you will be greeted by the GEM file
selector box which allows a file to be chosen for editing. For now we will define a new file
called ‘TEST’:

• Type ‘TEST’ and press the <return> key.

This results in a blank screen except for the command line in contrasting color at the
bottom of the screen. The various characters which appear on the command line are different
indicators of the current status of the editor. These are fully explained in the chapter on ‘the
status bar’, later in the manual. A few will be explained here as we proceed.

For now, note that the name that we have chosen for our file, ‘TEST’, appears at the right
end of the command line, and toward the left-center of the command line the message ‘New
file’ is displayed. This is because the editor was unable to find an existing file called ‘TEST’
and therefore assumes that we wish to create a new file.

A point concerning the use of the command line is illustrated here: the command line
is sometimes used as a message line through which the editor communicates error messages

11

12 CHAPTER 2. GETTING ACQUAINTED

or other pertinent information to the user. Since it also provides a continuous monitor on the
status of the editor, it is wise to keep an eye on the command line!

Summary of the uses of the command line:

• as a message line for messages to the user about editor actions

• as a status bar to monitor the status of editor options

• as a command line for entering commands

Because of the multi-role the command line plays, when convenient it will sometimes
also be referred to as the message line, or the status bar

You may wish to know that stedi contains a help facility which can be obtained by pressing
the <Help> key (on computers that don’t have a <Help> key the key marked F12 should fulfil
this function). This action reads the file ‘stedi.hlp’ into one of stedi’s buffers for editing files
(generally buffer 8 - buffers will be explained later) if the file can be found. This file contains
a brief but exhaustive list of all stedi’s commands. Try this now:

• Press the <Help> key (or F12)

The help file will be at your disposal at any time throughout this tutorial should you desire
to look at it, provided that you have copied it to the directory from which you are running
stedi. Pressing the <Help> key a second time will put you back in the buffer in which you
were when the help feature was first invoked. So to return to buffer 1:

• Press the <Help> key (or F12)

Now that the new file called ‘TEST’ has been defined, you can begin typing:

• type the words ‘Hello stedi’.

The words typed will appear on the screen and this simple action has created your first file.
Before going any further, let us see how to exit from the editor. To get out without saving
anything:

• press shift-F10 (The combination of a Shift key and the F10 key)

Whenever a file has been altered during an editing session and you issue this command, you
will be prompted by a message in the command line asking if you would like to quit anyway
without saving the file(s). The options allowed for response to this query are ‘y’ or ‘n’ (yes
or no).

Since by typing the words ‘Hello stedi’ you have altered the file ‘TEST’, this message
should appear in the command line. For now there is no need to save the file, so

• type ‘y’ (yes)

This gets you out of the editor without saving anything, and you can start over again. So any
time a problem occurs while reading this overview, you can always get back to square one by
exiting with the use of the shift-F10 command.

2.2. CREATING A FILE 13

2.2 Creating a file

Now start the editor again as in the previous section, but this time enter the file name
‘HELLO.C’ instead of ‘TEST’ when the file selector appears. In this section we will create
our first program and learn how to edit it.

As you begin, your cursor should be in the upper left hand corner of the screen. Now type
in the following famous little ‘Hello World’ program(using the C programming language):

#include <stdio.h>

main()

{

printf("Hello World\n");

}

When you reach the end of a line, simply press <Return> to create a new one. If you make a
mistake, you can use the backspace key to correct it.

While you are typing, note that as you add new lines, the number on the left end of the
command line increases accordingly. This indicates the line number of the line being edited.

But notice also that when you are at the end of the file and you hit <Return>, the line
number does not increase. Only after you add a character to the new line is the line number
incremented. In this way no unnecessary lines are added to the program. A line doesn’t exist
until it contains characters! Lines that can be ‘seen’ on the screen but contain no characters
are called virtual lines.

Lines may be up to 255 characters long. The total length of a file can be up to 99,999
lines, if memory allows. (See the section on ‘Memory Usage’ for more information.)
In practice, this means that in most circumstances rather large files can be edited
without problem.

You may also have noticed that the message ‘New File’ disappeared as soon as the line number
changed to 2. Whenever a message is displayed in the message bar, as a general rule it will
remain until the cursor changes lines or until the space where the message is displayed is
required for another purpose.

2.3 Moving around

Now we will practice moving the cursor around in a file. For greatest flexibility, stedi provides
several options for doing this. You may use the arrow keys, or command line commands.

2.3.1 Using the arrow keys

First practice moving the cursor around in the file with the arrow keys.

• Use the up and down arrow keys to move the cursor up and down in the file.

14 CHAPTER 2. GETTING ACQUAINTED

Keeping an eye on the command line, you will notice that the line number at the left end of
the bar changes according to which line the cursor is in. Notice also that when the cursor is
moved beyond the end of the program into ‘virtual’ territory, the line number fails to increase.
Thus you will never see a line number recorded on the command line that is not an actual
line of text in the program.

Now try moving the cursor to the right with the right arrow key.

• Hold down the right arrow key until the cursor goes ‘past’ the edge of the screen.
Keep holding it down until the cursor comes to rest (you will need some patience).

As the cursor moves to the right edge of the screen, the screen image shifts 20 columns to the
left to show columns 21 through 100, and then again to show columns 41 to 120 and so on
until the cursor comes to rest in column 255. Since nothing has been typed in these columns,
the screen appears blank yet the cursor is free to move into such virtual territory.

This exercise illustrates an important point:

The cursor in stedi is tied to the screen, and not to the text as with most editors.
Thus the cursor can be moved around on the screen, quite independently of the text
being edited.

To move the cursor from column 255 back to the beginning of the line:

• Press the Shift-left-arrow key (combination <Shift> and left arrow keys)

The Shift-left-arrow and Shift-right-arrow combinations are for moving the cursor to the
beginning and the end of a line respectively. At the end of a line, the cursor comes to rest
after the last character in the line.

• Move the cursor to line 5 with the up or down arrow key

• Press the Shift-right-arrow key

This latter command should result in the cursor resting just after the semicolon of line 5 in
your program. This command is useful if you want to append something to the end of a line.
You can simply press Shift-right-arrow, and then start typing.

In contrast, to these combination shift-arrow commands which move the cursor to the be-
ginning and end of lines, the Ctrl-left-arrow and Ctrl-right-arrow keys move the screen
image 20 spaces in the opposite direction to the arrow, without moving the cursor. Due
to the resultant shift of the screen, the cursor then appears 20 columns to the left or right
respectively of where it had been.

Another frequently used set of commands are the <Home> and Shift-<Home> com-
mands. These move the cursor to the beginning and the end of the file respectively. Try
this:

• Press Shift-<Home>

• Press <Home>

2.3. MOVING AROUND 15

In a file only 6 lines long the action of these keys is of course not very dramatic, but for long
files these commands can be invaluable. You may want try them out on the help file:

• Press <Help>

• Press Shift-<Home>

• Press <Home>

The help file can also be used to illustrate the Shift-up-arrow and Shift-down-arrow commands
which scroll the file up or down by 20 lines. Try this:

• Press Shift-down-arrow

• Press Shift-up-arrow

These commands can be used for scrolling through a file a ‘page’ at a time. Now let’s return
to the ‘Hello World’ program:

• Press <Help>

Here is a summary of the various key commands available for moving around in a file:

Up-arrow move the cursor up one line

Down-arrow move the cursor down one line

Shift-up-arrow move the text up by 20 lines

Shift-down-arrow ‘page’ the text down by 20 lines (assuming a standard font size; see the
section on ’fonts’ for details).

Ctrl-down-arrow move the text up a line at a time without altering the position of the
cursor.

Ctrl-up-arrow move the text down a line at a time without altering the position of the
cursor.

<Home> position the cursor at the first character of the file

Shift-<Home> move the cursor to the end of the file

Ctrl-<Home> moves the cursor to the top left hand corner of the screen

Shift-Ctrl-<Home> moves the cursor to the bottom left corner of the screen.

Ctrl-W move one word forward.

Ctrl-Q move one word back.

Ctrl-X delete a word forward.

Ctrl-Z delete a word backward.

16 CHAPTER 2. GETTING ACQUAINTED

2.3.2 Using the command line Commands

A particularly easy way to move the cursor is accomplished by using the command line.
Since you have not learned so far how to issue command line commands, we will briefly outline
here the general format of how it is done.

The general procedure for issuing a command line command is very straightforward. We
summarize it below:

• Press <Esc> to move the cursor down to the command line

• Enter the command

• Press <Return> to execute the command

To return to our demonstration of moving the cursor by this method, note that we can move
the cursor to any line desired simply by entering the line number as a command:

• Press <Esc> to bring the cursor to the command line

• Type the number 2

• Press <Return>

Now the cursor will position itself at the beginning of line 2. Programmers will find this
feature very useful in debugging programs, since the error message of a compiler usually
indicates in which line the error is located.

Column commands can also be entered in this way. To tell the cursor to go to a specific
row and column, type the row number and then the column number with a comma in
between:

• Press <Esc>

• Type ‘2,6’

• Press <Return>

This sequence moves the cursor to line 2 and column 6. Notice that with regard to the
column number, the command is able to place the cursor in virtual territory. This is
not true for line numbers. To test this, try issuing a command to move the cursor to line 12.

If you omit the line number entirely and just type, for example, the command ‘,6’, the
cursor will be placed in column 6 of whatever row it finds itself.

If you want to find out the location of the cursor, follow the same procedure using the ‘=’
command.

• Press <Esc>

• Type ‘=’

• Press <Return>

2.4. OPTIONS AND THE STATUS BAR 17

The column the cursor is in will be displayed just after the ‘:’ symbol in the command line,
followed by information about the position of the cursor relative to the end of the file as well
as its precise location on the screen. For example, in our case, with the cursor on line 2 and
in column 6, something like the following will appear on the command line (the number of
bytes varies depending on how many tabs and spaces you may have typed):

2 : 6 bytes=25/78 screen=2,6 IA∞NY B1·HELLO.C

Now let’s make use of the ’=’ command to learn more about how virtual space is counted.

• move the cursor around on the screen, occasionally giving the ‘=’ command to see where
the cursor is.

You will see that although virtual lines are not counted in the information displayed, vir-
tual spaces are included in the column count. This combination is most natural for
programming since one often needs to know the line number of a particular line; at the same
time, certain languages (notably Fortran) are column-dependent, hence one must know which
column the cursor is in and whether it is in virtual territory or not.

Command line commands for cursor movement

Action Desired Command to Use

Move cursor to line desired Type line #

Move cursor to row and column Row #,Column #

Move cursor to column on the ,Column #
same row

Find location of cursor Type =

2.4 Options and the status bar

Before demonstrating the procedures for basic editing, let us discover how to set the various
options for the status of the editor which are given in the status bar. This section is not
meant to be exhaustive, but is designed only to give you a sense of how the editor’s settings
can be controlled.

2.4.1 Choosing Screen Colors

If you are using a monochrome monitor, there are only two choices: black-on-white or white-
on-black. You can switch between these two modes using Alt-C as a toggle command.

• Press Alt-C to see this change

With a color monitor, Alt-C exchanges the colors 0 and 3, and the colors 1 and 2 of the
palette. If you are not happy with these colors, you can exit the editor and alter the palette
before starting again.

This exercise is an example of the many ‘toggle commands’ given from the keyboard which
allow you to set various options concerning the state of the editor.

18 CHAPTER 2. GETTING ACQUAINTED

2.4.2 Insert and Overwrite mode

Let us begin by examining the symbols on the right end of the status/command line.

1 : IA∞ NY B1·HELLO.C

You will see a string of letters and symbols, all of which function as indicators of the various
status options of the editor.

The first letter on the left of the string is either an ‘I’ or an ‘O’ indicating that the editor
is in ‘insert’ or ‘overstrike’ mode respectively. This option is exercised with an ‘Alt-I’ and
an ‘Alt-O’ command.

• Press Alt-O and then Alt-I

Watch the command line while doing this and you will see the ‘I’ change to an ‘O’ and
then back to an ‘I’. (We will see in the next section what effect this has on entering text.)

A status character that should also be mentioned is the eighth character from the left
starting with the character for the insert/overstrike mode. This character is always a single
digit from 0 to 9 that indicates which buffer is the current one. Presently you should a ‘1’ in
this position. Stedi has 8 buffers numbered from 1 to 8 for text editing, and two yank buffers
numbered 9 and 0 for cut and paste operations. You can switch to a desired buffer with the
Alt-# command where # is a number between 0 and 9 inclusive. For example,

• Press Alt-8

The ‘1’ should have changed to an ‘8’. If you have used the <Help> facility explained
earlier you should find the help file still in this buffer. Note also that the character just before
the ‘8’ in the status bar has changed to a ‘V’. This stands for ‘View rights only’ and means
that if you make changes in the help file and try to save it, stedi won’t let you. This feature
is explained more fully in the chapter on Reading, Writing and Printing later in the manual.
Now return to the ‘Hello World’ program:

• Press Alt-1

We next give a brief summary of all the status characters, from left to right starting
with the ‘I’ indicator. (For full details see the section on ‘The status bar and editor options’
elsewhere in this manual.) Possible status character settings are shown on the next page.

2.5. BASIC EDITING 19

Symbol Description of mode Toggle Command

I/O Insert or Alt-I and
Overwrite mode Alt-O
(I = insert mode)
(O = overwrite mode)

A/U/R/P Atari/Unix/Raw/ Alt-A, Alt-U,
Printer mode Alt-R and Alt-P

∞/≫/≪ Search/Replace mode Alt-D, Alt-E
/>/< > = forward

< = reverse
≫ = forward multiple
≪ = reverse multiple
∞ = circular

N/S Case Sensitivity Alt-N and Alt-S
N = Not Sensitive
S = Sensitive

Y/y Yank buffer in use: Alt-Y
Y,y = buffer 9,0

/C Caps lock <Caps Lock> key

V/B/b/† View only mode Alt-V, Ctrl-V
Backup options Alt-B
B = backup made
b = invisible
backup made
† = no backup made.

1/2/.../0 Buffer in use (1-0 Each of the 10 al-
where 0 stands for lowed buffers is
10) switched to by the

command Alt-#
where # is a number

· ‘Dirty Bit’ visible
if file was altered

2.5 Basic editing

To illustrate some basic points of editing, let us change the word ‘World’ in our program to
the word ‘stedi’. There are several ways to do this. We outline below three methods which
can be used and which allow us to explore a variety of techniques in editing. These methods
are:

1. Using the character delete keys

2. the Search and Overwrite routine

3. the Search and Replace routine

20 CHAPTER 2. GETTING ACQUAINTED

2.5.1 Using the character delete keys

Pressing the <Backspace> key once deletes the character just before the cursor and moves
the cursor backward one space. Pressing the <Delete> key once deletes the character under
the cursor.

• place the cursor over the letter ‘r’ in word ’World’ to be deleted

• delete the the first two characters of the word ‘World’ by pressing the <Backspace>
key twice.

• delete the last three characters of ‘World’ by pressing the <Delete> key three times.

Next make sure the editor is in ‘insert’ mode (check the status bar to make sure that the
first status character is ‘I’. If not press Alt-I). Then type in the new word to replace the word
deleted.

• Type the word ‘stedi’.

Our ‘Hello World’ program should has now have been transformed to a ‘Hello stedi’ program!
Next let’s use another procedure to change it back to a ‘Hello World’ program.

2.5.2 Using the Search and Overwrite Routine

Next we will change the program back to a ‘Hello World’ program using the search option
and overwrite mode. In this case, we tell the editor to search for a word and overwrite this
word with another. Since the search option is issued from the command line, let us recall the
general method of entering such commands. To enter command line commands:

1. First press the <Esc> key to move the cursor to the command line.

2. Then type the command in

3. Finally press <return> to execute the command

Let us try out these steps:

• Press the <Esc> key

Now the cursor has moved to the command line. To issue a search command, follow this
general formula: type a slash / followed by the string to be searched for and then possibly
another slash with further options if desired. (Possible options include searching in a specified
range, in specified columns, and overriding the default search direction. For full information,
see the section on ‘Search and Replace’).

• Type the string ‘/stedi/0’ in the command line

• Press <Return>

2.5. BASIC EDITING 21

The editor performs a search for the word ‘stedi’ and positions the cursor over the first letter
of (the first occurrence of) that string. The ‘0’ option indicates that the search should be
done in circular mode. In this mode, the editor begins the search at the location of the cursor
wherever it is in the file and moves forward towards the end of the file. If the string is not
found when the cursor reaches the end of the file, then the search carries over to the beginning
of the file and continues forward. If the string is still not found, the search stops when the
cursor gets back to its original position. In our case the string ‘stedi’ should definitely be
found!

Note also that you have a choice between making your search case-sensitive or not. The
default mode is indicated by the fourth status character in the status bar (an ‘S’ or an ‘N’),
and there is an option for the search command to override this if desired. Thus if the fourth
status character is an ‘N’, you may equally well enter the command ‘/stedi/0’ and the same
result would have been achieved.

To overwrite the word ‘stedi’ with ‘World’, first put the editor in overstrike mode:

• Press Alt-O

• Then type the string ‘World’.

2.5.3 Using the Search and Replace Routine

Finally we change the program back to a ‘Hello stedi’ program through the search and
replace command. This last method is perhaps the simplest method of the three. First we
will investigate another mode for searching: the forward search. In forward search mode
the search moves forward from the location of the cursor to the end of the file and does not
return to the beginning of the file as in a circular search. So before the search begins, we will
see that the cursor is placed earlier in the file than the word to be searched for by pressing
the <Home> key.

Then we will be ready to use the search and replace command issued from the com-
mand line. The general formula for replacing one a string ‘string1’ by another ‘string2’ is the
following:

/string1/=/string2/options

The word ‘options’ indicates that certain options are allowed at the end of the command.
For example, there is an associated ‘veto’ option which tells the editor to pause after it has
found the word in its search and ask whether the word should be replaced. You can set this
option by adding a ‘v’ or ‘V’ at the end of the command. There is also the search mode option
as mentioned for simple search commands. The forward search is indicated by the character
‘>’. To effect the desired search:

• Press <Home>

• Press the <Esc> key (to move to the command line)

• Type the string ‘/World/=/stedi/v>’

• Hit <Return>.

22 CHAPTER 2. GETTING ACQUAINTED

After executing this command, the cursor will position itself on the ‘W’ of ‘World’ and a
query asking whether the word should be changed or not will appear in the command line.
In answer to the query,

• Press ‘y’ (for yes).

The editor will make the replacement and you have once again changed the word ‘World’ to
the word ‘stedi’.

2.5.4 The Alt-T Toggle and Virtual Space

Before going on to the next section on reading, writing and printing files, let’s learn a little
more about virtual space and investigate a useful toggle command related to it. If you have
not changed anything since replacing ‘World’ with ‘stedi’, the cursor should still be in line 5.

• Press Shift-right-arrow to place the cursor at the end of line 5.

• Press the up-arrow once to move the cursor to line 4.

With the second action, the cursor has moved into virtual territory as there are no charac-
ters in column 33 of line 4. But since the cursor is tied to the screen, it does not jump back
to column 2 as it might in an editor which only allows the cursor to move where there are
actual characters.

Now the natural question arises, how does one know that there aren’t blanks hidden in
the virtual territory? Here is a command to answer that question.

• Press Alt-T

This command tells you exactly where your real spaces are. It puts littledots wherever there
are actual blanks in the text, but leaves blank any virtual blanks. (Tabs can also be seen in
this mode - they are represented asthe character >.)

So now your program should look like this:

#include·<stdio.h>

main()

{
·······printf("Hello stedi"\n);

}

The next logical question one might ask is this: what happens if you type a character some-
where out in the middle of the virtual territory (where the cursor is now)? After all, a line of
a program is only defined by the actual characters that are in it. The answer is quite simple.
The editor fills lines in with blanks where necessary in order to maintain a completely intu-
itive connection between the position of the cursor on the screen and the file being visually
represented.

To see this at work, try the following. With the cursor in the virtual territory of line 4
and the Alt-T option on,

• Press the space bar

2.5. BASIC EDITING 23

You will notice that the whole line is filled in with dots (blanks) from the right curly bracket
‘}’ to the cursor and the program should now look like this:

#include·<stdio.h>

main()

{································

·······printf("Hello stedi"\n);

}

If you are worried about having extra blanks at the ends of lines, there is a command for
stripping them off. (The command also removes unnecessary blanks which occur in the field
of a tab.)

This command, which is called ‘tab trim’ is performed as follows:

• Press <Esc>

• Press <Tab>

• Press the character ‘t’

• Press <Return>

For full details on this and related commands, see the chapter on ‘Tabs’.

Finally we conclude this section with a brief summary of the most important editing com-
mands not yet covered:

Insert and Delete Commands

Command Action

Ctrl-<Delete> deletes the line the cursor is in

Ctrl-D deletes everything in the current
line to the right of the cursor.

<Insert> inserts a line above the cursor.

Shift-<Insert> inserts a line below the cursor.

In both instances of insert, the cursor will be repositioned at the beginning of the new
line.

The editor also contains an undo function governed by the <Undo> key. This key recovers
certain types of deletions which have been made.

The Undo key

• recovers several adjacent lines which have been deleted using the Ctrl-<Delete>
option.

• recovers a number of character deletions all in the same line

• reverses the effect of Ctrl-D command.

(For further capabilities of the <Undo> key see the section on that subject in this manual)

24 CHAPTER 2. GETTING ACQUAINTED

2.6 Reading, writing, printing

Now that you have created your first program, it is time to learn how to write it out to disk.
At the beginning of this introduction, you were shown how to enter a file for editing after
starting the editor. (The file selector box appears from which you choose a file to edit). We
have also told you how to exit the editor without saving anything (shift-F10). This section
will show you the various possibilities for the input and output of files in the editor.

2.6.1 Writing out or Saving files

There are several options for saving your program to the disk. The most straightforward way
is to use the function keys. The options are set out in the following table:

Save and Write commands

Command Action

F9 save the file under its own name

F10* save the file under its own name
and then exit the program

sh-F8 save (or write) the file under
a new name

sh-F10 exit the program

*This command which is a combination of the save command (F9) and the exit command
(shift-F10) is by far the most commonly used method for most programmers.

To Save the File Under Its Own Name:

F9 With this command, you have various options about what kind of backup file the editor
will make. You can have a normal backup file made, an invisible backup (not
recognized by the desktop but nevertheless present) or no backup at all.

The normal backup file stedi saves the original version file being edited but changes
its extension to ‘BAK’ before saving the edited version.

*

The invisible backup file * The original file is also saved with the extension ‘BAK’
but the file * is marked as invisible. This is a useful option if you are working * from
a hard disk (so disk space is not an issue) and you don’t want to * clutter up the
screen with too many files. Such files can * nevertheless be seen and manipulated
using the GPshell shell program * although they are invisible to the desktop.

No backup A somewhat more risky option but sometimes necessary if little disk space
is available.

The Alt-B command cyclically toggles through the three backup options, and the option
choice is recorded on the status bar with a ‘B’ (normal backup), ‘b’ (invisible backup)
or ‘†’ (no backup). The F9 command is not allowed if you have created a new file to
which you have not given a name. In that case, you must assign a name to the file when
you save it by using the shift-F8 command.

2.6. READING, WRITING, PRINTING 25

To Save your File to Disk and Quit:

F10 This command is the combination of F9 (Save) and shift-F10 (Quit). If any of the
buffers contain files that have been changed, you will be queried as to whether you want
to quit and leave them unsaved. In this way, stedi protects against accidentally exiting
without saving valuable work. The buffers containing files which have not been saved
since alteration will be enumerated in the query. A simple ‘yes’ answer to the query
allows you to leave the editor without saving the files. An answer of ‘no’ lets you remain
in the editor so that you can save the work before quitting.

To Write a File to Disk Under a Different Name:

shift-F8 This command allows you to save the file under a new name. When the command
is given, you will be asked for a name under which to save the file. You may type in a
full path name (disk and folder names) as well as the file name. For example, suppose
you want to save your program ‘Hello stedi’ under the name ‘hstedi.c’ and wanted to
put it in a folder called ‘foo’ on a disk in disk drive A. This can be accomplished by
typing the following string when prompted:

A:\foo\hstedi.c

stedi also allows somewhat more flexibility in the format of the path name. For instance,
you may replace any backslashes with Unix style slashes and stedi will recognize the
path. See the chapter on reading, writing and printing for details on path names.

To Leave the Program Without Saving Anything:

shift-F10 This command is used when you do not wish to save the work of an editing session.
If you have already saved everything or you have not made any changes, then F10 is
equivalent to this command.

Stedi also offers command line commands equivalent to some of the above keyboard
commands. These are:

s - Save. Equivalent to F9.

q - Quit. Equivalent to shift-F10.

sq - Save and Quit. Equivalent to F10 (F9 plus shift-F10).

File Output Format

Several options concerning carriage returns, line feeds, blanks and tabs can be chosen to
govern the format in which a file is written out or saved. These options go under the names
Atari mode, Unix mode, Raw mode and Print mode. There is a character on the
right side of the status bar after the ‘I/O’ which is either ‘A’, ‘U’, ‘R’ or ‘P’ respectively
indicating which of the four modes the editor is currently set. The four modes are as described
below:

Atari Mode (Set by Alt-A). This mode writes out the file with every line followed by a
carriage return and a line feed, the standard convention for storing ASCII files on the
Atari ST, MS-DOS and Windows.

26 CHAPTER 2. GETTING ACQUAINTED

UNIX Mode (Set by Alt-U). This mode writes out the file with each line followed only by
a line feed. This is the Unix standard for file storage and is useful if you will be working
in conjunction with a Unix machine.

Raw Mode (Set by Alt-R). In Raw mode the file is written ‘as is’ with no line feeds or
carriage returns at all. This mode can be used for limited editing of binary files if
necessary. Note that arbitrary hexadecimal characters can be introduced into a file
being edited via the Ctrl-H command. For full information on these features, see the
chapter on the Hex mode later in this manual.

Print Mode (Set by Alt-P). In this mode all tabs are expanded into blanks, while main-
taining the same visual format of the file. This mode is useful for preparing a file to be
printed out on a line printer, or in the case that the file is to be compiled by a compiler
that does not allow tabs in a program. Note: take into account that somewhat more
space on the disk will be required for this mode.

2.6.2 Reading In Files

A way to read a file is with the F8 command.

To read in a file:

F8 When this command is given, the editor will ask for a file name to be read in. Here also
you may give a file name with full path name. The file is read into the current buffer
beginning at the location of the cursor.

When starting up the editor from some shell programs you may pass up to eight files to
the editor via a command tail. For example, if you type

stedi hello.c bye.c sub.c sort.c

then when you start the editor, the programs hello.c through sort.c will be loaded in buffers
1 through 4 respectively.

2.6.3 Printing

Stedi has the capability of sending a file directly to a printer for printing without formatting
or with limited formatting. The commands for printing are executed from the command line
as follows:

P Print. This command simply prints the file as it appears on the screen. It is meant as a
draft print option.

PF Print formatted. With this command the file is sent to the printer with a fixed number
of lines per page and with page numbers at the bottom. You can also give an offset of a
number of spaces which will be included at the beginning of every line as a left margin
setting.

To set the format options for the PF command use:

2.7. CUTTING, COPYING, PASTING 27

PP n1,n2 where n1 is the number of lines per page to be sent to the printer and n2 is
the number of spaces to be used as a left margin offset. If the comma and the second
number are omitted, the default value is zero left margin. If both arguments n1 and
n2 are omitted, the PP command informs you of the current settings for the format
parameters.

2.7 Cutting, copying, pasting

An important part of any editor is the capability of loading multiple files simultaneously
with the possibility of easily manipulating the files, removing parts of one to add them to
another file as desired. Such operations are generally called cutting and pasting operations
in obvious analogy with what can be done when working with paper. In some editors (and
sometimes here) the cutting operation is referred to as yanking. As previously mentioned,
stedi provides ten different buffers for such flexibility. Eight of these can be freely loaded
with files for editing, cutting and pasting. The ninth and tenth buffers are used as cut
and paste buffers, also called the yank buffers. You can move between buffers with the
Alt-# command where # is a number from 0 to 9 (0 standing for 10) indicating the buffer
to which you want to move.

For example, if you are editing a program and a couple of subroutines, you can put them
in buffers 1, 2 and 3. Suppose you want to load a fourth program in order to copy a few lines
of code from it into the program you are currently editing in buffer 1, you can load this fourth
program in buffer 4 and copy the lines desired into the ‘paste’ buffer (buffer nine by default
or buffer ten) using the copy command. After this, these lines from the paste buffer can be
copied to the desired place in your program in buffer 1 using the paste command. The copy
and paste commands are easily accessed through the function keys.

The number and size of the files you can keep in the buffers at any given time is only
limited by the amount of memory available in the computer. It makes no difference how
many of the buffers are used; only the total memory matters. In this section you will learn
how to use the yank, copy and paste commands and how to move back and forth among the
buffers. In addition, cutting, copying and pasting in relation to specific columns will also be
illustrated.

The Marked Range
First let us introduce the concept of a ‘marked range’ which is useful for various purposes.

A mark can be set in a file using the F1 key.

• Press the F1 key

The command line then announces that a mark has been set. Now if you move the cursor
away from the mark, you can return to the mark by the Shift-F2 key. In addition the F2
key exchanges the cursor with the mark, i.e. after pressing this key, the cursor will move to
where the mark was and a mark will be left where the cursor was. This allows you to move
the cursor easily to the mark and back again with the same command.

• Move the cursor away from the mark with the arrow keys.

• Press the F2 key

28 CHAPTER 2. GETTING ACQUAINTED

If you do this repeatedly, the cursor will jump back and forth between the positions of the
cursor and the mark. These are the two boundaries of a marked range.

A marked range is the range of text between the cursor and the mark. The range does
not depend on the order of the mark and the cursor but starts with the character under the
opening cursor/mark and ends with the character just before the second mark/cursor.

The marked range is important because all cut and copy actions are defined by this range
(among other things). The cut (yank) command and the copy command of a marked
range are executed by the keys F3 and F4 respectively. Now for example, to mark the range
in which the word ‘printf’ is:

• Move the cursor to the ‘p’ in ‘printf’

• Press F1 to set a mark.

• Move the cursor to the semicolon ‘;’ at the end of the line.

The marked ranged is then between the ‘p’ (inclusive) and the semicolon (exclusive). Now to
cut the range:

• press F3

The characters inside the marked range should now disappear from the text. They can
immediately be restored by pressing F5, the paste command.

• press F5

What we have demonstrated is a general feature of the cut and paste commands. Although
the <Undo> key cannot be used with cut and paste commands, any cut action can be reversed
by performing a paste command immediately afterwards. A paste can also be reversed by a
cut immediately afterwards. These reversals are possible because after a cut the cursor and
mark are left in the proper position to undo the operation. This serves as an ‘undo’ feature
for cut and paste operations,.

Now let us copy the ‘Hello stedi’ program from its current place in buffer 1 to buffer 2.

Step 1: First we use the copy command to copy the program.

• Press <Home> to move the cursor to the top of the file.

• Press F1 to put a mark there.

• Press Shift-<Home> to position the cursor at the end of the file.

• Press F4 to copy the contents of the marked range (the whole program) to the paste
buffer (buffer 9)

Step 2: Next you must switch from buffer 1 to buffer 2. (Recall that Alt-# is used to switch
among the 10 buffers where # is a number between 0 and 9, 0 standing for 10.)

• Press Alt-2 to change to buffer 2

2.7. CUTTING, COPYING, PASTING 29

Since you have not put anything into buffer 2 yet, you will see a blank screen.

Step 3: Now you can paste the program into buffer 2.

• Press F5 to paste the program from the paste buffer into buffer 2.

After using a paste buffer, a copy of what was cut, copied or pasted remains in the paste
buffer. To see this,

• Press Alt-9 to move to the paste buffer.

You will see here a copy of the ‘Hello stedi’ program left after the above operation. If desired,
this bit of text is available for repeated pasting as long as it remains in the paste buffer. It
will stay there until another cut or copy operation is performed which requires the use of that
buffer.

One final point about paste buffers: Remember that buffer 9 and 10 can be used as
regular buffers for editing purposes. If you are using either buffer 9 or 10 as a regular buffer,
then the editor automatically sets the other buffer as the default for cutting and pasting
purposes. So if you move to buffer 9, the default paste buffer becomes buffer 10. You can see
this change by watching the ‘Y’ in the message bar. An upper case ‘Y’ indicates that 9 is the
current paste buffer and a lower case ‘y’ indicates that it is buffer 10.

For editing in one of the buffers 1 through 8, you can set the paste buffer to use by pressing
Ctrl-Y which toggles between the buffers 9 and 10.

The ‘block’ cut and paste

The possibility exists as well for a ‘block’ cut and paste which is restricted to specific
columns which are also specified by the position of the mark and of the cursor. The block
yank, copy and paste operations are performed with the use of the function keys shift-F3,
shift-F4 and shift-F5 instead of F3, F4 and F5, the normal yank, copy and paste command
keys.

With these commands, only the box of rows and columns defined by the mark and cursor
will be cut. It should also be mentioned that although the order of the mark and cursor
doesn’t matter for cutting purposes, an immediate ‘undo’ can only be accomplished if the
cursor occurs first. (If you had set the mark in the first position for cutting and only realize
afterwards that you need to undo the action and paste the column back, you must re-position
the cursor back at the beginning of the original block before you paste).

The ‘Clear Buffer’

One final command associated with buffers is the ‘clear buffer’ command which is shift-
F9. This command simply clears the current buffer. If the contents of the buffer have changed
during the edit session (i.e. the ‘dirty bit’ is on), the programmer will be queried before the
action is taken.

This clearing action can be undone using the <Undo> key. In other words, after you press
shift-F9, the editor puts the contents of the current buffer in a hidden ‘undo’ buffer. Since the
contents of this ‘undo’ buffer will take up space in the computer’s memory, if you are having
memory problems, you may need to press shift-F9 again to clear the ‘undo’ buffer. (What
you are actually doing by this action is copying the contents of the - now empty - current

30 CHAPTER 2. GETTING ACQUAINTED

buffer into it and therefore effectively clearing it.) For details on this and other aspects of
the stedi’s memory usage, see the section on ‘Memory Usage’, in this manual.

Summary of Cut, Copy and Paste Commands

Command Action

F1 Places a Mark at the point of the cursor.

F2 Exchanges the cursor with the mark.

F3 Yank (or Cut) the contents of the marked
range to the current yank buffer. (The
contents are removed from the file being
edited.)

F4 Copy the contents of the marked range to
the current yank buffer. (The contents are
not removed from the file being edited.)

F5 Paste the contents of the current yank
buffer to the position of the cursor.

sh-F1 Delete the mark.

sh-F2 Go to the mark.

sh-F3 Yank a block of text to the current yank
buffer.

sh-F4 Copy a block of text to the current buffer.

sh-F5 Paste a block of text at the current
position of the cursor.

2.8 The folds

‘Folds’ is a feature of stedi which is designed to help in program organization. This feature
allows you to selectively display or hide various segments of a program, and so has similarities
to an outline feature in a word-processor. A large program can be collapsed down to outline
form using ‘folds’, allowing you to see at a glance the full program structure. Then you can
selectively open up areas of the program for local editing. Although it is in principle extremely
simple, it is a feature which can revolutionize your whole approach to programming.

Briefly,a ‘fold’ is defined as the area of a program between two specially formatted lines
that mark the fold boundaries. After creating these fold boundaries, you can ‘open’ or ‘close’ a
fold at will. Closing a fold suppresses the display of text between the fold boundaries. When
a fold is closed, the text within the fold is replaced on the screen by one line that represents
the fold as a whole. When a fold is opened, all lines within the fold boundaries are displayed.

To create a fold you must enter two special format lines, one at the beginning and the
other at end of the section of the program which you desire to include in the fold. The lines
have the same format with one exception as will be shown.

The format for the opening line of a fold is as follows:

• The first three characters may be arbitrary (including tabs).

• The fourth character in the line must be a ‘#’

2.8. THE FOLDS 31

• The fifth character in the line must be a ‘[’

• Following the fifth character comes a label of any length that fits on the line (no line
feeds or carriage returns allowed)

• Finally the label must be terminated by a colon ‘:’

• Any arbitrary characters may follow the ‘:’.

The freedom in specifying the first three characters allows you to declare this line to be
commentary to your compiler, in nearly all programming languages. The label of the fold
cannot contain a colon (‘:’) since the first occurrence of this character will be interpreted as
the end of the label.

The end line of a fold must be identical in every respect to the opening line (including
the label chosen) up to and including the terminating colon (‘:’) with one exception: the
opening bracket ‘[’ must be replaced by a closing bracket ‘]’. The first three characters and
those after the colon may still be chosen arbitrarily and potentially different from those of
the opening fold line.

We can now demonstrate this format by enclosing our ‘Hello stedi’ program in a fold. Go
to the beginning of the program using the <Home> key. Now type the following line:

/* #[Hello {\STEDI} main program: */

Notice that the freedom in the the fold line format has been used to place the string “/*” at
the beginning and “*/” at the end of the line so as to declare this line as commentary to a
C compiler. The same thing can be accomplished in the BASIC programming language for
example with the following line:

REM#[Hello {\STEDI} main program:

where ’REM’ in the first three columns signifies that the line is commentary. For now we will
stick to our C language example. Next go to the end of the program, insert a new line, and
add an end line for the fold:

• Press Shift-<Home>

• Press Shift-<Insert>

• Type in the following:

/* #] Hello {\STEDI} main program: END OF FOLD */

The words ’End Of Fold’ have been added in the closing fold line to illustrate that after the
colon it is not necessary to repeat what is included in the opening fold line. So finally your
program should look something like this:

*

/ #[Hello {\STEDI} main program: */

*

*#include <stdio.h>

32 CHAPTER 2. GETTING ACQUAINTED

*

*main()

*{

* printf("Hello STEDI"\n);

*}

*

/ #] Hello STEDI main program: END OF FOLD */

*

/* #[Hello stedi main program: */

#include <stdio.h>

main()

{

printf("Hello stedi"\n);

}

/* #] Hello stedi main program: END OF FOLD */

Now the fun begins. You can open and close the fold using the command line commands
or the function keys. We will first illustrate the options for opening and closing with the
following table of function keys:

Fold commands

Command Action

F6 close the fold containing the cursor.

F7 open the fold containing the cursor.

sh-F6 close all folds in the file.

sh-F7 open all folds in the file.

In order to try these options, make sure the cursor is somewhere between or on the fold
boundaries. Now

• press F6 to close the fold.

If you have not made any typing mistakes in the opening and closing fold lines, the only line
you will see on your screen will be the following:

/* ## Hello stedi main program: */

This line is identical to the fold line that begins the fold with the exception that the character
‘[’ is now replaced by a ‘#’. This format is used to indicate a closed fold. Now the whole
program is hidden behind this one fold line. A fold, when closed, cannot be altered (try it)
but you may yank (cut) it from the program as a unit using the yank command and paste it
somewhere else. This allows you to deal with whole segments of your program in blocks, and
facilitates a modular approach to programming.

Next open the fold line with the following:

2.9. ADVANCED TOPICS 33

• Place the cursor somewhere in the closed fold line

• Press F7

Now the program should appear as before with all lines displayed. This is the essence of
stedi’s folds feature. Any block of text can be set aside via fold lines and then visually opened
and closed at will. It is simple on the surface but with a little imagination it can become a
very useful and powerful tool for the programmer. Folds may in principle be nested to any
depth (see the section on memory usage for limitations) so the organization of a program can
be greatly facilitated through this feature.

Now let’s go over the alternative methods for opening and closing folds. From the com-
mand line the following commands are available:

Fold commands for the Command Line

Command Action

] close the fold in which the cursor lies
(same as F6)

[open the fold on which the cursor lies
(same as F7)

]a close all folds in the file (same as sh-F6)

[a open all folds in the file (same as sh-F7)

2.9 Advanced topics

In this section several of the more advanced features of the editor are briefly introduced.
Among these are learn buffers, stedi’s ability to execute external programs, and a few mis-
cellaneous commands that make editing a program easier. For more complete descriptions
of these features, see the appropriate chapters later in the manual. We will start out with a
brief introduction to learn buffers.

2.9.1 Learn Buffers

Stedi is equipped with 10 different buffers which can learn up to 100 key strokes each that
can be replayed with a single key. This type of feature goes under the name of ‘macros’ in
many word processors but as the learning sequence allows no real programming capability,
we refrain from using this name.

To start the learning process of a learn buffer, you go to the command line and enter the
command ‘L#’ where # is a number of the buffer to which you assign the learning sequence,
a number from 1 to 0 (0 standing for 10). The following up to 100 key strokes that you type
after this command will be recorded in that learn buffer. You terminate the learning sequence
by pressing the key Ctrl-# where # is the buffer number. Then the key strokes recorded
can be played back by pressing this same key Ctrl-#. You should keep in mind that during
the time a buffer is learning, all the key strokes entered have their normal effect on the text.
Hence a learn buffer is useful for performing an operation which must repeated more than
once or twice.

In summary, the general form for filling a learn buffer is:

34 CHAPTER 2. GETTING ACQUAINTED

• Press <Esc>.

• Type ‘L#’ and hit <Return> (# is a number from 0 to 9).

• Type up to 100 key strokes to be entered into the learn buffer.

• Press Ctrl-#.

Now let’s practice this feature by teaching learn buffer number 1 to add the character ‘%’
to the beginning of a line before moving to the next line. This is done with the following
sequence:

• Press <Esc> to enter the command line

• Enter the command ‘L1’ and hit <Return>.

• Press Shift-left-arrow to go to the beginning of the line.

• Press the character ‘%’.

• Press the down-arrow key to move to the next line.

• Press Ctrl-1 to terminate the learn sequence.

After this procedure for filling learn buffer 1, each time you press Ctrl-1 the string ‘%’ will
be added to the beginning of the current line. Try it. This particular learn sequence is useful
when using TeX. The % in the first column signals that the whole line is to be treated as
commentary to the TeX formatting program so the line will be ignored.

We will mention here a few more notes about learn buffers. A learn buffer may contain a
command for playing back another learn buffer as part of its learned sequence, but in order
to avoid the possibility of infinite looping, the restriction is made that a learn buffer may
only call another learn buffer with a lower number than itself (0 counts as 10). For a more
complete description, see the section on ‘learn buffers’ later in the manual.

Finally note two things about learn sequences. First, that as a buffer is learning, the ‘:’
sign on the command line changes to the number of that learn buffer to remind you which
buffer is learning. Second, should you desire to stop a learn buffer while it is executing, press
both shift keys at the same time.

Apart from learn sequences, stedi contains a very versatile and powerful feature for al-
lowing keyboard redefinitions. These redefinitions can be one to many or many to one so
this feature can be used in a very similar way to learn sequences, although there are some
differences. The details of this feature are left for the chapter on key redefinitions later in the
manual.

2.9.2 External Program Execution

Stedi allows the execution of external programs from within the editor. This can be useful
if you are working on a program and then would like to compile the program and run it for
testing. To execute an external program, you enter the command line, type ‘!’ and then the
name of the program.

You may also pass a command tail to the program if it can accept one. To facilitate
repetitive calls to the same program, a program name and a command tail can be stored

2.10. CONCLUSION 35

in buffers set aside for this purpose and then executed using abbreviated commands. If you
are using stedi with a shell that allows interaction with the editor you may also execute
shell commands from within the editor. These features are fully explained in the section on
‘Executing External Programs’.

2.9.3 Miscellaneous Commands

This tutorial does not treat the commands of the editor exhaustively. Stedi contains a number
of other commands that can make life easier for the programmer. Here a few of these are
singled out just to illustrate some of the more advanced features of the editor.

Alt-= searches for a matching bracket. If the cursor is on a bracket of any of the types (),
{ } or [] then this command looks for a matching one. If one is found the cursor jumps
there. If none is found, a message is printed. This command is very useful for making
sure that all brackets in a program have a partner.

Ctrl-R repeats the last command that was given to the command line.

Ctrl-A searches for the next occurrence of a word. If the cursor is on a word, this commands
finds the next place where exactly that word occurs.

Ctrl-B searches for the next occurrence of the word in the buffer that is made when the
Ctrl-A command was last used. Thus you can search for the next occurrence of the
same word, change it or move the cursor away, and then use this command to search
for a further occurrence of that word.

Ctrl-H allows the insertion of hexadecimal code for a character directly into the text
being edited or into the command line. This can be useful in entering non-standard
ascii characters for search and replace or printer codes.

2.10 Conclusion

The rest of the manual contains a number of chapters with detailed descriptions of stedi’s
various features. In addition, a complete glossary is included with a list of all commands
and also many keywords pertaining pertaining to the various capabilities. The glossary also
indicates where in the manual these subjects are covered. So if you want to find information
quickly about a particular subject, the glossary should be invaluable. Finally a list is included
of all messages that you may encounter while using the editor, along with an explanation of
what each message means and when it is likely to occur. This should prove useful in the
occasional situations when you don’t quite understand a message.

Here we end the tour of the main features of the stedi editor and you should now be able to
set out to create and edit files on your own. Keep in mind that this has been an abbreviated
tour, and that many of stedi’s features and commands have not been covered. As the rest of
the manual contains a complete and technical description of stedi’s features, if you want to
know more about any particular aspect of stedi’s capabilities, you should read on.

36 CHAPTER 2. GETTING ACQUAINTED

Chapter 3

Basic operations

The fundamental operations of the editor concern cursor control, entering text and deleting
text. This chapter covers these basic topics in detail. Before embarking on this tour of the
basics of the stedi program however, you must understand some aspects of how stedi deals
with text in terms of the screen representation. This topic will first be covered, followed by
cursor control, entering text and deleting text in that order.

3.1 The screen

The screen is but a limited window onto the contents of a buffer. Unless a file is rather small,
only a part of it can be made visible on the screen. The number of characters that stedi can
display on a single line may depend on the computer or the size of the window in which stedi
is running. Old terminal displays (as with most PC, AT, PS/2 and Atari ST systems) could
show 80 characters per line in their standard text fonts. Many screens would allow only 25
lines on the screen. Current windows can be made smaller or bigger. If at all possible stedi
will adapt to the local restrictions. One line is reserved to allow the user to type in commands,
obtain messages from stedi and to see what the settings of some important parameters are.
This leaves all other lines to be used to display text.

Lines that need more characters for their display than can be shown on a screen line can
only be shown partially. This doesn’t mean that the rest of the lines doesn’t exist: it is simply
not visible on the screen. Each line may actually contain up to 255 characters. If you attempt
to add characters past this 255 character limit however, they simply will not be added. As for
the length of an allowed file, stedi is only restricted by the memory of the computer. It seems
that it can handle only 99999 lines since only 5 characters are allocated for the display of the
line number. On the other hand, the internal line counter in stedi can deal with numbers up
to 231 for 32-bits systems.

Besides the lines which actually belong to the file, stedi knows the concept of ‘virtual
lines’. These are lines beyond the end of the file that don’t exist in reality (no characters are
’in’ them and therefore they do not take up space in memory) but nevertheless the cursor can
be moved to these lines. Likewise the cursor may be moved anywhere on the screen regardless
of where the text appears. Thus not only can it be moved to virtual lines, but it can also be
moved past the last character in any line to the virtual territory to the right of a line. The
movement of the cursor is not restricted by the text in any way when it is moved around. This
behaviour is completely different from what is found in some editors which have an annoying

37

38 CHAPTER 3. BASIC OPERATIONS

‘dancing cursor’ effect when the cursor is moved from line to line.
Aside from the case when a file is rather short and more virtual lines are necessary (for

example, the ‘Hello World’ program in Chapter 1), the number of virtual lines cannot exceed
5. This means that when you scroll down past the bottom of a file, the end of the file will scroll
above the bottom of the screen until five blank (virtual) lines appear. Remember: these lines
don’t exist in so far as the file is concerned, so they are not written when the file is written
to disk.

3.2 Moving the cursor

3.2.1 Keyboard commands

The text cursor, or just cursor for short, can be moved around the screen with the arrow
keys. As long as the cursor doesn’t traverse any of the screen boundaries within which text
can appear, the moving of the cursor is rather straightforward. If the cursor is at the edge of
the screen on any side, and the move induced by the arrow key results in a move of the cursor
to a position currently not displayed on the screen, a scroll will be induced. This means that
stedi will re-adjust its screen representation to show a different part of the file.

For vertical scrolling, the screen scrolls only one line up or down, giving the impression
of motion through a file. This vertical scrolling can be continued until either the first line of
the file has been reached, or the fifth virtual line after the last line of the file is displayed. The
horizontal scroll moves the screen (actually it moves the screen representation of course)
by a number of columns to the left or to the right. This means that the screen shows a range
of columns which for instance can be columns 1 to 80, 21 to 100, 41 to 120, etc. Once the
display moves to a certain range of columns this range will be kept until a user command
forces stedi to move to a different range. The number of columns that will be scrolled when
a scroll is needed can be set with a command line command. The command

set hstep = number

given from the command line (see p. 49 and later in this chapter) in which number is less than
or equal to the number of characters that can be displayed in a single line, sets this stepsize.

The arrow keys, in conjunction with the Shift keys , can be used to move through
a file in larger steps. Shift-up-arrow and Shift-down-arrow, also called Shift-up and
Shift-down, scroll the screen by its number of lines minus 4 if the screen has at least 20
lines. For windows that aren’t that high the 4 is correspondingly less. This action can be
taken independently of which position the cursor occupies on the screen. Similarly Ctrl-
left-arrow and Ctrl-right-arrow can induce a horizontal scroll independent of the cursor
position. On computers with a PageUp and a PageDown key these keys take on their
natural meaning and replace therefore the Shift-up-arrow and Shift-down-arrow combinations.
These combinations may remain active though.

The lack of uniformity between the commands for horizontal and vertical motion has to do
with the fact that another type of horizontal scrolling is used more frequently. Shift-left and
Shift-right are assigned to these commands. The more often used commands which induce
large horizontal movements of the cursor cause the cursor to go to either the beginning or
the end of the current line. The end is defined as the position just after the last character in
a line. Thus Shift-left moves the cursor to the beginning of the current line and Shift-right
moves the cursor to the end. Either command may cause horizontal scrolls when necessary.

3.2. MOVING THE CURSOR 39

There are some extra cursor operations that are performed with the arrow keys. Ctrl-
up or shift-PageUp scrolls the screen down by one line while leaving the cursor in a fixed
position. This has the effect of scrolling the cursor up one line relative to the screen and is
similar to what happens when the cursor is at the top of the screen and the up-arrow key is
pressed. Similarly Ctrl-down or shift-PageDn induces a scrolling of the screen up by one
line while the cursor remains fixed. These operations can be very useful at times.

Ctrl-Shift-left and Ctrl-Shift-right move the cursor in a text bound fashion. They
move the cursor from character to character, treating a tab mark with its induced spaces
as a single character and moving to the previous or the next line when there are no more
characters in the current line. Some people prefer this way of moving the cursor. If one
would like to change the keyboard such that this cursor movement is the one connected to
the normal arrow keys, one should consult the chapter on key redefinitions.

Finally there are some special positions in a file which need to be moved to rather fre-
quently. These are the beginning of the file and the end of the file. When the Home key
is pressed, the cursor moves to the beginning of the file. This key can also be used if for
some reason the screen display becomes distorted or the line numbers are miscounting. In
that role it is a kind of clear or editor reset key that re-evaluates the layout of the file being
edited. The end of the file can be reached with the End key if there is one and otherwise
with Shift-Home. This places the cursor after the last character in the file. For moving the
cursor to the first position on the current screen (top line leftmost corner), one may use Ctrl-
Home while Ctrl-Shift-Home will move the cursor to the left most position in the bottom
line of the current screen. On computers with an ‘End’ key these codes are shift-Home and
shift-End respectively.

3.2.2 Command line commands

The above operations concern local moves through a file. Absolute moves can be made to any
line when its number is known. This is done via the command line. To this end, one presses
the key marked <Esc> after which the cursor leaves the text area and reappears in the line
at the bottom of the screen to wait for a command line command. The command to move to
a given line can be given by just typing the line number followed by a return. The cursor will
then reappear in the text window and the screen will be moved to the proper part of the file.
This command would be used very frequently during the development of a program when a
compiler tells the number of the line in which errors were found.

It is also possible to select the column to which the cursor is to be moved. The syntax of
this statement is rather similar and actually together with the above command, it is part of a
single more general command. With the cursor in the command line (via pressing the Escape
key) type the line number desired, followed by a comma, then the column number desired and
then type Return. This will result in the cursor moving to the designated line and column in
the file corresponding to the numbers given. If the first number is omitted (i.e. just a comma
followed by a number) the cursor moves to the designated column inside the current line. If
the column number is omitted (the comma is then irrelevant and therefore not necessary) the
column number will not be changed when the cursor is moved to the designated line. Finally
this command has an option for very advanced programmers who like occasionally to go to a
given character in the file which is known by its number in the file. For such a command one
should type two comma’s, followed by the number of the character.

There is still a class of commands that are specially designed for people who would like

40 CHAPTER 3. BASIC OPERATIONS

more flexibility. The cursor can be moved from the current line forward or back a designated
number of lines. To move the cursor forward a given number of lines, go to the command
line and type a plus sign followed by a number (+#) and <Return>, where # is the number of
lines forward the cursor is to be moved. Similarly, to move backward a designated number of
lines, type a minus sign and then a number (-#).

The first five spaces in the command line (the bottom line on the screen - sometimes called
the message bar) indicate the line number of the cursor at any given time. If you would like
more information about the location of the cursor, the command ‘=’ in the command line
will give a message in the command line that also tells the column number of the cursor. In
addition, this command gives the following information. First, we have the character number
the cursor would be on if the file would be written in its current form with the current settings
(this is a function of whether the tabs would be expanded into blanks and how the end-of-line
marks should be represented - see the chapter on File input and output). Next is the number
of bytes that the whole file would occupy if written with the current settings. Then the line
number of the cursor on the screen is given, followed by the column number of the cursor on
the screen. The final number tells how many lines there are in the current buffer. An example
is:

231 bytes: 13612/22567 screen:21,1 lines 383

while the line number is 231. It indicates that there are 383 lines in the file and that the
cursor is in column 1 (on the screen row 21, column 1) and that the byte position is 13612
out of 22567 bytes in total.

3.3 Entering text

Entering text is always done at the position of the cursor. Any newly-typed character is
added to the text at the position occupied by the cursor, after which the cursor is moved one
column to the right. If this motion moves the cursor to a part of the file presently outside of
the screen display, the screen is scrolled horizontally.

The edit mode determines what happens to the character that was at the position of the
character just added. There are two of these modes: the insert mode and the overstrike
mode. In the overstrike mode, the old character is simply replaced by the new character,
hence the length of the file isn’t altered, unless there was no character under the cursor to
begin with. In the insert mode, the character under the cursor and all characters to the right
of it are moved one position to the right and the new character gets ‘inserted’ between the
other characters. Which mode is currently selected can be seen from the status characters.

The first status character (appearing on the right side of the command line - sometimes
also called the status bar) is either an I indicating that the insert mode is selected or an O

for the overstrike mode. The insert mode can be selected with the Alt-I key combination
while the overstrike mode can be selected with the Alt-O key combination.

There are some keys which cause some special effects when inserting text. These are the
<Tab> key and the <Return> key. The tab is used to move the cursor to the next tabulated
position on the screen. A tab is represented in the buffers as a single character and its
interpretation depends on what tabulator position the user has selected. This is all explained
in the chapter about tabs.

Since normally the presence of a tab in the file cannot be distinguished visually from
the presence of several spaces, a special command is available for that purpose. If you press

3.3. ENTERING TEXT 41

Alt-T, all blanks will be replaced on the screen by small open circles, and tabs are indicated
by small closed circles. In addition the character with the internal representation 00 (which is
rarely used in text files) is represented by a fat dot. On some systems the character with the
internal representation 255 (hex FF) is represented by a colon. In this way you can always
find out exactly what characters are in the file you are working on. Pressing Alt-T again
reverts the screen representation back to normal. Further information about this and related
commands can be found in the chapter on tabs. On some systems the above characters that
are used to display the tabs etc. may not be available. In that case other characters are used.
The user can find out quickly which characters these are by experimenting.

The <Return> key terminates the current line at the position of the cursor, opens a new
line after the current line but before any lines that follow it, and moves all characters that
were after the cursor (including the one at the same position as the cursor) to the beginning
of the new line. If you want to simply insert a new line, you may press the Insert key.
This key creates a new empty line just above the current line and moves the cursor to the
beginning of this new line. Likewise, a new line can be created just below the current line
with the Shift-Insert key combination. Both these commands are independent of which
column the cursor was at previously.

The return or end-of-line character is not seen by stedi as a character. Internally each line
is a separate entity, and each entity has an end automatically. This allows for considerable
flexibility when writing the file with several options for the interpretation of what character
should be included to indicate the end of a line.

When a file is read in, all end-of-line characters are stripped off, and each line of the file
is assigned a separate line in stedi’s buffer. This is done in such a way that stedi can read
either UNIX conventions or the MSDOS/Windows sequence of carriage return + linefeed for
indicating the end of a line. This way of handling an end-of-line in the editor buffers is the
reason that when a return is typed at the end of the last line of a file, a new line isn’t created
yet. It is only created after a character has been entered in the new line or when a second
return is pressed. If one needs to have a file with no end-of-line characters at the ends of
the displayed lines, one should edit in the raw or binary mode. For more information one
should consult the chapter on reading, writing and printing.

The cursor can be positioned anywhere on the screen, so there might be a question about
what would happen if the cursor is at a position in virtual territory and a character is typed
in. The rule is that any character typed in virtual territory remains exactly where it is in
relation to the rest of the text on the screen, and stedi takes care of adding the appropriate
number of spaces or new lines so that the new character becomes part of a contiguous body
of text. Thus if the cursor is moved to the right past any text in a given line, and a character
is inserted, enough blanks will also be inserted to make this new character the end of the line.
(This can be tested with the Alt-T command on.) If the cursor is moved past the end of the
file into virtual lines, and a character is added, enough lines will be created to include the
new character in a line of the text. This makes the adding of new characters into the text
very intuitive, and much easier than if the cursor would be restricted to the text.

There is another way of entering text into a buffer that is very convenient for macro’s and
stream files. The command

"string"

given from the command line (or a macro) will enter the characters in ‘string’ in the text.
There are only very few characters that can give problems if one would like to insert them

42 CHAPTER 3. BASIC OPERATIONS

this way. One is the double quote itself. Another character is the linefeed. Finally the dollar
sign can give problems as it is used to indicate a variable (see p. 106). All these characters
can be used if they are preceded by an escape character which is either the character <escape>
or the backslash (for linefeeds only if the file system doesn’t use the backslash as a directory
separator). In addition a linefeed can be indicated by the combination \n.

3.4 Deleting text

The Delete and the Backspace keys are used for the simplest delete operations. They work
fully naturally: The character under the cursor can be deleted by pressing the Delete key.
This is a so called forward delete. All characters to the right of the cursor are moved one
position to the left and the cursor stays at the same place on the screen. Repeated use of
this operation deletes more and more characters that used to be to the right of the cursor.
A backward delete is executed by pressing the key marked Backspace . This deletes the
character that is to the left of the cursor. Afterwards the cursor moves one position to the
left and all characters that were on the cursor or to the right of it are moved one position to
the left. Repeated use of this key deletes more and more characters that were to the left of
the cursor.

When either one of these commands is used and there are no more characters in the
current line for it to delete, the end-of-line of either the current line (for the forward delete)
or the previous line (for the backward delete) will be removed and two lines will be joined
together. Using the backspace inside the range of a tab (the extra space on the screen created
by the presence of a tab) or in virtual territory to the right of a line (at least one column
past the end of the line) results only in moving the cursor one position to the left. No other
action is taken.

If the backspace is used when the cursor is just to the right of a tab character, the tab
character is deleted and the cursor may move several columns depending on the tab settings
(also the induced spaces are removed). A tab character is also deleted when the delete key is
pressed and the cursor is inside the range of the tab and again the cursor and text may jump
several columns. When the delete command is given and the cursor is in virtual territory
beyond the end of a line, blank characters will be generated to fill the space between the end
of the line and the cursor and then the end-of-line is removed. That is, the next line is joined
to the current line at the position of the cursor.

The above backspace actions hold when stedi is in the insert mode. In the overstrike
mode, the action of the backspace is to overwrite the previous character with a blank. Only
at the beginning of a line will it resort to its normal action of deleting the end-of-line and
joining the current line with the previous line.

An entire line can be deleted either with the Ctrl-<delete> combination. Ctrl-D deletes
all characters to the right of the cursor (including the character under it). This is called
‘Delete to end of line’.

All the above deletions, with the exception of the ‘backspace’ in the overstrike mode can
be undone with the undo key, as long as no other actions have been taken. Sometimes more
than one delete can be undone. In that case either consecutive lines were deleted after each
other, or character deletes (or delete to end of line) were made in consecutive lines. The
details are explained in the chapter on ‘undo’.

3.5. EXCHANGE OPERATIONS 43

3.5 Exchange operations

There are two operations that neither add nor delete text. They only exchange the position
of two objects. The first command is Ctrl-T. Its effect is to repair the most common typing
error, being the wrong order of two adjacent characters. The cursor should be in the position
immediately after the two characters that should be exchanged. This is the position in which
the cursor is, just after the mistake has been made. This is the transpose command.

The other exchange operation exchanges the line with the cursor in it with the line under
it. This can affect even whole folds as a closed fold is seen as a single line (see the chapter on
folds p. 73).

44 CHAPTER 3. BASIC OPERATIONS

Chapter 4

The status bar and options

In this chapter we will examine the status bar and the editor options displayed on it. In
addition we will go on to examine other options.

4.1 The status bar

Besides the messages that appear in the center of the status bar from time to time,the status
bar has a number of fields which record various settings of options of the editor. On the left
side is the line number. On the extreme right is the buffer name. Then just to the left of the
buffer name are nine character fields which indicate settings of the editor. These fields will
be covered in order from left to right. They are called status characters because each one
indicates the status of a particular setting of stedi. A summary of these fields is as follows.

I/O Insert or Overwrite mode
A/U/R/P MS-DOS or Atari/ Unix/ Raw/

Printer output mode
0 or ∞/≫/≪/>/< Search Direction mode
N/S Case Sensitivity
Y/y Yank buffer in use
B/b/!! or † Backup options
1/2/.../0 Current buffer
◦ ‘Dirty Bit’ telling whether

a file has been changed

4.1.1 Insert and Overwrite mode

The first letter on the left of the string is either an ‘I’ or an ‘O’ indicating that the editor is
in ‘insert’ or ‘overwrite’ mode respectively. These options are exercised with the Alt-I or the
Alt-O command.

If the insert mode is set, characters will be inserted into the text at the place of the cursor
whenever keys are pressed and characters that are already there are simply moved aside. In
overstrike mode the effect of typing characters into the text will be to overwrite characters
that are already there. See the chapter on basic operations p. 40.

45

46 CHAPTER 4. THE STATUS BAR AND OPTIONS

4.1.2 The Write Mode

Stedi is able to save files in several write modes. The indicator for these options exhibits the
value ‘A’ for the regular MS-DOS mode used both by MS-DOS/Windows and the Atari-ST,
‘U’ for Unix mode, ‘R’ for Raw mode or ‘P’ for Printer mode in the second status character
of the status bar.

The following table shows the actions performed on the lines of the text when the file is
saved under the various write options:

MS-DOS and Atari mode (A) a carriage return and a linefeed represent the end of each
line when the file is written.

Unix mode (U) only a linefeed represent the end of each line when the file is written.

Raw mode (R) no linefeed or carriage return is included at the end of the lines when the
file is written. If a file is read in in this mode carriage returns and linefeeds will not be
interpreted as end-of-line characters. This gives a limited possibility for editing binary
files directly.

Printer mode (P) a carriage return and a linefeed represent the end of each line when the
file is written. In addition all tabs are expanded into the appropriate number of blank
spaces. (This mode can be used to prepare a file for printing when the printing cannot
be done directly from the editor or for use with a compiler that cannot interpret tabs
properly.)

These options can be set with the commands Alt-A, Alt-U, Alt-R and Alt-P respec-
tively.

4.1.3 The Search Direction mode

The directions for search and replace operations (p. 77) can be set to:

• forward mode (> or ≫)

• reverse mode (< or ≪)

• circular mode (either 0 or ∞)

The forward and reverse modes apply to single and multiple replaces respectively in a
search and replace command (see p. 78 and p. 79). The third character indicates which of
these options is set.

The Alt-D command and the Alt-E command toggle circularly in opposite directions
among the various printer options.

The circular mode is represented either by a zero or an ∞ sign, depending on whether the
local font has an infinity sign.

4.1.4 Case Sensitivity

The fourth status character (‘S’ or ‘N’) indicates whether search and replace operations will
be case-sensitive (S) or not (N) (p. 77).

To set this command you may use the Alt-S or Alt-N keyboard commands to set S or
N respectively.

4.1. THE STATUS BAR 47

4.1.5 Yank buffer

The fifth status character tells which of the two yank buffers of the editor is in use (see section
on ‘Buffers’ p. 69). ‘Y’ stands for the YANK buffer (buffer 9) and ‘y’ stands for the yank
buffer (buffer 0). These two settings can be toggled between using the Alt-Y command.

4.1.6 Caps Lock

The sixth position among the status characters is a position for the caps lock option. Currently
this option is obsolete because all current computers can show whether the capslock is active.

4.1.7 Backup Mode

Stedi allows three modes for creating backup files. These are the normal backup mode ‘B’,
the invisible backup mode ‘b’, and the no backup mode (either ! or !! or †depending on the
character fonts). A ‘V’ can also occur in this field indicating that the buffer is in ‘view only’
mode. The seventh status character indicates which of these settings is currently chosen. The
backup options have the following effects.

B Whenever a file is saved to disk, the previous version will be kept, with the file extension
‘.bak’ now appended to its name. If the system allows only a single file extension the
original extension is removed first.

b The backup will be made invisible or hidden. This can be useful for those using a hard
disk and have very full directories. The same naming convention applies as with the ‘B’
option. This option has become obsolete.

! or !! or † No backup at all is made. Many users start with using this option and a fair
percentage switches to another option after a while. When trying things out with a
difficult source file it may be nice to still have an older version after execution of the
new version turns out to be a disaster.

Care should be exercised with the use of the last option, though it may be necessary at
times if no room for a backup is available. The backup flag can be toggled with Alt-B.

A ‘V’ can also occur in this space of the status bar. This indicates that the file is ‘View
Rights Only’ In this mode, a file can be edited but the editor will not allow the altered
program to be saved. This option can be set as follows:

Alt-V Sets the ‘View Only’ option.

Ctrl-V Gets you out of the ‘View Only’ mode.

This option is set automatically when the user reads a file for which there are no writing
rights.

4.1.8 The buffer number

Stedi has 10 buffers for editing purposes. The eighth character in the status bar tells which
buffer you are currently working in. (see the chapter about buffers p. 69.)

To change buffers, press Alt-# where # is a number from 1 to 0 (0 standing for 10). The
last two, buffers 9 and 0, are reserved for yanking (cutting), copying and pasting. Nevertheless,
they are treated like the first eight buffers for all other purposes.

48 CHAPTER 4. THE STATUS BAR AND OPTIONS

4.1.9 ‘Dirty Bit’

The last indicator before the name of the file tells you whether or not the file in the current
buffer has been changed since an editing session began. If the file is unchanged, this field
will be blank. If any change has been made, a period will appear. In addition, if the editor
is waiting for direct input of hexadecimal characters (see the chapter on ‘Hex Mode’ p. 134)
then the period becomes a question mark. For completeness the settings of the dirty bit can
also be toggled. This is done with the command line commands

set dirty = on

set dirty = off

If should be noted that turning the dirty bit off is rather dangerous. If you try to leave the
editor after turning it off the editor will not notice that the buffer has been changed and leave
quietly.

Note: In addition to the attributes of the editor which are indicated in the status bar, there
are a number of other optional settings available. (See for example, tabs (p. 91), auto-indent
(p. 99) and word wrap. (p. 98)) Many of these, including all of the options mentioned above
except the caps lock and yank buffer options, can be set differently for different buffers. They
can also be stored away in a default file for later editing. For information on this subject, see
the chapter on ‘defaults’, p. 63.

Chapter 5

The command line

A number of the commands can be entered by typing them in on a command line. These are
usually commands for which more than a minimal amount of information is needed to specify
the command fully. In systems that are equipped with windows the standard solution to
this problem is to select a command, perhaps through a menu using the mouse, and then to
enter further information through dialog boxes. It was judged however that such an interface,
however productive it is in learning for those users who are not yet very well acquainted with
stedi, it would only be a hindrance for serious work. After some expertise in editing is gained,
dialog boxes are rather counterproductive as one is forced to switch continuously from the
mouse to the keyboard and back. Moreover dialog boxes obscure part of the text and this
can be rather annoying during some operations like the replacement of a complicated string.

The command line allows the user to type in the commands that would normally be
handled with a dialog box but in a part of the screen that “isn’t in the way”. The line at
the bottom of the screen is called (among other things) the command line. One can enter it
by pressing the <Escape> key. The cursor is then positioned at the ninth column of this line
and the character at the seventh position serves as a prompt. The user may then type his
command and end it by pressing the <Return> key. After this stedi will execute the command,
possibly give a message, and return the cursor to the text window. Clearly this procedure is
very versatile, and extremely fast for those who have some expertise in typing.

If the escape key is pressed and there has been a command issued from the command line
previously, this old command will be displayed in the command line, with the cursor over the
first character of this command. One can now either modify the old command or type a new
command. The default typing mode in the command line is the insert mode, so whenever a
new character is typed everything to the right of the cursor is moved one position to the right.
When a carriage return is typed, all characters to the right of the cursor are discarded and the
command executed is formed by the characters to the left of the cursor. Normal editing can
be performed in the command line. It isn’t possible to place a mark in the command line or
to execute a search operation in it but it is possible to paste parts of a line into the command
line. The commands in the command line are also entered into a history mechanism which
has a fixed number of entries. The default is 8 entries. One can scroll through these entries
with the up and down arrows. The buffer is ‘circular’, i.e. after going up 9 steps one comes
back to the most recent command (9 back = 1 back). There is one exception to the storing
of commands in the history mechanism. If the write command is given with the <shift>-F8
key a very special line is used to ensure that the user can always write his file. This line isn’t

49

50 CHAPTER 5. THE COMMAND LINE

entered in the history because it should always be available. The number of entries in the
history mechanism can be changed with the command

set maxhist = number

in which ‘number’ is the new size of the history buffer. The size of the buffer is stored in the
default file when it is written with the ‘DW’ command (see p. 64).

It is possible to change the typing mode in the command line to the overstrike mode with
the Alt-O key combination. For this the cursor has to be in the command line. Switching back
to the insert mode is done with the Alt-I key combination. Pressing an incorrect key during
the typing of a command can possibly generate a message which overwrites the partially typed
command. The partially typed command can be restored by pressing the <Home> key or by
simply continuing to type the command into the command line.

When the command to be issued is longer than the available space on the screen the
command line will be scrolled horizontally. The same will occur when the cursor is moved
to the edge of the active space in the command line. The number of columns over which the
command is scrolled can be controled with the built in variable ‘mstep’. This variable can be
set with the command

set mstep = ‘number’

in which ‘number’ is any resonable step size.

The variety of commands issued from the command line is rather large. An attempt has
been made to keep them ordered somewhat by having the commands divided into groups that
all start with a single character. This character is chosen so that it corresponds as much as
possible to the name of the family. An example is ‘p’ for printing. Stedi is not case sensitive
with respect to the keywords and the options of the commands.

Before any command is executed stedi will scan the contents to see whether any variables
should be substituted first. These variables all start with a $ sign so if the user needs a $

in his command he may escape it by preceding it with either a backslash (\) or an <escape>
character. If the characters after the $ cannot lead to confusion (no defined variable) then
there is no need to escape the $. See the chapter on variables (p. 106).

Finally if the Ctrl-R commands is pressed, whatever command line command that was
last issued is repeated. This can be a rather useful command, especially during repetitive
search operations.

5.1 The regular commands

The commands that can be issued from the command line are (# stands always either for a
single digit or for a multi digit decimal number):

A, A+, A-, A#, A#+ Auto-indent commands. See the chapter on word-oriented com-
mands p. 99.

DD, DR, DW, DD pathname Default file actions. See the chapter on defaults p. 63.

F, FH, FV, F+#, F-#, FH#, FV# Split window commands. See the chapter on screen
control p. 125.

5.1. THE REGULAR COMMANDS 51

I# Take command input from buffer #. See the chapter on stream editing p. 119

K0, K filename Change key redefinitions (p. 138).

L# (# is any digit) Start learning in buffer # (p. 103).

MC name, MD name, MV, MV name Create a macro, delete a macro, view macros.
See p. 113.

O, O#1,#2, O:#1,#2, OF#<char> Sort operations. They are explained in the chapter
about sorting, p. 128.

P, PF, PP, PP, PP#, PP#,#, P= Print commands. See the chapter on reading, writ-
ing and printing, p. 60.

Q Quit (= leave the editor). See the chapter on running stedi p. 155.

R name, R name < number, Rf Read commands. See the chapter on Reading, Writing
and Printing p. 55.

S, SQ Save, Save+quit, See the chapters on reading, writing, printing and on running stedi
p. 155.

T#, T#∗#, TG#, TG#∗# Tab settings. See the chapter on tabs p. 91.

TE, TT, TAB Special tab commands. See the chapter on tabs p. 91.

U, U+, U- The U or U+ command forces a screen update. U- command switches off the up-
dating of the screen during the current replay of either a learn buffer, a key redefinition,
a macro, or a stream script. If during such a replay the U+ command is encountered
the updating of the screen will be resumed. See the chapter on screen control p. 125.

W name, W>name, WF, WF> Write or append commands. See the chapter on Reading,
Writing and Printing p. 55.

WW, WW-, WW#, WWF Word wrap. See the chapter on word-oriented commands
p. 98.

X macroname arguments Execute a macro. See the chapter on macro’s p. 114.

!command, !+command, !-command See the chapter on executing external programs
p. 122.

,#,# ,,# ,,,# ,+# ,-# Various move to line or column commands. See the chapter
on basic operations p. 39.

[, [a, [#, [’name Fold opening commands. See the chapter on folds p. 73.

],]a,]#,]’name Fold closing commands. See the chapter on folds p. 73.

= Find position of the cursor. See the chapter on basic operations p. 40.

/string, /string/options Search command. See the chapter on searching and replacing
p. 77.

52 CHAPTER 5. THE COMMAND LINE

/string1/=/string2/options Replace command. See the chapter on searching and replac-
ing p. 78.

//string, //string/options Search command with the use of pattern matching. See the
chapter on regular expressions p. 83.

//string1/=//string2/options Replace command with the use of pattern matching. See
the chapter on regular expressions p. 83.

=/string/options A special type of replace commands. See the chapter on searching and
replacing p. 80.

?drive Find free diskspace. See the chapter on reading, writing, printing.

<#, ># Commands to place a tag (<) or to go to a tag (>). See the section on tags p. 68

’name Find buffer ‘name’. See the chapter on buffers p. 69.

”string” Put ‘string’ in the text at the current position of the cursor. See p. 41

∼ When ∼ is followed by a single character this command has the same effect as the Alt-char
key combination.

∧ When the ∧ is followed by a character the effect is the same as when the combination of
this character and the control key has been pressed.

The ∼ and ∧ commands have been provided for use in macro’s and stream scripts. These
commands use the ‘raw’ bindings of Alt, Ctrl and function keys, so they are insensitive to
key redefinitions.

5.2 Special commands

In addition to the above commands there is a list of commands of which the full name has to
be spelled out. These commands are:

After Same as shift-insert. Adds a line after the current line (p. 41).

Alt-<char> Same as the combination of the alternate key and the given character.

Backspace Same effect as pressing the <backspace> key in the text buffer (p. 42).

Bcopy Copies the rectangular block between the mark and the cursor to the current yank
buffer. Same as shift-F4 (p. 70).

Bcut Cuts the rectangular block between the mark and the cursor to the current yank buffer.
Same as shift-F3 (p. 70).

Bpaste Pastes the contents of the current yank buffer in block mode into the text at the
position of the cursor. Same as shift-F5 (p. 70).

Clear Empties the current buffer. Same as shift-F9 (p. 70).

5.2. SPECIAL COMMANDS 53

Copy Copies the region between the mark and the cursor to the current yank buffer. Same
as F4 (p. 70).

Ctrl-<char> Same as the combination of the control key and the given character.

Ctrl-down Moves the cursor to the next line, but tries to leave it at the same position on
the screen. The net effect is that the screen scrolls up (p. 38).

Ctrl-home Moves the cursor to the top left corner of the current window. See also p. 39.

Ctrl-left Scrolls the screen horizontally. The cursor ends a number of columns to the left of
its original position but keeps (if possible) its position on the screen (p. 38).

Ctrl-right Scrolls the screen horizontally. The cursor ends a number of columns to the right
of its original position but keeps (if possible) its position on the screen (p. 38).

Ctrl-up Moves the cursor to the previous line, but tries to leave it at the same position on
the screen. The net effect is that the screen scrolls down (p. 38).

Cut Cuts the region between the mark and the cursor to the current yank buffer. Same as
F3 (p. 70).

Delete Same effect as pressing the <delete> key in the text buffer (p. 42).

Deleteline Same as Ctrl-delete. Deletes the current line in the text buffer (p. 42).

Delmark Deletes the mark in the current text buffer. Same as shift-F1 (p. 67).

Down Moves the cursor down in the text buffer (p. 38).

End Same as shift-home or <End>. Moves the cursor to the end of the current text buffer
(p. 39).

Exchange Exchanges the position of the mark and the cursor in the current text buffer.
Same as F2 (p. 67).

First pattern Initiates a search for files of which the names match the given pattern. See
file searches p. 118 and the chapter on macro’s p. 109.

Garbage Forces a complete garbage collection. More information in the section on garbage
collections (p. 132).

Gotomark Moves the cursor to the position of the mark in the current text buffer. Same as
shift-F2 (if there is an undo key) (p. 67).

Home Same as pressing the <home> key in the current text buffer. Moves the cursor to the
home position and reevaluates the entire buffer (p. 39).

Insert Same as pressing the insert key. Puts a new line before the current line in the text
buffer (p. 41).

Left Moves the cursor one column to the left (p. 38).

Mark Places a mark at the position of the cursor in the text. Same as F1 (p. 67).

54 CHAPTER 5. THE COMMAND LINE

Message ”string” Puts the given string in the message line (p. 133).

Next Moves the cursor to the next character in the text buffer. Same as shift-ctrl-right
(p. 39).

Paste Pastes the contents of the current yank buffer into the text at the position of the
cursor. Same as F5 (p. 70).

Pause number Makes stedi wait for the required number of deciseconds (tenth of seconds).
See the corresponding section p. 133.

Previous Moves the cursor to the previous character in the text buffer. Same as shift-ctrl-left
(p. 39).

Quit Quits the current edit session. Same as shift-F10 (p. 156).

Right Moves the cursor one column to the right in the text buffer (p. 38).

Save Saves the contents of the current buffer. Same as F9 (p. 57).

SaveQuit Saves the contents of the current buffer. Next the Quit command is executed.
Same as F10 (p. 156).

Set var = expression The command with which to set some internal variables and vari-
ables that can be used for instance by the macro processor. See the chapters on variables
p. 107.

Sh-Ctrl-home Moves the cursor to the bottom left corner of the current window. See also
p. 39.

Sh-home Same as shift-home or end. Moves the cursor to the end of the current text buffer.
This can be confusing on systems that have an ‘end’ key. Those systems use shift-home
to place the cursor at the top of the screen. It is safer to use the ‘end’ command (p. 39).

Sh-insert Same as shift-insert. Adds a line after the current line (p. 38).

Sh-left Same as shift-left. Moves the cursor to the first column in the current line (p. 38).

Sh-right Same as shift-right. Moves the cursor to the last column in the current line (p. 38).

Show var Show the contents of an internal variable. See the chapter on variables p. 108. In
this command there shouldn’t be a $ before the name of the variable.

Up Moves the cursor one line up in the current buffer (p. 38).

Chapter 6

Reading, Writing and Printing

Having covered the basics of moving around in a file and the various possibilities for inserting
and deleting text, in this chapter some file systems will be discussed in some detail. Then we
will go on to explain the various possibilities for reading files into stedi, writing them out to
disk to save your work, and sending a file directly to a printer. The sections of the chapter
will cover these four topics in the order just mentioned.

6.1 Reading a file

Reading a file can be done in one of five different ways:

The F8 command The F8 command, when executed with the cursor in the text field, gives
a prompt in the command line requesting a file to be read in. One may type the name
of the file that is desired to be read (including path name) and follow it by a carriage
return. This results in the file being read into the editor at the current position of the
cursor. Whenever the command is used, the file name specified is saved so that upon
the next use of the read (F8) or write (shift-F8) command, the name will be displayed
automatically after the prompt. You can use the entire name again, or part of it, by
means of the normal editing procedures for the command line (see command line editing
p. 49). Entering a null string or just blanks will cause no action.

Reading a file at startup At startup time the editor may read one or more files. If the
editor has been started without a command tail, the editor will simply wait for your
action, showing an empty buffer.

Startup with a command tail If the editor is started up from a shell program like in MS-
DOS or in any UNIX system, it is possible to provide it with a command tail. This tail
is scanned for options (p. 154) and for the names of files that should be read. Up to
eight files can be read this way. Any wildcard characters that are given to the editor
are passed to the file system and if more than one file matches the pattern the various
files are read in different buffers. The number of buffers is of course still limited to 8.

Several options are available when reading files this way. They should precede the name
of the file as a separate parameter. They are:

-r Read the file in the ‘raw’ mode. This is used for binary files in which carriage
returns and linefeeds are left uninterpreted.

55

56 CHAPTER 6. READING, WRITING AND PRINTING

-v Put the buffer in which the file is read in the ‘view only’ mode to avoid accidental
writing.

-# After reading the file is positioned at the line indicated by the number #.

-i The following name is interpreted as the name of a macro. This macro will be
executed after startup. Any parameters after the name of the macro are passed on
as arguments to the macro. After the execution of the macro is finished buffer 1
is saved and the execution of stedi is halted. This is the stream editing mode, in
a way comparable to sed in UNIX systems.

-x Same as option -i.

+# The number given indicates the number of bytes that should be skipped in the file
before reading starts. This allows the user to edit a part of a very big file that
won’t fit in memory in its entirety.

With the R command This command knows three varieties: In its simplest form the R is
followed by either a blank space or a quote. The name that follows is then interpreted
as the name of the file to be read. This command is fully equivalent to the F8 command.

The other form concerns the reading of a part of a file. The command ‘R name <

number’ reads from the file ‘name’ starting at byte ‘number’+1 Again there may also
be a quote between the R and ‘name’. This mode is very useful when processing very
large files. Normally only the first part of such a file can be read and the message
”Not enough memory. Buffer made View-Only.” would appear, notifying the user of
the inaccessibility of the tail part of the file. By reading from different positions in the
file one can edit the file in several steps.

When a file is read into a buffer that doesn’t have a name yet, the buffer will inherit
the name of this file. Its path name will also be remembered for later writing. If the save
command is issued (see below) the editor will try to overwrite the old file (usually after making
a backup). More details follow in the next section.

When a file is read, all occurrences of a carriage return or a linefeed will be seen as the
end of a line. If a carriage return is encountered, the editor checks whether a linefeed follows
after it. If this is the case, the linefeed is skipped. If a linefeed is encountered, the editor
checks whether a carriage return comes after it. If this is the case, the carriage return is
skipped. The result is that <cr>, <lf>, <cr><lf> and <lf><cr> are all interpreted as a single end
of line. This avoids problems with the various conventions that exist. In addition there is the
raw mode in which neither <cr> nor <lf> are interpreted. They are put in the text like all the
other characters. For more information about this mode, one should read the information
about it in the next section.

Lines in stedi should never contain more than 255 characters. Thus in order not to lose
any part of a file being read in, any line that contains more than 255 characters is split up
into one or more lines during the reading in process. The user will be notified that this may
be about to happen and will be asked for his permission. If this permission is denied the
reading will be stopped at the offending position.

If there is not enough memory to read in a complete file that has been specified, stedi will
read as much as will fit in the memory and then issue an error message. The only limitation
on the size of a file being read in is the amount of memory available. Hence in marginal cases
a file may still be edited if you are able to gain more memory by removing some utilities or

6.2. WRITING OUT A FILE 57

making a ram disk a little smaller. If you are faced with such a big file that it cannot be
edited in one piece, one may start with editing the part that could be read, write it to a file
with a different name (!), clear the buffers and then read in a part of the file after skipping a
number of bytes. When writing parts of a file they can be pasted together as can be seen in
the > option of the write command.

6.2 Writing out a file

Stedi has several commands for saving the results of an editing session to a file. These
commands have counterparts respectively using the function keys and the command line
commands. Moreover there is a number of options to be considered which affect the saving of
the file. The commands and the associated options will be discussed below. All the commands
are operational only when the cursor is in the text field.

The function keys associated with output commands are as follows.

shift-F8 Write file. Pressing the shift-F8 key combination yields a prompt on the message
line. One can type in the name of a file followed by a carriage return. This results
in saving the file in the current buffer under the name typed in. This write command
cannot be saved in the history buffers of the command line. Pressing shift-F8 invokes
the use of a very special buffer that is always available, even when all other commands
in the editor start complaining about a lack of memory. Thus the user can always write
his results to file.

F9 Save file. The contents of a buffer can be given a name that is known by the editor if the
file being edited was read into the buffer by name originally, or if a write command has
been issued which assigned the file a name. (This is the name displayed on the right
hand side of the message bar - including the path name associated with it which can
be displayed with the Alt-L command.) If the current buffer already has a name for its
contents, the F9 command causes the contents of the buffer to be written to a file of
that name. If no name exists yet - the last 12 characters of the message bar are empty
- the editor will report that it cannot save a buffer without a name.

F10 Save and quit. The first stage of this command is the same as the F9 command, that is,
it saves the contents of the current buffer. This is followed by an exit command which
is equivalent to shift-F10 (see the chapter on Running stedi p. 156).

With the command line, the following commands are available:

W name or W’name This write statement is equivalent to the shift-F8 command except
for that now the regular procedures for the use of commands in the command line are
followed. This means that this command will be entered in the command history. If
the requested file exists already the user is asked to confirm that he wants to overwrite
this file. This is to protect the user against loss of files, as it happens occasionally that
one uses the write command instead of the read command.

W name > or W’name > This is a write statement that appends the output to the named
file, rather than creating a new file. Because the original file still exists as the head part
of the new file no backup is made.

58 CHAPTER 6. READING, WRITING AND PRINTING

S or Save Save file. This is the same as F9.

Q or Quit Quit. This command is the same as the shift-F10 command (see the chapter on
Running stedi p. 156).

SQ or SaveQuit Save and Quit. This command is the same as F10.

When a write command is issued, there are several messages that could indicate that
something prevented the writing of the file. There could be several possible causes: a lack
of disk space, a name was selected that belonged to a directory, the file that existed by that
name could not be renamed to a .bak file (backup version) or the backup version that existed
already could not be removed. These last two causes could have to do with a lack of rights
to do anything with these files.

6.2.1 The write mode

The settings that are relevant for writing out a file are in two categories. The first governs
the conventions used to write out the file, and the second governs the way a previous file of
the same name is dealt with in terms of backups. Finally there is a view-only setting which
doesn’t allow the writing of a file at all. The various settings are explained below.

The current write mode is indicated by a letter A,U,R or P in the second position of the
status characters in the status bar:

A - MS-DOS and Atari mode. This mode can be selected with Alt-A. In this mode each
line of output is terminated by both a carriage return and a linefeed. This is the most
widely used convention and also the convention officially used by MS-DOS/Windows
and Atari.

U - Unix mode. This mode can be selected with Alt-U. In this mode each line is termi-
nated by only a linefeed. This shortens the length of the file by one character per line
which can be useful. All Unix systems use this convention and most C programs love
it. If you have a system that is used to the A-mode many programs might make a mess
of your file though.

R - Raw mode. This mode can be selected with Alt-R. In this case the lines are written
without any linefeed or carriage return termination characters at all. Hence the lines
will be run together and unrecognizable thereafter as separate lines. When reading in
a file in this mode, the linefeeds and carriage returns are not interpreted but simply
treated as other characters. Hence this mode can be used for reading in a binary file
for limited editing and the file can be saved without the introduction of any extraneous
characters (see also the chapter on hex code p. 134). Since writing in this mode could
cause loss of information which may be time-consuming to recover, whenever an attempt
is made to write in this mode, stedi asks for confirmation before proceeding.

P - Printer mode. This mode can be selected with Alt-P. Not only is each line terminated
by both a carriage return and a linefeed, but the tabs are also expanded into the
appropriate number of blank spaces. This is useful for sending a file with special tab
settings to a printer on a different system. Its most frequent use is however to avoid
problems with compilers that don’t like tabs. Note however that expanding the tabs
can make a file substantially longer.

6.2. WRITING OUT A FILE 59

The writing mode is one of the variables that is kept in the default file. It is also one of
the variables that can be set for each buffer independently.

6.2.2 The backup mode.

Usually it is safest to have stedi keep the original of a file as a backup version when writing a
buffer to file. This may not always be possible due to diskspace limitations, so several options
are offered. The indicator showing which option is set is the seventh character of the status
bar and it is either a ‘B’, a ‘b’, or either a !, a !! or a †:

B - Normal backup. If this option is selected, the original version of the file is first moved
to a file with the same name but now with the extension .bak before the writing takes
place. This .bak file is a normal visible file. This is the default mode.

b - Hidden backup. If this option is selected, the original version of the file is first moved
to a file with the same name but with the extension .bak as in the previous case, before
the writing takes place. The difference is that this .bak file is a hidden file so it will not
be seen in normal listings of the contents of the disk. The advantage of this setting is
apparent when running the editor from a shell program in which the invisible files can
be seen or hidden at will, so that the screen needn’t be unnecessarily cluttered with
files. In some environments however, the invisible files are usually really hidden and
can only be removed or copied when the action is taken on the whole directory which
contains them.

! or !! or † - No backup. This is a rather dangerous mode, as the old version of the file is
removed before the new version is written. This can result in loss of data if anything
goes wrong (like badly malfunctioning floppy disks). The advantage of this mode comes
when there is not enough diskspace for both the file and its backup together. Caution
is recommended when using this mode.

The backup mode can only be toggled from the keyboard with the Alt-B key combination.
It is also stored in the default file. All that has been said above concerning backups is invalid
when the ‘View-Only’ mode has been activated:

6.2.3 The View-Only mode

When experimenting with a file, or when reading a documentation file, it is best not to be
able to write to that file. Most people use the F10 key (save and exit) when leaving the editor.
With this habit, quick accidents can happen without warning. The View-Only mode, which
is indicated by a ‘V’ as the seventh status character, is included to help prevent against such
loss of data. In this mode the buffer cannot be written to a file. If a write is attempted,
an error message is given. This mode can be selected with Alt-V. It can be ‘de-selected’ -
in case you change your mind - with Ctrl-V. In that case, the backup mode that is in the
default buffer is selected as the new backup mode. For more information about the default
buffer, see the chapter on stedi’s default settings p. 63.

60 CHAPTER 6. READING, WRITING AND PRINTING

6.2.4 Messages concerning file output

If the writing of a file is successful, the editor will return with a message indicating the number
of lines written.

If the .bak version of a file is not a proper file (e.g. a read only file), no backup can be
made and the editor returns one of the error messages : ”Cannot move old file to backup.”,
”Cannot remove old backup.” or ”Cannot make a proper backup.”. The write command will
not be executed in this case.

If anything goes wrong during the writing of a file, the writing will be aborted with the
message ”Error while writing” or ”Error while writing. Disk full?”. This may indicate one of
several things:

• There is no more space on the disk.

• There was a change of diskette during the writing (very dangerous).

• The drive is not connected properly.

• The disk is not formatted properly or contains bad sectors.

• ...?

If in doubt as to whether enough space on a disk exists, one can find out the amount of
free disk space with the ? command (see the section on ‘Free disk space’ p. 62) and the length
of the file to be written can be found with the = command. If there is indeed not enough disk
space, one could use another disk with enough space or (on mainframes) get your systems
administrator to give you a larger file quota. Alternatively one should remove some files - see
Execute an external command p. 122). Another alternative (if you are not working with a
shell) is to overwrite an unimportant existing file by writing an empty buffer to that file, and
selecting the option ‘No backup’. This effectively erases the file, replacing it with the new
and empty one. It is anyway a wise policy to always keep at least one empty formatted disk
on hand for such emergencies.

To do the writing quickly the editor needs a buffer of about 9 Kbytes. If this memory is
not available the subsequent action will depend on the system. On some systems memory it
is borrowed from the screen. A message will indicate that this is the case and a band of noise
will appear on the screen. After the writing is finished, the screen will be restored. If such an
emergency operation cannot be performed writing cannot take place and the user should try
to remove some of the contents of the buffers before trying again. If there is a particularly
lengthy block of key redefinitions (9 Kbytes is very much here!) one might try to remove
the key redefinitions instead with the K0 command. This command can be looked up in the
chapter on key redefinitions p. 151.

6.3 Printing

If the system allows the use of a printer, stedi offers the possibility of sending the file in the
current buffer directly to the printer in one of two modes. The P command line command
prints the current buffer just as it appears on the screen in the editor, and the PF command
sends the file to the printer with limited formatting capabilities. The PP command sets the
length of a page for the latter. These commands are explained below. In addition a port

6.3. PRINTING 61

selection can be made if more than one printer port exists. This is done with the ‘P=<port>’
command.

P Print the contents of the buffer. These contents are sent to the printer just as they appear
on the screen. Thus folds that are closed are printed as closed folds and tabs are
expanded to the number of spaces they currently represent according to the editor’s
settings. Otherwise all characters are sent as they are. The end of a line is indicated
by a carriage return + linefeed which will be interpreted correctly by most printers.
Otherwise all characters are sent directly to the printer uninterpreted. Hence if the file
contains non-standard ASCII characters, these may have consequences for the printer
settings. (You may also put such characters in the text deliberately for printer control
- see the chapter on ‘Hex mode’ p. 134.)

PF As with the P command, this command causes the contents of the buffer to be printed,
but with the added feature that a limited number of lines per page are printed with a
page number at the bottom of each page and an optional left margin offset. The length
of a page and the left margin offset can be set with the PP command. Note that the
length of the page should include one empty line and a line for the page number. After
each page number has been sent to the printer, the editor sends a formfeed to skip to
the next page.

PPn1,n2 This command sets the number of lines per page (n1) and optionally it sets a left
margin offset (n2). This latter number causes the printer to create a left margin by
printing that number of spaces in each line before starting to print the contents of the
buffer. These two numbers are stored in the default buffer so when the DW command
is issued they are written to the default file for future use. The number of lines per page
set by the PP command must be two more than the number of lines of text actually
desired to allow for a blank line before the page number and then a line for the page
number itself. As all printers are not alike, some experimenting may be required in
order to find the best setting for a given printer. The default number of lines per page
is 60 and the default left margin offset is set to zero. If the first number is less than
five, stedi sets the number of lines to five. If both numbers are omitted entirely, the PP
command causes a message to be printed in the message bar telling the current number
of lines per printer page and the current left margin offset.

P= On most computers this command won’t have any effect.

Examples:

PP66 sets the number of lines per printer page to 66

PP60,5 sets the number of lines per printer page to 60, with a left margin of 5 spaces.

PP queries for the current number of printer pages and the right margin offset.

6.3.1 Messages concerning printing

A message ‘Printer not available’ indicates that either there is no printing capability, or the
printer is not connected or the printer has not been turned on.

62 CHAPTER 6. READING, WRITING AND PRINTING

If the printer is turned off during printing, or when it runs out of paper one may get the
message ”Printer not ready. Continue ? (Y/N)”. This will enable you to add paper or turn
the printer back on again before telling stedi to continue. The answer n or N will abort the
printing.

6.4 Free disk space

In some instances, you may want to see how much space exists on a disk before writing a
program to it. The ? command exists for this purpose. This command is entered from the
command line. The syntax is:

?drive-specification

The ‘drive-specification’ is a single letter between A and P indicating one of the allowed drives
or partitions. The letter may be upper case or lower case. If the indicated drive is properly
connected to the computer, stedi will respond with the number of bytes that are still available
for writing on this drive. On systems where partitions may be indicated with names of more
than one character one should of course specify the entire name. On UNIX systems this
command is not available. One should instead use the appropriate ! command (like ‘!quota
-v’ or ‘!df drive’ in the cshell).
Example:

?a or ?A

This command gives the number of free bytes on the diskette in drive A.
The ? command is useful when it is not clear whether a file will fit on a diskette. In that

case one can find the size of the file to be written with the = command and compare this
with the space on the diskette.

If the answer to a request for the amount of free diskspace is the message ”Drive not
connected.” there is no record in the systems variables that the requested drive exists.

Chapter 7

Default settings

The editor contains a number of internal variables such as the screen color, the backup mode,
the write mode, the search mode, tab settings, and so forth, as well as possibly such things
as contents of learn buffers, macro’s and keyboard redefinitions. In order to save all these
settings for future use, stedi allows them to be written away to a file which can be read in
at some later time. The file, called stedi.dft is also read automatically at startup if stedi can
find it.

Actually the situation with the default settings is not quite so simple as explained above
because of stedi’s ten text buffers. Certain settings are global, that is, they affect all buffers
(for example, the color, learn buffers, and key redefinitions), but others can be set individually
for each of the ten buffers. For example, the backup mode can be set differently for each file
in one of the ten text buffers. These latter settings will be called local.

Stedi maintains a central defaults buffer which is filled at startup with the contents of
stedi.dft or set by built in defaults if this file is not available. All global and local settings are
kept in this buffer. Then each time a text buffer is opened, a copy of the local settings which
are in the central buffer is copied to the text buffer to begin the editing in that buffer. After
this, the user is free to change the settings as desired and the settings for each individual
buffer will be remembered until the buffer is cleared, or until the end of the editing session.
If a buffer is cleared, the settings will revert back to those in the central buffer.

Naturally for greatest flexibility, stedi requires a number of commands for input and
output of these settings and for moving them around from one buffer to another if desired.
These commands are the subject of this chapter. Below, the commands will be explained in
a logical order, building up from the more basic operations. However it should be realized
that the first commands mentioned are not necessarily the most used. In fact, one may get
by, using only one or two of the commands explained in this chapter. However they are all
included for completeness. All these commands are issued from the command line.

The first commands are for reading and writing from a file to the central buffer and vice
versa. These commands are:

DI This command reads the settings from the file called ‘stedi.dft’ and places the contents in
the central defaults buffer. This command should be remembered as ‘Defaults Import’.

DE This command is used to write the contents of the central defaults buffer to a file called
‘stedi.dft’. If the file exists, it is overwritten. This command should be remembered as
‘Defaults Export’.

63

64 CHAPTER 7. DEFAULT SETTINGS

In order to copy the defaults which are stored in the central buffer into the default settings
of one of the ten text buffers, the following commands are available.

DL This command loads the settings for local variables from the central defaults buffer into
the current buffer. This should be remembered as ’Defaults Load’.

DS This command copies the local settings of the current buffer into the central defaults
buffer. Consequently the settings for local variables present there are replaced. This
should be remembered as ’Defaults Save’.

Of course if only the above commands were available, loading the settings of local variables
into individual buffers could become quite laborious. Much more often one wants a combi-
nation of two of the above commands. Single commands accomplishing this are therefore
available. These commands are:

DR This command is a combination of the commands DI and DL above. This command thus
reads in a default file called ‘stedi.dft’ and fills the central defaults buffer with it. Then
the settings for local variables are copied to the current buffer. It can be remembered
as ‘Defaults Read’.

DW This command is by far the most useful of all the commands described so far in this
chapter. It is a combination of the DS and the DE commands. Thus it copies the local
settings of the current buffer into the central defaults buffer, and then writes the entire
contents of the central buffer out to a file called ‘stedi.dft’. This command is generally
used when you have a set of current settings, both global and local, and you want to
write them out to disk for a later editing session. The command can be remembered as
’Defaults Write’.

It is useful to be able to specify a default directory or folder (other than than the current
one which is searched automatically) from which stedi can read the default file stedi.dft. The
DD (Default Directory) command serves this purpose. The default directory is also used for
writing out the defaults. The associated commands are:

DD pathname This command sets a default path name to define a directory in which stedi
will look for the default file stedi.dft, other than the current directory. This directory,
called the ‘default directory’, is used whenever stedi.dft is read or written, i.e. with the
commands DI, DE, DR and DW. In the case of read operations, the editor first looks for
the default file in the default directory, and then looks in the current directory. If the
file is not found after this, an error message is issued. For write operations, stedi will try
to write the default file in the currently set defaults directory first. If this directory is
not found, the file will be written in the current directory. Finally the default directory
can also be set at startup (see below).

DD When the DD command is given without an argument, the name of the currently set
default directory is reported on the message bar.

All commands mentioned so far in this chapter are case insensitive. Thus for the DW
command, you may equally well type dw, dW or Dw.

65

During startup, you may pass a parameter to stedi to specify a default directory or a
default file for reading the startup defaults. This is done by giving as a first parameter the
characters -d or -D followed by one or more blanks and then a name. The name is interpreted
as a path name and this will be the default directory. At the same time this directory will
be searched when the help file is needed, or when a macro should be loaded from disk. After
this come the file names to be edited separated by one or more blanks. For example suppose
the startup defaults are in a directory called ‘BIN’ on disk D and the file BIG.BUG in the
current directory is desired to be edited. Then if starting from a shell, you would issue the
command

stedi -d d:\bin big.bug

The other way to specify the default directory during startup (and also the preferred one)
is by setting the environment variable STEDIDFT. If this variable can be located during
startup its contents are interpreted as the name of the default directory. A trailing directory
separator isn’t needed.

The order in which directories are searched for the default file is different at startup
than during the DW command. At startup (p. 153) first the current directory is searched,
independent of a -d parameter or an environment parameter. If this isn’t successful the path
given by the -d option is tried. If the -d option hasn’t been used the environment is tried.

Finally we close this chapter with a list of those settings which are stored in the default
file.

The global variables which affect all text buffers are:

• The version number of the default file.

• The global screen color (see p. 125).

• The local screen color (see p. 125).

• The offset for printing files (see p. 60).

• The number of lines per page for the printer (see p. 60).

• The complete learn buffers (see p. 103).

• The delay factor when scrolling the screen (pagedelay) (see p. 125).

• The key redefinitions

• The loaded macro’s

• The choice of the printer port (see p. 60).

• The wait flag for waiting after a call to shell (waitflag) (see p. 123) .

• The flag that determines whether line numbers will be displayed in the message line
(numbers) (see p. 125).

• The flag for writing folds with information about whether they are open or closed at the
time of writing. This flag determines also whether at reading folds are closed (autoclose).

• The table with the information about which characters can belong to words (see p. 95).

66 CHAPTER 7. DEFAULT SETTINGS

• The maximum number of entries in the command line history (maxhist).

The local variables which can be changed locally for various text buffers are:

• The Insert/Overstrike mode (I/O)

• The output mode (A/U/R/P)

• The search replace direction (</≪/0 or ∞/≫/>)

• The case sensitive/non-sensitive mode (N/S)

• The tab settings

• The word wrap settings

• The auto-indent mode

• The backup/view-only mode (B/b/†/V)

Chapter 8

The mark

A mark can be placed in the text of a file being edited for later use. The mark can be used
to remember a place in the text or it may be used in its role of defining a ‘marked range’ (or
‘range of action’). A marked range is defined as the range of text between the cursor and
the mark. This range is used for cutting and copying operations and optionally with certain
other commands such as search and replace. Each buffer has its own mark.

There are several commands involving the mark directly:

F1 - Put mark. This command places the mark at the current position of the cursor. If
the mark was at a different location before this command is issued, it is removed from
that location and all memory of it will be lost.

shift-F1 - Remove the mark. This is a rarely used command that exists mainly for secu-
rity reasons. As some commands cannot be executed without the existence of a mark
removing the mark may avoid inadvertent use of these commands.

F2 - Exchange the position of the cursor and the mark. The region between the cur-
sor and the mark is called the marked range or range of action. Some commands have
options that will let them operate on this range of action only. The order of the cursor
and the mark in the file is unimportant. Some editors will highlight such a range of
action. In stedi however the mark is also used as a means to remember a position and
it would be very annoying to highlight a quasi random piece of text. The exchange
of the positions of the cursor and the mark allows for a quick inspection of the exact
boundaries of the marked range.

shift-F2 - Go to mark. (Not available on systems without an undo key. There shift F2
invokes the undo facility). This command moves the cursor to the position of the mark.
With this command the user can go back quickly to a previously defined position in the
current buffer.

Here is a list of the commands involving the mark in its role of defining the marked range.

• Cut or Yank

• Copy

• Case conversions and

67

68 CHAPTER 8. THE MARK

• the R or ‘range’ option in the following commands

– Search

– Replace

– Tab

– Detab

– Trim

– Sort

If no mark has been set, these commands will abort with an error message.
Several commands may erase the mark, for the reason that during the execution of the

command, the position of the mark may become dubious. A good example is the replacement
of a string that contains the mark in it. Also a cut operation will erase the mark. Technically
this is not necessary, but it happens frequently that after the cut has been made, the copy
key is pressed inadvertently, rather than the paste key. This would result in the loss of the
contents of the paste buffer. Without a mark, nothing will happen.

The paste operation places the cursor at the beginning of the pasted region and puts the
mark at its end, so a paste operation can be undone by pressing the cut key, as long as the
cursor hasn’t been moved yet.

8.1 Tags

The mark is used very often as a means to go back to a previously stored position. For this
use it is often a restriction that there is only a single mark per buffer. Therefore 10 tags
have been introduced. Tags are somewhat loosely organized marks that are not bound to a
specific buffer. When a tag is placed it is bound to the current buffer and the current column
in the current line. It is then possible to go back to that position from any buffer with the
># command in the command line (# stands for a single digit of the normal keyboard). The
tag is placed with the <# command.

Once a tag is placed it will survive anything the editor may do internally (like garbage
collections), but when the user changes the line to which the tag is bound this may make it
unbound and pointing to a fictitious address. If the user wants to go to this tag afterwards
there are two possibilities: Either the tag points now to a different line in the same buffer as
the original one (this could be caused by garbage collections moving another line in place)
in which case this is considered to be the tag position, or the above is not the case and the
message ’tag not found’ will be displayed. This is the price to be paid for a significantly
smoother performance than when the tags would be arranged like the marks. In practice the
above ‘erroneous jumping’ occurs very rarely, although this may depend on the habits of the
user.

When a tag is hidden inside a closed fold stedi will also not be able to find the tag and
go to its position so it will also report ’tag not found’.

Chapter 9

Buffers

Stedi is equipped with 8 buffers for normal editing. Under ordinary circumstances this
should be more than enough. In addition there are two special buffers for cut and paste
operations. They are called the yank buffers and are used for intermediate storage of pieces
of text that have been cut or copied from the text of one of the other buffers. The yank
buffers can also be used as normal buffers when necessary. They are then labeled YANK

buffer (buffer-9) and yank buffer (buffer-0) respectively. There are however some caveats.
During a cut or copy operation, the yank buffer that will be used is cleared first, so anything
that might be in it before the operation is lost. Which yank buffer will be used for a cut or
copy operation can be seen in the status line. The fifth status character is either a Y or a y
indicating the YANK or the yank buffer respectively. The use of the Alt-Y key combination
toggles between these two yank buffers to select the one to be used for the next cut or paste
operation.

The buffer that is currently displayed on the screen is called the current or active buffer.
The number of the current buffer is displayed in the status bar in the eighth position among
the status characters. There are two different ways to change from one buffer to another.

9.1 Switching between buffers

First one can press the Alternate key and one of the number keys on the main key pad.
This selects the buffer with the corresponding number as the current buffer. When you switch
from one buffer to another, if the new buffer has previously been used, it will be displayed
on the screen exactly as it was left when last viewed. That is to say that the line numbers
displayed will be exactly the same and the position of the cursor will be in the same position
as before. The change buffer command can also be executed via the command line as is the
case with all key combinations involving the alternate key. In that case one should enter the
command line by pressing <Esc> and type the command Alt-# in which the # represents a
single digit and a <return>. The digit indicates then which buffer is selected. This command
is particularly useful for working with macro’s and stream editing. It can also be typed as
‘alt-4’ if one likes to go to buffer 4.

A second way to switch between buffers is by the name of the buffer via the ‘quote’
command of the command line. To give this command, first press <Esc> to enter the command
line. Then type a single quote followed by some of the first few characters of the name of the
desired buffer. The editor will search forward from the current buffer for a buffer whose name

69

70 CHAPTER 9. BUFFERS

begins with the same characters entered after the quote. The search is circularly forward and
when no match occurs, no change of buffer is made. Depending on the setting of the fourth
status character (S/N for sensitive or nonsensitive) this buffer search is either case sensitive
or case nonsensitive. It is not necessary to type a closing quote after the string in this search
command.

In addition to the above ways there are two other commands that can result in a flipping
between buffers. The first involves tags. A tag is a mark that is buffer independent. If a
tag has been placed in one buffer and the user goes to another buffer the action to find the
placed tag will result in a tranfer back to the original buffer. For more about tags one should
consult the section on tags p. 68. The other way involves the use of Alt-F when the screen
is split in two regions. The Alt-F flips the cursor between the two different buffers that are
displayed. There is more about this in the chapter on screen control p. 125.

The name of the file being edited in a buffer usually determines the name of the buffer.
When the editor is entered with a command tail that contains one or more file names the
corresponding buffers in which these files are placed inherit the names of these files. Even if
these files don’t exist yet, the buffers will be named accordingly and stedi will assume that
they are new files to be created. If no files are specified or some buffers are not yet filled at
startup then they are not yet given a name. Whenever a buffer has no name, the first read
operation to this buffer or the first write operation from this buffer will determine its name.
When a buffer is cleared, its name is also removed.

The current buffer can be cleared with the shift-F9 key. If the work in the buffer has been
altered and the ‘view only’ flag is not active, there will be a warning that the buffer is not
saved yet and the clear operation will have to be confirmed. The ninth status character in
the status bar indicates whether or not a file has been altered. If this character is a blank,
then no changes have been made and if it is a little circle, the file has been changed since last
saved.

If the ‘view only’ flag is set, the seventh status character in the status bar will be a ‘V’.
A buffer will be given this status when the first file that is read into it is a file that is marked
read-only. The user can also switch to a ‘view only’ status at any moment with the Alt-V
key command. To switch from this status to the normal mode so that the contents of the
buffer can be written to disk, one may use the Ctrl-V command.

Each buffer has a number of settings assigned to it. These settings may therefore be
different for each buffer. When one of these settings is changed in one buffer, this doesn’t
affect the others. When a buffer is cleared, its settings are lost and new settings are taken
from the default buffer (see the chapter on default settings). The buffer dependent settings
are :

• Insert/Overstrike mode as indicated by the first status character.

• The write mode as indicated by the second status character.

• The search and replace modes as indicated by the third and fourth status characters.

• The ‘View only’ and the backup modes as indicated by the seventh status character.

• The word wrap mode.

• The auto indent mode.

• The tab settings.

Chapter 10

Cutting and Pasting

The editor is equipped with two buffers that can be used to move pieces of text. These buffers
are called the yank buffers. They are the buffers 9 and 10 of the file buffers. Buffer 9 is called
the ‘YANK buffer’ and buffer 10 (or 0) is called the ‘yank buffer’. The cut (also called yank)
operation moves a piece of text from the currently active file buffer to the current yank buffer.
This text is removed completely from the current file buffer. Which yank buffer is current
can be seen in the status line. The fifth status character is either a ‘Y’ or a ‘y’ for YANK

and yank respectively. If it is necessary to make the other yank buffer the current one in use,
one can toggle between the two with Alt-Y. The first 8 buffers can have either yank buffer
as their active yank buffer. As the yank buffers themselves can also be edited, one of these
cannot be its own current yank buffer.

The copy operation copies a piece of text from the currently active file buffer to the current
yank buffer. The paste operation copies the text in the current paste buffer to the position
of the cursor in the currently active file buffer.

The first action taken by the editor when a cut or copy operation is given is to clear the
yank buffer that is going to be used. Therefore it is rather dangerous to use a yank buffer for
ordinary editing. Next the ‘range of action’ is determined. This is the text between the mark
and the cursor. The order of these is not important. Finally, for the copy operation the text
in the range of action is then copied into the yank buffer. For the cut operation, the text in
the range of action is also removed from the current buffer.

The paste command leaves the contents of the yank buffer unchanged so that it can be
used again.

There are also some special cut, copy and paste commands for columns of text. The copy
columns (or ‘block copy’) command copies the text in the range of action, but only that
which falls in the columns between those of the mark and the cursor (order unimportant) If
this range involves empty spaces, they are filled with blanks. The cut columns (or ‘block
cut’) command also removes those columns from the current buffer. The paste columns
(or ’block paste’) command copies the contents of each line of the yank buffer into successive
lines of the text of the current buffer, starting in each line in the column of the cursor. These
operations can be convenient for moving tables or parts of a program for which you wish to
maintain a certain column relation between lines. They can also be very handy to change the
indentation of a range of text.

The cut, copy and paste commands can be performed with the function keys as follows.

71

72 CHAPTER 10. CUTTING AND PASTING

F3 Cut (yank) the current range.
F4 Copy the current range.
F5 Paste to the cursor position.
sh-F3 Cut columns (block cut) from current range.
sh-F4 Copy columns (block copy) from current range.
sh-F5 Paste columns (block paste) to cursor position.

In addition all these commands can also be given from the command line. This feature is
mainly useful for writing readable macro’s. The command is given as a word in the command
line or in the macro and the magic words are ‘cut’, ‘copy’, ‘paste’, ‘bcut’, ‘bcopy’ and ‘bpaste’.
The last three are for the cut, copy and paste in the block mode.

To see (or edit) the text in the yank buffers, one switches to these buffers with the Alt-9
or Alt-0 key combinations. This is explained further in the chapter on buffers.

Chapter 11

Folds

Stedi is equipped with a powerful feature which helps in the organization of a program or
text file by allowing the programmer to segment a file into a number of smaller units. Then
the smaller units can be selectively viewed or suppressed as desired for editing purposes. This
feature is called ‘folds’.

Briefly, a fold is created by entering two extra lines in the text which define the beginning
and the end of the segment desired to be placed ‘in the fold’. Then the fold can be ‘closed’
which means that the whole segment of text between these two special lines together with
the two lines is replaced on the screen by a single line of text which is used to represent the
entire segment. Subsequently, such commands as search and replace will not affect the text
hidden in a closed fold. Thus, for example, a programmer could put various subroutines in
different folds and then open only the one desired to be edited at any given time. A number
of commands exist for opening and closing folds to provide quite a flexibility in using this
feature. A full description of the folds feature follows.

11.1 Fold line syntax

The beginning line of a fold must have the following syntax: the first three characters are
arbitrary and are followed by a ‘number sign’ (#) as the 4-th character and an opening square
bracket ([) as the fifth. After this comes the label, which may consist of any characters with
the exception of carriage returns, linefeeds and colons. A colon (:) is used to terminate the
label field and must be present! After the colon, arbitrary characters are allowed as in normal
text. The ending line should look exactly the same as the beginning line in the range between
the number sign (#) and the colon (:) that terminates the name field except that the fifth
character ([) should be replaced by a closing square bracket(]). The characters outside this
field (the first three or those following the colon) need not be the same. When a fold has been
closed the line that represents it is a copy of the opening fold line (or beginning fold line) but
it has a second ‘number sign’ where the opening fold line has its square bracket. The closed
fold line may not be changed under any condition. If you don’t like it you have to open the
fold first and change at least the opening fold line.

With this syntax, the first three characters can be used to set off the line as commentary for
a compiler, and the characters after the colon can be used as commentary for the programmer.
Note also that tabs count as single characters so that when used in the first three characters
of the line, a measure of indentation can be achieved.

73

74 CHAPTER 11. FOLDS

Folds may be nested to any depth. The only restriction lies in a potential stack overflow,
because some operations for nested folds work via a recursion. Typically at least 50 levels
should be possible. Beyond that the reaction of stedi may depend on the computer on which
it runs. If the stack is not protected agains overflow a crash may result. In practice the user
will rarely go beyond 4 or 5 levels.

11.2 Opening and closing folds

11.2.1 Function key commands

A fold is closed with the ‘close current fold’ command which closes the deepest fold (nesting)
in which the cursor currently resides. This command is given with the F6 key. The whole
fold then becomes represented by a single line which is created upon issuing of the ‘close fold’
command. This line looks like the first line of the fold with one exception: the opening square
bracket ([) is replaced by a second number sign (#). Internally this line is quite different
from normal lines, as it has to keep track of where the lines are that are hidden inside the
fold. Therefore this line may not be changed! The only thing one is allowed to do with such
a line besides opening the fold again is to cut and paste text which contains the whole line.
In this way, whole blocks of text can be moved around quite easily as closed folds.

A fold is opened by putting the cursor in the fold line (the line representing the whole fold)
and issuing the ‘open fold’ command F7. In opened state all lines of a fold are are normal
lines. Hence there is no restriction on the alteration of the beginning and ending fold lines
when the fold is open, so care must be taken to maintain the proper syntax for the folding
mechanism to work properly.

To close all folds of a file you may issue the command Shift-F6 and to open all folds the
command Shift-F7 is to be used.

11.2.2 Command line commands

All fold commands can also be entered from the command line. They start with a closing
square bracket (]) for close fold commands, or an opening square bracket ([) for open fold
commands. Just a] is the same as F6, and a [is the same as F7. To open and close all folds,
the commands are:

]a Closes all currently opened folds. This command is the same as shift-F6.

[a Opens all closed folds. This command is the same as shift-F7.

In addition, folds can be opened and closed from the command line by name or line
number. These commands have the following syntax:

]’name’ This command closes the first fold found with the name or label which is given
between the quotes. The search for the fold is always started at the beginning of the
file. This gives usually the best interpretation of nested folds with the same name.
Note that all characters between #[and : are relevant so if a fold line contains the
string #[NAME :, this fold must be closed with the command]’ NAME ’ in which
the blanks are relevant. Note also that there are no escapes in this search string, so it
is very unwise to use quotes in the name of a fold. Case sensitivity in the search for

11.3. MISCELLANEOUS 75

this fold is determined by the same setting as for normal searches (See the S/N status
character).

[’name’ This command opens the fold with the given name. No recursive searches are done
so stedi won’t look inside closed folds.

]# # stands for a number. This command moves the cursor to the line indicated by the
number given and closes its current fold.

[# # stands for a number. This command moves the cursor to the line indicated by the
number given. On its way all folds it has to enter to find this line are opened.

11.3 Miscellaneous

When a file is written there are two possible options concerning the folds. It can be written
in such a way that at the next reading of the file stedi has some memory about which folds
were closed, or this information can be omitted. The feature of this ‘memory’ is called the
autoclose feature. It is toggled with the command ‘set autoclose = on’ or ‘set autoclose =
off’. The value of autoclose can be stored in the default file with the DW command (p. 64).
The information of whether a fold was closed at the time of writing is stored as a trailing
blank in the closing fold line, so no compiler should have any problems with it. Printing a
file (P command) sends the file in the same representation as displayed on the screen: what
you see is what you get.

Examples:

/* #[multtwo: Multiply an integer by two. */

int

multtwo(n)

int n;

{

n = n * 2;

return(n);

}

/* #[multtwo: */

This example puts a C language subroutine called ’multtwo’ in a fold with the same name.
Note that the freedom in the formatting of the beginning and ending fold lines is used to make
the fold line commentary to the C compiler. If the fold were to be closed, it would look as
follows:

/* ## multtwo: Multiply an integer by two. */

The next example is for text files:

76 CHAPTER 11. FOLDS

---#[Fold1:

chapter 1 All about folds

--+#[Fold1.1: Introduction

Folds are wonderful.

They may revolutionize your life.

#] Fold1.1:

--+#[Fold1.2: Commands

Folds with the command line, etc.

#] Fold1.2:

%--+#[Fold1.3: Mouse

%

%Folds work with the mouse, too! And etc.

%

% #] Fold1.3:

#] Fold1:

In this example which simulates how a manual writer might organize his sections, there is
one outer fold which contains three inner folds. The label of the fold has been used to provide
outline numbering. If the command shift-F6 (close all) is issued, the above would look like:

---## Fold1:

Now if Fold1 is opened, the inner folds will remain closed and appear as follows:

---#[Fold1:

chapter 1 All about folds

--+## Fold1.1: Introduction

--+## Fold1.2: Commands

%--+## Fold1.3: Mouse

#] Fold1:

For a further and more extensive example, the source code of the program ’keycomp.ttp’
has been included. This program, which is responsible for compiling key redefinition files
so that they can be read by the editor, is written in the C language. The program is fully
commented and makes use of folds for organization. This program can be found in the
directory called ‘SRC’ on your original disk.

Chapter 12

Search and Replace

12.1 The search command

One of the central features of any editor is its search facility. Searching should be fast and
versatile. Therefore much effort has been put into providing stedi with a set of very fast
search routines which utilize the rather modern Boyer and Moore search algorithm (see R. S.
Boyer and J. S. Moore, A fast string searching algorithm, Comm. ACM, 20, 10 (Oct.-1977),
762-772). As a consequence, searching for a string of 6 characters is done at a rate of more
than 400 Kbytes per second on a Motorola 68000 at 8 Mhz or a 80286 at 10 Mhz. This allows
for moving through even very large files at an extremely fast pace.

Both the search command and the search and replace are issued from the command line.
A slash (/) is the starting character for either of these commands.

The basic syntax for a search command is:

/string/

where ‘string’ is the string of characters desired to be searched for. The cursor will be
positioned at the first character of the first occurrence of ‘string’ that is encountered. If no
(further) occurrences are found, this will be announced in the message line. The trailing slash
is optional. Experience shows that it is often forgotten and as searching isn’t destructive (it
doesn’t alter the text) there is no reason to be very strict about syntax for this command.
Note that the search operation doesn’t look inside closed folds.

The search command can also take various optional parameters. If no options are specified,
a default setting is taken. The full syntax of the search command is:

/string/options

where ‘options’ is a string of characters specifying the options desired. If a character in this
string corresponds to one of the option characters listed below, a flag for that option is set. If
two options contradict each other, the last one given over-rides the first. The possible options
are:

N or n The search is case Non-sensitive. This means that the case of the characters in the
search string is not considered. This holds also for the characters used in the national
character sets, such as characters with accents, if both the upper case and the lower
case versions of such a character are present in the standard character fonts for your
computer.

77

78 CHAPTER 12. SEARCH AND REPLACE

S or s The search will be case Sensitive. N and S are mutually exclusive: only the last one
given counts. These options can be used to override the default set with the Alt-N or
Alt-S commands.

R or r The search will only be done in the Range between the mark and the cursor. This
enables the user to search (and replace) strings in a part of the file only. A match can
only occur if the string searched for is fully included in this range between the mark
and the cursor.

B or b The search will only be done in the Block of rows and columns between the mark and
the cursor. With this option, searches (and replacements) can be performed in specified
columns. A match can only occur if the string to be found is fully included inside the
block defined by the mark and the cursor.

W or w The string to be searched for is interpreted as a word. This means that a match
can only occur if the string is encountered where it is both immediately preceded by
and followed by a character that does not belong to words. Characters belonging to
words are a-z, A-Z, 0-9, and the special alphabetic characters that may be present in
the local default font that are used for the national character sets.

0 The search will be circularly forward. This means that the search will be started in the
forward direction. If no match is encountered between the position where the cursor
started and the end of the file, the search is continued starting at the beginning of
the file. When the original position of the cursor is encountered, a message ‘No match
found.’ is given. The original position of the cursor never counts as a match in searching
(it does in search and replace though !).

> or ≫ The search will be forward. If no match is found between the original position of the
cursor and the end of the file the message ‘No match found.’ will be given.

< or ≪ The search will be backward. If no match is found between the original position of
the cursor and the beginning of the file the message ‘No match found.’ will be given.

. (a period) If the search is is executed from a learn buffer a macro or by means of the I
command (p. 119) and the search is unsuccessful no further execution will be attempted.

[col1,col2] The search takes place only inside the specified range of columns (inclusive). If
either number is omitted (the comma is relevant) it is set at its minimal or maximal
value respectively.

Another useful search command, which is executed from the keyboard, is the ‘matching
brackets’ search. If the cursor is placed on any type of parenthesis or bracket and Alt-=
is pressed, the matching bracket will be found and the cursor moved there. This holds for
normal parentheses ((or)), and both square ([or]) and curly ({ or }) brackets. If no
match is found an error message is printed out on the message bar. This command can be
extremely useful for finding unmatched sets of parentheses in a program.

12.2 The search and replace command

The syntax for a search and replace command is:

12.2. THE SEARCH AND REPLACE COMMAND 79

/string1/=/string2/options

This command causes stedi to search for one or more occurrences of string1 and to replace
each occurrence by string2 according to the settings of the options. As with the search
command, the optional parameters are a string of characters of which the last character
overrides previous characters in the case of conflicts. All options of the search command can
be used with this command also. In addition, there are several more options for the replace
operation:

V or v This is the Veto option, allowing the user to veto a replacement. If this option is cho-
sen, stedi will make a replacement only after a confirmation. If string1 is found, stedi will
position the cursor at the first character of the string and ask ‘Replace ? (G/Y/N/Q) ’.
If the answer ‘Y’ or ‘y’ is given, the replacement will be made. If the answer ‘N’ or ‘n’
is given, the replacement will not be made. In either case stedi will continue to search
for the next match (unless > or < is one of the options). If the answer is ‘Q’ or ‘q’ the
search and replace operation will be aborted and no more replacements will be made.
The answer ‘G’ or ‘g’ indicates that the editor can go on now and make all further
replacements.

> With this option, searching is forward, but after the first match has occurred and the
replacement has been made (unless vetoed via the V option) the command is terminated.
This is called ‘forward search, single replace.’

≫ With this option the searching is also forward, but replacements will be made until the
end of the file is reached (unless vetoed via the V option). This option is called the
‘forward search, multiple replace’ option.

< With this option, searching is backward, but after the first match has occurred and the
replacement has been made (unless vetoed via the V option) the command is terminated.
This option is called the ‘backward search, single replace’ option.

≪ With this option the searching is also backward, but replacements will be made until the
begin of the file is reached (unless vetoed via the V option). This is called the ‘backward
search, multiple replace’ option.

0 This option is a multiple replace option also, called the ‘circular search, multiple replace
option’. Using this option, all occurrences of string1 in the file will be replaced by
string2 unless the veto option is used.

If an option is not specified its default setting is used. This default setting is recorded
among the status characters which are found on the right side of the status line. If an option
is not represented among the status characters its default is off. These defaults are as follows.

The third status character can be toggled with Alt-D or Alt-E . The possible settings
are:

< Backward search, single replace.
≪ Backward search, multiple replace.
0 or ∞ Circularly forward search, multiple replace.
≫ Forward search, multiple replace.
> Forward search, single replace.

80 CHAPTER 12. SEARCH AND REPLACE

The fourth status character has the following possibilities:

N Case non-sensitive. This option is selected with Alt-N.

S Case sensitive. This option is selected with Alt-S.

The settings of these status characters can be stored in the default file for future edit
sessions.

12.3 Related commands

There exist a few other commands that fall in the category of search and replace. They are:

Ctrl-A This command causes stedi to determine the word the cursor is currently on and
then to search for the next occurrence of this word according to the default options. As
the command is not issued from the command line, it can greatly speed up the finding
of all the various occurrences of a particular word.

Ctrl-B If the target word of a previous Ctrl-A search has been modified by the user, it is
impossible to continue the search for the old string using Ctrl-A. The Ctrl-B command
remedies this situation. It will search for the same word that the last Ctrl-A operation
searched for.

=/string/options This command is issued from the command line. It makes stedi deter-
mine the ‘current word’ as with the Ctrl-A command, but rather than just searching
for this word stedi will generate the command:

/current word/=/string/W+options

This command is particularly useful as a very large percentage of replace operations
involve whole words and the target words are already part of the text, so there is no
need to type them in again.

Ctrl-U This command changes the case of all characters in a marked range (the range
between the mark and the cursor) to upper case.

Ctrl-L This command changes the case of all characters in a marked range (the range between
the mark and the cursor) to lower case.

Ctrl-F This command changes the case of the character under the cursor. The F stands for
‘Flip case’.

12.4 Special characters

The above conventions still have one great defect: one cannot search for a character like ‘/’
as it is part of the syntax. For this purpose, an ‘escape sequence’ has been defined. This
escape sequence is initiated by the escape (<Esc>) key which enters an escape character into
the command line. After the escape character is entered, the next character typed will be

12.4. SPECIAL CHARACTERS 81

put into the command line no matter what it may be (even if it is a backspace). When
the command is interpreted (parsed), such a sequence of escape followed by any character is
treated separately if the character that follows has a special meaning to stedi . If it doesn’t
then the ASCII code of this second character will replace the two characters and stedi goes on
reading the next character in the command string. In this way, one can search for characters
such as backspaces in binary texts. The relevant escape sequences that are initiated via an
escape character are:

<Esc>/ Insert a slash (/) in the search or replacement string.

<Esc><Esc> Put an escape character in the search or replacement string.

<Esc><Return> Put the ASCII code for a carriage return in the string. This search will
have no effect unless there are such characters in the text. This can be the case in a
binary file. If the end of line should be matched one should study the chapter on regular
expressions which describes searching with patterns, rather than fixed strings.

In most of the above ‘escape’ sequences one could also use the character \ instead of the
<escape> key. This makes the typing of a backspace or a return harder, but the typing of the
/ into the text conforms more to the UNIX standards this way. So searching for the string
‘10/13’ can be done in one othe following ways:

/10<escape>/13

/10<escape>/13/

/10<escape>/13/options

/10\/13

/10\/13/

/10\/13/options

There is also another way to put characters like a backspace into the command line via
the hex mode (entered with Ctrl-H p. 134) which allows for the insertion of any hex ASCII
character. There is a subtle difference between the codes entered with the escape sequence
and those entered using the Hex mode. With Ctrl-H, any character can be entered from the
keyboard into a string, including a return or a slash (/). However in this case, the characters
are inserted before the command is interpreted. Thus any slash entered with Ctrl-H will not
differ from a normal slash entered from the keyboard and thus will be seen as belonging to the
syntax of the search and replace statement. Likewise, a return will be inserted as a ‘normal’
character that has no special status. This is well suited for binary files but is rarely useful for
normal text files.

12.4.1 Special search commands

Sometimes one needs to do a search that involves a pattern, rather than a fixed string. We
call a string a pattern if it describes (in a special language) a whole class of strings that could
result in a successful search. The language for such patterns is given in the next chapter on
regular expressions. It may also be needed sometimes to search for strings that contain an
end of line. If such a string is taken out it would result in putting together two lines. Also
this kind of searches should be dealt with via the language of regular expressions. Finally
the regular expressions should also be used when the replacement string contains an end

82 CHAPTER 12. SEARCH AND REPLACE

of line, unless the user likes to see this end of line inserted in the text as a funny character
(sometimes needed in a binary file).

Chapter 13

Regular expressions

At times the user may wish to search for a pattern rather than for a fixed string. A pattern
is a description of all strings that should be acceptable during the search. An example of
a pattern would be ”all strings that start with an A and end with a B and don’t contain
any blanks”. It is of course necessary to have a language for the specification of patterns.
The language that is used follows the definitions in the book by Aho, Sethi and Ullman
(”Compilers, principles, techniques and tools, Addison Wesley 1986, page 148) rather closely.
This means that people who are familiar with UNIX will have to note only a few differences
(mainly extensions) over what they are used to. In addition the current implementation has
fewer restrictions and extensions have been made to facilitate the matching or replacement
of linefeeds.

Of course the greater generality of using complete patterns rather than a fixed string
makes a search operation much slower. Therefore the user should select the use of patterns
specifically by starting the search or search and replace operation with // rather than with
a single /. In the single slash mode the searching is performed with the Boyer and Moore
algorithm, while in the double slash mode searching uses a complicated pattern matching
“engine”. The language which defines the patterns is defined by Aho et al. and is referred to
as regular expressions. It is possible to define patterns that take so much time during the
searching, that the user may decide to discontinue the operation. In several implementations
of stedi this can be done by pressing the key combination that indicates a break. In a UNIX
version this would be accomplished by pressing Ctrl-C.

In addition to the speed advantage the use of the single / offers also the advantage of
simplicity. There are very few special characters, so the searching for strings containing
characters that have a special meaning in the language of the regular expressions doesn’t
need special thought.

13.1 Single objects

A pattern consists of single objects. Single objects can be one of the following objects:

• A single character that has no special meaning.

• An entire string enclosed by double quotes as in ”string”.

• A group of characters enclosed by straight braces.

83

84 CHAPTER 13. REGULAR EXPRESSIONS

• The contents of a pair of regular parentheses.

• A linefeed.

Parentheses can be nested as in

//a("bc"(de)f)/

Here the single objects d and e are taken together to form a single object on a lower level. The
string ”bc” is a single object that should match the characters b followed by c. The objects
”bc” (de) and f are then combined to form one single element on the lowest level. The whole
pattern consists of this object with an a to the left of it. All operators act on single objects.

13.1.1 Groups

Groups are special objects that can match a class of characters. A group is indicated by a
pair of braces [and], with the characters that belong to the class between the braces. So
the pattern

//[13579]/

will match any of the single characters 1, 3, 5, 7, or 9. This isn’t very practical when many
characters are involved, so there is a way to indicate a range of characters:

//[3-7f-p]/

The above group contains the characters 3 to 7 and f to p. If the first character in the group is
the character ∧ the group contains all characters except for the characters that are mentioned.
So

//[^3-7f-p]/

matches anything except for the digits 3 to 7 and the characters f to p. The above leaves
one problem: How are the characters [,] or - included in a group? This can be done by
putting them in a position in which they ‘cannot’ occur, or which would make the whole
group meaningless as in:

//[]-[]/

//[^]^-[]/

//[-z]/

The first group contains exactly the three special characters, the second group contains all
characters except for the characters], -, ^ and [. The third group contains the two characters
- and z. To facilitate the use of the special non-ASCII characters that occur in the native
character fonts on some computers there are some special ranges of characters: Whereas
a-z means all lower case regular characters a-ä means all lower case characters, including
the accented ones. The ä may be replaced by any other accented character in the extended
character set. Similarly A-Ä means all uppercase characters including the ones in the extended
set. The range ä-ö (or any other two lower case extended characters) gives all extended lower
case characters, Ä-Ö gives all extended upper case characters and ä-Ä gives all characters in
the extended character set.

Finally there are some shortcuts for groups that are used frequently. These are:

13.2. REPETITORS 85

character group

[0-9]

& [a-äA-Ä] (all alphabetic characters)

∼ [0-9a-äA-Ä] (all alphanumerics)
! any ‘word’ character
!∧ any character not in words

Special groups

The word characters are explained on page 95. These shortcuts are an extension over the
regular UNIX definitions.

13.2 Repetitors

The first type of operators are the repetitors. Such a repetitor acts only on the single object
directly to the left of it. Repetitors are:

repetition element effect

+ take object one or more times
take object zero or more times

? take object zero or one times
{m,n} take object at least m, at most n times
{,n} take object at most n times
{m,} take object at least m times
{m} take object exactly m times

The repetitors

Some examples are:

//ab*c/

//a(b*c)*c{4}/

//a[bc]*c{5}/

//"abc"+/

The first pattern will match to an a, followed by zero or more characters b, after which there
should be a c. The second pattern is more complicated. The first character should be an a.
Then we want zero or more times the object (b*c). This object would match any number of
b’s followed by a single c. The effect is that (b*c)* will match any string that contains only
the characters b and c, with the side condition that the last character must be the character
c. Finally there should be 4 more c’s. The third pattern shows how this can be done simpler
with the use of a group. The fourth pattern will match one or more occurrences of the string
abc. This means that the + operates not only on the c. It is equivalent to (abc)+, but the
searching with the string is much simpler and faster.

Repetitors are always given the maximal value that they can take. This means that the
left most repetitor in a pattern tries to match as many characters as possible. Then the next
repetitor tries to match a maximal substring. The effect is usually a maximal match.

86 CHAPTER 13. REGULAR EXPRESSIONS

When no upper limit is mentioned the editor substitutes a maximum of 255. In practice
the limits of the pattern matcher may be reached earlier as should be clear from the following
pattern:

//(.*\n)+/

which should match an entire file, whatever its length (the \n indicates a linefeed as explained
below). In practise the editor will display the message

Expression too complicated during matching

after about 256 characters in the match. After it sees that the match is longer it cannot
continue because its internal buffers are full. This restriction may be lifted in the future.

13.3 Or and If

In addition to the repetition operators there are an ‘or’ and an ‘if’ operator. These are given
by

//a|"bc"/

//a%b/

The symbol | indicates the ‘or’. It indicates that either the character a or the string bc will
cause a match. The % sign is a kind of ‘if’. The patterns matches to an a if it is followed by
a b, but the b isn’t consumed yet. The difference with //ab/ would become very clear in a
replace statement as the last pattern would also take out the b.

13.4 Additional special characters

There are some special characters to indicate a position in a line. These are the characters ∧
for the first position in a line and $ for the end of a line. So

//^a/

looks for lines that begin with the character a.

//a$/

looks for lines that end with the character a. This use of the character $ cannot interfere
with the use of the dollar sign to indicate variables, so that the command line processor may
substitute them (p. 106).

The end-of-line character is indicated either by the two characters \n or by a linefeed
character inside the pattern. The presence of linefeeds inside the patterns isn’t allowed in
most regular expression programs, but it can be very handy:

//\n{2,}/=/\n/

This would remove all empty lines from a file. A word of caution is in order here. Substitutions
of the type

//\n/=//

13.5. REPLACEMENTS 87

would remove all linefeeds from a file. This would have the effect of making one giant line.
Lines are however limited to 255 characters, so the replacements that would make longer lines
are skipped.

When a character is needed that has a special meaning it should be ‘escaped’. This can
be done either by putting a backslash character in front of it as in \$ to look for a dollar sign,
or to put the character <escape> in front of it. The use of either of these escape characters
switches the interpretation of the character off (with the exception of the n with is used for
the linefeed).

13.5 Replacements

Regular expressions can also be used for making replacements. The search part is the pattern
as described above, and the replacement string can be specified in the same way as this is
done for the regular search and replace command p. 78. All options that can be used there
apply also for the search and replace with regular expressions. In addition the replacement
string may now also contain linefeeds (indicated by \n or <escape><return>).

There is one restriction with respect to the options available for the regular search and
replace. Only the forward search modes are available for the regular expressions. There exist
no good definitions of a backward mode. One could either try to work back trough the file,
matching from the back, or stepping back through the file, matching the pattern from the
left to the right. The first method is rather against intuition, while the second method may
not yield the ‘longest’ match. Neither is satisfactory.

13.5.1 Substitution variables

Sometimes it is necessary to tranfer some information about the match to the replacement
string. This is done with variables. There are 10 variables, indicated by the 10 digits. Such
a variable is used by specifying the character @ followed by the corresponding digit. In the
pattern the variable is filled with the contents of what the single object to the left of it
matched to. In the replacement string the contents of the variable are substituted. Example:

//<[^>]*@1>/=/@1/

In each line objects of the type ”<return>” would be replaced by the plain string ”return”.
The pattern says: First a character <, then any number of characters, unless it is the character
>. This sequence of characters is put together into the variable 1. Then the pattern needs a
>. If such a match is found the whole thing is taken out and replaced by the contents of the
variable 1. The following is a little fancier:

//!+@1!^+@2!+@3/=/@3@2@1/

The object !+ is a sequence of characters that can belong to a word, in other words: a word.
We put it in variable 1. Then a sequence of non word characters should be put in variable
two. The word after it goes into variable 3. The replacement string has then the two words
exchanged. This single replacement exchanges all pairs of words in a file!

Multiple occurrences of the same variable in the pattern force the pattern matcher to have
these match identical objects:

//[0-9]@1[0-9]@1/=/:@1:/

88 CHAPTER 13. REGULAR EXPRESSIONS

Here all pairs of identical digits are replaced by a single digit enclosed by semicolons. It can
be even wilder:

//(&@1){2,}/=/@1/

Here all strings of at least two the same alphabetic characters are replaced by a single occur-
rence of that character.

There is a special variable that exists in the replacement string only. The character & in
the replacement string signifies the whole match of the pattern. So

//./=/&=/r

puts an equals sign after each character in the current range between the cursor and the mark.

13.6. OVERVIEW 89

13.6 Overview

The full syntax of the regular expressions is given in the following table.

character what it matches with

. any character
∧ first position in line
$ last position in line

[xyz] one of the given characters
\‘char’ don’t interprete ‘char’

<esc>‘char’ don’t interprete ‘char’
\n linefeed

<ret> linefeed
”string” match the string as one object

any digit
& any alphabetic character
∼ any alphanumeric character
! any word character

!∧ any character not in words
/ end of search string
() consider contents as one object
a* take object a zero or more times
a+ take object a one or more times
a? take object a zero or one times

a{m,n} take a at least m, at most n times
a|b either a or b

a%b a if followed by b

a@‘digit’ put a in variable number ‘digit’

The special characters
a,b are generic objects

13.7 Efficiency

The use of a number of repetitors in one pattern can make the search rather slow. The pattern

//.*.*.*abc/

needs for each position in a line that doesn’t contain the string abc a search time that is
proportional to the third power of the number of characters in the line. Such a situation
could be improved by making the pattern matcher smarter. In the above example .*.*.*

could be replaced by .*. That is functionally the same. One could also start looking for the
string ‘abc’ first (this doesn’t work always because patterns can contain linefeeds, unlike the
patterns in most regular expression matchers). All this intelligence would add much code,
and even then users will invent patterns that will take much time. So it is left to the user
to keep his patterns simple. A general rule is that if the first character in a pattern is a
fixed character the search will be much quicker. When a search takes much more time than

90 CHAPTER 13. REGULAR EXPRESSIONS

expected the search can be interrupted by pressing the ‘interrupt’ key combination. On a
UNIX system this is the <Control>-C combination.

The above effect will occur mainly when repetitors are used that interfere with each other.
Two repetitors of the type .*.* leave an ambiguity of some type during the match. So when
the pattern

//E.*.*2/

is confronted with the line

E = m * c^3

the first .* will be made maximal at first (10 characters). The second .* contains then 0
characters and then there is no more character for the 2. So now the first repetitor goes down
to 9. The second takes 1 and there is no room. Then the second becomes 0 again and the
2 is compared with the 3. No match! The the sizes (8,2),(8,1),(8,0),(7,3) etc. are tried. In
total 66 combinations are tried!

On the other hand the pattern

//ab*cd*ef*g/

has hardly any problems with the line

abbbbcddddddeffg

even though there are three repetitors. Here the repetitors don’t interfere and the match is
found in one attempt.

Patterns that start with a large degree of freedom will be rather slow. The pattern

//.zzzz/

will be significantly slower than

//zzzz/

The first pattern will always score a partial match at the position of the period. Then the
whole pattern matching engine is started to find that there is no full match. In the second
case the first character is a fixed character and looking for it can be done fast. In most files
there should be very few hits and the pattern matchine engine is rarely needed.

Chapter 14

Tabs

Stedi has a number of commands for controlling tabs and blanks in a file. These commands
are summarized in this chapter.

All tab commands are initiated by the character T as the first character in the command
line. This family of commands allows for a rather flexible manipulation of white space (blanks
and tabs). It is possible to expand tabs into blanks (detabbing), to replace blanks by tabs
(tabbing) wherever possible, to remove trailing blanks and tabs (trimming) and to define the
positions of the tab stops.

14.1 Defining tab stops

The tab stops are defined with the command:

t [ColumnNumber] [Number*ColumnIncrement]

If a column number is specified, a tab stop is placed at that position. In the second argument
an entry n*i generates n tab stops each i columns to the right of the previously defined
stop. There may be any number of the above parameters in any order as long as the column
numbers of the tab stops that are generated are in ascending order. A tab stop that has a
column number that is to the left of its predecessor is ignored. The buffers allow for 100 tab
positions. Any additional tab positions will be ignored. This would be very rare as there are
only 255 character positions on one line. Any tab stop beyond column 255 is irrelevant and
will be ignored. It is also impossible to put a tab stop in column 0. If a tab stop is put at
position 0, all tab stops after it are ignored.

Examples:

t 100*8

This is the default tab setting on most computers. Actually many computers and/or compilers
can become very confused if you use any other tab setting. Note that only 255/8 = 33 tabs
are relevant. We could of course also have used 33*8 to get the same effect but the 100 or
any other big number avoids having to do arithmetic. This mode is often used in assembler
programs.

t 100*4

91

92 CHAPTER 14. TABS

Often used in C.

t 7 10*4 73

A good setting for Fortran. Alas many Fortran compilers get confused by it and move parts
of the code beyond column 72 if there are too many tabs. The UNIX fortran compilers have
no problem with it.

Warning: There are many compilers and assemblers that don’t know what to do with
tabs. Some assemblers will not even allow tabs. Other compilers may interpret them as
being at the fixed positions 8,16,24,32,... so that the next character is taken at the positions
9,17,25,33,..., even if this is very unnatural for the language involved. Some experimenting
should show the tab sensitivity of the compilers involved. If a compiler/assembler will not
accept any tabs, they can be removed during the writing of the text to file with the use of
the printer mode for the write command (p. 58).

The tab positions defined in the above way hold only for the current buffer. If you like to
set the tabs for all buffers simultaneously you should put the character g after the t (indicates
global). The tab positions can be stored in the default file with the DW command. This way
they may be used in a future editor session.

14.2 Tabbing, expanding, trimming

The other three commands are rather similar in nature, so they are treated together.

tab[r][f] This command replaces as many blanks as possible by tabs without changing the
screen appearance of the file. For program files that use deep indentations, this may
save 30 to 40 percent in file space when the file is written. This operation is called
‘tabbing’.

te[r][f] This command replaces all tabs by as many spaces as needed without changing the
screen appearance of the file. The name of this command is ‘tab expand’ or ‘detabbing’.

tt[r][f] This command removes all unnecessary blanks. Blanks are considered superfluous if
they occur inside the range of a tab or at the end of a line. Also tabs at the end of a
line are removed. This operation is called ‘trimming’.

These command operate on the whole file, unless the optional parameter r is specified. If this
parameter is used, the range of action is the set of whole lines from the mark to the cursor,
including both the line with the mark and the line with the cursor. The order of the mark
and the cursor is unimportant. If the parameter f isn’t specified the first three characters of
potential opening and closing fold lines should not be treated by the tabbing, detabbing or
trimming routines. When the f is specified also those positions will be treated. Thereby these
lines may loose their folding properties.

The expansion of the tabs in a file may make the file much longer. Occasionally this will
exhaust the memory that is available. The editor will then attempt a garbage collection to
make more space available. In case this is not sufficient the editor will give the message that
there is not enough memory and leave its job unfinished. If there are files in other buffers or
in the undo buffer one could remove those and continue the expansion of the tabs. If this is
either not possible, or does not free enough memory the expansion can still be executed by

14.2. TABBING, EXPANDING, TRIMMING 93

writing the contents of the buffer to a file, using the printer mode (p. 58), although in that
case the file will no longer fit in the editor.

If you are in doubt as to where tabs and blanks are in your file, and where no characters
are at all, you may use the Alt-T command. This command toggles between a special mode
in which all characters on the screen have a unique representation and one in which all ‘white
characters’ look alike. In particular, in the special mode blanks appear as small hollow circles
in a superscripted position, tabs appear as small filled circles also in a superscripted position,
and places at which no character at all resides remain blank. The other character that is seen
as a ‘white character’ in the normal representation is an ASCII null character. In the special
representation, this character is given the appearance of a small filled circle in a subscripted
position. In some computer fonts the character indicated by the hexadecimal code FF (255
in decimal) is also represented as a blank. In the Alt-T mode this character is represented as
a colon.

94 CHAPTER 14. TABS

Chapter 15

Word-oriented commands

15.1 Words

Stedi has a rudimentary knowledge of words allowing a number of word-oriented commands
to be built in. For most purposes of the editor, a word is defined in one of two ways. A word
is defined as either a string of alphanumeric characters delimited by a non-alphanumeric
character or a single non-alphanumeric character of a certain class.

In order to make these definitions precise, let us separate the various characters into three
classes:

1. The first class, the ‘alphanumeric characters’, consists of characters from the set a-z,
A-Z, 0-9, and the special alphabetic characters in the character font that can be used
in the various national character sets.

2. The second class consists of some ‘in between’ characters which are mainly punctuation
characters. These are: ! "

$ % & ’ () * + , - . / @ [\]

^ ‘ { | } ~ and ∆. Sometimes they are seen as a word by themselves, re-
gardless of the characters next to them.

3. The third class of characters is considered to be ’whitespace’ and cannot be part of a
word. This class includes all control characters, blanks, tabs, carriage returns, linefeeds
and all characters with an ASCII code greater than 7F that are not included in the first
class.

It is possible to change the class of a character with the command

set <char> = on/off/single

The value on puts the character in class 1, the value single puts it in class 2 and the value off
puts it in class 3. Example:

set <$> = on

set <_> = single

This setting would be appropriate for Fortran. When the default file is written with the DW
command (p. 64) the ‘word settings’ are also stored in it.

95

96 CHAPTER 15. WORD-ORIENTED COMMANDS

In stedi a word is defined to be either a string of class 1 characters delimited by characters
from either class 2 or class 3 or a single character from class 2. Below, we will refer to the
first of these definitions as a type 1 word and the second as a type 2 word.

15.2 Commands related to words

Given these definitions, there are a number of word-oriented commands. They are described
below:

Command line commands:

/string/w This command searches for ‘string’ occurring as a word. This word option (w)
for a search or a search and replace command signifies that there is only a match with
the search string if the characters left and right of the match don’t belong to the words
in the search string. The search string may contain any characters so, for example, a
search for the string ’one plus two ’ as a word is legal, even with the trailing blank.

/string1/=/string2/w This replaces the word string1 by string2 wherever string1 occurs
as a word.

=/string2/ This command replaces the ‘current word’ or the word on which the cursor is
by string2. If the current word occurs elsewhere, it will also be replaced, as with the
normal replace command. This command only works for type 1 words.

Key commands:

Ctrl-W ‘Move to next word’. This command moves the cursor to the first character of the
next word. If there are no more words in the current line, the search is continued in the
next line.

Ctrl-Q ‘Move to previous word’. This command moves the cursor to the last character of
the previous word. If there are no more words in the current line, the search continues
at the end of the previous line.

Ctrl-X ‘Delete word forward’. This command deletes all characters between the current
position the cursor and the beginning of the next word, leaving the cursor on the first
character of the next word. Hence if you want to delete a full word, use this command
with the cursor on the beginning of the word. If the cursor is not on a word, this
command deletes the character the cursor is on plus all white space till the next word.
The delete stops at a linefeed unless the linefeed is the first character to be deleted.

Ctrl-Z or Ctrl-Y ‘Delete word backward’. This command deletes all characters between
the current position of the cursor and the end of the previous word. Normally the
cursor will then be just after the word previous to the one deleted. If the cursor is not
on a word, the character left of the cursor is deleted and all white space left of it to the
previous word. The delete stops at a linefeed unless the linefeed is the first character
to be deleted.

Ctrl-A ‘Jump to the next occurrence of the same word’. With this command the cursor is
moved to the next occurrence of the word under the cursor. A fuller explanation of this
command is given below.

15.3. WORD SEARCHES 97

Ctrl-B This command repeats the last Ctrl-A command. It will also be explained more fully
below.

15.3 Word searches

Because the Ctrl-A and related commands have proven so useful for most programmers cur-
rently using stedi, we give a full description of these commands here. They act also on the
‘current word’. This is the word the cursor is in at the moment of the command. If one
would like to inspect what this word is according to the editor one can type the command
line command:

show word

The variable ‘word’ can also be used for more complicated operations (e.g. in complicated
macro’s).

15.3.1 Find current word

To find the next occurrence of the word on which the cursor currently lies, you can use the
Ctrl-A command. This command first determines the cursor position, then finds the word
boundaries to the left and the right of the cursor, and then copies the word under the cursor
into a buffer. Afterwards, this buffer is used to generate a search command for the next
occurrence of the word on which the cursor was.

One use of this command is to find where in a program a certain variable or label is defined
or used or whether a name has been used already. Once the user is adapted (or addicted) to
it, the Ctrl-A command can become one of the main ways to move through a file. This way
motion is based on correlation rather than on distance.

15.3.2 Repeat current word search

The Control-B command gets the word that is in the Ctrl-A buffer and uses it for searching
for the next occurrence of that word in the text. This is particularly useful when the word
of the previous Ctrl-A search is not in view, either because the cursor was moved around, or
the word found was altered or the user switched to another buffer.

15.3.3 Replace current word

The replace current word command is a command line command with the following syntax:

=/string/options

As with the Ctrl-A command, the current word is determined and copied to a buffer. It is
then used to generate a new statement that looks like:

/CurrentWord/=/string/w+options

98 CHAPTER 15. WORD-ORIENTED COMMANDS

All settings and options that are relevant for a normal search and replace operation are
available for this command. The word option is automatically implied.

15.4 Word wrapping

For word wrapping purposes, the definition of a word is slightly different from that given
above. For this purpose, blanks, tabs, linefeeds and carriage returns are considered ‘whites-
pace’. Then a word is considered to be any string delimited by but not containing any
‘whitespace’ characters. These are referred to as words of type 3. The Fortran word wrap
will only look for such a ‘whitespace’ separator in the columns 63-72 as Fortran is a language
that doesn’t require whitespace in its statements.

15.4.1 The word wrap command

The word wrap option is invoked with the WW command on the command line (a single W
is reserved for the write command). This command causes the cursor to jump back to the left
side of the screen when the word being typed goes beyond a prescribed column. This option
is well known in the context of word processors, but can also be very useful for programming
and especially for typing commentary or manuals that will be processed further with powerful
formatting systems like TEX.

The syntax is as follows:

WW#

where # is the column number at which you wish the word wrap to occur. So for example,
WW78 sets the word wrap column at column 78. If the number is omitted, the editor reports
the current word wrap mode. The command

WW-

turns the word wrapping off.
The algorithm for wrapping is rather simple: whenever a character is entered from the

keyboard, a check is performed to see whether it comes to the right of the ‘wrapping column’.
If so, a search begins to find a blank or tab to the left of it (and also to the left of the ‘wrapping
column’). If such a blank or tab is found a <Return> is inserted after it. This causes the new
line to begin (usually) with a non whitespace character, while the trailing blank or tab in the
old line indicates a so called soft linefeed.

For Fortran programming, a special word wrap command, the WWF command, is pro-
vided which installs a special wrapping formula for Fortran programs. In Fortran a continu-
ation line needs a nonblank nonzero character in column 6 and columns after column 72 are
not recognized as part of a program statement. Thus the formula for Fortran word wrap is to
set the word wrap at column 72. When this column is reached, the cursor moves to column
6 of the next line and inserts a character (’+’) there to indicate that it is a continuation
line, before it copies the word being wrapped to that line. This indentation is accomplished
by means of the auto-indent mode (explained below) and hence any preset values for that
command will be erased when the Fortran word-wrap command is issued.

The word-wrap mode belongs to the current buffer. Each buffer may have its own mode.
The setting of a buffer can be moved to the default string with the DS command and to the
default file with the DW command (See the chapter on defaults p. 63).

15.5. THE AUTO-INDENT MODE 99

Summary of word-wrap commands:

WW# Normal word-wrap after column.
WWF Fortran formula wrap.
WW- Word wrap off.
WW Report word wrap status.

Rewrapping paragraphs can be done in one of two ways. These two ways have different
definitions of a paragraph, and in the end a different effect. The commands are:

15.4.2 The rewrap commands

Whenever a word-wrap option is active (with the exception of the Fortran mode of course),
the command which is executed by pressing Alt-W will try to determine the first line of
the current paragraph and then work its way to the end of the paragraph, rewrapping the
paragraph as if it had just been typed in. It recognizes lines belonging to the same paragraph
by the trailing blanks that are left at the end of each line when the word wrap is invoked.
Therefore the first line of the paragraph is recognized as the line following the first line without
a trailing blank that the editor encounters when working its way backwards from its start
position. The last line of the paragraph is the first line that the editor runs into without a
trailing blank when it is rewrapping. These rules are superceded by two other rules:

• A closed fold line never belongs to a paragraph.

• A line with only blanks and/or tabs doesn’t belong to a paragraph.

Note that the trim command removes trailing blanks, therefore destroying paragraph infor-
mation. Redefinition of paragraphs can be done however by adding a blank to all lines over a
given range. After marking the range of the paragraph as a marked range, this can be done
with the following command line command (see regular expressions p. 86):

//$/=/ /r

Then by definition the range becomes a paragraph (assuming it has no blank lines). It is
also possible to make much more sophisticated restorations of paragraphs by using macro’s
(p. 112). In conjunction with the Alt-W command it may be useful to recall the Alt-T toggle
command which allows blanks to be displayed as little circles (see the chapter on tabs p. 93).
With this command the presence of the necessary blanks can be checked.

The second rewrap command is entirely different. It is executed with the Alt-Q combi-
nation. Its definition of a paragraph is a range of lines that is enclosed either by fold lines
or lines that contain only white space characters (blanks and/or tabs). Stedi will determine
the current paragraph, eliminate all unnecessary blanks, rewrap the paragraph (obeying the
auto-indent rules) and then insert extra blanks to make the right edge of the text look nice.
There is a limit to the number of blanks inserted. This second rewrap is nice if the text typed
has to be printed directly on a line printer. Note however that its definition of a paragraph
is different from the definition for the other type of rewrap and that the ‘soft linefeeds’ get
destroyed.

15.5 The auto-indent mode

The main purpose of the auto-indent mode is to allow automatic generation of indentation
while programming. It can also be used for writing texts to govern the position of the left

100 CHAPTER 15. WORD-ORIENTED COMMANDS

margin on the screen.
The auto-indent mode comes in three types. The first type is invoked with the A+

command and is the ‘normal’ autoindent of most editors. When a new line is opened, the
leading tabs and spaces are copied from the line in front of it. This mode is very useful for
programming in many languages.

Some languages work with statement labels in the first few columns which makes the
normal autoindent feature not so useful. Therefore a second type of auto-indent is also
available which is activated with the A#+ command in which # stands for a number less
than 100. In this mode the cursor goes to column # +1 in the new line and copies tabs and
blanks only from that column on. All characters of the previous line that are in front of this
position are ignored. The net effect is that statement labels are skipped in the auto-indent
up to a given fixed position.

Finally the A# command is used for typing text files with a fixed left margin. Every
time a new line is opened, the cursor is placed in column # +1 and no further indentation is
attempted.

The auto-indent mode is turned off with the A- command. The mode can be inspected
with the A command.

Summary of auto-indent commands:

A+ Normal auto-indent.
A#+ Auto-indent to at least column #.
A# Fixed indentation to column #.
A- Auto-indent off.
A Show auto-indent mode.

The auto-indent mode belongs to the current buffer. Each buffer may have its own mode.
The setting of a buffer can be moved to the default string with the DS command and then
to the default file with the DW command. See also the chapter on default settings p. 63.

Chapter 16

The undo feature

Much effort has been made to provide for the ability to recover from mistakes that have been
made inadvertently, while using stedi. For example, it is possible that you may delete some
lines and then realize that you would like to have them again. For this purpose, stedi generally
monitors deletions by writing them away to a special buffer so that they will be available in
case they are needed. Thus in many cases, if no other action has been taken after a deletion
the part of text deleted is recoverable. This chapter is a summary of stedi’s undo features.

The <Undo> (on keyboards that have no undo key this is generally F11) key provides
the possibility to undo deletions which are made with the basic delete operations for deleting
characters, words, lines, or when a buffer is cleared. To undo cut and paste operations, paste
and cut operations themselves are used. These will be explained in what follows.

No undo capability is provided for search and replace operations because stedi would have
to save almost the whole file in order to be able to undo such complicated changes. If you
would like to make substantial changes with the search and replace command, you may like
to save a backup copy of the file first before proceeding. Alternatively you can use the veto
option in the search and replace command to guard against errors which are difficult to undo.

16.1 The Undo key

16.1.1 Characters and words

When deleting characters and words in a line, or deleting to the end of the line, stedi stores the
original contents of the line in the undo buffer. Any deletions of this type that are made all on
the same line can be restored with the undo key. The delete commands that are relevant are
the two character delete commands <Backspace> and <Delete>, the delete word commands
Ctrl-X and Ctrl-Z/Ctrl-Y, and the delete to end of line command Ctrl-D.

In addition, in some instances, contiguous characters that are deleted sequentially using
these commands can be restored with the undo key, regardless of whether they are on the
same line or not. Thus if you hold down the <Delete> key and delete several lines, they all
will be restored. In general the above deletes are remembered as long as they are in lines that
are inside lines that are already in the undo buffer or in lines that are adjacent to lines in the
undo buffer.

In the case of these deletions, after restoring the deleted characters they can be deleted
again by a second pressing of the <Undo> key. In that sense, the undo key acts as a toggle
between the original lines and those from which some characters were deleted.

101

102 CHAPTER 16. THE UNDO FEATURE

16.1.2 Lines

When successive lines are deleted with the Ctrl-<Delete> command, they can all be recovered
with the <Undo> key (F11 on some systems). The line delete command acts separately from
those above, so consecutive lines deleted with a combination of this command and the word
and character delete commands above cannot all be restored.

16.1.3 Buffers

The <Undo> key (or shift-F2 on some systems) can also be used to restore a buffer which
was cleared using the Shift-F9 key. Whenever a buffer is cleared, a copy of the file cleared is
placed in the undo buffer. Since this buffer takes up space in some of the computer’s memory,
if you are short on memory, you may want to hit shift-F9 twice when you are clearing a
buffer. The first time will move the file into the undo buffer, and the second time will copy
the contents of the (now empty) buffer into the undo buffer, thus effectively clearing it and
freeing up the memory allocated to it.

Note: For all the above operations, there is only one undo buffer for all files. Thus if you
make a deletion in one file and then move to another to do some editing, the information to
undo the delete in the first file will be lost. This is a compromise to the fact that there are
still so many computers in which memory is a hard item to get. In the future this restriction
may be lifted and a more versatile undo will be implemented.

16.2 Cutting and pasting

Often when a cut (yank) or a paste is made, there may be desire to reverse the operation.
For this purpose the <Undo> key (or F11 on some systems) is not used. Whenever a paste
operation is performed, after the operation is completed stedi places the mark and the cursor
in the appropriate positions so that an immediate cut operation will cut out the part of text
that was just pasted in. This holds for both paste (F5) and block paste (shift-F5) which
are undone by cut (F3) and block cut (shift-F3) respectively. In the case of a cut operation
(F3), an immediate paste (F5) will restore the text just cut out. The only one that is not
completely straightforward is a block cut (shift-F3). In this case, in order to restore the
text cut out, the cursor must be placed in the first line from which the text was cut, at the
position of the cut. Of course, if a mistake is made, the text can be immediately cut out
again and the cursor re-positioned.

Chapter 17

The learn buffers

There are 10 learn buffers that allow the user to combine several key strokes into a single
command. Each buffer may contain up to 100 key strokes. The contents of the buffers can
be stored in the default file so that they may be used in later edit sessions. The 10 buffers
are labeled 1 to 0, the zero representing learn buffer 10.

17.1 Filling a learn buffer

To begin putting key strokes into a learn buffer, enter the command line command L# where
is one of the 10 digits from 0 to 9. After this command is issued, you may begin entering
commands as normal. These commands take effect in their usual manner; at the same time,
they are recorded in the learn buffer corresponding to the number given. While a buffer is
learning, the c© symbol on the command line is replaced by the number of the buffer learning.
If more than one buffer is learning at the same time, the number of the lowest buffer will be
displayed. (For purposes of ordering, the zero stands for ten.)

Terminating the learning process is done by pressing the <Control> key and the number
key on the main key pad that corresponds to the buffer which is learning. If more than one
buffer is learning at the same time, only the buffer with the lowest number can be terminated.
A message will be given, indicating the number of characters in the buffer. If a buffer overflows
it will also be reported and the user will have to terminate the learning process before the
editor stops complaining.

17.2 Replaying a learn buffer

Replaying a learn buffer is done either with the <Control>-digit combination corresponding
to the buffer. Replaying a sequence in one of the buffers can therefore only be done after its
learning process has been terminated.

One may replay a learn sequence of one of the lower buffers while learning in a higher
buffer. The inverse is not allowed. This prevents loops and other undesirable effects. The
buffers can not tell whether e.g. Alt-F4/Ctrl-4 means the replay of buffer 4 or ‘stop learning
in buffer 4’. Therefore it is not possible to first stop the learning in the higher buffer when
two buffers are learning simultaneously.

If for some reason one wants to stop the replay of a learn sequence before it has ended,
this can be done by pressing both shift keys simultaneously. Once stopped, it is not possible

103

104 CHAPTER 17. THE LEARN BUFFERS

to continue at the position where the replay was halted.

In cases when a response is required from the programmer to confirm or veto an action,
the response cannot come from the learn buffer. Examples of this are when the veto flag is set
during a search and replace operation, or when a buffer that has not been saved is cleared. If
such commands are included in a learn sequence, the editor will pause and wait for a response
from the keyboard before continuing the learn sequence.

The contents of the learn buffers can be stored in the default file with the DW command.

The best way to see the power of these learn buffers is by means of some examples. The
first one is used to teach buffer 1 to declare the line that contains the cursor to be a comment
line in the C language. This is done as follows. With the exception that ASCII characters to
be typed are grouped together, each key stroke is spelled out in detail for clarity. Commentary
is given in parentheses.

• <Escape>

• l1

• <Return> (Now you have entered the learn mode)

• F1 (place a mark)

• shift-left arrow (go to column 1)

• /* (this starts commentary)

• shift-right arrow (go to the end of the line)

• */ (this ends commentary)

• F2 (return to the old position)

• <Alt>-F1 or <Control>-1 (terminate the learning in buffer 1)

Executing a sequence in buffer 3 five times is done with :

• <Escape>

• l4

• <Return> (begin learning in buffer 4)

• Ctrl-3

• Ctrl-3

• Ctrl-3

• Ctrl-3

• Ctrl-3

• Ctrl-4 (stop learning in buffer 4)

17.2. REPLAYING A LEARN BUFFER 105

The keys that are entered in the learn buffers are the keys after they come from the key
redefinitions (p. 138). If key redefinitions are used one may notice that the learn buffers can
fill up rather quickly. Much used sequences can therefore better be programmed as a key
redefinition or a macro. The learn buffers are mainly for little things that come up during a
particular edit session and that have to be done several times.

There is one restriction to the actions you can undertake from a learn buffer: It isn’t
allowed to read a default file from a learned sequence. The reason is rather simple: the
contents of the learn buffers would be overwritten by the the contents of the default file,
because the defaults file contains also the learn sequences. This could lead to effects that are
so interesting that they are forbidden.

106 CHAPTER 17. THE LEARN BUFFERS

Chapter 18

Variables

To support a programming language for macro definitions (p. 112) stedi is equipped with
the possibility to define and use variables. The syntax that is connected to the use of these
variables resembles the syntax of the UNIX c-shell csh very much. When variables are used
their name is preceded by a dollar ($) sign. The name of the variable should consist of
alphanumeric characters of which the first should be alphabetic. In addition the underscore
may be used at any position (also the first). There may be no more than 10 characters (the
dollar sign doesn’t count). If the use of the variable makes it necessary that the contents of the
variable are immediately followed by an alphanumeric character the name may be enclosed
in curly brackets: ${name}. The use of names is case sensitive as this doesn’t interfere with
the file system. There is a number of reserved names with a special meaning. These are given
later in this chapter.

When a variable is defined or a value is assigned to it its occurrence at the left hand side
of the statement shouldn’t be preceded by the dollar sign. The syntax of such a statement is:

set variable = expression

If the variable exists already its old ‘value’ is replaced by its new ‘value’. If the variable didn’t
exist a new entry in the list of variables is made. If this is originated from inside a macro, the
variable is removed from the list again when the macro is terminated. There are two options
for the set command. The global option makes that for an already existing value the editor
looks also among the variables of the parents (and these can be changed) This is done with

set -G variable = expression

The local mode makes that the editor will not look among the variables of the parents and
won’t change these. If there is no variable yet by this name among the variables of the macro
a new one will be made, even if this means that there is now more than one variable with
that name. If a child process looks for a variable with this name it will run into the closest
variable. The local mode (the default mode) is forced with the command:

set -L variable = expression

The L and the G are case insensitive. The effect of this is that a macro has full control over
the variables of its parents, but all variables of its children are hidden from it. The syntax of
the expression at the right hand side is explained in the chapter on macros (p. 115). If just
a simple string is needed it can be provided, enclosed by double quotes:

107

108 CHAPTER 18. VARIABLES

set quotation = "Eureka!"

If a dollar sign is needed inside the string this can be done by ‘escaping’ it with a backslash
character. The other character that should be escaped this way is the double quote. In
addition linefeeds can be put in the string by an escape character (or a backslash for systems
that don’t use the backslash in the file system) at the end of the line. In this last case a
linefeed is put in the string and the next statement is seen as a continuation. The matching
double quote should then be on this next line. In the command line a linefeed or carriage
return can always be inserted after typing an escape character, or with the Ctrl-H command
(p. 134)

The ‘value’ of a variable is always a character string. For some purposes stedi will try to
interpret this string as a number. If this turns out to be impossible an error message may
be the result. Some operations can give different results, depending on whether the variables
involved can be interpreted numerically (p. 115.

The contents of a variable can be inspected with the show command. This command has
the syntax:

show variable

In this command the dollar sign should not be used in front of the variable. You can try this
out with the statements:

show date

and

show $date

In the second case the date is substituted before the show command is executed. This means
that there is a rather funny name that doesn’t obey the rules for names, so an error message
will be given.

There are names that have a special meaning. Most of these give the user access to internal
information so that he may use it inside macro’s. Others are meant to control some settings
of stedi. In addition the variables in the environment can be inspected.
The reserved names concerning the internal information are:

buffer The number of the current buffer.

byte The number of bytes in the file before the cursor position.

char The current character. An empty string when the cursor is in virtual space.

column The number of the column of the cursor in the current buffer.

cwd The name of the current working directory. This is usually the name of the directory
from which the editor was started.

date The date.

direction Either ’<’, ’<<’, ’0’, ’>>’ or ’>’ for the search/replace direction modes.

filename The name of the file in the current buffer. Only its local name is considered.

109

fold The name of the current fold if the current fold would be closed.

fullname The full name of the file in the current buffer. This name includes the path name.

insertmode Either an ’I’ or an ’O’ for the insert or overstrike modes.

isfold This variable indicates whether the cursor is in a closed fold line.

ismark The value ON indicates that there is a mark. If there is no mark the value is OFF.

key The use of this variable causes stedi to wait for a character from the keyboard. The
character is presented as a string of 8 hexadecimal digits in the same notation as the
key that is entered in the text after a ctrl-K.

lastmess The last message that was displayed in the message line. This could be used for
analysis to make the editor jump to an error message of the macro processor.

line The number of the current line in the current buffer.

linechars The number of characters in the current line.

maxcol The number of the column if the cursor were to be moved to the end of the current
line.

nextatt The file attribute of the file that was obtained after $nextfile has returned the value
true. See also p. 132.

nextdate Gives the date and time of the last file that was found with $nextfile. The format
is yyyy/mm/dd-hh:mm:ss to allow for lexicographic sorting of dates. See also p. 132.

nextfile When this variable is read it returns true (the digit 1) if in the file search that was
initiated with a ‘first’ command a new file was found. Each use of $nextfile tries to find
a new file. If no new file is found the value false (a digit 0) is returned. The information
about the file can be obtained with the variables nextatt, nextdate, nextname and
nextsize. See also p. 132.

nextfname Gives the name of the last file that was found with $nextfile. If the pattern given
the the ‘first’ statement contained any path information it is included in the name. See
also p. 132.

nextname Gives the name of the last file that was found with $nextfile. There is no path
information in this name. See also p. 132.

nextsize Gives the size of the last file that was found with $nextfile. See also p. 132.

numchar The number of characters left of the cursor.

range This variable contains the characters of the current line that are between the column
of the mark and the column of the cursor. It doesn’t matter whether the mark is in the
same line as the cursor. Only its column position is relevant.

returncode The string that was set in the last return statement that the editor encountered.
If a return statement doesn’t mention a return code or when there is no return code the
string is empty.

110 CHAPTER 18. VARIABLES

screenline The number of the line on the screen in which the cursor is.

searchmode Either an ’S’ or an ’N’ for the case sensitive or case non sensitive search mode.

shell Indicates whether there is a command shell present that can accept commands via
the ! command. On the PC-like computers this means that the environment variable
COMSPEC has been set.

totlines The total number of lines in the current buffer.

word The current word.

wordwrap The size of the word wrap. This will be an empty string when the word wrap is
either off or in the fortran mode.

writemode The character that indicates in which mode stedi would write the contents of
the current buffer it it would be written (A, P, R or U).

wword The current word in the wordwrap sense. This means a word that is enclosed by the
white space characters blank, tab or ASCII zero, rather than the more sophisticated
definition for the variable ‘word’.

yankbuf Indicates the current yank buffer with either ’Y’ or ’y’.

The above variables should not be used in the left side of a ‘set’ command. If the user tries
to set such a variable a new variable with this name is made and the old meaning of it is lost
until the variable is removed again. One can experiment with the above variables by using
the show command as in

show cwd

to see what the current directory is.
The variables that are meant to control some of the settings of stedi are:

autoclose Value is ”on” or ”off”. determines whether the autoclose facility is used when
files are read or written.

backup The character of the current backup mode (b, B, V or a ! indicating that no backup
is made).

color Indicating whether the colors of the text screen and the message line should be ex-
changed. Values are ”on” or ”off”. See also the Alt-C command (p. 125).

dirty Value is ”on” or ”off”, depending on whether the dirty flag is on or off. The dirty
flag indicates whether the file has been modified. It is displayed as one of the status
characters.

hstep The stepsize for horizontal scrolling in the text buffers.

maxhist The maximum number of lines in the command line history.

menuspaced Determines whether only every odd position in the menu bar is sensitive to
clicks.

111

mstep The stepsize for scrolling in the command/message line.

numbers Sets the updating of the line number in the status line ”on” or ”off”. This is
mainly for terminal connections. For those the regular updates of the line number can
mean a significant slowdown.

pagedelay This variable has a numeric value which is the number of milliseconds that stedi
will take at least for drawing one screen when scrolling with shift-up or shift-down
(page-up or page-down).

waitflag Sets the wait flag on or off. This flags determines whether after the execution of
an external program or a call to shell stedi will wait for a key to be pressed. This
waiting avoids disturbing the screen before the user has read it. See also the chapter
on executing an external command p. 123.

<char> The character can be any single character. The value assigned is ”on”, ”off” or
”single”. When ”on” it forces the indicated character to be interpreted as belonging to
words. If the value is ”off” it will never be seen as part of a word and the value ”single”
makes the character into a single character word. See also the chapter on Word-oriented
commands p. 95.

These variables can be set and their settings can be stored in the default file (with the
exception of ‘dirty’).

If a variable is used which has not been defined by the user, and whose name isn’t one
of the reserved names stedi will inspect the environment (p. 154). If there is an environment
variable of which the name matches the name of the searched for variable in a case insensitive
way the return value will be the contents of the environment variable. This way one can for
instance test for the setting of the environment variable STEDIMAC etc.

The number of variables that can be used in stedi is limited only by the size of the available
memory. The same mechanism that is used to store the lines in the text is also used to store
the variables. This has an advantage and a disadvantage: The advantage is that no fixed size
buffers for names have to be allocated at startup (so that space isn’t lost). The disadvantage
is that it is impossible to do a binary or hashed search for a name, so that when there are
very many variables searching for a name may become slow (everything is relative).

112 CHAPTER 18. VARIABLES

Chapter 19

Macro’s

The possibility to execute little ‘editor programs’ can make an editor into a really powerful
tool. In stedi there are already many built in commands that the user would have to define
in terms of macro’s if he would be working with another editor. Yet the implementation
of more and more commands can make an editor so large that there is no memory left to
use it. Therefore also stedi is equipped with a complete macro processor that can execute
user defined procedures that may use parameters, variables and control flow. Those macro’s
may either be loaded in memory or reside on disk. There are several possibilities that are
attempted in locating a macro when the user decides to invoke one.

The macro’s that are located fastest are the ones that are stored inside the default file.
These macro’s are loaded at the startup of stedi only. If another default file is read later
neither the key redefinitions nor the macro’s are replaced by those of the new default file.
Macro’s can also be loaded during a session. The command

mc name

creates a macro with the given name. The contents of the macro are a copy of the current
buffer. When the default file is written also these loaded macro’s are put into it. To make
this scheme complete there is also the

md name

command that deletes the given macro from the buffer with the loaded macro’s. It is not
allowed to make more than one macro with the same name. The old macro has to be deleted
first. In addition to the above two commands there is a command that allows the user to see
which macro’s are currently loaded. The command

mv

makes a list of all available macro’s. This list is put in the current text buffer (it has to go
somewhere). If this would upset the current buffer too much one could first go to one of the
yank buffers (buffer 9 or buffer 0, see p. 69) and then give the mv (= macro view) command.
The command

mv name

will list the contents of the macro with the given name into the current buffer, provided the
macro can be located.

113

114 CHAPTER 19. MACRO’S

If the user asks for a macro to be executed and the macro cannot be located inside the
above buffers stedi will look inside the current directory for a file with the given name and an
extension ‘.mac’. If such a file is located it will be loaded and executed. After its execution
it is removed from memory again. A file system which possesses a good caching mechanism
will still give a rather fast performance, even when one macro is calling another macro from
disk many times. Finally, if such a file cannot be located in the current directory it is also
looked for in the macro directory. This directory is indicated either by the path name after
the -d option at startup (p. 153) or by the contents of the ‘STEDIMAC’ environment variable
(p. 154).

In principle only alphanumeric characters should be used for the names of the macro’s
although this may differ from one system to the other.

The statement with which to execute macro’s is the X statement in the command line :

X name arguments separated by blanks

will execute the macro indicated by ‘name’ with four arguments. The first argument is the
string ”arguments”, the second one is the string ”separated” etc. These arguments can be
used as variables inside the macro. These variables are referred to by a dollar sign followed by
a single digit. The digit may be enclosed inside curly brackets. The arguments are referred
to by their order of occurrence. The first argument is $1 etc. There can be no more than
nine arguments this way. Arguments that are used but that were not provided in the call to
the macro are taken as empty strings. The special object $0 is the name of the macro itself.

If, during the execution of a macro, an error condition is encountered, its execution is
halted and the appropriate error message is printed. In addition the number of the line in
which this error occurred is appended to the message. This number is between parentheses.
If it happens that the offending line is in a macro that was called from another macro the
parent macro is also stopped, so also its line number will be appended. This gives a full
tracing of how the execution got to the point that gave the offending condition. It could be
that the user would like to intercept an error condition, so that he may clean up a partially
finished operation. If a macro contains the label statement (see below)

label onerror

the editor will go to the first statement after this statement, rather than returning immedi-
ately. Such a transfer of control cannot take place when the error is against the syntax on
one of the flow control statements given later in this chapter. The label will be used only
once in a given macro. If a second error occurs the macro will be exited.

The command to enter text from a macro into the current buffer is the ‘double quote’
command (p. 41). A command that consists of a string enclosed by double quotes, will put
the string in the text at the position of the cursor.

Any line that starts with either the character # or the character * is considered to contain
commentary and is skipped. When a macro is loaded and it contains a closed fold the fold
is loaded in an opened form. This means that the statements inside a closed fold are also
executed.

19.1 Operators

The syntax of the expressions is rather peculiar. All variables in stedi are in principle string
variables. This means that they are stored as character strings and only when the need is

19.1. OPERATORS 115

there they may be interpreted as numbers or logical variables. The same variable may be
interpreted differently, depending on the operations that are applied to it. Note that the
value false corresponds either to the digit zero, or to a string with only blanks and/or tabs
or to an empty string. All other strings result in the value true if their logical value is asked
for. The operations are in the order in which they take precedence:

! This is a unary operator. It precedes a logical object and makes it into its logical com-
plement. A logical object is the character ‘1’ for true or the character ‘0’ for false.
Any other string is first converted according to the rule that an empty string or strings
that contain only blanks, tabs and/or zeroes represent the logical value false. All other
strings represent true.

strlen A unary operator giving the length of the string following it. It can be very handy
when a string has to be processed character by character. For an example see the section
on binary editing p. 136.

toupper Converts the object after it to upper case, according to the built in tables. If the
native display fonts contain alphabetic characters belonging to national character sets
they may be changed too.

tolower Converts the object after it to lower case, according to the built in tables. If the
native display fonts contain alphabetic characters belonging to national character sets
they may be changed too.

∗ A numerical multiplication. The objects to the left and the right of this operator must
be readable as a number or an error message will be printed and the execution will be
halted.

/ A numerical division for numerical objects only. This command has the same precedence
as ∗. The evaluation is strictly from left to right.

% The remainder after the division of the object left of the % sign by the object to the right
of it.

+ For numerical objects this is the regular addition. If either one of the objects cannot be
interpreted as a number it is a string concatenation. It can also be interpreted as a
unary plus sign.

− A regular subtraction for numerical objects only. It can also be interpreted as a unary
minus sign.

:> This operator needs as its left argument a string and as its right argument a number. It
shortens the string from the left by the given number of characters. So only the right
most characters are left. It is referred to as ‘string take right’.

<: Again the first argument is a string and the second a number. Now the characters are
taken away from the right. It is referred to as ‘string take left’.

= ∧ The two arguments are interpreted as strings. The first string is scanned from the left
to see whether it contains the second string. If so all the characters to the left of this
occurrence and the occurrence itself are removed. So only the characters to the right of
this match are left. It is called ‘string strip left’.

116 CHAPTER 19. MACRO’S

∧= Same as the operation before but now the matching is done from the right and only the
leftmost characters are left. If there is no match the resulting string is identical to the
first string. It is called ‘string strip right’.

>> The left argument is a string and the right argument should be a number. The leaves
the rightmost indicated number of characters of the string. It is referred to as ‘string
make right’.

<< The left argument is a string and the right argument should be a number. The leaves the
leftmost indicated number of characters of the string. It is referred to as ‘string make
left’.

˜ This is a string concatenation. The result of this operation is a string take consists of the
combination of the contents of its left and right arguments.

// This is another notation for string concatenation.

! = This is a logical operator. Its arguments are interpreted as strings and the result is either
true when the objects are unequal and false when they are equal in a lexicographic
sense.

== The logical equal operator: result is true is the objects are equal as strings (in lexico-
graphic sense).

> If both the arguments are numeric the comparison is a numeric comparison. Otherwise
the arguments are compared in a lexicographic sense. If the first is greater than the
second the result is true.

< If both the arguments are numeric the comparison is a numeric comparison. Otherwise
the arguments are compared in a lexicographic sense. If the first is less than the second
the result is true.

>= If both the arguments are numeric the comparison is a numeric comparison. Otherwise
the arguments are compared in a lexicographic sense. If the first is greater than or equal
to the second the result is true.

<= If both the arguments are numeric the comparison is a numeric comparison. Otherwise
the arguments are compared in a lexicographic sense. If the first is less than or equal
to the second the result is true.

> , < , >= , <= Same as >, <, >= and <= but now the compare is forced to be lexico-
graphic.

&& This operator interprets its arguments as logical objects. If both are true the result is
true. Otherwise the result is false. This is the ‘and’ operation.

|| This is the logical ‘if’ operation. If either of the arguments is true the result is true.

It could be that in the future more operations are added to this list. It is allowed to use
parentheses to group subexpressions. An expression may continue over more than one line.
In that case the end of a line that is to be continued should be formed either by a backslash
character or an <escape> character. On some systems the backslash cannot be used to ‘escape’

19.2. FLOW CONTROL 117

the end of line, because this would interfere too much with the path name conventions of the
local file system. In that case only the escape character may be used to ‘escape’ the end
of line. This escape character can be typed in with the sequence ‘ctrl-H escape’ The above
continuation may not occur in the middle of a name or between the characters that indicate
an operation. Note that for numerical purposes the empty string is interpreted as zero.
When the user needs to introduce a string there are two possibilities: In the first the string
is enclosed between double quotes as in ”string”. The backslash or the <escape> characters
can be used to ‘escape’ characters like the double quote itself a dollar sign or a linefeed. In
the second possibility the string starts with an alphabetic ‘word character’ and runs till the
first character that is not part of a word. Excluded from this possibility are all those words
that are interpreted as operators, so it is best to always use the notation with the double
quotes. Numbers may be entered as regular numbers. They are always interpreted as decimal
numbers.

19.2 Flow control

A good macro language needs of course flow control. The statements that take care of the
flow control are:

while/endwhile The word ‘while’ should be followed by a blank and then an expression
that is formed according to the above rules for expressions. As long as this expres-
sion evaluates into true the statements between the ‘while’ and its matching ‘endwhile’
statement will be executed, otherwise execution continues after the matching ‘endwhile’
statement.

if The if should be followed by one or more blank spaces and then an expression. The rules
for this expression are identical to the rules for the expression in the while statement. If
the expression has the logical value true the statements after the if are executed. If the
expression has the value false execution continues either after a matching else or after
a matching endif.

else This statement is used together with an if and an endif statement. When execution
reaches an else statement (without having been sent there directly from an if statement)
the statements between the else and the matching endif are skipped. When execution
reaches the else because of a ‘false’ expression in an if statement the statements between
the else and the endif will be executed.

endif Needed to terminate a range of statements that come with an if statement. The
occurrence of an if statement without a matching endif statement is a fatal error: the
execution of the macro will be stopped. An endif statement that is superfluous is
ignored.

goto This should be followed by the name of a label. Control is passed to the statement
after the label. If the label is not found execution of the macro will be halted and an
error message will be given.

label This should be followed by a name which is then interpreted as the name of the label.

118 CHAPTER 19. MACRO’S

return ‘returncode’ This statement causes the termination of the current macro. This
doesn’t generate an error condition as abnormal termination of a macro would do (like
when running into a syntax error). On the other hand whatever comes after the word
‘return’ is seen as a return code. It may be a complete expression as in the right hand
side of a ‘set’ command. The result of this expression is put in a dedicated variable that
goes by the name returncode. If no return statement is used the returncode will be set
to an empty string when the macro is finished. The variable returncode can be used to
send information to the parent process. See also p. 109.

19.3 The ‘first’ command

A command that has very close connections with the macro’s is the command ‘first’. Its
syntax is:

first pattern

in which the pattern should be acceptable to the local file system. This statement returns no
value. After this command has been given the various files that match this pattern can be
obtained with the successive use of the variable $nextfile. This variable returns the logical
values true and false depending on whether a new file was found. The information about a
file can then be obtained with the variables $nextatt, $nextdate, $nextname and $nextsize
(see p. 109). This is shown in the following example:

home

first $1

while $nextfile

set i = ($nextname // " ") << 12

set j = (" " // $nextsize) >> 7

"$i $nextatt $j $nextdate\n"

endwhile

This macro expects one argument. This argument is used as a pattern in a ‘first’ com-
mand. After this each file that is found in the successive use of $nextfile has its name,
attributes, size and date put in the current buffer in a nice format. This formatting works
in a rather simple manner. In the variable i the name is concatenated with a string of 12
blanks. After this only the leftmost 12 characters are taken from this string. The command
"$i $j $k $nextdate\n" puts all variables and some intermediate blanks as text in the
current buffer and the \n indicates that a newline should be started after this.

Chapter 20

Stream editing

A stream editor is an editor that processes a file taking its instructions from another file. This
can be very useful when a fixed editing task has to be used regularly, like the conversion of
one dialect of a language to another. Stedi provides this facility in three ways. The first way
involves the macro facility. This can be looked up in the chapter on macro’s. It is by far the
most useful facility of the ones mentioned here. The second way is given by the I command
in which the I stands for ‘input’. When the I# command is issued from the command line (#
should be a digit in the range of 1-8) stedi treats the lines in the corresponding buffer as input
for the command line. It starts at the ‘current line’ in this buffer (the line in which the cursor
is when the user switches to this buffer) and proceeds executing statements either till there
are no more lines, till a search with the . option is not successful or till a command results in
a fatal error condition. There are several restrictions that should be taken into account:

• Any line that starts with either a ∗ or a # is skipped. It is seen as commentary.

• Neither a fold line nor the lines within a closed fold are executed.

• Only the first 255 characters of a command can be copied to the command line.

• If a line ends with an <escape> character or a backslash (only on systems for which
the backslash has no special function in the file system) it is assumed that the carriage
return that followed it has been interpreted wrong, with the result that the command
is now spread over more than one line. Therefore a <return> character is added and the
contents of the next line are considered to be part of the same command.

• Commands that are executed from a stream are not entered in the command history.
The last command in the command history will be the input command itself.

It can happen occasionally that the user may want to abort a stream command when
he sees that things are not proceeding as planned. This can be done by pressing both shift
keys simultaneously. Stedi will then halt the execution of the input command. The cursor in
the stream file is left in the line with the next statement that would be executed if the error
condition had not occurred. This is different from the abort after a ‘fatal’ error condition. In
that case the cursor is left in the line that caused the error. In either case it is rather easy
to proceed execution as a new input command will start execution at the line of the cursor.
A good example of such a condition would be a lengthy set of actions that is interrupted due

119

120 CHAPTER 20. STREAM EDITING

to lack of memory. During a stream action stedi doesn’t execute garbage collections, unless
forced to do so with the ‘garbage’ command, so one second pause after such an interrupt
may be sufficient to clean up the memory, after which one can continue by using the Ctrl-R
command.

The example below is a stream program that removes all lines that contain the string
’Remove me’ from a file. The file is supposed to reside in buffer 1 and the stream file should
be in buffer two:

u-

* This turns off the screen updates

alt-1

* Go to buffer 1.

/Remove me/>.

* Search forward for the string.

* The period option makes the stream stop

* when the string is not found any more.

deleteline

* delete this line.

alt-2

* Go to buffer 2 (the buffer with the stream!)

home

* Go to line 1. This means that the next line

* to be executed is line 2.

Of course the above could be obtained easier with a macro. The I command allows however
a few possibilities that the macro’s cannot offer. One is that a stream script can modify itself.
In rare occasions this can be handy (but don’t complain when you get in trouble). The
other more useful feature is that because a stream script isn’t a macro the variables that are
defined in it will not be removed after the script has terminated. This means that it offers
the opportunity to set a number of variables that the user would like to have around. Note
however that if the stream script is called from a macro all its variables will disappear again
when the macro is finished.

If stream files invoke themselves or other stream files in a recursive fashion a crash may
result if the algorithm that was used doesn’t terminate in time. There should however be
enough space for at least 16 recursions. This may depend somewhat on the instructions that
are used at the deepest levels.

No attempts have been made to forbid certain actions as this could restrict the user
needlessly. If during a particularly complicated operation stedi starts malfunctioning it is left
to the good taste of the user to determine whether he was asking for trouble or whether a
serious shortcoming of stedi has been found. Anyway the author would like to know about it.

The third stream facility in stedi is something that is usually interpreted as stream editing.
At the startup of the editor the user indicates that a special file contains edit instructions and
should be used to act upon at least one of the other files. With stedi this is done with the -i or
-x parameter in the command tail at startup. The file after this parameter is interpreted as a
macro. The macro is loaded and all other arguments after the name of the macro are passed
as arguments to the macro. The editor starts up, the macro is executed and the file in buffer
1 is saved. After this the editor terminates execution and returns to the command processor.

121

Whether there will be an enormous visual display during the execution of the macro depends
on whether the screen updates are switched off in the macro.

122 CHAPTER 20. STREAM EDITING

Chapter 21

Execute an external command

Programs may be executed from within the editor. Likewise, if the editor is being run from
a shell, it is possible to execute a shell command from within the editor provided the shell is
equipped for such action.

Programs or commands are executed from the command line, using the exclamation mark
(!) command. The syntax is:

!progname [command tail]

With this command the editor will execute the program in the file ’progname’. A possible
command tail is passed to the program in the same way as is done from a regular command
shell. The environment string passed to this new program is a copy of the string that was
passed to the editor when it was started up.

This command can be particularly useful when running from a floppy disk. In the cycle
(1) entering the editor, (2) reading a file, (3) writing the file after editing, (4) compiling, (5)
make a test run, one can save the first two steps if the steps 4 and 5 are done from the editor.

When the external program is finished, the editor will produce a bell sound (which of
course cannot be heard if the sound level is set to be very low) and wait for further action.
No attempt is made to give a visual prompt, as that may overwrite an error message or other
precious output. After completion of the program, the editor flushes its input buffer before
waiting for further action. Thus, it is quite safe to accidentally press a key while your program
runs. This will not cause an immediate return to the editor upon completion of the program.
It is also possible that one doesn’t know whether the program has finished. Also in that case
one may freely press any key without the risk of loosing a later error message.

When the program ends, hitting any key (with the exception of the status keys) will cause
a return to the editor at the point where one was when the program began. A message
in the message line will tell how long the execution of the program took from the moment
that the control was given to either the operating system or the shell to load the program
up to the moment the editor got the control back and started waiting for a key. A possible
return code will also be displayed. Often compilers give a negative return code when an error
was detected, but if the error messages were also written to the screen this is superfluous
information. The more important messages are the ones from the operating system that may
indicate problems such as lack of memory or that the file was not found. These errors are
presented in text format while all other errors - mostly user defined - are given by number.

123

124 CHAPTER 21. EXECUTE AN EXTERNAL COMMAND

Sometimes the user may not like it that stedi waits for the pressing of a key upon com-
pletion of a program. In that case he can use a variation of the ! command in which the
! is followed by a – sign. The minus sign indicates that there will be no waiting. It is also
possible to set a flag that indicates to stedi that there should never be any waiting. This is
done with the command

set waitflag = off

When the wait flag is off one may issue a command that waits anyhow by putting a + sign
after the !. The wait flag can be turned on again with the command

set waitflag = on

To see what the contents of the wait flag are one may use the command

show waitflag

21.1 Escape to shell

When a shell program has been used to start up the editor, and the shell program has taken
the appropriate measures necessary to allow the editor to tap into its command capabilities,
the editor will detect this. Then the editor will not submit the program itself but pass
the combination of progname + command tail as a single string to the shell for further
processing. Settings concerningthe cursor are restored as much as possible to what stedi
found at startup. After the command has been executed stedi will test its environment and
reinitialize it completely if the need arises. It is clear that such an interaction with a shell
will greatly enhance the power of the ! statements as full use can be made of the possibilities
of the shell (like aliasing, shell scripts, search paths, etc.).

The issuing of external commands that are rather complicated can be made much easier
in combination with either the key redefinitions, the learn mode or the macro’s. One could
for instance make the simple macro:

save

set name = $filename ^= "."

!-cc -o $name.exe -iD:\include -DDEBUG -C $name.c

!$name.exe

If this macro is called cc (or sits in the file cc.mac) the command

x cc

will save the contents of the current buffer, create the variable name as the basename of the
file without its extension, have the shell call cc with the proper parameters so that the new
file is compiled. If the compilation is successful the program is executed. This can give a
very quick turnaround during debugging. If output redirection is possible one could have
compilation errors caught in a file and have another macro to load this file, read in which line
the first error was found and jump to this line. This second macro would depend on how the
compiler produces its error messages.

It is also possible to bind the execution of the macro ‘cc’ to a single key like Ctrl-P via
the key redefinitions. The whole execution of the program in the current buffer would then
be reduced to pressing one key combination!

Chapter 22

Screen control

Stedi has a number of commands to control the appearance of the screen. Some commands
control the color of the screen, others allow the user to simultaneously display two files, and
again another command can show the hexadecimal representation of all characters in a buffer.
These commands are treated in order.

22.1 Screen color

The color of the screen is by default black and white. Depending on the computer it may be
white characters on a black background, or black characters on a white background (if the
main colors of your screen happen to be black and white). The command line is represented
in the inverse colors. The simplest color control is with the Alt-C command. It exchanges
the color attributes of the message line and the text screen. This is remembered as a ‘toggle’
command. It is written in the default file with the DW command (p. 64) and upon startup
stedi sees whether it should flip the color of the screen. On some systems it is possible to ask
for the color of the screen, in which case an attempt is made to fix this color exchange in an
absolute sense. On other systems this parameter doesn’t involve an absolute color.

For some color systems there is a more flexible way of controlling the color. The commands

c1 color1 color2

c2 color1 color2

sets the colors for the text screen (c1) and the message line (c2) respectively. The first color
is the foreground color i.e., the color of the characters, while the second color is the color of
the background. On the computers in the PC family the foreground color can be a number
in the range of 0 to 15 (4 bits in total) while the background color can be a number in the
range of 0 to 7 (three bits). The meaning of the bits in these numbers are:

bit 0 If set the color blue is on.

bit 1 If set the color green is on.

bit 2 If set the color red is on.

bit 3 If set the high intensity attribute is on.

So the commands

125

126 CHAPTER 22. SCREEN CONTROL

c1 7 0

c2 1 7

sets the text screen to white characters on a black background and the message screen has
blue characters on a white background.

All the above variables are stored in the default file when it is written.

22.2 Split screen

Sometimes it can be quite handy to show two files on the screen next to each other. Some
editors carry this idea even further, but stamp sized windows are rarely very useful. The
commands that control the splitting of the screen are mostly given from the command line:

F This restores the screen to the representation of a single buffer. The buffer which was
the ‘current buffer’, which means that it had the cursor in it, will be the buffer that is
shown.

FH The screen is split horizontally. The message line moves up a number of lines to serve as
a divide between the two windows. If the editor was in the single window representation
the top window will show the old buffer and the bottom window will show the buffer
whose number is one higher. For purpose of counting buffer 1 comes after buffer 8. The
split between the buffers will be about even.

FV The screen is split vertically. The message line stays at the bottom of the screen. If the
editor was in the single window representation the left window will show the old buffer
and the right window will show the buffer whose number is one higher. For purpose of
counting buffer 1 comes after buffer 8. The split between the buffers will be about even.

FH# Same as the FH command, but the top window will now have the specified number of
lines (if possible).

FV# Same as the FV command, but the left window will now have the specified number of
columns (if possible).

F+# This moves the divide between the windows down or to the right by the specified
amount.

F-# This moves the divide between the windows up or to the left by the specified amount.

After the screen has been split there are various ways to go from one buffer to another. If one
wants to go to the other window this can be done either by the Alt-F key combination, or
by the Alt-number combination in which the number is the number of the other buffer. If the
number is the number of a buffer that isn’t on display at the moment, the window with the
cursor will change to that buffer. So there is no need to have the two windows show buffers
with sequential numbers.

There are no provisions for having both windows display parts of the same buffer.

22.3. SPECIAL REPRESENTATIONS 127

22.3 Special representations

Sometimes it would be nice to see what the hexadecimal value of the characters in a buffer
is. This is mainly so for the editing of binary files. This can be done with the Alt-H key
combination. It is described in full in the chapter on hex codes on p. 136.

Another special screen representation can be obtained with the Alt-T key combination.
It is meant mainly to inspect in files what the true nature is of all blank spaces on the screen
(blanks, tabs, ASCII zero, no character at all). It is described in full in the chapter on the
tabs on p. 93.

128 CHAPTER 22. SCREEN CONTROL

Chapter 23

The sort command

When preparing lists it can be necessary that the list is in a given order. To sort a long list
by hand can be quite time consuming, and a macro could do the job, but also it will be very
slow. Therefore stedi has been equipped with a sort command. There are several options
to make the command rather practical. The main command is the command O (for order,
the s has been taken already by save and set) from the command line. If this is the whole
command, the whole buffer is ordered in a lexicographic way. When this is done the first time
there is usually a big scare: All the empty lines come first, so it is most likely that the user
gets a blank screen in front of him. The more interesting things are usually near the end of
the file. The various commands are:

O The whole buffer is sorted on a line by line basis.

O#1,#2 The whole buffer is sorted, but from each line only the character ranges indicated
by the given numbers (inclusive) are considered for determining which line comes first.

O:#1,#2 The whole buffer is sorted, but from each line only the column ranges indicated
by the given numbers (inclusive) are considered for determining which line comes first.

OF#[char] The whole buffer is sorted, but from each line only the the field indicated by
the given number is considered when comparing two lines. Fields are separated by field
separators. The default field separator is a comma, but if the user prefers a different
field separator he can specify it after the number (so ‘char’ is optional). For changing
the order of the fields one should either use regular expression replacements, or make a
more sophisticated macro.

OFN#[char] This command is as the above, but before comparing the indicated fields stedi
tries to interpret the fields numerically. If both fields are numbers in the range of −231

to 231 − 1 the compare will be arithmetic, rather than lexicographic. (This allows one
to sort lists of number without getting 10 to come before 9).

OR... The R should be before the above options. It indicates that only the range from mark
to cursor will be sorted. Only whole lines are considered, so the lines with the mark
and the cursor are included entirely in the sort.

O<... The less than sign should be the first character after the O. All other options may
follow it. This indicates that the ordering will be backwards (largest comes first).

129

130 CHAPTER 23. THE SORT COMMAND

Closed folds are taken along in the sort as if they were a single line. No attempt is made to
look inside the closed fold.

Example: We would like to sort the closed folds inside a buffer, but the folds have different
characters for their first three characters (but no hash sign(#)). The command to give is then:

OF3#

Here we indicate that the field separator is the hash sign, and that we are interested in the
third field (the first field is made up by the first three characters, and the second field is the
empty field between the two hash marks). If a field doesn’t exist, as may be the case in lines
that aren’t closed fold lines, it is considered to be empty.

23.1 About the algorithm

The sort algorithm that was selected is a recursive merge sort. This sort needs a time which is
strictly proportional to n 2log n and has, unlike quicksort, no bad behaviour for special cases.
As often the compare of two lines can be rather slow (when comparing ranges of columns) it
is important to minimize the number of compares, and also here a merge sort wins (quicksort
has less overhead and therefore it can win in speed when the compare is trivial). The main
drawback of the merge sort is that it needs some extra memory. In the case of stedi this is
roughly 1.5 pointers per line to be sorted. This means that when there is no free memory the
sort command cannot be executed. Stedi will give the message ”no memory” and execution
is aborted (for macro’s).

Comparing ranges of columns is rather slow, because each time two lines are compared
they have to be brought to screen representation. This isn’t necessary for the other modes. It
is impractical to work out all the lines first and then compare them. This could pose enormous
memory requirements. If the user would like to speed up such sorting he could expand all
tabs before the sorting command is given, do the sorting in the character mode, and then put
the tabs back in. This can be done provided that the tabs are ‘trivial’ (no essential blanks
inside tabs as is sometimes the case with the first three characters in the fold lines, no strings
of blanks inside character strings that have to be printed to the screen, etc.).

Chapter 24

Miscellaneous commands

24.1 Yank

This commands deletes all lines that match the search string specified. The syntax is:

yank /string/

or

yank //regularexpression/

The syntax for specifying search strings follows the rules for regular searches (see p.77) or for
regular expression searches (see p.83). The final / can be followed by options, just like with
the regular search commands. Remember, regular expressions cannot be used in backward
search mode.

24.2 Get

This commands selects all lines that match the search string specified and deletes all others.
In that sense it is like the grep command under UNIX. The syntax is:

get /string/

or

get //regularexpression/

The syntax for specifying search strings follows the rules for regular searches (see p.77) or for
regular expression searches (see p.83). The final / can be followed by options, just like with
the regular search commands. Remember, regular expressions cannot be used in backward
search mode.

24.3 Date

Often it is needed to put the current date in a file. At later times it will then be clear in
what order parts of a program were made. This can be an invaluable tool for maintaining
complicated software. The command <ctrl> – (control key and minus sign) puts the date

131

132 CHAPTER 24. MISCELLANEOUS COMMANDS

in the text at the current position of the cursor. The date is given in the European format
but with the month represented by three characters to avoid all misunderstanding. The date
23-jan-1990 was put in the text with the <ctrl> – command.

24.4 Display last message

Sometimes a message is removed from the screen before the user has realized that there was
an error message. In that case the last error message can be recalled with the Alt-M key
combination. This will display this message.

24.5 File searches

There is a special command to allow the user to work his way through all files in the file
system that match a given pattern (like in MS-DOS or UNIX the pattern *.c). Its syntax is

first pattern

This command sets up all the internal variables for the search. After this each time the value
of the variable ‘nextfile’ is asked the next file will be looked for. The first file should be
looked for also with the reading of ‘nextfile’. If its value is 1 (= true) there is another file and
its properties can be found in the variables nextname (the name), nextatt (the attributes),
nextdate (the date and time) and nextsize (the size in bytes). The attributes are presented
in terms of a string of six characters. The meaning of the characters is (from the left to the
right) format:

a The object has been modified since the last archiving operation.

d The object is a subdirectory.

v The object is a volume label.

s The object is a systems file.

h The object is a hidden file.

w The user has writing rights to this object.

If a character isn’t apllicable it is replaced by the character −. A regular file is usually
represented by the string ‘a – – – – w’ indicating that the user may write to it and that it
has been modified recently. The date is presented in such a format that it can be sorted in a
lexicographic way. For an example, see p. 109.

24.6 Garbage collections

Normally garbage collections (the rearranging of the contents of the buffers to minimize the
use of memory) are executed when stedi waits for input. This way the user may never
notice these garbage collections. There are two exceptions to this rule. The first is rather
passive: When a file has all its tabs expanded into blank spaces it may be necessary for stedi
to execute a garbage collection during this expansion. In that case the message ‘No more

24.7. MESSAGE 133

memory’ appears but stedi doesn’t give the control back to the user. Instead it executes a
full garbage collection. When this is done the message disappears and stedi continues with
the expansion of the tabs.

The second exception is more active. When macro’s or stream scripts are run there is no
waiting between the commands. This gives stedi no chance to rearrange the memory while
waiting for input from the user. If the macro (or stream script) involves instructions that
use the memory in a rather fragmenting way eventually the message ‘No more memory’ may
appear and stedi would stop the execution of the macro. To avoid this the user can force
a full garbage collection by the command ‘garbage’ in the command line (or as one of the
statements in his macro or stream script.

24.7 Message

The command

message "string"

puts the given string in the message line, using the regular message mechanism of stedi. This
command can be handy for macro’s.

Sometimes a message goes by too fast. If one would like to see the last message after it
disappeared the key combination Alt-M will make the most recent message reappear.

24.8 Pause

To debug a particularly difficult macro (or stream script) one can insert the ‘pause’ command.
This command is like an ordinary command from the command line. It expects a single
parameter which should be a positive number. Internally this number is multiplied by 100 to
obtain the number of milliseconds that stedi will wait before continuing execution. Example:

pause 10

makes stedi wait for one second before continuing.

134 CHAPTER 24. MISCELLANEOUS COMMANDS

Chapter 25

Hex code

Stedi allows some rather extensive possibilities for entering special characters into the text
directly via hex code or with the search and replace commands. To enter characters in the
text by their hexadecimal (ASCII) code, one may use the Ctrl-H command. This command
has two variations :

1. If the Ctrl-H is followed by two hexadecimal digits, the corresponding code between 00
and FF is entered as a single character. It will be shown on the screen as the pixel
image in the current font that belongs to that code. For example, a formfeed would be
entered by Ctrl-H followed by 0c.

2. If the Ctrl-H is followed by another control-character (or escape or backspace or return),
the ASCII code of this character is entered in the text. It will be represented on the
screen by the corresponding pixel image in the current font. An example is Ctrl-H
followed by Ctrl-L for a formfeed.

The ctrl-H command is sometimes useful for making a file with control sequences by
which a printer can be set in a selected mode. Note however that if the hexadecimal code 0a
(linefeed) or 0d (return) is entered in the text, it will be read as a linefeed next time the file
is read. It would be very difficult to edit such a file.

If the Ctrl-H is followed by a character that doesn’t fulfil the above requirements, the
Ctrl-H is canceled and the character is put in the text as if the Ctrl-H was never pressed.
If there was already a single hexadecimal digit in the input buffer, it will be put in the text
first. One can see whether the hex mode is active by the representation of the dirty bit in the
status line. The little open circle will be replaced by the same little closed circle that is used
for representing tabs if Ctrl-H has been pressed and the editor is waiting for a hexadecimal
or control character.

This hex mode command can also be used in the command line and it can even be used
to put special characters in file names. It cannot be used however to ’escape’ a slash (/) in
the search command. For this purpose, there is a second way to enter special characters that
is only valid for the command line. In this case the character ‘escape’ fulfils a role similar
to the Ctrl-H, except for that any interpretations of the character that it ‘caught’ are made
during the execution of the command. After typing an escape in the command line, the next
character is taken ‘at face value’, even if it is a backspace. If two hexadecimal digits follow the
escape, the whole of escape and the two digits is interpreted internally as a single character.
The search routines will interprete escape followed by a slash (/) as the character slash (/) and

135

136 CHAPTER 25. HEX CODE

will not interprete it as the delimiter of a search or replacement string. Instead of the escape
character one may also use the backslash character. The difference is that this backslash
character doesn’t allow the user to type in special characters like a backspace immediately
after it. This would have to be done again with the Ctrl-H command.

The main difference between these modes is the moment of translation. The Ctrl-H is
translated immediately, the sequence with the escape key is interpreted later (during the
search/replace) or not at all.

As in normal text editing, it is sometimes convenient to know what characters actually are
present in a file if the ones that just appear blank on the screen. The Alt-T key allows you
to tell what characters are actually there. The possible characters that are displayed on the
screen as blanks are blanks themselves, tabs, and the null ASCII character. On IBM-PC-like
computers also the character number 255 is represented by a blank space. In addition if there
is no character at all to be displayed, the screen remains blank. After pressing the Alt-T, each
of these ’white space’ characters are given a unique representation. Blanks are displayed as
small empty circles which are superscripted relative to other characters. Tabs are represented
as small filled circles, also superscripted. Since a tab can represent several spaces depending
on tab stops, the intermediate spaces in the range of a tab are not real characters and they
remain blank. Finally the null ASCII character is given the representation of a small filled
circle which is subscripted, so as to be able to distinguish it from a tab. When the 255-th
character has to be presented this way it is shown as a colon. When no character is present at
all, this place on the screen remains blank. The Alt-T commands serves as a toggle between
the mode in which all characters are given unique representations and the mode in which all
‘white space’ appears as blanks. On terminals the characters that are used for displaying the
blanks, tabs and ASCII zeroes will be in the regular ASCII set. The blanks become a period,
the tabs a greater than sign (>) and the ASCII zeroes become an underscore.

On most terminals it would not be very practical to try to present the non-ASCII char-
acters. Even if the extended character set of the VT100 is used there aren’t 256 different
characters. For representing more than the standard character set the workstations and the
micro computers clearly have an advantage. It is however possible to obtain the hex code of
each character in a buffer by toggling the Alt-H key combination. Normally only characters
are presented that have a legal screen representation. On terminals the non-ASCII characters
aren’t considered legal characters. Sending some of them over would mess up the terminal
considerably. When the Alt-H combination is pressed once the screen changes drastically:
At the position of each character there is now its first hexadecimal digit. After the Alt-H
combination has been used again one gets the second hexadecimal digit. Hitting the Alt-H
for the third time gives the original screen back. So the capital A would look like

A 4 1

in the three representations, because the hexadecimal representation of the character A is 41.

25.1 Binary editing

Sometimes it can be very useful to edit a binary file. A very popular use is the changing
of default (path)names in compilers that aren’t versatile enough to pick new (path)names
up from the environment. This can cause a compiler to look for some of its files in a ‘more
sensible’ place.

25.1. BINARY EDITING 137

A file can be read in as a binary file when the buffer is first placed in the ‘raw’ mode. This
is done with the Alt-R command. In the raw mode a file is read without interpretation of the
linefeeds and carriage returns in it. It is read with 64 characters per line and the display will
look rather messy. Many of the bytes in a binary file correspond to non-ASCII characters.
On the micro’s and the workstations they can still be shown on the screen. It takes however
a very experienced hacker to read the code segment of an executable file. On the other hand
a study of the text strings in a program may be very revealing.

When searching for a string in a binary file there can be a problem when the screen
representation of the searched for string has part of the string at the end of one line and the
rest at the beginning of the next line. Stedi has put the file in the buffer, using its normal
lines mechanism and it chopped it up into pieces of 64 characters. The following macro can
restore such strings so that the characters that are in the next line will be moved.

set n = strlen $1 - 1

while $n

set a = $1 << $n

set b = $1 =^ $a

//"$a"\n"$b"/=/$1\n/

set n = $n - 1

endwhile

This way we search for the string ‘head’ end-of-line ‘tail’. We take a to be n characters from
the left of the argument and b is the rest of the argument. When n becomes zero we finish.
The macro needs one argument, so it is called with the command

x reorder string

assuming that the macro got the name ‘reorder’. The effect could be that

abcdstr

ing0123

is changed into

abcdstring

0123

It is absolutely no problem that the length of the lines has been changed now. After this
macro has been executed one can either search for the string in the normal way, or try to
replace it. It is actually rather easy to change the above macro, so that it uses two arguments
and makes the replacement immediately. If you don’t understand the above macro’s you
should consult the chapter on macro’s p. 112.

One reminder: when changing a binary file, make sure not to add characters between code
segments. This can upset all kinds of offsets, causing the program to crash (if you are lucky,
because worse things can happen).

138 CHAPTER 25. HEX CODE

Chapter 26

Keyboard transformations

The editor has a very flexible capability of redefining the keyboard layout. These keyboard
redefinitions are not only for rearranging the keys with which the commands are executed,
but whole sequences can be assigned to a single key. This allows the user to define his own
powerful and custom made commands. For example, if the user prefers to use different keys
than the default ones for particular actions, new keys can be assigned to the actions. Or if a
particular command is not exactly what a user is used to, it can be changed to his liking. One
can also access all the special characters built into the display fonts such as those for national
character sets using the keyboard redefinition feature. Commands can be designed that are
only activated after hitting several keys as well. This is of use when emulating another editor
with which one might be familiar. Of course such a flexible environment has some strict rules.
In this chapter the keyboard redefinition capabilities of stedi are explained in detail.

The way the keyboard can be reprogrammed is somewhat involved as a special file is
required which defines the new layout. Such a file can be made in the editor, but then must
be translated into a binary file that in turn can be read by the editor to reconfigure the keys.
An outline of what you have to do to redefine some keys of the keyboard is as follows.

First you must create a file which makes the key change assignments. The syntax of this
file will be explained below but the general form of a key redefinition statement in this file
is similar to an equation. On the left side a list of key codes are given, then an equals sign,
and then a second list of key codes. This has the effect of assigning the actions represented
by the key codes on the right side of the statement to the key strokes on the left side.

Next you must translate this file into a binary file which the editor can read. For this pur-
pose, a utility program is provided called ‘keycomp’. This program takes the key redefinition
file as input, and it creates the binary file needed to be read in by the editor. Then, to make
the key redefinitions become effective, the binary file must be read into the editor using the
K command from the command line. This command causes stedi to read in the file and store
its contents in a special buffer. Finally, if the DW command is issued, the contents of this
buffer will become part of the default file so that at a later startup the new keyboard layout
will be available again. A subsequent reading of the default file will not affect the keyboard
layout. It can only be changed when the default file is read at startup time or by using the
K command.

The use of keycomp, the compiler for keyboard transformation programs, allows the editor
to skip much error checking. Also, unpredictable results may occur if a file is read by the
editor that was not made by the key compiler as a keyboard transformation file with the K

139

140 CHAPTER 26. KEYBOARD TRANSFORMATIONS

command. There is some error checking and the binary files can even be exchanged between
machines with a different byte ordering scheme (there are limits though). In what follows,
first, the syntax of the key redefinition file will be explained. Then through a collection of
examples, the key codes will be explained and the capabilities of this feature explored. Finally
the ‘K’ command and the use of the key redefinition file compiler keycomp will be explained.
For those of you who can’t wait to try out this feature, you may wish to skip to the end of
the chapter after reading only a few examples.

26.1 Syntax

Now we turn to the syntax for redefining single keys or sequences of keys. This syntax has
the following rules:

1. Each redefinition consists of a left hand side and a right hand side. The key(s) in the
left hand side will be replaced by the sequence in the right hand side. The left hand
side and the right hand side are separated by an equals sign (=). Both the left hand
side and the right hand side must contain at least one key.

2. Each sequence of keys consists of single key codes, separated either by a plus sign (+)
a comma (,), a tab or blank spaces.

3. Each redefinition is terminated by a semicolon (;).

4. Each single key code is a string of 8 hexadecimal digits. This is either a string that is an
exact replica of the code that is given by stedi’s keyboard handler when a character is
read out (a must for the left hand side keys) or something that looks sufficiently like such
a string that the keyboard processor of the editor will accept it for further treatment
(right hand side). If this last condition is not met, the editor may not recognize what
you want.

5. Linefeeds and carriage returns are seen as irrelevant. This means that one redefinition
can run over several lines. The limit to the length of a redefinition is set to 509 keys.
This limit comes from the buffer sizes in the program keycomp only. If it turns out to be
a real problem the user could change the size of these buffers and retranslate keycomp.
There is also a limit on the length of the whole redefinition ASCII file: the compiler
must be able to read it in in a single read statement, so it must fit in memory. This
should not be much of a limitation.

6. Two types of commentary are allowed. First, when the compiler runs into a colon (:)
it considers any characters that follow as commentary until the terminating semicolon
is reached. Second, any text between a matching pair of (any type of) brackets or
parentheses is considered as commentary. The commentary isn’t allowed to break up
the field of the 8 digits. This commentary is very useful for noting what key a key
code corresponds to. There are no escape characters inside the commentary so if this
commentary is to include a ‘)’ it cannot be enclosed between ‘(’ and ‘)’ but other types
of brackets must be used.

7. Instead of the 8 character key codes a number of keywords is allowed. In addition
single characters will also be translated into the appropriate 8 character hex code. The

26.1. SYNTAX 141

backslash serves as an escape character if any special character is to be used. This mode
of using mnemonics and single characters is the preferred mode for writing readable key
redefinition files, although sometimes one has to resort to the hex codes in the right
hand side of the redefinitions and the left hand sides should nearly always use the 8
digit hex codes. We will see why.

The above specifications define the entire language used for keyboard reconfiguration.
Most of the rest of this chapter is devoted to examples which will clarify exactly what the
key codes needed for the redefinitions are, and how to use them. Should you want to relax
some of the constraints on this language for your own personal use, the source code to the
program keycomp (programmed in the C language) is included on the distribution disk, so
you may make your own modifications.

Once the keyboard file is stored in stedi’s buffer, whenever the editor receives a key code
from the keyboard, it will work its way through the list of key redefinitions from the front to
the back until it finds a complete match. No attempts are made to sort this list or to change
the order in any other way. This allows for very tricky redefinitions. Of course, if no match
occurs, then the normal action of that key code will be enacted. Beware though, in the case
of actions assigned to multiple key strokes, the redefinition may preclude the possibility of
using action assigned to a subset of such key strokes. This will be made clear in the following
paragraphs. Now let’s turn to some examples:

: Example 1: Some combinations of the left shift

key, the alternate key and function keys are used

to enter a number of blanks into the text;

0A000801(left-shift+alt+F1)=blank;

0A000802(left-shift+alt+F2)=blank+

blank: 2 blanks;

0A000803(left-shift+alt+F3)=blank+blank+blank;

0A000804(left-shift+alt+F4)=blank+blank+blank+

blank: 4 blanks;

: Etc. ;

In this first example, you see how a key redefinition statement looks. In this case, on
the left hand side of each statement is just one 8 digit hexadecimal key code followed by
some commentary explaining what key that code corresponds to. These codes stand for the
successive function keys in combination with the left-shift and the alternate keys. On the
right hand side in each case are one or more mnemonic codes which all correspond to the
same key code - that for the space bar or blank space. Of course, the right hand side is much
simpler than the left hand side. Typing the key codes at the left is not a very easy task, apart
from the problem that one may not have documentation available containing these codes.
Therefore stedi contains a special command, the Ctrl-K command. When the cursor is in
the text window and the Ctrl-K is pressed, the cursor will vanish and stedi waits for the next
key. The full code of the next key pressed will then be entered in the text. This holds for
combination key codes using the shift, alternate and control keys as well. This key code is
the code after the keyboard processor of stedi has processed it. If for some reason or another
you would like to see the raw code of a key, as given by the operating system you may type

142 CHAPTER 26. KEYBOARD TRANSFORMATIONS

Ctrl-J, followed by the key combination of your choice. The result is now system dependent
and stedi won’t recognize it any more. Sometimes it can be handy though for people who
make software that is tailored to the possibilities of a specific keyboard.

The reason that we put the left hand side in terms of the cumbersome hexadecimal code
is rather simple. This way it may contain full information about the shift, alternate, control
and capslock keys. In addition we can make up our own keys as we will see in the sequel that
there are several bits that can be used for flags and masking. At the right hand side we want
to put some commands for stedi. This is then a much better defined set of codes, hence the
practicality of using the mnemonics. If on the other hand we want to do fancy things on the
right hand side one can also put the hexadecimal codes there. Similarly it is possible to use
mnemonics in the left hand side.

If there are several redefinitions and some of them happen to have the same left side only
the first one is effective. The redefinitions are stored in the same order as you have specified
them. This can have unexpected consequences with redefinitions of more than on key at the
left hand side.

: Example 2: The order of the keys

(What to avoid....);

04000247 (ctrl-G) + 00000072 (r) =

04000247 (ctrl-G) + 00000072 (r)

+ 00000065 (e) =

04000247 (ctrl-G) =

Of the above left hand sides only the first one is relevant. Once Ctrl-G and an r have been
typed the first redefinition will be executed. So the second redefinition never gets a chance.
The third one won’t do anything either: After a Ctrl-G has been pressed the editor runs into
the Ctrl-G + r redefinition and decides to wait in order to see whether there will be more.
After the next character there are two possibilities: (i) it is the character r and there is a
match. (ii) It isn’t an r and the search goes on further through the table. But because we
have now two characters in the buffer it cannot match a single character sequence any more.
So number three cannot match.

26.1.1 Mnemonics

Before looking at some more examples, lets first include the list of mnemonics. This list can
be found also in the sources of the file keycomp.c which is on the distribution disk. If you
would like to introduce more mnemonics you only have to add them to the list and translate
the file again. Be sure though that they are in strict lexicographic order (you can use the
sort command (p. 128) if you are not sure). The rules about the hexadecimal codes are given
further on in the text. All mnemonics are taken in a case insensitive way but they must be
in capitals in the table.

after read A special code for in the left hand side. Used to define action after reading a file.

alt 0 to alt 9 Like the regular commands Alt-number.

alt a to alt z Like the Alt-character commands.

26.1. SYNTAX 143

alt eq Code for Alt-= to jump to a matching bracket.

alt fun0 to alt fun9 For the PC: to terminate a learn sequence or to execute it.

backslash The backslash character (not to be used as an escape code in the redefinition file.

backspace

blank

clear Clear the current buffer.

close Close the current fold.

close all Close all folds.

colon The colon character (avoids problems with the colon that indicates commentary in the
redefinition file).

comma The comma character.

command A special entry to the command line of stedi. The same redefinition should
also contain ‘endcommand’. All characters in between are seen as a command for the
command line, but they won’t be entered in the command history, and they won’t be
shown on the screen.

copy Copy the current range.

copy block Copy the current block.

creturn A carriage return.

ctrl 0 to ctrl 9 Terminate a learn sequence or execute it.

ctrl a to ctrl z Like the Ctrl-character commands.

ctrl fun1 to ctrl fun10 For the PC: Go to the corresponding tag.

ctrl min Put the date in the current buffer.

ct delete Delete the current line.

ct down Move screen up by one line, hold cursor.

ct home Go to home position on current screen.

ct left Scroll one page to the left.

ct right Scroll one page to the right.

ct up Move screen down by one line, hold cursor.

cut Cut/yank current range.

cut block Cut/yank current block.

144 CHAPTER 26. KEYBOARD TRANSFORMATIONS

delete Delete the current character.

deleteline Delete the current line.

delete mark Delete the mark.

down Move cursor down.

end Put cursor at the end of the buffer.

endcommand See the ‘command’ mnemonic above.

enter The enter key.

escape The escape key.

exchange Exchange the mark and the cursor.

flags000 - flags111 Set the flags to the given binary position.

flag1on-flag3on Turn one flag on.

flag1off-flag3off Turn one flag off.

fun1 to fun10 The first ten function keys.

fun11 to fun20 The first ten function keys, together with a shift key.

goto mark Go to the mark.

help Same as pressing the help key (F12 on some systems).

home Put cursor at the beginning of the buffer

insert Insert a new line.

learn0-learn10 Terminate a learn sequence or execute it.

left Move the cursor to the left.

linefeed Generate a linefeed code (has usually the same effect as a carriage return).

mark Place a mark.

nocode Dummy code which has no effect. This way a right hand side can be ‘empty’.

num 0 to num 9 Numeric key pad 0 to 9 (if it can be distinguished (cannot be done on
most PC’s).

num enter The enter key.

on exit Special code for actions to be undertaken when the editor is terminated.

open Open the current fold (if the cursor is on one).

open all Open all folds.

26.1. SYNTAX 145

page down Move the cursor one page down.

page up Move the cursor one page up.

paste Paste the contents of the active yank buffer into the text.

paste block Paste the contents of the active yank buffer into the text using the block mode.

plus The character +.

quit Leave the editor.

read Read a file (same as F8).

return The return key.

right Move the cursor to the right.

save Save the contents of the current buffer, using the name of the buffer.

save quit Save the contents of the current buffer and leave the editor.

sc home Move the cursor to the left bottom position on the screen.

sc left Move the cursor to the previous character. See tabs as one character, and go to the
previous line if necessary.

sc right Move the cursor to the next character. See tabs as one character and go to the next
line if necessary.

semicolon The semicolon character for insertion in the text.

sh down Go to the next page.

sh home Go to the end of the buffer.

sh insert Insert a new line after the current line.

sh left Go to the beginning of the current line.

sh page down Move the cursor to the next line but keep its position fixed on the screen
(scrolls screen up).

sh page up Move the cursor to the previous line but keep its position fixed on the screen
(scrolls screen down).

sh right Go to the end of the current line.

sh up Go to the previous page.

startup Special code to define a sequence of keys to be executed when the editor is started.
This code will be executed after the files from the command line have been read. This
code is not executed in the streamer mode.

tab The tab character.

146 CHAPTER 26. KEYBOARD TRANSFORMATIONS

tag0 to tag10 Go to the corresponding tag. 0 and 10 are identical.

undo Undo the last sequence of deletes (or clear buffer).

up Move the cursor up.

write Write file. Similar to shift-F8.

yank Yank/cut the current range.

yank block Yank/cut the current block.

The numeric key pad codes cannot be generated easily on some computers, because in
the past they were generated by having a special status key and then keys on the regular pad
were used together with this status key. This is still the case on the PC. The numeric key
codes given by the keyboard processor of the PC mimic the corresponding regular keys.

Keys that have no direct binding in stedi are not mentioned in the above table.

When you are taking a key redefinition file from one type of computer to another type,
the right hand sides with their mnemonics should still be valid. It may be that the other
computer has a completely different keyboard with entirely different capabilities. Hence it
could be necessary to reprogram the left hand sides (usually the lesser amount of work).

In the next example, the left and right arrow keys will be replaced by Ctrl-Shift-left-arrow
and Ctrl-Shift-right-arrow respectively and vice versa. The Ctrl-Shift-left/right-arrow keys
cause the cursor to move according to the actual characters that are in the text as in some
editors, and not according to the screen. Some people may prefer this.

: Example 3 : redefinition of normal keys;

00001002(right-arrow) = sc_right;

00001003(left-arrow) = sc_left;

0600100E(Ctrl-Shift-right-arrow) = right;

0600100F(Ctrl-Shift-left-arrow) = left;

What we see here is not at all dangerous as might be expected. The output of the keyboard
processor is not given back to its own input, so there is no danger of loops. Hence you may
freely interchange the action of two keys as was done above. The next example is a little
more sophisticated (and useful).

: Example 4 : Put editor in wordwrap

and auto indent mode;

0200101B(left-shift+escape)

+ 00000032 (followed by 2) =

command a plus endcommand(autoindent on)

command w w 7 2 endcommand(wordwrap at 72);

26.1. SYNTAX 147

The left hand side consists now of two keys. This means that after you press shift-escape the
editor will wait to see what comes next. If this is the character 2 it will generate the given
sequence. If it is a character that doesn’t occur in any sequence the message ‘Key not active’ is
given in the message line. You can also see what is the best way of generating commands that
are executed via the command line. The special mnemonics ‘command’ and ‘endcommand’
cause the characters in between to be treated as a command from the command line. This
command will not be entered in the history though.

26.1.2 The meaning of the codes

Before we can understand the use of the flags and the masks we have to know what the
various fields in the hex codes stand for. The meaning of the different fields may depend on
what other fields look like, so it isn’t entirely trivial. Each byte of the key code (eight bits or
two hexadecimal digits) is treated separately.

byte 3 (leftmost) : This byte contains bits that indicate the status keys. In addition three
bits have been reserved for special flags that can be controlled by the user. The bits
are:

bit 0 right shift key (hex code of byte is 01)

bit 1 left shift key (hex code of byte is 02)

bit 2 Control key (hex code of byte is 04)

bit 3 Alternate key (hex code of byte is 08)

bit 4 Caps Lock key (hex code of byte is 10)

bit 5 - 7 User flag 1 to 3 respectively.

A combination of status keys results in the sum of their codes. For example, if both the
Alternate key and the left shift key were pressed, the value of byte 3 becomes 0A or 10
in decimal notation. The best way to become familiar with these bit patterns is to try
out the Ctrl-K command with various key combinations.

byte 2 : This byte contains either a flag to indicate that we have a mouse event, or it contains
masking information. If the 0 bit (hex code 01) is set we have a mouse event and more
bits may be set. In the UNIX version of stedi however the mouse is currently not
supported. The masks are explained in the part about flags and masks. For the next
two bytes we assume now that the mouse bit is off.

byte 1 : Contents are in hexadecimal:

0 Byte 0 contains a character to be put in the text.

1 Byte 0 contains the ASCII code of the corresponding alternate key code. So 0141 is
Alt-A as 41 is the ASCII code of the character A.

2 Byte 0 contains the ASCII code of the corresponding control key code. Unlike regular
control combinations stedi takes them apart and stores them as a control bit and
an ASCII character. On systems that don’t support the combination of a digit
and the control key such combinations can be generated with the alt-function key
combination.

148 CHAPTER 26. KEYBOARD TRANSFORMATIONS

4 Byte 0 contains the number of a function key, counting from 1 up (so F1 is 0401).

8 Byte 0 contains the number of a function key, but in addition a shift key was pressed.

C Byte 0 contains the number of a function key, when both a shift and the control key
were also pressed. On systems that don’t support such key combinations this code
is given by the Ctrl-Function key combination.

10 Byte 0 contains the code for a special key or key combination. This may involve the
arrow keys, the delete key, the backspace, the return and enter keys and more.

1E Byte 0 should be zero. The ‘endcommand’ code.

1F Byte 0 should be zero. This establishes a direct connection to the command line.
The keys following are used to build up a command for the command line that is
executed after the ‘endcommand’ code (see under 30). This ‘endcommand’ code
must be part of the same key redefinition. The command thus formed will not be
put in the command history.

20 Byte 0 contains the ASCII code of a key in the numeric key pad. This information
isn’t really used by stedi.

byte 0 (rightmost) : This byte contains either the ASCII code of a key or a simulated
ASCII code. It is a ‘real’ ASCII code if byte 1 is zero.

Although only the key codes as explained above can be returned from the keyboard,
the editor knows a few more codes internally. These codes cannot possibly come from the
keyboard so stedi can use them for signal passing. Some of these codes are:

08FF0000 Inactive key. Code is given as for instance a sequence with several keys at the
left hand side gives no match. Its only effect is that the message ‘Key not active’ is
placed in the message line.

10000000 STARTUP code. A lhs with this code makes that its right hand side is executed
at startup, after the command tail has been interpreted and its files have been read.
The code isn’t executed when the editor is run in stream mode. In the right hand side
this codes is a good ‘null’ code in the sense that it has absolutely no effect, not even a
message.

12000000 AFTER READ code: When a file is read into a buffer this code is put into an
input buffer that is read before the next user input is processed. This can be used for
instance to call a macro that studies the extension of the name of the file just read and
to take corresponding action.

18000000 ON EXIT code: special left hand side of which the right hand side is to be
executed when the editor is left.

x4000000 Absolute setting of the flags field. x is an even hexadecimal digit.

26.1.3 Flags and masks

The top three bits in the left most byte are reserved for user defined flags. Such flags can be
used to indicate that a sequence was interrupted for some input, or to toggle between various

26.1. SYNTAX 149

modes. One common use is to allow the temporary disabling of a particularly drastic key
redefinition scheme to allow other users who aren’t used to this scheme to type anything.
Internally the flags are treated as if they were status keys like the shift, control and alternate
keys. The difference is that the user exerts software control over them. The flags are set
either by providing an absolute bit pattern (with the mnemonics flagsxxx), by turning one
flag on (with flagxon) or turning one flag off (with flagxoff). The flags are numbered 1 to 3
and the leftmost bit corresponds to flag three.

So let’s try an example. The key sequence shift-escape followed by the number one will
put the current range between mark and cursor inside a fold, properly commented for the
language TEX. Of course a fold needs a name, so in the middle it has to wait for for the user
to type a name. After the name is complete the user presses again shift-escape followed by
the number 1 and the sequence will be finished. For storing the name we use the learn buffer
0 as we don’t want to upset the paste buffers.

: Example 5 : Put a marked range in a fold

Mark should be at end of range!;

0200101B (left-shift+escape)+00000031 (number 1)=

flag3on (Switch flag 3 on)

insert (make the new line)

% blank blank # \[blank (start of line)

command l 0 endcommand (start learning);

8200101B (left-shift+escape)+80000031 (number 1)=

learn0 (finish learning)

flag3off (switch back to normal)

blank colon (finish the opening fold line)

exchange (go to the end of the range)

insert (make new line)

% blank blank # \] blank (start other line)

learn0 (replay the typing of the name)

blank colon (finish this line)

close (close the fold {optional});

As you can see, we have two entries for the sh-esc+1 code sequence. The second time however
we demand that the top bit, corresponding to the third flag, has been set.

The attentive reader will have noticed the left-shift, and may wonder about the right shift
key (and about the simultaneous activities of the other flags). It would be rather annoying
to have to provided the same code up to 24 times (left, right, left+right and this times 4
positions for the two other flags, and times two for the CapsLock key). For this we have
masking. Basically a mask tells that a certain redefinition is active regardless the settings
of some flags or status keys. Masks are only relevant at the left hand side of a redefinition.
They should not occur at the right side. The mask should be in the leftmost 7 bits of byte 2.
These are called bit 1 to 7 and 7 is the leftmost bit. The meaning of the bits is:

bit 1 This means that either one or both shift keys should be pressed. It is irrelevant which

150 CHAPTER 26. KEYBOARD TRANSFORMATIONS

shift key. Hex code = 02.

bit 2 It doesn’t matter whether the control key is pressed. Hex code = 04.

bit 3 It doesn’t matter whether the alternate key is pressed. Hex code = 08.

bit 4 It doesn’t matter whether the CapsLock key is pressed. Hex code = 10.

bit 5 It doesn’t matter whether flag 1 is on or off. Hex code = 20.

bit 6 It doesn’t matter whether flag 2 is on or off. Hex code = 40.

bit 7 It doesn’t matter whether flag 3 is on or off. Hex code = 80.

One may combine masks by adding the corresponding hex codes. To make the scheme of
the fold lines complete we make now the complete left sides as they could look in a real
redefinition scheme:

: Example 5a : The proper left hand sides;

0272101B (shift+escape) + 00700031 (number 1) =

etc....

8272101B (shift+escape) + 80700031 (number 1) =

etc....

We have added the mask 72 (=02+10+20+40) which tells that we don’t care whether it is
the left shift, the right shift, or both. Neither do we care whether the CapsLock has been
pressed or what the status of the other flags is. The 70 is similar but now we don’t need the
shift keys (on most keyboards at least). One could of course make the scheme independent
of one flag and dependent of the other. If non of the redefinitions have masked out flag 2 we
could set up a toggle to temporarily disable all redefinitions:

: Example 6 : Toggle flag 2;

02B21018 (shift+backspace mask 1+3) = flag2on:

If flag 2 is off, turn it on;

42B21018 (shift+backspace mask 1+3) = flag2off:

If flag 2 is on, turn it off;

If all other redefinitions don’t like flag 2 then none of them will work when flag 2 is turned
on.

26.2. THE K COMMAND AND KEYCOMP 151

26.2 The K command and keycomp

The K command which is used to read in the compiled key redefinition file is a command line
command with the following syntax:

K filename

where ‘filename’ must be a file made by the keyboard compiler keycomp. Some checking is
performed to see if this is so. This command installs the contents of the file ‘filename’ into
the buffer of the editor used for keyboard redefinitions. The command

K0

removes all keyboard redefinitions and restores the original layout.
Although there is no need to use a fixed extension for key redefinition files the preferred

extensions are .k for the text files that are typed in (like the above examples) and .key for the
translated versions. The key compiler keycomp prefers these extensions as its use is either

keycomp filename

or

keycomp filename1 filename2

In the first case the ‘filename’ should be without extension. The extension .k is appended to
obtain the name of the input file filename.k and that file is read. The output file will then be
filename.key. In the second case the names and the extensions are arbitrary:

keycomp foo bar

The file ‘foo’ is read and the file ‘bar’ is written. In MS-DOS the name of the key compiler
is keycomp.exe and it can be run with the above commands. The same holds for command
shells that run inside window systems.

The sources of the key compiler are present in the distribution. Apart from being an
example of how one could use folds it serves a second purpose. It allows the user to add to
the mnemonics if he wishes to do so.

152 CHAPTER 26. KEYBOARD TRANSFORMATIONS

Chapter 27

Running STedi

This chapter covers the topic of starting up stedi and also how to exit from the program. The
help feature is also introduced.

27.1 Starting up STedi

27.1.1 From a desktop

When stedi is used from a desktop, one may just double-click on its icon when its services are
needed. It will then start and prompt the user by means of a file selector. If the user would
like to edit an already existing file, he may select this file using this file selector. Its rules
are usually explained in the manual of the computer or the windowing system. If a new file
is to be made one may either type its name in the name field, followed by a <Return> or a
click in the box marked OK, or just press a <Return>. In either case stedi will greet the user
with the message ‘New File’, as it was unable to find an already existing file with the name
specified (or lack thereof).

Now it is possible to edit one or more files and then exit stedi again. One may also run
external programs such as compilations from stedi making it unnecessary to continue to exit
and re-enter the editor. This is explained in the chapter on executing external program p. 122.

27.1.2 From a command processor

One can run stedi from a command processor by typing its name followed by a number of
file names. Stedi can read up to eight files during startup. There is also the possibility to
tell stedi where to find its default file, its help file and the user defined macro’s. If the first
parameter given to stedi is -d (or -D), then the next parameter is interpreted as the name of
a directory. Stedi will make this directory its default directory and look there for its default
file, its help file and macro’s when the user wants to execute them. Hence the command

~\bin\stedi -d ~\bin foo.c bar.c

will start a copy of stedi which is found in the directory ~\bin, and the -d parameter along
with the following path name informs stedi that it can also find its default file, its help file
and the macro’s there. Finally the command instructs stedi to read the files foo.c and bar.c

for editing. The file foo.c will be put in buffer 1 and the file bar.c will be put in buffer 2.
In most shells this can be done simply by defining the alias

153

154 CHAPTER 27. RUNNING STEDI

alias e "~\bin\stedi -d ~\bin"

After this, one may call stedi via the command

e foo.c bar.c

This command accomplishes exactly the same task as the command above that was fully
written out. On MS-DOS one would include the directory ~\bin\ in the path variable in the
file autoexec.bat, after which one would accomplish the above with:

stedi -d ~\bin foo.c bar.c

UNIX-like systems would have a similar statement in a ‘login’ or ‘resource’ file. The above is
still not very handy. Therefore stedi will also recognize several variables in the environment.
They are:

STEDIDFT This variable indicates the path of the directory where the default file can be
found.

STEDIHLP This variable indicates the path of the directory where the help file can be
found.

STEDIMAC This variable indicates the path of the directory where the macro’s can be
found.

On MS-DOS these environment variables can be set in the file autoexec.bat with the state-
ments:

set STEDIDFT=C:\BIN\

set STEDIHLP=C:\BIN\

set STEDIMAC=C:\BIN\

For UNIX-like systems or shells one specifies such variables usually in a login script or a
resource script (.cshrc for the c-shell). One should use the setenv command for this.

The complete set of command line options is:

-d This option must be the first parameter. The next parameter is then interpreted as a path
name. In this path stedi will look for the default file stedi.dft and –if needed– for the
help file stedi.hlp. Also macro’s are taken from this directory when needed. See also
the more extensive description above.

-i or -x The parameter after the -i parameter is interpreted as the name of a macro. This
macro is read and all parameters after the name of the macro are passed as arguments
to the macro. The macro will be automatically executed and after the execution buffer
1 is saved and execution is halted. This is called stream editing. It is used to modify
a file according to a fixed set of predetermined rules. See also the chapters on stream
editing p. 119 and macro’s p. 112.

-r The file following this parameter is read in the ‘raw’ mode. In this mode there is no
interpretation of linefeeds or tabs. See also the part on write modes p. 46

-v The file following this parameter is read in the ‘view only’ mode. This prevents the
accidental change of an output file that is read into stedi for viewing.

27.2. EXITING STEDI 155

-# When # is a number the file following this option is read and its current line will become
the line indicated by the given number. When the number is greater than the number
of lines in the file the cursor is placed in the last line of the text.

+# The file following this option is read from the byte position indicated by the number.
The first indicated number of bytes is skipped.

All above parameters can be given either in upper case or in lower case. The r, v and line
number options can be combined. Each option must still be preceded by its own minus sign,
but several of such parameters may be given before the actual file name is given. Example:

stedi -d ~/bin foo.c -v -800 bar.c -i action

This command starts stedi, stedi will look in /bin for its default file, put the file foo.c in
buffer 1, the file bar.c is put in buffer 2 and buffer 2 is put in the ‘view only’ mode while the
cursor is put at line 800. The file action.mac is looked for and if found it is executed as a
regular macro.

It is allowed to use so called wildcard characters in the names of the files that should be
read by stedi. The full pattern is given to the local file system and each successive match is
read into a separate buffer until either there are no more matches, or all 8 buffers have been
filled. If there were options specified they apply to all files that are read in with this pattern.
If a pattern is used for the name of a macro it will not be interpreted and the results can
be unpredictable. The order in which the files match the pattern depends on the file system.
Some systems give a purely lexicographic order, while MS-DOS and GEMDOS like to use the
order in which the files appear in the directory on the disk which is at first the order in which
they were written to disk, but after the directory has been used intensively the order can be
quasi random.

When using the environment to define default directories there is no need to have the
three variables to point at the same directory. If both the environment has been set and the
-d option is used, the -d option takes precedence (most likely it has been typed by hand so it
should override the defaults). In all cases stedi will first look in the current directory for any
of the files it needs, whatever the default settings. The rationale behind this is that a local
file is usually project bound and should be preferred. This can avoid very nasty surprises.

Finally something more about the environment. When variables are used (for instance in
macro’s) and the user specifies a variable that was neither defined before, nor a predefined
variable stedi will search the environment for this variable. This search is done case insensitive.
If the variable is found in the environment its contents are returned. If the variable doesn’t
occur in the environment the message variable is undefined is given. See also the chapter on
macro’s p. 112.

27.2 Exiting STedi

There are several ways to exit stedi . You may use the function keys, the command line.
With the function keys you may press shift-F10 which is the command to exit the editor. If
any changes have been made to files that are in any of the buffers without saving them, stedi
will query to make sure that you indeed want to abandon the changes. You may answer ‘y’

156 CHAPTER 27. RUNNING STEDI

(yes) to leave the editor without saving the changes, or ‘n’ (no) which results in no action.
You then can save the files desired and leave the editor. The function key F10 allows you to
save the file in the current buffer and to quit all at one stroke. Again if files in other buffers
are unsaved, you will be queried concerning them.

In the command line you may exit the program by typing the command ’q’ for quit or
the whole word ‘quit’. This is equivalent to the shift-F10 command. You may also enter
the command ’sq’ standing for ‘save and quit’, which is the same as the command F10. In
addition the command ‘savequit’ will have the same effect.

For the options on writing while saving a file, see the chapter on Reading, Writing and
Printing p55.

27.3 The help facility

If you press the <Help> key (on some computers this may be the key marked F12) and stedi
is able to find the file stedi.hlp either in the current directory or the default help directory
(see above), then this file will be displayed. If buffer eight is available, the help file will be
read into that buffer, or if not the first lower buffer available will be used. The buffer will
be automatically set in ‘view only’ mode so that the help file will not be written away if
accidentally altered. (For more information on the view only mode, see the chapter on the
status bar.) The help file consists of a very brief summary of all stedi commands to serve as
a reminder. Pressing the <Help> key (or the F12 key if there is no <Help> key) a second time
will cause the editor to return to the buffer which was being edited before the help facility
was called. Each time the user asks for help this way the help file is read in freshly. This
allows for experimentation with respect to what is read in it.

Chapter 28

List of messages and their meanings

This chapter is something like an anti panic chapter. It explains very shortly what each
message means, and how serious it is.

bytes: #/# screen: #,# lines: # See the equals command (=) p. 40.

character(s) in learn buffer # When a learn sequence is completed (p. 103) this mes-
sage will appear.

lines per formatted printerpage. Offset = # The setting of the page layout is re-
ported after setting it with the pp command. See p. 60.

lines read. After a file has been read the number of lines is reported.

lines sent to the printer. After a file has been printed the number of lines is reported.
This number is reported after stedi has finished sending the lines and before it returns
control to the user. The printer may still be printing as it may have a buffer of its own.

lines written. After a file has been written the number of lines is reported.

replacement(s) After a replacement this indicates the number of successful replacements.

’file’ not found The user tried to read a file but it wasn’t there.

’name’ is illegal name The given name isn’t a proper name for a variable (p. 106).

’var’ = contents The answer to a show command if the variable has a value.

’var’ is undefined The answer to a show command if the variable is undefined.

Abort execution? (Y/N) When both shift keys are pressed during the execution of a
macro the user is asked whether the execution should be halted.

Access denied. A file cannot be read, due to a lack of rights.

Already learning in a lower buffer. You cannot start learning in a higher buffer if a lower
learn sequence is already running (p. 103).

Autoindent at column #(+)

157

158 CHAPTER 28. LIST OF MESSAGES AND THEIR MEANINGS

Autoindent off.

Autoindent on. Regular messages corresponding either to a change in the settings of the
auto-indent mode or a request to what the auto-indent status is currently.

Buffer is ViewOnly. Reply to an attempt to write a buffer that is in the View-Only mode
(see p. 59).

Buffer made read-only! When a file cannot be read in its entirety, due to a lack of memory,
this message will be displayed. Stedi will automatically turn on the View-Only mode
to prevent accidental writing of a truncated file (see p. 56).

Buffer not found A buffer was searched by name, and it couldn’t be located.

Buffer unsaved. Empty anyway? (Y/N) The clear buffer command is given (shift-F9)
and the current buffer has its dirty flag on. You can answer with Y or N.

Cannot create file ’name’ Somehow the file system refuses to create this file properly.

Cannot delete running macro It is possible to execute the md command (p. 113) from a
macro. It is however not allowed to kill or remove a currently active macro.

Cannot find file ’name’ Either the default file cannot be located, or a file with key redef-
initions as specified in the K command (p. 150) cannot be found by the file system.

Cannot find help file. Quitting is with shift-F10. If the help file cannot be located the
least the editor can let you know is how you can get out.

Cannot find macro ’name’ The requested macro couldn’t be located. Do you have the
proper default directory or environment variable STEDIMAC?

Cannot make a proper backup. Somehow the old file cannot be renamed so that it gets
a .bak extension.

Cannot move old file to backup. The name of the old file corresponds to that of an object
of which you aren’t allowed to change the name into a name with the extension .bak.

Cannot read defaults from learn buffer. You aren’t allowed to read a default file from
a learn buffer (p. 105).

Cannot remove old backup. A previous backup file cannot be removed. Is it readonly?

Cannot save a buffer without a name Before a buffer can be saved, the buffer must have
a name.

Columns must be in range 1-255 A reply to a sort command with an illegal request for
a column range.

Command too long. The command you just entered is longer than 255 characters after
the substitution of the variables in it.

Cursor not in a fold line. You cannot open a fold if the cursor isn’t on the fold line.

159

Cursor not inside a legal fold. You cannot close the current fold if the cursor isn’t inside
a fold.

Cursor not on a bracket. You cannot search for a matching bracket if the cursor isn’t on
a bracket.

Cursor not on a word. The cursor isn’t on a word and you are trying to do something
with the current word.

DFT file from ’path’ A reply to the setting of the path for the default file with the DD
command (p. 64).

Deallocation error Some internal error has messed up the line allocation mechanism inside
stedi. If you can reproduce this the author would like to know how. Anyway it is time
for panic. See what you can save, but be smart and don’t write it over your regular
files (don’t use the save command). If that can be done you should leave the editor and
start it up again.

Defaults written to ’fullname’ The reply to a DW (defaults write) command (p. 64);

Detabbed # line(s) The number of lines in which stedi had to look for tabs to execute a
TE (tabs expand) command (empty lines don’t count) (see p. 92).

Drive not connected. You were asking for the available disk space on a drive that isn’t
known to the operating system.

Drive not found. Message returned by the file system. The requested file couldn’t be found
for the indicated reason.

Else without if Each else statement must belong to an if statement and each if statement
can have at most one else. See the chapter on macro’s p. 112.

Empty substring A substring in a regular expression is a string enclosed by double quotes.
You used the meaningless sequence ””.

Endwhile without while Each endwhile statement in a macro’s should correspond to a
while statement earlier in the text (see macro’s p. 112).

Error # While returning from executing a shell command this error number was reported
by the operating system (see ‘Execute an external command’ p. 122).

Error while reading key redefinitions Hit any key to abort This message can occur
only during startup. It means that something is wrong with your default file.

Error while reading macros. Hit any key to abort This message occurs only during
startup. It means that something is wrong with your default file.

Error while reading. A general mishap reported by the file system during reading of a file.
Reading is aborted.

Error while writing. Disk full? The operating system reported an error during writing.
The most common reason for such an error is that the disk is full.

160 CHAPTER 28. LIST OF MESSAGES AND THEIR MEANINGS

Error while writing. File unreliable. An error is reported during the writing of the de-
fault file. It would be best to remove it as it has only partially been written.

Evaluation error The evaluation of the right side of a set statement or the expression in an
if or while statement ran into some problems. Check your expression carefully (p. 115).

Execution time = #.# sec. After the execution of an external command stedi always
reports the time to an accuracy of tenths of a second.

Expression too complicated during matching An internal stack overflow was reported
during the matching of a regular expression. For this to happen there should be a few
hundred objects in the match.

Expression too complicated. The pattern for a regular expression is too complicated to
be translated. This is quite some expression. The author would like to see it (if you
think it is altogether reasonable to have stedi process this expression).

File exists already. Write anyway ? (Y/N) The write command was issued with the
name of a file that exists already. Stedi wants to know for sure that the user doesn’t
mind that this name is used nevertheless. A .bak version will be made if the backup
setting asks for it.

File not found. A reply of the operating system when a file has to be read and cannot be
located.

Fold lines may not be changed. You undertook an attempt to alter a line that represents
a closed fold. This is not allowed (p. 73).

Fold not found. If you look for a fold by name it can always happen that the fold doesn’t
exist (typing error?).

Fold line skipped A paste in block mode was done and one of the lines that should have
gotten a new piece in it was a closed fold line. The fold line wasn’t changed!

Higher buffer called from a lower one! An attempt at replaying a higher learn buffer
from a lower one was intercepted (see p. 103)

If without endif For each if statement in a macro there must be an endif statement. Ac-
cording to stedi there is no matching endif for the if statement of which the line number
is given in regular way for macro error messages (see the chapter on macro’s p. 112).

Illegal end of expression Either a regular expression pattern wasn’t completed properly
or an expression that had to be evaluated wasn’t complete.

Illegal end of macro The evaluation of an expression ran into the end of the macro. This
can happen when the end of line has been escaped with either an escape character or a
backslash and there are no more lines.

Illegal if/while nesting This could involve a sequence of statements like: if, while, endif,
endwhile. Such a sequence of statements is of course illegal.

Illegal key redefinition file. The file read with the K command (p. 138) cannot be recog-
nized as a proper key redefinition file.

161

Illegal name for variable The name of the variable you tried to use didn’t conform to the
rules (see the chapter on variables p. 106).

Illegal option in field ’string’ The option refers to an option in the command that was
used to start stedi. See the chapter on running stedi p. 152.

Illegal position for) The parentheses inside an expression to be evaluated aren’t at the
right place.

Illegal repetitor A repetitor in a regular expression was found wanting. See the definition
of repetitors p. 85.

Illegal sequence of operators The operators in an expression to be evaluated were in an
improper order. See p. 115 about the syntax of the operators.

Illegal sequence starting with ’string’ A regular expression isn’t formed properly. The
offending object is shown.

Illegal string A string (enclosed in double quotes) had an illegal ending (maybe the clos-
ing double quote is missing). This message is reported by the routine that evaluates
expressions.

Illegal substring A substring (string enclosed in double quotes in a regular expression)
wasn’t formed properly. Check your expression.

Illegal use of @ A digit was expected after the character during the compilation of your
regular expression. See the chapter on regular expressions p. 87.

Improper defaults file. The default file cannot be right. It is way too short. You’d better
throw it away.

Improper use of @ in rhs A digit was expected after the character in the right hand side
of a replacement by means of regular expressions. See the chapter on regular expressions
p. 87.

Improper use of nonnumerical string An arithmetic operation was attempted on a non-
numerical string. See the part about operators in expressions p. 115.

Internal error! This is a sign of stedi getting into trouble. If you can reproduce this one,
please report it to the author. This particular message is generated by the routine that
performs the operations for the evaluation of an expression.

Invalid default file. Hit any key to abort This message can occur only during startup.
It means that something is wrong with your default file.

Invalid load format. This message is reported by the operating system when the program
you tried to execute by means of the ! command isn’t a proper executable program.

Invalid range in string Inside a group of characters in a regular expression (indicated by
straight brackets) a range of characters wasn’t formed right. See the part on character
groups p. 84.

162 CHAPTER 28. LIST OF MESSAGES AND THEIR MEANINGS

Irregular ending A regular expression statement ends in an escape of the end of line and
there are no more lines in the macro (or the command line).

Key not active A key combination was used that isn’t bound to anything. When this
happens suddenly to your favorite key redefinitions you better check (i) the default file.
Did you load the right one. (ii) have the redefinitions been loaded? (iii) Did you add a
redefinition that messes up your scheme (see example 2 p. 142) (iv) what happened to
the flags? (v) if all else fails, reread the chapter on key redefinitions p. 138. (vi) Don’t
Panic! (vii) Start from scratch.

Label ’name’ not found A goto statement without a label is quite serious in a macro.
(Goto’s are quite serious anyway, but sometimes they are very handy).

Line too long. First source: Line allocation mechanism. Somehow a request for a line of
more than 16000 characters was made. The author would like to know how you did it.
Second source: The command you gave was expanded into a command of more than
255 characters after the variables were substituted.

Line too long. cut up? (Y/N/Q) During reading of the input a line of more than 255
characters has to be constructed. If you don’t want the editor to cut it up the read-
ing will be stopped. It is usually an indication that you are reading a file without
linefeeds/carriage returns. This can be either a binary file or a file from some word
processor with its own ideas about character files. Usually one can still do much with
such a file by putting stedi in the raw mode (Alt-R) before reading the file. See also
p. 56.

Macro ’name’ added Message after a successful ‘mc’ command to create a macro (p. 113).

Macro ’name’ deleted Message after a successful ‘md’ command to delete a macro (p. 113).

Mark not found. The presence of the mark was needed (either to jump to the mark or to
use it for a ‘ranged’ action). However it couldn’t be found. The most likely reason is
that it is hiding inside a closed fold.

Mark removed. The answer to either the ‘delete mark’ command (shift-F1 on systems with
a help key) or an operation that made it impossible to keep the position of the mark
(like deleting the line with the mark in it).

Mark set. The answer to the ‘put mark’ command.

Missing / in replacement The syntax of a replacement is much stricter than that of a
search command. The trailing slash should also be present.

More than 9 parameters A macro may have at most 9 parameters (p. 114).

Name longer than # characters The name of a buffer, including the path name is longer
than a built in maximum value. Try to keep the path name simpler.

Negative number of chars? One of the operations ‘string take/make left/right’ had to
take/make a negative number of characters. See the rules for the operators on p. 115.

163

New file. At startup a file was requested that didn’t exist. The buffer does get the name
and this message is displayed.

No = in set A set statement needs the equals sign. See the chapter on variables p. 107.

No linefeeds in block or column mode In block or column mode it makes no sense to
try to replace an end of line.

No lines to be sorted There are no lines to be sorted (for instance in an empty buffer).

No mark. The presence of the mark was needed (either to jump to the mark or to use it for
a ‘ranged’ action). However there is no mark.

No match A search returns unsuccessful.

No memory for writing. The write operation needs a buffer to make the writing efficient.
If there is no memory to be allocated for this buffer. If the above message is given you
should try to clear the undo buffer or one of the paste buffers. If that doesn’t help,
clear another buffer (press shift-F9 twice to also clear the undo buffer). If that cannot
be done either you can try to remove all macro’s and the key redefinitions. That may
make some space available. If that doesn’t help either you are in trouble.

No memory (Without period) Issued at startup if there isn’t enough memory to even start
the editor up.

No memory. A given operation couldn’t be performed. This can be a temporary matter
if the operation was restructuring the memory considerably. In that case it may be
sufficient to wait a second and give the command again, so that it may finish. The
garbage collections are quite fast. If it happens during the running of a long macro one
could try to insert a ‘garbage’ command at some strategic spots in the macro to force
a garbage collection (p. 132), as these are usually only done when the computer waits
for input. If the garbage collection isn’t sufficient you should try to empty some buffers
first before continuing.

No more handles. A message from the file system. It says that a file couldn’t be opened
for reading or writing for the mentioned reason. It indicates usually that some other
program has been wrecking havoc on the operating system and that it is time to reset
the computer. stedi pleads innocence.

No more words. A command like ‘goto next word’ (Ctrl-W) has been given but either the
end of the file has been reached or the only characters left are seen as illegal characters
for a word. See the word definitions on p. 95

No name specified in goto A goto statement needs the name of a label. It’s bad enough
already! For the syntax see p. 117.

No other match The search statement comes to the conclusion that the only match is the
match at the position that the cursor occupies already.

No reading in fold line When the cursor is inside a closed fold line reading would damage
this line, so it is forbidden (see p. 73).

164 CHAPTER 28. LIST OF MESSAGES AND THEIR MEANINGS

No rewrapping in fortran mode. Rewrapping makes no sense in the fortran mode. So it
isn’t done! See the section on rewrapping p. 99.

No slot for help file. Quitting is with shift-F10. All buffers are filled (or have a name),
so the help file cannot be read. If you don’t know how to get out it tells you at least
how it can be done. See the part about the help facility p. 156.

No word wrap set. Rewrapping a paragraph can of course only be done when the word
wrap mode has been set. The current status of the word wrap can be inspected with
the WW command (p. 98).

Not enough memory. Buffer made View-Only. During the reading of a file the mem-
ory got exhausted. As the file has only been read partially it is better to make it difficult
to write the file away. If a file is too big one can edit it in parts and concatenate these
parts while writing so that the eventual output forms a new file that is too large. See
the options of the read and write commands p. 55 and p. 57.

Not in backwards mode Regular expressions can only be used in one of the forward search
modes. Discussions about how to interpret a backward search with regular expressions
have still not been finished. The opinions are divided.

Not in raw mode In raw mode all special tab representations are switched off. Hence it
would not serve any purpose to try tabbing, trimming or detabbing. Therefore it is
forbidden.

Numerical value expected. When setting some variables it is necessary to provide them
with a numerical value. The string that was given couldn’t be translated in one. See
p. 110.

Path not found. A message from the file system. The path specified with the name of the
file to be read couldn’t be located.

Printer not available If you try to print something and either there is no printer or the
printer is off, this is the message. It may also be that you write to the wrong port. See
the chapter on printing p. 60.

Printer not ready. Continue ? (Y/N) A message if during writing the printer ‘times
out’, indicating that during a given period no character could be sent to the printer.
This could be due to a lack off paper, or the user took the printer off line to interrupt a
listing. One can continue printing (for instance after refilling the paper tray) by typing
Y. Typing N aborts the printing.

Printing to PRN:/AUX:/COM: The answer to the setting of the printer port with the
‘P=’ command. It is also the answer to the request for the printer port status. See the
chapter on printing p. 60.

Range copied. The message after the successful copying of a range to a yank buffer.

Range cut. The message after the successful cutting/yanking of a range to a yank buffer.

165

Raw writing? (Y/N) When a write command is given and the buffer is in the raw mode
this writing should always be verified. If you switch the buffer accidentally to the raw
mode and the file would just be written it is a lot of work to put all the linefeeds back
in. See the chapter on writing p. 57.

Reading discontinued The answer to the request to truncate lines longer than 255 char-
acters during reading was no. Stedi cannot put this file in its buffers (see p. 56).

Replace? (G/Y/N/Q) When using the veto option for a replace, each time the editor
finds a match it will wait and ask the user what to do.

Return code = # The return code when an external command has been executed. If the
return code is zero, it isn’t reported and when it is negative it is reported as an error.

Stopped The execution of a macro was interrupted by the user.

Syntax error. Some simple commands result only in this vague message when their syntax
isn’t right. You better check the corresponding pages in the manual.

Tabbed # line(s) The number of lines in which stedi had to look in to see whether tabs
should be placed in them while executing a ‘tab’ command (empty lines don’t count)
(see p. 92).

Tag # placed After the command <# this is the message (# is a single digit). See the
section on tags p. 68.

Tag not found. A ‘goto tag’ command was given but the tag could not be located. See the
section on tags p. 68.

There are # bytes free on drive ’char’ The reply to the ? command. See the section
on free disk space p. 62.

There is a macro with this name already! There can only be one macro with a given
name. If you insist on this name you have to delete the existing macro first with the
‘md’ command p. 113.

Too long word for autorewrap. The current word is so long that the word wrap would
get in trouble. This trouble would manifest itself by getting a new line, every time a
character is added to the word.

Too many character groups The number of character groups in your pattern is larger
than a predefined maximum (at least 10). Try to rethink your pattern.

Too many characters in learn buffer # The learn buffers have a capacity of 100 char-
acters each. If the above message is shown you should stop the learning in the given
buffer, as it has no use to continue it. See the chapter on the learn buffers p. 103.

Trimmed # line(s) The number of lines in which stedi had to look for superfluous blanks
and tabs while executing tt (tab trim) command (empty lines don’t count) (see p. 92).

Truncate too long line? (Y/N) A paste command results in a line being longer than
255 characters. Should this line be truncated (with loss of characters) or should this
part of the paste operation be aborted?

166 CHAPTER 28. LIST OF MESSAGES AND THEIR MEANINGS

Twice else in one if Each if can only have one else in a macro.

Undefined variable # in rhs In a regular expression replacement there is a variable in
the right hand side that wasn’t specified in the left hand side, so during the replace
operation it will be undefined. See the chapter on regular expressions p. 87.

Unexpected end of expression A pattern in a regular expression is terminated abnor-
mally.

Unknown command ’string’ The command line command you gave isn’t recognized.

Unknown option in set The set command knows only two options: the -L and the -G
option. Apparently you asked for another option. See the chapter on variables p. 106.

Unmatched A group of characters in the pattern of a regular expression is opened but the
closing bracket is missing.

Unmatched brackets The brackets in an expression aren’t matched.

Unmatched parentheses Some subexpression in the pattern of a regular expression has
unmatched parentheses. Check the statement.

Unmatched while or if in macro ’name’ When a macro is put in the inner buffers all
the jumps are set up. During this phase some links couldn’t be made.

Unsaved buffer(s) ’digits’ Leave anyway? (Y/N) The message that is displayed indi-
cates that there is still some unsaved work and that you are trying to leave the editor.
The digits are the numbers of the buffers that have their dirty flag on. So the string
‘13’ means that the buffers 1 and 3 have still unsaved work in them.

User interrupt. Abort execution? (Y/N) The user has pressed both shift keys during
the execution of a macro. He can tell now whether he wants to abort execution.

Value should be ON or OFF You tried to set a variable to an illegal value. This variable
can have only one of the reported values. See p. 110.

Value should be ON, OFF or SINGLE You tried to set a variable to an illegal value.
This variable can have only one of the reported values. See p. 110.

Variable stack overflow during evaluation During the evaluation of an expression the
intermediate result became too long. Try something simpler.

Word wrap at column #

Word wrap in fortran mode.

Word wrap off. Either an answer after the status of the word wrap has been changed or a
report on its status after the WW command has been given. See p. 98.

Wrong version default file. The default file belongs to a different version of stedi (or to
a version on a different computer). It should be removed or renamed before stedi is
willing to start up.

