
NIKHEF-H/90-15

FF

a package to evaluate one-loop Feynman diagrams

G. J. van Oldenborgh

NIKHEF-H
P.O. Box 41882

NL-1009 DB Amsterdam

24 September 1990

Abstract

A short description and a user’s guide of the FF package are given. This package
contains routines to evaluate numerically the scalar one-loop integrals occurring in
the evaluation in one-loop Feynman diagrams. The algorithms chosen are numerically
stable over most of parameter space.

1 Introduction

The evaluation of scalar loop integrals is one of the time consuming parts of radiative
correction computations in high energy physics. Of course the general solution has long
been known [1], but the use of these formulae is not straightforward. If one encodes the
algorithms directly in a numerical language one finds that for most physical configurations
the answer is extremely unreliable due to numerical cancellations. It is not at all difficult
to find examples where more than 80 digits accuracy are lost.

There are two ways in which these problems have been solved. M. Veltman has pro-
grammed these algorithms using a very large precision (up to 120 digits) for the inter-
mediate results in the program FormF, which enabled him to do some very complicated
calculations [2]. However, these routines are written in assembler language and thus only
available on certain computers. Also, the use of multiple precision makes them fairly slow
— and even so there are many (soft t-channel) configurations for which the answer is in-
correct, or correct only for one permutation of the input parameters. The other solution
is to evaluate by hand all special cases needed and make sure that these are numerically
stable, in this way building a library of physically interesting cases. This costs much time
and has to be extended for every new calculation, as often the limits taken are no longer
valid.

We present here a set of Fortran routines that evaluate the one-loop scalar integrals
using a standard precision. The algorithms used have been published before [3]. This
paper describes version 1.0 which contains the following units:

• the scalar one, two, three, four and five-point functions, defined by

X0 =
1

iπ2

∫
dnQ

(Q2 − m2
1)((Q + P)2 − m2

2) · · ·
(1)

• the vector three and four-point functions,

• some determinants.

Planned additions are:

• The other Form factors à la FormF.

• The six-point function.

Note however, that the reduction of these can be done analytically.
The aim of the routines is to provide a reliable answer for any conceivable (physical)

combination of input parameters. This has not been fully met in the case of the four-point
function, but an impressive list of cases does indeed work. Problems normally occur when
many parameters are (almost) equal, i.e. when an analytical calculation is most feasible.

1

The layout of this paper is as follows. First we give a brief description of the design of
the package and some details that may be of of relevance to the user, like timings. Next we
give a complete user’s guide. The problems which might be encountered when installing FF
on a computer system are discussed in section 3. The initialisation of the routines, which
has to be done by the user in the program which uses the FF routines, is outlined in section
4. The next section is about the use of the error reporting facilities, which also need some
assistance from the user. A list of the available routines for the scalar n-point functions
(section 6) and determinants (section 8) is given, listing parameters, loss of precision and
comments. Finally some sample input and output is given in section 9.

2 Brief description of the scalar loop routines

This section will give an overview of the structure of the scalar loop routines which imple-
ment the algorithms of [3]. The purpose of this is to provide a map for the adventurous
person who wants to understand what is going on. Some details of the algorithms chosen
are also given.

2.1 Overview

The language chosen is Fortran, mainly because so much of the calculations are done with
complex variables. There are currently about 26000 lines of code. Some of it is repetitious,
as many routines exist in a real and complex version which hardly differ. Global names
(subprograms, common blocks) almost all start with the letters FF, for FormFactor (the
only exceptions are the functions dfflo1, zfflo1, zfflog and zxfflg). For this reason I
refer to the set as the FF package. The third letter of the name often indicates whether a
routine is complex (z or c) or real. The real four-point function is thus calculated with the
routine ffxd0, the complex dilogarithm in ffzli2. All common blocks are included via
a single include file, which also defines some constants such as one and π in the precision
currently used. I have tried hard to make switching between real and double precision

as easy as possible.
The packages roughly consists of six kind of routines:

• The high-level and user-callable routines, such as ffxd0.

• Dotproduct calculation routines, such as ffdot4.

• The determinant routines, such as ffdl4p; the number indicates the size of the
determinant and the letter the kind.

• Routines to get combinations of dilogarithms, for instance ffcxr; the names roughly
follow the names given in [3]

2

• Low level routines: the logarithms, dilogarithms, η functions.

• Support routines: initialisation, the error and warning system, taylor series bound-
aries and consistency checking.

The high-level routines first compute missing arguments such as the differences of the
input parameters. Next the parameters are permuted to a position in which the evaluation
is possible. All dotproducts are calculated and from these the necessary determinants are
determined. In the case of the four-point function we now perform the projective transfor-
mation and compute all transformed dotproducts and differences. The determinants and
dotproducts allow us to find the combinations of roots needed, which are passed on to the
routines which evaluate the combinations of dilogarithms.

The most difficult part is to anticipate the cancellations among the dilogarithms without
actually calculating them. This is usually done by comparing the arguments mapped to
the unit circle c′i, with a safety margin. Unfortunately the choices made are not always the
best, especially on the higher levels (complete C0’s or Si’s). This is the reason the user can
influence the possibilities considered with the flags l4also and ldc3c4, which switch on
or off the 16 dilogarithm algorithm and the expanded difference between two three-point
functions.

The dilogarithms are evaluated in ffxli2 and ffzli2. These expect their arguments
to lie in the region |z| < 1,ℜ(z) < 1/2 already, more general functions (used for testing)
are ffzxdl and ffzzdl. The algorithm used is the expansion in log(1 − z) described in
[1]. As the precision of the computer is unknown in advance fancy Chebychev polynomials
and the like are not used.

The values of the logarithms and dilogarithms are placed in a big array which is only
summed at the last moment. This is done to prevent false alarms of the warning system.
Every single addition in the whole program of which one cannot prove that both operands
have the same sign is checked for numerical problems with a line like

sum = x + y + z

xmax = max(abs(x),abs(y))

if (abs(sum) .lt. xloss*xmax) call ffwarn(n,ier,sum,xmax)

with xloss set to 1/8 by ffini. A theoretically better way would be to compare the
result to the partial sums. We are however only interested in the order of magnitude of
the cancellation, and for that this method suffices.

The only other place where one can loose significant precision is in taking the logarithm
of a number close to 1. All calls to the logarithm are checked by a wrapper routine for this
case. A routine dfflo1/zfflo1 is provided to evaluate log(1 − x).

Finally a word on the the determinant routines. They use in general a very simplistic
algorithm to find the linearly independent combination of vectors which gives the most

3

accurate answer: try until it works. All sets are tried in order until the sum in no smaller
than xloss times the largest term. In the larger determinants this set is remembered and
tried first the next time the routine is called.

2.2 Timings

In table 1 we give the timings of the scalar n-pint functions on different machines. The
numbers given can only be an indication as the path taken varies wildly with the complexity
of the problem. A numerical unstable set of parameters might mean much more time spent
in the determinant routines and a bit less in the dilogarithms for instance. The flag ltest

was turned off for these tests.

machine B0 C0 D0 E0

NP1 0.2 ms 4.5 ms 13 ms 65 ms
Sun4 0.9 ms 8.1 ms 20 ms 90 ms
Apollo 10020 0.08 ms 1.5 ms 4.9 ms 24 ms
Atari ST 40 ms 400 ms 900 ms 5800 ms

Table 1: Timings of the scalar n-point functions.

For a D0, approximately 10% of the time is spent in the dilogarithms, 50% in the
determinants and the rest in the sorting out and summing.

2.3 Tests

The B0 has been tested against FormF over all parameter space, the C0 for some 100
physical configurations and the D0 for about 30. The E0 is as yet untested (except for
internal consistency). The only differences were in very low t-channel configurations and
I have reason to distrust FormF. The limit is not approached smoothly, and very extreme
kinematical configurations such as those occurring in the ZEUS luminosity monitor [4]
often give a DMPX. FF approaches the theoretically correct limit smoothly.

3 Installation

In this section the installation of the FF routines on a computer is discussed. We will first
discuss the problems which may be caused by the Fortran used. Next the use of data files
is discussed.

4

The routines have been written in standard (ANSI) Fortran-77, with a few extensions,
which most compilers allow. The package compiles without changes on the Gould/Encore
(fort), Apollo/SR10 (ftn), Meiko (mf77) and VAX (fortran/g float). Changes are necessary
for the Apollo/SR9 (ftn), Sun (f77), CDC (ftn5), Atari ST (Absoft) and possibly other
compilers.

The extensions used are:

• the use of tabs.

• the use of lower case letters.

• the use of implicit none.

• the use of the include directive to include the file ’ff.h’, which contains parameters
and common blocks used throughout the package.

• the use of DOUBLE COMPLEX data type. In principle FF can also run in single precision,
but the loss of 3-5 digits can often not be avoided in the evaluation of an n-point
function. This may leave too little information.

All these extensions can easily be removed with a good editor. The following commands
will convert the source to ANSI Fortran. (The syntax is that of the editor STedi).

mark

/include ’ff.h’/

deleteline

read ff.h

/implicit none/=/implicit logical (a-z)/

/DBLE(/=/REAL(/

/DIMAG/=/AIMAG/

/DCMPLX/=/CMPLX/

/DOUBLE COMPLEX/=/COMPLEX/

end

convert to uppercase

ctrl-u

expand the tabs

te

Note that all names that have to be converted when switching from single to double
precision are in capitals. It is possible to run the package in double precision real and
single precision complex (the error reporting system might underestimate the accuracy in
this case). To convert to single precision real (for instance on a CDC) use

5

/DOUBLE PRECISION/=/REAL/

It may be necessary to convert to systems with other names for the double precision
complex data types and functions (e.g. IBM). The double complex functions to be trans-
formed are zfflo1, zfflog and zxfflg. They are now declared as DOUBLE COMPLEX

function(args), change this to COMPLEX function*16(args).
Generic names for the intrinsic functions sqrt, log and log10 are used everywhere, so

these need not be changed.
Note that all subroutines have names starting with ff, the functions have the ff in

the middle of the name. It is hoped that this naming convention will minimise conflicts
with user-defined names. The author is aware of the possible conflict with the Cern-library
package ‘ffread’, but could not think up another key.

The FF package uses three data files: fferr.dat, ffwarn.dat and ffperm5.dat. The
mechanism for locating these is very simple: in the subroutine which reads these files
(ffopen and ffwarn in the file ffini) the variable fullname is defined. You will have to
fill in here a directory (readable by everyone using the routines) that contains the datafiles1.

4 Initialisation

When using the FF routines a few initialisations have to be performed in the program that
calls these routines.

The common blocks used are all listed in the file ‘ff.h’. If your system does not auto-
matically save common blocks (like Absoft Fortran) it is easiest to include this file in the
main program.

Furthermore, before any of the subroutines are called, a call must be made to ffini to
initialise some arrays of Taylor series coefficients. This routine also tries to establish the
machine precision and range, causing two underflows. If this is a problem (e.g. with Gould
dbx), edit this routine to a hardwired range. Finally it sets up reasonable defaults for the
tracing flags (these are listed in 5.3). This call is made automatically if one uses the npoin
entry point.

A call to ffexi will check the integrity of these arrays and give a summary of the errors
and warnings encountered.

Finally, on systems on which error trapping is possible it may be advantageous to use
a call

call qsetrec(ffrcvr)

This forwards any floating point errors to the error reporting system. The routine qsetrec
is available in the Cern library.

1for VAX/VMS one has to add the non-standard READONLY to the open statement

6

5 The error reporting system

5.1 Overview

One of the goals of this package was to give reliable answers. For this purpose a rather
elaborate error reporting system has been built in. First, there are a few flags which govern
the level of internal checking. Secondly, a count of the number of digits lost in numerical
cancellations above some acceptable number (this number is defined for each function in
section 6) is default returned with any result. This count is quite conservative. Do not
forget the few digits normal everyday loss on top of the reported losses, however: the
‘acceptable’ loss. Finally, a message can be given to the user where the error or warning
occurred. For this to be useful, the user has to update some variables.

5.2 Using the system

5.2.1 Errors

A distinction is made between errors and warnings. An error is an internal inconsistency
or a floating point error (if trapped). If an error occurs a message is printed on standard
output like this (the output is truncated to fit on the page)

id nr 41/ 7, event nr 16

error nr 32: nffeta: error: eta is not defined for real ...

The first part of the id must be defined by the user. It is given by the variable id in the
common block /ffflags/. I tend to use ’41’ for the first four-point function, ’42’ for the
second one, etc:

id = 41

call ffxd0(cd0,xpi1,ier)

id = 42

call ffxd0(cd0,xpi2,ier)

The second part (idsub) is maintained internally to pinpoint the error. The event number
is assumed to be nevent in the same common block. It too has to be incremented by the
user. The error number is used internally to fetch the message text from the file fferr.dat,
which also includes the name of the routine in which the error occurred. If an error has
occurred the variable ier is incremented by 100.

A call to fferr with the error number 999 causes a list of all errors so far to be printed
out and this list to be cleared. This is used by ffexi.

7

5.2.2 Warnings

A warning is a loss of precision because of numerical cancellations. Only losses greater than
a certain default value are noticed. This is controlled by the variable xloss in the common
block /ffprec/, which is set to 1/8 by ffini. A power of 2 is highly recommended. If a
loss of precision greater than this tolerable, everyday loss occurs the subroutine ffwarn is
called. The default action is to only increment the variable ier by the number of digits
lost over the standard tolerated loss of xloss. Nothing is printed, but all calls occurring
with the same value of the event counter nevent are remembered. This queue is printed
when ffwarn is called with error number 998.

The reason for this is simply that I do not like hundreds of meaningless warnings to
clutter the important ones in a big Monte Carlo. I therefore include a line like

if (ier .gt. 10) call ffwarn(998,ier,x0,x0)

at the end of the calculation of one event, causing the system to report only those errors
which led to a fatal loss of precision. The warning messages produced are similar to an
error message:

id nr 41/ 4, event nr 2265

warning nr 138: ffdl3p: warning: cancellations in \delta_{...

(lost 1 digits)

The number of digits lost gives the number of digits which have become unreliable in the
answer due to this step over the normal loss of xloss.

Another special error number is 999: this causes a list of all warnings which have
occurred up to that point to be printed out plus the maximum loss suffered at that point.
The routine ffexi uses this.

There is one warning message which does not increase ier: the remark that there are
cancellations among the input parameters. This is the responsibility of the user. Most
routines have an alternative entry point with the differences of the parameters required as
input.

The user can edit the routines ffwarn and fferr (in the file ffini) to customise the
error and warning reporting.

5.3 Debugging possibilities

There are a few flags to control the package in great detail. These are contained in the
common block /ffflags/. The first one, lwrite, if on, gives a detailed account of all
steps taken to arrive at the answer. This gives roughly 1000 lines of output for a four-point
function. It is turned off by ffini. The second one, ltest, turns on a lot of internal
consistency checking. If something is found wrong a message like

8

ffdot4: error: dotproducts with p(10) wrong: -1795. ... -9.5E-12

is given. The last number gives the deviation from the expected result, in this case a
relative precision of 10−15 was found instead of the expected 10−16. The ier counter is not
changed, as these are usually rounding off errors. Please report any serious errors. This
flag is turned on by ffini, turn it off manually once you are convinced that your corner
of parameter space does not present any problems.

The next two flags, l4also and ldc3c4, control the checking of some extra algorithms.
This takes time and may even lead to worse results in some rare cases. If you are pressed for
speed, try running with these flags off and only switch them on when you get the warning
message “Cancellations in final adding up”. If you get mysterious warnings with the
flags on, try turning them off.

Another flag for internal use, lmem controls a rudimentary memory mechanism which
is mainly used when trying different permutations of the parameters of the three- and
four-point functions. Its use is taken care of by the system.

Next there is the possibility to save the array of dotproducts used by the three and
four-point function. These arrays are used by the tensor integrals.

Finally there is the possibility to to turn off all warning reporting by setting lwarn to
.FALSE.. Do not do this until you are completely satisfied that there are no problems left!
It will also invalidate the value of ier, so you will have no warning whatsoever if something
goes horribly wrong.

It may be advantageous to change the flags to parameters and recompile for extra speed
and smaller size. Approximately half the code of the package is for debugging purposes.

5.4 Summary

The following sequence has been found to be very convenient.

1. Make sure that the system can find fferr.dat and ffwarn.dat and that the routine
ffini is called.

2. Do a pilot run with ltest on to check for internal problems within the FF routines.
One can also look for the best permutation of the input parameters at this stage.
Please report anything irregular.

3. Run a full Monte Carlo with ⁀ltest off, but lwarn still on to check for numerical
problems.

4. Only if there are no numerical problems left, you can turn off lwarn to gain the last
percents in speed.

9

6 Scalar n-point functions

In general there are two routines for almost every task: one for the case that all parameters
are real and one to use if one or more are complex. Infra-red divergent diagrams are
calculated with a user-defined cutoff on the divergent logarithms. Planned extensions are

• the derivative of B0,

• fast special cases,

• six-point functions.

Please note that there is also an entry-point npoin which returns the scalar integrals plus
the supported tensor integrals in a form compatible with FormF. The number of digits lost
cannot be included this way, however. It is provided on request to allow old code which
used FormF to run without a CDC.

6.1 One-point function

The one-point function ca0 = A0(m
2) = 1

iπ2

∫
dnQ/(Q2 − m2) is calculated with the sub-

routines

subroutine ffca0(ca0,d0,xmm,cm,ier)

integer ier

DOUBLE COMPLEX ca0,cm

DOUBLE PRECISION d0,xmm

subroutine ffxa0(ca0,d0,xmm,xm,ier)

integer ier

DOUBLE COMPLEX ca0

DOUBLE PRECISION d0,xmm,xm

with d0 = ∆ = −2/ǫ − γ + log(4π) the infinity from the renormalisation scheme and the
mass xmm = µ arbitrary. The final result should not depend on it. xm = m2 is the internal
mass squared. This is of course a trivial function.

6.2 Two-point function

6.2.1 Calling sequence

The two-point function cb0 = B0(m
2
a, m

2
b , k

2) is calculated in the subroutines

10

subroutine ffcb0(cb0,d0,xmu,ck,cma,cmb,ier)

integer ier

DOUBLE COMPLEX cb0,ck,cma,cmb

DOUBLE PRECISION xmu,d0

subroutine ffxb0(cb0,d0,xmu,xk,xma,xmb,ier)

integer ier

DOUBLE COMPLEX cb0

DOUBLE PRECISION d0,xmu,xk,xma,xmb

with d0 and xmm as in the one-point function. xk = k2 in Bjørken and Drell metric (+−−−)

and xma,b = m2
a,b are the internal masses squared.

6.2.2 Comments

The maximum loss of precision without warning in the scalar two-point function is (xloss)3

in the basic calculation plus xloss when adding the renormalisation terms. Numerical
instabilities only occur very close to threshold (k2 ≈ (ma + mb)

2). The function can run
into underflow problems if both |ma − mb| ≪ ma and |k2| ≪ m2

a. Note that this function
uses Pauli metric (+ + +−) internally.

6.3 Three-point function

6.3.1 Calling sequence

The three-point function cc0 = C0(m
2
1, m

2
2, m

2
3, p

2
1, p

2
2, p

2
3) is calculated in the subroutines

subroutine ffcc0(cc0,cpi,ier)

integer ier

DOUBLE COMPLEX cc0,cpi(6)

subroutine ffxc0(cc0,xpi,ier)

integer ier

DOUBLE COMPLEX cc0

DOUBLE PRECISION xpi(6)

The array xpi should contain the internal masses squared in positions 1–3 and the external
momenta squared in 4–6. The momentum xpi(4) = p2

1 is the one between xpi(1) = m2
1

and xpi(2) = m2
2, and so on cyclically. The routine rotates the diagram to the best

position, so only the swap m2
1 ↔ m2

3, p2
1 ↔ p2

2 can be used to test the accuracy.
There is an alternative entry point which can be used if there are significant cancella-

tions among the input parameters.

11

subroutine ffxc0a(cc0,xpi,dpipj,ier)

integer ier

DOUBLE COMPLEX cc0

DOUBLE PRECISION xpi(6),dpipj(6,6)

All differences between input parameters should be given in dpipj(i,j) = xpi(i) -

xpi(j).
In the testing stages one can use

subroutine ffcc0r(cc0,cpi,ier)

integer ier

DOUBLE COMPLEX cc0,cpi(6)

subroutine ffxc0r(cc0,xpi,ier)

integer ier

DOUBLE COMPLEX cc0

DOUBLE PRECISION xpi(6)

It tries 2 different permutations of the input parameters and the two different signs of the
root in the transformation and takes the best one. This permutation can later be chosen
directly in the code.

If the requested three-point function is infra-red divergent (i.e. one internal mass 0
and the other two on-shell) the terms log(λ2), with λ the regulator mass, are replaced by
log(δ). In all other terms the limit λ → 0 is taken. The value of the cutoff parameter
delta = δ should be provided via the common block /ffcut/, in which it is the first (and
only) variable. This infra-red option does not yet work in case some of the masses have a
finite imaginary part.

6.3.2 Comments

The maximum loss of precision without warning is (xloss)5. Numerical instabilities again
occur very close to thresholds (p2

i ≈ (mi + mi+1)
2). There are discrepancies with FormF

for t-channel diagrams in case t → 0, but there are good reasons to distrust FormF there
(the limit is not approached smoothly).

The Z vertex correction to an eeγ vertex with one of the electrons slightly off-shell is
stable only for one mirror image.

6.4 Four-point function

6.4.1 Calling sequence

cd0 = D0(m
2
1, m

2
2, m

2
3, m

2
4, p

2
1, p

2
2, p

2
3, p

2
4, (p1 + p2)

2, (p2 + p3)
2), the four-point function, is

calculated in the subroutine

12

subroutine ffxd0(cd0,xpi,ier)

integer ier

DOUBLE COMPLEX cd0

DOUBLE PRECISION xpi(13)

The array xpi should contain the internal masses squared in positions 1–4, the external
momenta squared in 5–8 and s = (p1 + p2)

2, t = (p2 + p3)
2 in 9–10. Positions 11–13 should

contain either 0 or

xpi(11) = u = +xpi(5)+xpi(6)+xpi(7)+xpi(8)-xpi(9)-xpi(10)

xpi(12) = v = -xpi(5)+xpi(6)-xpi(7)+xpi(8)+xpi(9)+xpi(10)

xpi(13) = w = +xpi(5)-xpi(6)+xpi(7)-xpi(8)+xpi(9)+xpi(10)

Unfortunately the complex four-point function does not yet exist in a usable form.
There are two alternative entry points. The first one can be used if there are significant

cancellations among the input parameters.

subroutine ffxd0a(cd0,xpi,dpipj,ier)

integer ier

DOUBLE COMPLEX cd0

DOUBLE PRECISION xpi(13),dpipj(10,13)

in which these last elements are required and all differences between the input parameters
are given in dpipj(i,j) = xpi(i) - xpi(j).

The second one can be used in the testing stages.

subroutine ffxd0r(cd0,xpi,ier)

integer ier

DOUBLE COMPLEX cd0

DOUBLE PRECISION xpi(13)

It tries 6 different permutations of the input parameters and the two different signs of the
root in the transformation and takes the best one. This permutation can later be chosen
directly in the code.

If the requested four-point function is infra-red divergent (i.e. one internal mass 0 and
the adjoining lines on-shell) the terms log(λ2), with λ the regulator mass, are replaced by
log(δ). In all other terms the limit λ → 0 is taken. The numerical value of delta = δ
should be placed in a common block /ffcut/. Due to problems in the transformation at
this moment at most one propagator can have zero mass.

13

6.4.2 Comments

The maximum loss of precision without warning is (xloss)7. There may be problems with
diagrams with masses and/or momenta squared exactly zero. If you get a division by zero
or the like try with a small non-zero mass.

The following diagrams are known not give an accurate answer:

1. Again, any configuration with an external momentum very close to threshold.

2. γγ → γγ for s ≪ m2

6.5 Five-point function

6.5.1 Calling sequence

The five-point function ce0 = E0(m
2
i , p

2
i , (pi + pi+1)

2, i = 1, 5) and the five four-point
functions which one obtains by removing one internal leg are calculated in the subroutine

subroutine ffxe0(ce0,cd0i,xpi,ier)

integer ier

DOUBLE COMPLEX ce0,cd0i(5)

DOUBLE PRECISION xpi(20)

The array xpi should contain the internal masses squared in positions 1–5, the external
momenta squared in 6–10 and the sum of two adjacent external momenta squared in 11–15
(the analogons of s and t in the four-point function). Positions 16–20 should contain either
0 or (pi + pi+2)

2 (the analogon of u).
There are two alternative entry points. The first one can be used if there are significant

cancellations among the input parameters.

subroutine ffxe0a(ce0,cd0i,xpi,dpipj,ier)

integer ier

DOUBLE COMPLEX ce0,cd0i(5)

DOUBLE PRECISION xpi(20),dpipj(15,20)

in which these last elements are required and all differences between the input parameters
are given in dpipj(i,j) = xpi(i) - xpi(j).

The second one can be used in the testing stages.

subroutine ffxe0r(ce0,cd0i,xpi,ier)

integer ier

DOUBLE COMPLEX ce0,cd0i(5)

DOUBLE PRECISION xpi(20)

14

It tries the 12 different permutations of the input parameters and the two different signs
of the root in the transformation and takes the best one. This permutation can later be
chosen directly in the code.

6.5.2 Comments

The five-point function has not yet been adequately tested.
The maximum loss of precision without warning is (xloss)7. There may be problems

with diagrams with masses and/or momenta squared exactly zero. If you get a division by
zero or the like try with a small non-zero mass.

7 Tensor integrals

At this moment only the vector two, three and four-point functions are available, of which
the two-point functions is very badly implemented. These tensor integrals are scheme-
independent, the higher order functions differ between the Passarino-Veltman scheme [2]
and the kinematical determinant scheme described in [3].

7.1 Vector integrals

7.1.1 Two-point function

The vector two-point function B1p
µ =

∫
dnQµ/(Q2 − m2

1)((Q + p)2 − m2
2) is calculated in

subroutine ffxb1(cb1,cb0,ca0i,xp,xm1,xm2,ier)

integer ier

DOUBLE PRECISION xp,xm1,xm2

COMPLEX cb1,cb0,ca0i(2)

The input parameters are cb0 = B0 the scalar two-point function, ca0i(i) = A0(m
2
i) the

scalar one-point functions and the rest as in ffxb0. This function must/will be improved.

7.1.2 Three-point function

The subroutine for the evaluation of the vector three-point function C11p
µ
1 + C12p

µ
2 =∫

dnQµ/(Q2 − m2
1)((Q + p1)

2 − m2
2)((Q + p1 + p2)

2 − m2
3) is

subroutine ffxc1(cc1i,cc0,cb0i,xpi,piDpj,del2,ier)

integer ier

DOUBLE PRECISION xpi(6),piDpj(6,6),del2

COMPLEX cc1i(2),cc0,cb0i(3)

15

The required input parameters are cc0 = C0 the scalar three-point function, cb0i(i)

the two-point functions with m2
i missing: cb0i(1) = B0(p

2
2, m

2
2, m

2
3). Further xpi are the

masses as in ffxc0 and piDpj, del2 the dotproducts and kinematical determinant as saved
by ffxc0 when ldot is .TRUE.

7.1.3 Four-point function

The calling sequence for the vector four-point function cd1i which returns D11, D12, D13,
the coefficients of pµ

1 , pµ
2 and pµ

3 is

subroutine ffxd1(cd1i,cd0,cc0i,xpi,piDpj,del3,del2i,ier)

integer ier

DOUBLE PRECISION xpi(13),piDpj(10,10),del3,del2i(4)

COMPLEX cd1i(3),cd0,cc0i(4)

The input parameters are as follows. cd0 = D0 is the scalar four-point function, cc0i(i) =
C0(without mi) the scalar three-point functions, xpi the masses as in ffxd0 and piDpj,
del3 and del2i the dotproducts and kinematical determinant as saved by ffxd0 and ffxc0

when ldot is .TRUE.

8 Determinants

A knowledge of a few of the determinant routines may be useful to the user as well. On the
one hand they can be used in other parts of the calculation, e.g. in the reduction to scalar
integrals, but they also are the place where the numerical instabilities have been concen-
trated. It is often useful or even necessary to import the required determinants directly
from the kinematics section. We therefore list all the routines calculating determinants of
external vectors and some containing internal vectors.

8.1 2 × 2 determinants

To calculate the 2 × 2 determinant del2 = δ
pi1

pi2
pi1

pi2
, p3 = −(p1 + p2), given the dotproducts

use

subroutine ffcel2(del2,piDpj,ns,i1,i2,i3,lerr,ier)

integer ns,i1,i2,i3,lerr,ier

DOUBLE COMPLEX del2,piDpj(ns,ns)

subroutine ffdel2(del2,piDpj,ns,i1,i2,i3,lerr,ier)

integer ns,i1,i2,i3,lerr,ier

DOUBLE PRECISION del2,piDpj(ns,ns)

16

In this piDpj(i,j) = pi · pj is the dotproduct of vectors pi and pj, i1,i2,i3 give the
position of the three vectors of which the determinant has to be calculated in this array.
lerr should be 1.

If the dotproducts are not known there is a routine for xlambd = λ(a1, a2, a3), which is
-2 times the determinant if ai = p2

i .

subroutine ffclmb(clambd,cc1,cc2,cc3,cc12,cc13,cc23,ier)

integer ier

DOUBLE COMPLEX clambd,cc1,cc2,cc3,cc12,cc13,cc23

subroutine ffxlmb(xlambd,a1,a2,a3,a12,a13,a23,ier)

integer ier

DOUBLE PRECISION xlambd,a1,a2,a3,a12,a13,a23

The aij = ai - aj are again differences of the parameters in these routines.
An arbitrary 2 × 2 determinant δ

pi1
pi2

pj1
pj2

can be obtained from ffdl2i:

subroutine ffdl2i(dl2i,piDpj,ns,i1,i2,i3,isn,j1,j2,j3,

+ jsn,ier)

integer ns,i1,i2,i3,isn,j1,j2,j3,jsn,ier

DOUBLE PRECISION dl2i,piDpj(ns,ns)

Here the vector pi3 = isn(pi1 +pi2) and analogously for j. (Note that the sign is important
here).

If there is no connection between the two vectors one should use

subroutine ffdl2t(dlps,piDpj,i,j,k,l,lk,islk,iss,ns,ier)

integer in,jn,ip1,kn,ln,lkn,islk,iss,ns,ier

DOUBLE PRECISION dlps,piDpj(ns,ns)

to calculate δ
pipj
pkpl with plk = islk(isspl − pk) and no relationship between pi, pj assumed.

8.2 3 × 3 determinants

To calculate the 3× 3 determinant dl3p = δ
pi1

pi2
pi3

pi1
pi2

pi3
given the dotproducts piDpj, one can

use

subroutine ffdl3p(dl3p,piDpj,ns,ii,ier)

integer ns,ii(6),ier

DOUBLE PRECISION dl3p,piDpj(ns,ns)

17

The array ii(j) gives the position of the vectors of the determinant has to be calculated
in this array. We assume that pii(4) = −pii(1) − pii(2) − pii(3), pii(5) = pii(1) + pii(1) and
pii(6) = pii(2) + pii(3), with all vectors incoming.

The 3×3 determinant dl3q = δ
si1

pi2
pi3

pi1
pi2

pi3
, which occurs in expressions for tensor integrals,

is calculated by

subroutine ffdl3q(dl3q,piDpj,i1,i2,i3,j1,j2,j3,

+ isn1,isn2,isn3,jsn1,jsn2,jsn3,ier)

integer i1,i2,i3,j1,j2,j3,isn1,isn2,isn3,jsn1,jsn2,jsn3,

+ ier

DOUBLE PRECISION dl3q,piDpj(10,10)

Now the only assumptions that are made are that pjn
= jsnn(pin − isnnpin+1

) if jn is
unequal to zero. This routine should still be extended.

8.3 4 × 4 determinants

To calculate the 4 × 4 determinant dl4p = δ
pi1

pi2
pi3

pi4
pi1

pi2
pi3

pi4
given the dotproducts piDpj, one

can use

subroutine ffdl4p(dl4p,piDpj,ns,ii,ier)

integer ns,ii(10),ier

DOUBLE PRECISION dl4p,piDpj(ns,ns)

The array ii(j) gives the position of the vectors of the determinant has to be calculated in
this array. We assume that pii(5) = −pii(1) − pii(2) − pii(3) − pii(4), pii(n+5) = pii(n) + pii(n+11),
with all vectors incoming again.

9 Sample input and output

The example chosen is the same that is given with FormF, although the B′

1 is not computed
and set to a very large value. On my NeXTstation with f2c and gcc I get the following
output.

$ make npointes

f77 -c npointes.f

[many more lines]

$ npointes

==

FF 2.0, a package to evaluate one-loop integrals

written by G. J. van Oldenborgh, NIKHEF-H, Amsterdam

18

==

for the algorithms used see preprint NIKHEF-H 89/17,

’New Algorithms for One-loop Integrals’, by G.J. van

Oldenborgh and J.A.M. Vermaseren, published in

Zeitschrift fuer Physik C46(1990)425.

==

ffini: precx = 4.44089209E-16

ffini: precc = 4.44089209E-16

ffini: xalogm = 4.94065645E-324

ffini: xclogm = 4.94065645E-324

.0000000000000E+00 .9156199386460E+06

NPOIN: warning: D4 is not yet supported

NPOIN: warning: B1’ seems also not yet supported

-.3100623399361E+02 -.2054369006935E+03 -.5269961187649E-14 -.1218492318111E-08

.0000000000000E+00 .1997630170032+305 -.1033542556010E+02 -.6793071440282E+02

.0000000000000E+00 .1739461728624E-08 .0000000000000E+00 -.1286491875423E-08

.0000000000000E+00 .4952559280190E-18 .0000000000000E+00 -.4571732002955E-18

ALIJ: error: not implemented

.0000000000000E+00

total number of errors and warnings

===================================

fferr: no errors

ffwarn: 1 times 18: ffxb0p: warning: cancellations in equal masses, \

complex roots, can be avoided.

(lost at most a factor 8.20)

ffwarn: 1 times 129: zxfflg: warning: taking log of number close to 1\

, must be cured.

(lost at most a factor 9.75)

ffwarn: 10 times 163: ffxc1: warning: cancellations in cc1.

(lost at most a factor 244.)

ffwarn: 1 times 164: ffxd1: warning: cancellations in cd1.

(lost at most a factor 8.33)

10 Distribution and error reports

The Fortran package FF can of course be freely copied and used. However, please do not
change anything so that others which copied your code can be sure which version they
are using. The version released in summer 1990 is version 1.0. A copy of the most recent
version, 2.0 (1998) (roughly 4.4 104 lines) and this users guide can be obtained in the
following ways:

19

• via the web at http://www.xs4all.nl/~gjvo/FF.html

• via anonymous ftp from ftp.nikhef.nl.

Please report any problems you encounter when using these routines to me. Although
I am no longer working in particle physics, I still support this library. My e-mail address
is GeertJan@vanOldenborgh.net, t19@nikhef.nl also still works.

11 Changes

The one major change has been to rename ffinit and ffexit to ffini and ffexi, to
avoid naming conflicts with the cernlib FF tape handling package. A detailed change-log
can be found in the file README in the distribution.

References

[1] G. ’t Hooft and M. Veltman, Nucl. Phys. B153, 365 (1979).

[2] G. Passarino and M. Veltman, Nucl. Phys. B160, 151 (1979).

[3] G. J. van Oldenborgh and J. A. M. Vermaseren, Z. Phys. C46, 425 (1990).

[4] M. van der Horst, Ph.D. thesis, Universiteit van Amsterdam, 1990.

[5] R. P. Feynman, Phys. Rev. 76, 769 (1949).

20

