@ Symbolica

The future of FORM

Ben Ruijl
Apr 13, 2023

Ruijl Research

1/32

What if we started from scratch?

The good parts of FORM

- Memory is not a bottleneck

- Terms are processed one by one (depth first)
- Terms can be streamed to/from disk

- Very fast, low memory usage
- Progress updates

- Free to use

- Features for particle physicists (gzamma algebra, vectors, etc.)

Huge accomplishment

FORM is an extremely impressive piece of software whose
algorithms survived for decades!

2/32

- Counterintuitive control flow
- Text-based preprocessor is used for logic
- Hard to act at the expression level due to implicit loop over

terms
1 #do i=1,5
2 .sort
#do j=1,71i'
4 LFj''i' =x"j'+x72;
#write "test2"
#enddo
Print "%t";
#write "test3"
#enddo

3/32

- No namespaces

- Term length limitations (MaxTermSize and company)

- Lack of data structures, hashmaps etc have to be emulated
- Often workarounds required that one “needs to know”

- No native factorisation: (x + 1)(x + 2) will be expanded

- Bugs that will never be fixed

- 10 to other languages is not great

- Not possible to use as a library

4132

- Code written when compilers and system allocators could not be
trusted

- Mixing of logic and expression representation
- Pointer and offset hacks that are no longer needed?

5/32

The Mathematica bad

- Closed ecosystem and expensive
- Limits the number of cores!

- Functions are black boxes

- No progress updates

- Poor 10 to other languages

- Poor scaling to large problems

6/32

Symbolica

- Symbolica is a new computer algebra system

- Focus on flexibility and ease of use in existing projects

- Should be easy to pass data to and from FOrRM, Mathematica, etc.
- Open development on Zulip and Github

- Blog posts and documentation on https://symbolica.io

- Community supported

@ Symbolica

7/32

https://symbolica.io

Which language?

While many experienced programmers can write correct
systems-level code, it's clear that no matter the amount
of mitigations put in place, it is near impossible to write
memory-safe code using traditional systems-level program-
ming languages at scale.

- Microsoft Security Research Center

8/32

Which language?

While many experienced programmers can write correct
systems-level code, it's clear that no matter the amount
of mitigations put in place, it is near impossible to write
memory-safe code using traditional systems-level program-
ming languages at scale.

- Microsoft Security Research Center

1 int* test(int* old, bool use_new) {

2 std::vector<int> a = {1, 2, 3};

3 int* b = &al[0];

4 a.push_back(4) ;

5 xb = 5; // BUG 1

6 if use_new { return b; } else { return old; } // BUG 2

8/32

Rust saves the day

1 fn main() {

2 let a = vec![1,2,3];
3 let b = &mut al[0];

4 a.push(4);

5 *b = 5;

9/32

Rust saves the day

1 fn main() {

2 let a = vec![1,2,3];
3 let b = &mut al[0];

4 a.push(4);

5 *b = 5;

6 r

Gives compilation error:

error [E0499]: cannot borrow 'a' as mutable more than once
at a time --> src/main.rs:4:3

|
3 | let b = &mut al[0];

| - first mutable borrow occurs here
4 | a.push(4);

| ~ second mutable borrow occurs here
5 | *b = 5;

|

—————— first borrow later used here

Also work for multi-threaded code!
9/32

Expressions

Expressions in FORM:
- symbol~int, functions, subexpression, dot products, vectors,
indices
- A function to an integer power is written out completely
- Any other power is converted: x"x -> (x)~(x) (36 to 48 bytes)
- x"n? does not match x~x but x~(n?) does

- Subexpressions are automatically expanded

10/ 32

Expressions in Symbolica

- Atoms: Mul, Add, Pow, Var, Fun, Num
- 1/xis represented as x~' and —x is represented as —1x x

- Tensor support could be done through atom “Indexed”
- Representation of (x+1)*f(x,y"z,3)*4/3:

N

Add Fn f Num 4/3

/NN

Var x Num 1 Var x Pow Num 3

Vary Var z

Mul

1/32

Expression representation

The ForRM C code mixes logic and the memory representation:

for (i =1; i <= count; i++) {
m = start;
while (m < stop) {

r=m+ m[1];
J = kr++;
if (j>1){
while (—==j > 0) {
if (#r == i) goto RightNum;
B g
}
m=r;
continue;

}

- A better way: create zero-cost abstractions
- In Rust traits describe what functions a struct should have

12/32

Expression representation Il

An AtomView IS an enum of borrowed data:

pub enum AtomView<'a, P: Atom> {
Num(P::N<'a>),
Var(P::V<'a>),
Fun(P::F<'a>),
Pow(P::P<'a>),
Mul(P::M<'a>),
Add(P::A<'a>),

® N o oA W N e

13/32

Expression representation Il

An AtomView IS an enum of borrowed data:

1 pub enum AtomView<'a, P: Atom> {

2 Num (P:
3 Var (P:
4 Fun(P:
5 Pow(P:
6 Mul(P:
7 Add(P:
8 F

:N<'a>),
V<'a>),
:F<'a>),
:P<'a>),
:M<'a>),
(A<'a>),

P::F is any struct that satisfies the following constraints:

1 pub trait Fun<'a> {

2 type P: Atom;
3 type I: Iterator<Item = AtomView<'a, Self::P>>;

o

© ®w N o

fn get_name(&self) -> Identifier;

fn get_nargs(&self) -> usize;

fn cmp(&self, other: &Self) -> Ordering;
fn into_iter(&self) -> Self::I;

13/32

Tree walk agnostic of the representation

1 fn tree_crawl<'a, P: Atom>(atom: AtomView<'a, P>) {

2 match atom {
3 AtomView: :Num(_) | AtomView::Var(_) => println!("{:7}", atom),
4 AtomView: :Fun(f) => {

println! ("Fun {:7}", f.get_name());

o

6 for a in f.into_iter() {
7 tree_crawl(a);

s }

9 }

10 AtomView: :Pow(p) => {

11 let (base, exp) = p.get_base_exp();
12 println! ("Pow");

13 tree_crawl (base) ;

14 tree_crawl (exp) ;

15 ¥

16 AtomView: :Mul(m) => {

17 println! ("Mul");

18 for a in m.into_iter() {
19 tree_crawl(a);

20 }

21 ¥

22 14 /32

Compact linear representation |

- A compressed linear format: tag, size, data
- Tag 1is a number, tag 2 a variable, etc

- Packing of two numbers: bit flag, numi, num2

15/32

Compact linear representation |

- A compressed linear format: tag, size, data
- Tag 1is a number, tag 2 a variable, etc

- Packing of two numbers: bit flag, numi, num2

Meaning Bit flag Meaning Bit flag

U8 NUM 0000 0001 U8 DEN 0001 0000
Ui6 NUM 0000 0010 U16 DEN 0010 0000
U32 NUM 0000 0011 U32 DEN 0011 0000
U64 NUM 0000 0100 U4 DEN 0100 0000
FIN NUM 0000 0101 ARB DEN 0111 0000
ARB NUM 0000 0111 SIGN 1000 0000

Still unused bits available to code a rational polynomial

15/32

Compact linear representation Il

- Compression used throughout: all variable names are packed
- The first 256 variable names only take up 2 bytes

- Function name and number of args are packed together, often
taking up 3 bytes

- For example £ (x,2/5) is coded in 15 bytes:

16 /32

Compact linear representation Il

- Compression used throughout: all variable names are packed
- The first 256 variable names only take up 2 bytes

- Function name and number of args are packed together, often
taking up 3 bytes
- For example £ (x,2/5) is coded in 15 bytes:

[3,10,0,0,0,17,1,2,2,1,0,1,17,2,5]

Byte Meaning Byte Meaning
3 Function tag 1 length 1 num and 0 den
10,0,0,0 Length 0 Name ‘x’
17 Len1numandlen 1den 1 Number tag
1 Name f’ 17 Len 1 num and len 1 den
2 Number of arguments 2 Numerator
2 Variable tag 5 Denominator

2x shorter expressions than FORM and 8x shorter than Mathematica
16 /32

- In FORM the workspace is globally available and is mutable

- This can lead to dangerous bugs

- In Symbolica, the workspace has a list of owned Atoms (a vector
of vector of bytes)

1 let mut handle: Handle<OwnedAtom> = workspace.new_atom() ;
2 let new_atom: &mut OwnedAtom = handle.get_buf_mut();

3 new_atom.from_view(&atom) ;

- The memory is automatically returned to the workspace when
handle goes out of scope

17/32

- Anumber in Symbolica is either an integer quotient, a finite field
entry or a rational polynomial

- The default coefficient is an integer quotient
- Expand the coefficient ring by x:
X*ky+x"2%y * [2] -> y *x [2 x + 2 x72]

- Normalisation moves x into the coefficient, should it also
expand (x + 2)%?

18/32

Bracketing

- Split off expressions based on pattern?
- Bracketing in £(x?) on

f(X) + f(y) + f0)X + f(y)y?

gives [(f(x), 1 + x72), (f(y), 1+y"2)]
- Each expression may be on disk

19/32

- Symbolica should be a library useful within existing projects
- This means that the functions such as id should be standalone

- In FORM, no statement is standalone but is in a recursive chain

1 input = '£(1,2,3)"'
2 statements = ['id all f(7a,?b) = f(?a)*f(?b);', 'id all f(?7a) = 1;', '.sort']

4 def id_all_statement(lhs, rhs, target_term, next_instruction):

5 for match in get_matches(lhs, target_term):
6 for r in get_rhs(match, rhs):
7 do_next_instruction(r, next_instruction)

- No local state is kept in id all
- Every Symbolica function should be an iterator / generator

20/ 32

Generators

1 def example_generator():
2 for x in range(100):
3 yield x

5 r = example_generator()

¢ assert(next(r) == 0)

7 assert(next(r) == 1)

21/32

Generators

1 def example_generator():
2 for x in range(100):
3 yield x

5 r = example_generator()
6 assert(next(r) == 0)

7 assert(next(r) == 1)
Self-kept state:

1 class A:

2 def __init__():

3 self.counter = 0

4 def next(self):

5 cur = self.counter
6 self.counter += 1
7 return cur

The state machine of the pattern matcher is quite complicated!
21/32

Tree walk generator |

sow

o

10
11
12
13

14

16

17

18

19

pub struct AtomTreelterator<'a, P: Atom> {
stack: Vec<(Option<usize>, AtomView<'a, P>)>,

impl<'a, P: Atom> AtomTreelterator<'a, P> {
pub fn new(target: AtomView<'a, P>) -> AtomTreelterator<'a, P> {
AtomTreeIterator {
stack: vec![(None, target)],

/// Return the next position and atom in the tree.
pub fn next(&mut self) -> Option<AtomView<'a, P>> {
while let Some((ind, atom)) = self.stack.pop() {

if let Some(ind) = ind {
let slice = match atom {
AtomView: :Fun(f) => f.to_slice(),
AtomView: :Pow(p) => p.to_slice(),
AtomView: :Mul(m) => m.to_slice(),

22/32

Tree walk generator i

20
21
22
23

24

26
27
28
29
30
31
32

33

35
36
37
38

39

AtomView::Add(a) => a.to_slice(),
=1

continue; // not iterable

Irg

if ind < slice.len() {
let new_atom = slice.get(ind);
self.stack.push((Some(ind + 1), atom));
self.stack.push((None, new_atom));

}

} else {
self.stack.push((Some(0), atom));
return Some(atom);

}

None

23/32

New pattern matching |

- FORM pattern matcher has shortcomings and inconsistencies

- id p17.p27xf(p1?.p27?) = 1; may not match

- id £(?a,f(?b,?a,7c),?d) = £(?a,f(?b,?c),?d); may not match
- Not possible to match subset of factors or summands with 7a

- id £(x?7)*x? = 1; does not match to xxy*f (xxy) even though it
matches x*y in the function argument!

- Iterate through all matches without replacement (Mathemetica
cannot do this either)

- Should be like regex in Python: separate matching and
replacement

- Should match at any level

2432

New pattern matching Il

- Internally there is only one wildcard type, x_, that can match any
subexpression

- id x_ = 1 applied to xxy*z gives 1
- id x_*y_ = f(x_,y_) applied to xxy*z gives all bipartitions

- id x = 5 applied to £(x) gives £ (5)

25/32

New pattern matching Il

- Internally there is only one wildcard type, x_, that can match any
subexpression

- id x_ = 1 applied to xxy*z gives 1

- id x_*y_ = f(x_,y_) applied to xxy*z gives all bipartitions

- id x = 5 applied to £(x) gives £ (5)

- Matching zx_*y_xf(z_,x_,w_) 10 xxyxz*ku*f (x,y,x*y,z) gives

X_ =Y, y_ =W, Z_ = X, w_ = (X*Y, z)
_ =79 y_ =X *W, Z_ = X, w_ = (x*xy, z)
=SxX*y, y=Ww, z_=(x, y), w_=2z

25/32

New pattern matching Il

- Matching and replacement is an iterator
- Repeated calls to id f(x_) = g(x_) applied to f(z)*f (f (x))*f (y)
gives:
c g(2)*f (£(x))*£(y)
£ (2)*g (£ (x))*£ (y)
+ £(2)*f (g(x))*£ (y)
< £(z)*f (£(x))*g(y)
- Replace-all function replaces all non-overlapping matches with
the first mapping it finds: g(z)*g (£ (x))*g(y)

26 /32

Restrictions on wildcards

- Restrictions based on:

- Type (symbol, number, etc.)
- Length
- User-provided boolean function on matched expression

- User-provided boolean function on matched expressions of two
wildcards

27 /32

Restrictions on wildcards

- Restrictions based on:
- Type (symbol, number, etc.)
- Length
- User-provided boolean function on matched expression
- User-provided boolean function on matched expressions of two
wildcards

Matching pattern £(x_,y_,z_,w_) t0 £(1,2,3,4,5,6,7) subject to
0< X <2,0< |y <4,[X>y,zeP

s x_ =1, y_= O, z_=2,w_= (3, 4, 5, 6, 7)
cx_ =1, y_ = 2, z_ =3, w_= (4, 5, 6, 7)
x_=(1, 2), y_= O, z_ =3, w_= (4, 5, 6, 7)
x_=(, 2), y_=@3, 4, z_=5,w_=(6,T7)

27 /32

Restriction example in Rust

©

10
11
12
13
14
15
16
17
18
19

20

restrictions.insert(
state.get_or_insert_var("y_"),
vec! [
PatternRestriction: :Length(0, Some(4)),
PatternRestriction: :Cmp(
state.get_or_insert_var("x_"),
Box::new(ly, x| {
let len_x = match x {
Match::Multiple(_, s) => s.len(),
= 1,
Irg
let len_y = match y {
Match::Multiple(_, s) => s.len(),
=1,
I8

len_x >= len_y

28 /32

Python API

©

10
11
12
13
14
15
16
17

18

from symbolica import Expression, Function

X, y, z = Expression("x"), Expression("y"), Expression("z"
f, g = Function("f"), Function("g")

b = Expression.parse("x"2+2kx*y+y")

python-style function calls

el = f(x, f(x,y))*£f(5) * b

e2 = el.expand()

e3 = e2.id(x, z) #z > 2z

matches f(5) since g.w and z.w are wildcards
ed = e3.id(g.w(x.w), x.w)

print('e4 =', e4)

for i, t in enumerate(e4):
print('term { }={ }'.format(i, t))

29/32

Preprocessor

- When used as a library, the programming language itself is the
preprocessor!

- Allows for things not possible in FORM, e.g. store expressions in
hashmaps

Example from FORM to Python:

1L F=1£(12) + £(10) + £(8);

> #do 1 = 0, 1
id £(x?7{>1}) = f(x - 1) + £f(x - 2);
if (match(£f(x?{>1}))) redefine i "0";
.sort

6 #enddo

30/32

Preprocessor

- When used as a library, the programming language itself is the
preprocessor!

- Allows for things not possible in FORM, e.g. store expressions in
hashmaps

Example from FORM to Python:

from symbolica import Expression

x = Expression.parse('f(12) + £(10) + £(8)"')
done = False
while not done:
y = x.id("f(x_) o x_ > 1', '"f(x_ - 1) + £(x_ - 2)")

done = True
for term in y:
if term.match('f(x_): x_ > 1'):
done = True
break

x = y.sort()
30/32

Preprocessor

- When used as a library, the programming language itself is the
preprocessor!

- Allows for things not possible in FORM, e.g. store expressions in
hashmaps

Example from FORM to Python:

from symbolica import Expression

x = Expression.parse('f(12) + £(10) + £(8)"')
while any(term.match('f(x_): x_ > 1') for term in x):
x = x.id("f(x_) : x_ > 1", "f(x_ - 1) + £(x_ - 2))").sort()

L N

30/32

Computational graph

- With more instructions in @ module, the recursive nature will
become tedious to write with explicit loops over iterators
- Use a computational graph to build a FORM style module

1 LF=1£(12) + £(10) + £(8);
> #$some_flag = 1;

; repeat;
if (match(£(5)));
#if “$some_flag' == 1
id £(5) = £(1);
#else
id £(5) = £(2);
#endif
10 else;
n id £(5) = £(4);
2 endif;
13 id £(x?7{>1}) = f(x - 1) + f(x - 2);
id £(1) = 1;

15 endrepeat;
5 .sort

31/32

Computational graph

o

© o N o

10

11

12

+ With more instructions in @ module, the recursive nature will
become tedious to write with explicit loops over iterators

- Use a computational graph to build a FORM style module

from symbolica import Expression

from symbolica.module import Module, repeat, ifstatement, identity, match

x = Expression.parse('f(12) + £(10) + £(8)"')
some_flag = True
module = repeat(
ifstatement (match('f(5)'),
identity('£(5)', '£(1)') if some_flag else identity('f(5)', 'f(2)'),
identity('£(5)', '£(4)")),
identity('f(x_)"', 'f(x_ - 1) + f(x_ - 2))"),
identity('f(1)', '1")
)

Module.execute (module, x)

31/32

- Goal: community funding through university licenses
- Funding will be used for FORM maintenance as well
- Contributors will be reimbursed

- Continuous funding will make it easier to always have at least
two developers working on Symbolica

Join development on:

+ https://symbolica.io
+ https:/reform.zulipchat.com
+ https://github.com/benruijl/symbolica

32/32

https://symbolica.io
https:/reform.zulipchat.com
https://github.com/benruijl/symbolica

Thank you for your attention.

