
ONE
Form is a program cq programming language for speedy and large scale manipulation of

formulas.

Form is NOT like Mathematica! They are completely different! This is very noticeable
already in how formulas are treated:

• In Mathematica (and Maple and nearly all CA systems) formulas are represented as trees.

• In Form a formula is a sequence of terms (a queue).

This difference in representation is largely responsible for the enormous difference in speed
and storage needs. It also means that there are completely different types of restrictions.

For this course, please forget about Mathematica or Maple. Here you have to think in
different terms.



For the examples and exercises you will need access to Form. The easiest is to pick it up from
github.com/vermaseren/form via commands like ./configure and make and make install. for
this you need of course a C compiler. At the moment of this lecture this will give you version
4.2. We hope to have version 4.3 available either by the end of this week or the beginning of
the next week. For the lectures in the third week we will need version 4.3.

If you do not have a C compiler on your laptop you can obtain some executables. For each
release, we have binaries automatically built with machines at that time (or manually uploaded
for older versions). See the GitHub Release page:

https://github.com/vermaseren/form/releases
and you can find them in ”Assets”. Of course, the OS and its kernel version would be a
problem, though the binaries are statically linked.



Form is a batch program. This means that you prepare a Form program in your favorite
text editor, let Form execute the program and finally you study the results. The file should
contain regular ASCII characters of one byte each. More complicated notations will result in
errors.

There are three versions of Form: sequential Form, TForm and ParForm. The first is
the ’normal’ (sequential) Form, the second is for when you want to use more than one core
at the same time and the third is for clusters of computers. We will be using sequential Form
most of the time. In some advanced examples we will see TForm as well.

Most of Form was developed at Nikhef, TForm was partially developed at KEK (Tsukuba,
Japan) and partly at Nikhef, ParForm was developed at KIT, Karlsruhe. Some modern
internal libraries have been developed by a variety of people: Jan Kuipers, Ben Ruijl, Takahiro
Ueda, Toshiaki Kaneko.

The slides of this course can be found at nikhef.nl/∼form.



Let us take a very simple Form program. Let us assume that you prepare the following
program in your text editor and save it under the name prog1.frm.

Symbols a,b;

Local F = (a+b)^2;

Print;

.end

The extension .frm is mandatory. Form will not execute files that do not have this extension.
If you put your Form executable in a location where the shell can find it (indicated by the
path variable), which is usually either in the bin directory in your home directory, or in
/usr/local/bin, you can execute this program by typing in a terminal window:

form prog1

followed by a <return>. Form will attach the .frm extension automatically if you do not
type it. The system should react with:



FORM 4.2.1 (Apr 2 2021) 64-bits Run: Fri Apr 2 16:43:48 2021

Symbols a,b;

Local F = (a+b)^2;

Print;

.end

Time = 0.00 sec Generated terms = 3

F Terms in output = 3

Bytes used = 108

F =

b^2 + 2*a*b + a^2;

0.00 sec out of 0.00 sec

Now is the time to see what we did.



In Form formulas contain variables and Form knows several types of variables. Hence
all variables have to be declared. This avoids that the system needs to guess. The first
type consists of the regular symbolic objects, called symbols. Here we declare a and b to be
symbols. By the way: in statements like this the comma’s are optional. You could also type
one of the following

Symbols a b;

Symbols,a,b;

Symbols,a b;

Symbols , a b;

and Form will interpret it correctly.



Also some keywords may be abbreviated. This is the case with the symbols keyword. Anything
that starts with a letter s and is contained in the word ‘symbols’ will do. In addition, all system
commands are case insensitive (all user defined objects are case sensitive). Hence

S a,b;

Sym a b;

sym a b;

sYmB a b;

SYMBOL a,b;

are all equivalent. After a while people have a tendency to use the first representation. Note
that S A,B; is something different, because the variables are user defined and hence case
sensitive.



The second statement defines a formula, or as we call it in Form, an expression. There are
two types of expressions in Form, local and global expressions. We will be using mostly local
expressions and we will discuss global expressions when we need them. Also the keyword local
can be abbreviated all the way to a single character L. I will try to use the full words in the
examples to avoid confusion, but the above program could have looked like

S a,b;

L F=(a+b)^2;

P;

.end

which is what many experienced programmers would do. Readability is another matter of
course. (Also the keyword ‘print’ can be abbreviated). The print command tells Form that
we want it to print the result once it is done with this formula and the .end tells it that this is
the end of the program and it should start working and terminate the execution afterwards.



When you look at the output, you see that Form first tells which version of Form you are
running and when. This is for your own administration. Then it echoes the program. Next
it tells what it has been doing. These are called the statistics (if you do not want them, they
can be turned off, but that is not always advisable). Then it prints the result of working out
the formula. Finally it prints the CPU time and the real time elapsed since the start of the
program.

In the following examples we will often omit some parts of the output, like the first and last
lines and most of the statistics. Unless they are relevant of course.

The first extension of our program is to see how powerful Form really is.

Symbols a,b,c,d,e,f,g;

Local F=(a+b+c+d+e+f+g)^32;

.end

Time = 7.37 sec Generated terms = 2760681

F Terms in output = 2760681

Bytes used = 144759752

and as you can see, it does not take much effort to create lots of terms.



Of course, creating terms is relatively useless if we cannot do anything with them.

The executable statements of Form are all meant to act on individual terms. During exe-
cution expressions as such do not exist. Only before the start of the execution and after it is
finished we can refer to expressions.

The first executable statement and at the same time the most import one is the id-statement.
It is the basic substitution. Its full name is ‘identify’ and this is an inheritance of Schoonschip.
It is nearly always used as the abbreviated ‘id’ (Do not use ‘i’ because that is the abbreviation
of something different). Its form is

id lhs = rhs;

The left hand side is also called a pattern and Form will look in each term whether it can
take out one or more instances of the LHS and then replace them by equally many instances
of the RHS.



Symbols a,b,c,d;

Local F=(a+b+c+d)^20;

id d = 1-a-b-c;

Print;

.end

Time = 0.33 sec Generated terms = 230230

F Terms in output = 1

Bytes used = 20

F =

1;

What you see here is that Form makes no attempt to be smart. It does exactly what you
ask, no more and no less. In this example that may look stupid, but that is just because we
created a simple test of which we can verify the answer.

General rule: Form does not try to be smarter than the user.



Symbols a,b,c;

Local F = (a+b)^6;

id a^2*b = c;

Print +s;

.end

F =

+ 15*c^2

+ 15*b^3*c

+ b^6

+ 20*a*b^2*c

+ 6*a*b^5

+ 6*a^3*c

+ a^6

;

Here we see that the LHS can be much more complicated. The main restriction is that it
must be a single term only and should have no numerical coefficient. Later in the course we
will see much more complicated patterns. Also the print statement can have the option ”+s”
to start each term on a new line.



The examples we have seen till now are rather simple. To make more complicated programs
the first thing we need is the .sort instruction.

Symbols a,b,c,d;

Local F = (a+b+c+1)^6;

id a = -c+d+1;

id b = -d+1;

Print;

.end

Time = 0.00 sec Generated terms = 924

F Terms in output = 1

Bytes used = 20

F =

729;

The above program substitutes first a and then b and only after that it sorts the results. This
is sometimes (not always!) a bit wasteful. We can see this in the statistics. It gets a bit better
if we force Form to sort after the first substitution:



Symbols a,b,c,d;

Local F = (a+b+c+1)^6;

id a = -c+d+1;

.sort

Time = 0.00 sec Generated terms = 462

F Terms in output = 28

Bytes used = 800

id b = -d+1;

Print;

.end

Time = 0.00 sec Generated terms = 84

F Terms in output = 1

Bytes used = 20

F =

729;



We see that the total number of generated terms is 462+84 which is less than the 924 of the
first program. We will see better examples later. First more about the .sort



The .sort marks the end of a ‘module’. Form programs consist of modules. Modules are
terminated by an instruction that starts with a period, followed by the name of the instruction.
We have seen .sort and .end and we will also encounter .global and .store at later stages.

Form reads the input until it encounters an end-of-module instruction. The statements
it reads in the meanwhile are being compiled and put in the main compiler buffer. When
the end-of-module instruction has been read and there are no compilation errors or previous
execution errors the statements of the module are executed on all terms of all expressions that
are active at the moment, unless otherwise specified. When all terms of an expression have
been treated by all statements of the module, the resulting terms are combined and sorted.
If requested the expression(s) will be printed. After this the compiler buffer is cleared and
Form will read, compile and execute the next module. Etc.

At the level of modules Form acts as an interpreter. At the level of the statements inside
the modules Form is a compiled language.

Terminology: The interpreted lines are called instructions, the compiled lines are called state-
ments.

One of the skills in writing efficient Form programs is either knowing or being able to figure
out where to put the .sort instructions.



Let us have a look at the following program:

Symbols a,b,c,d;

On HighFirst;

Local F = a+b+c+d;

.sort

Time = 0.00 sec Generated terms = 4

F Terms in output = 4

Bytes used = 120

id a = (a+b)^2;

id c = b+d;

id b = b+1;

Print;

.end

Time = 0.00 sec Generated terms = 12

F Terms in output = 7

Bytes used = 204



F =

a^2 + 2*a*b + 2*a + b^2 + 4*b + 2*d + 3;

The ”On HighFirst;” statement controls the ordering of the variables. In this case it sorts in
such a way that the high powers come first (default is low powers first).



S a,b,c,d;
On HighFirst;
L F = a+b+c+d;
.sort

Input expression second module:

1 14 19 26

a+b+c+d

id a = (a+b)ˆ2;

2 5 9

a

15

b

20

c

27

d

id c = b+d;

3

aˆ2

6

2ab

10

bˆ2

16

b

21 24

c

28

d

id b = b+1;

4

aˆ2

7 8

2ab

11 12 13

bˆ2

17 18

b

22 23

b

25

d

29

d

.end aˆ2 2ab 2a bˆ2 2b 1 b 1 b 1 d d

Sorting the terms: 30–> <–30

Output expression: aˆ2+2ab+2a+bˆ2+4b+2d+3



How does Form work? The picture represents the execution of the second module. At the
start of the execution of a module the active expressions are sitting in the input scratch ‘file’.
The first term is taken and the LHS of the first statement tries a match. If there is a match
the first term of the RHS is put in and the same will be done with the next statement, etc.
until the end-of-module instruction is encountered. At this point the term is written to the
‘small’ sort buffer. We then backtrack to the last successful substitution and take there the
second term. Etc. This way more and more terms end up in the small buffer. One of two
things can happen now:

1. We reach the last term of the input and finish it before the small buffer is full.

2. At a given moment, before we are finished, the small buffer is full.

In either case the contents of the small buffer will be combined and sorted and statistics are
written, but in the first case the results are written to the output scratch ‘file’, while in the
second case the output is written to the ‘large’ sort buffer and the generation of terms is
continued.



The above can be visualized in a different way by Form itself:

Symbols a,b,c,d;

On HighFirst;

Local F = a+b+c+d;

.sort

Print " <1> %t";

id a = (a+b)^2;

Print " <2> %t";

id c = b+d;

Print " <3> %t";

id b = b+1;

Print " <4> %t";

Print;

.end

<1> + a

<2> + a^2

<3> + a^2

<4> + a^2



<2> + 2*a*b

<3> + 2*a*b

<4> + 2*a*b

<4> + 2*a

<2> + b^2

<3> + b^2

<4> + b^2

<4> + 2*b

<4> + 1

<1> + b

<2> + b

<3> + b

<4> + b

<4> + 1

<1> + c

<2> + c

<3> + b

<4> + b



<4> + 1

<3> + d

<4> + d

<1> + d

<2> + d

<3> + d

<4> + d

F =

a^2 + 2*a*b + 2*a + b^2 + 4*b + 2*d + 3;

The print statement knows two forms: one without a string field, which controls which expres-
sions will be printed after they have been processed, and one with a string field which works
at the term level: each time a term passes the print statement, it is executed. The string is
a bit like the string of the printf statement in the C language. It has control sequences like
the %t which indicates the current term. There are more control sequences, but we will treat
them when needed. A full list is in the manual.

This version of the print statement is extremely useful when you have to debug your programs.



The sorting in Form is only restricted by the size of the available disk space. There are many
stages:

1. The small buffer is sorted. This is done in such a way that it would be very bad if even a
small part of the small buffer would be swapped out. The results of this sorting is written
as a ‘sorted patch’ into the large buffer.

2. If the large buffer is full, its contents are sorted. Because the buffer contains sorted patches
it is much more robust against swapping. Its sorted contents are written as one sorted
patch to the sort file.

3. When generation of terms is finished and all contents are in the sort file, the patches in
the sort file are merged. Only a limited number of patches can be merged at the same
time. If there are more, the result is written to another sort file. This is called ‘stage 4
sorting’. If the sort can be done in one pass the result goes to the output scratch file and
we are done.

4. In the case of stage 4 sorting, once the stage 4 file contains all terms we can eliminate the
first sort file, rename the stage 4 file and repeat the previous step.

5. In the case of TForm or ParForm when processing takes place on more than one core



or processor, each will have an output and this output is then fed to the master processor
who will merge these results and write to the master scratch file.

The user can tune the size of the various buffers to the size of the available memory. See the
section on the setup parameters in the manual.



#:SmallSize 2000

#:LargePatches 4

Symbols a,b,c,d;

Local F1 = (a+b+c)^10;

Local F2 = (a+b+c+d)^10;

.end

Time = 0.00 sec Generated terms = 44

F1 1 Terms left = 44

Bytes used = 1576

Time = 0.00 sec Generated terms = 66

F1 1 Terms left = 66

Bytes used = 2324

Time = 0.00 sec Generated terms = 66

F1 Terms in output = 66

Bytes used = 2320



Time = 0.00 sec Generated terms = 43

F2 1 Terms left = 43

Bytes used = 1708

Time = 0.00 sec Generated terms = 82

F2 1 Terms left = 82

Bytes used = 3268

Time = 0.00 sec Generated terms = 121

F2 1 Terms left = 121

Bytes used = 4788

Time = 0.00 sec Generated terms = 159

F2 1 Terms left = 159

Bytes used = 6284

Time = 0.00 sec Generated terms = 197



F2 1 Terms left = 197

Bytes used = 7764

Time = 0.00 sec

F2 Terms active = 197

Bytes used = 7712

Time = 0.00 sec Generated terms = 239

F2 1 Terms left = 239

Bytes used = 9264

Time = 0.00 sec Generated terms = 283

F2 1 Terms left = 283

Bytes used = 10804

Time = 0.00 sec Generated terms = 286

F2 1 Terms left = 286

Bytes used = 10912



Time = 0.00 sec

F2 Terms active = 286

Bytes used = 10852

Time = 0.00 sec Generated terms = 286

F2 Terms in output = 286

Bytes used = 10832

The statistics are illustrated here. Each time the small buffer is full, it is sorted and statistics
are written. When the large buffer is full and sorted a different type of statistics is written.
And after the last sort yet another type of statistics is written. They are characterized by the
lines

Terms left = 159
Terms active = 197
Terms in output = 286

The program is started with some settings of some of the buffers to make them artificially
small for this example. We will get to them later.



FORM has a number of types of variables. There are symbols, vectors, indexes, commuting
functions, non-commuting functions, tensors and sets. These are the algebraic variables. More
variables of a completely different nature come in later sections. And there are the expressions,
which are sequences of terms.

All algebraic variables have to be declared.

Let us start with the functions. They come in two varieties: commuting and non-commuting
functions.

Functions A1,B1;

CFunctions A2,B2;

Local F1 = (A1+B1)^3;

Local F2 = (A2+B2)^3;

Print;

.end

Time = 0.00 sec Generated terms = 8

F1 Terms in output = 8

Bytes used = 324



Time = 0.00 sec Generated terms = 4

F2 Terms in output = 4

Bytes used = 184

F1 =

A1*A1*A1 + A1*A1*B1 + A1*B1*A1 + A1*B1*B1 + B1*A1*A1 + B1*A1*B1

+ B1*B1*A1 + B1*B1*B1;

F2 =

A2^3 + 3*A2^2*B2 + 3*A2*B2^2 + B2^3;

This example shows a few things:

1. Generic functions are non-commuting. Only if we specify functions to be commuting with
the CFunction declaration they will be taken as such.

2. We may define more than one expression at a time.

3. Functions do not have to have arguments.

4. The statistics show that if all objects in a power are commuting (one is allowed to be



non-commuting) Form uses binomial expansions, but for non-commuting objects that is
not possible.

5. Although internally these functions are stored in the same way, when commuting functions
occur more than once Form uses powers in the output. For non-commuting objects Form
does not use powers.



Functions A1,B1;

CFunctions A2,B2;

Local F1 = (A1+B1+A2+B2)^3;

Local F2 = ((A1+B1)+A2+B2)^3;

Print;

.end

Time = 0.00 sec Generated terms = 64

F1 Terms in output = 26

Bytes used = 1000

Time = 0.00 sec Generated terms = 26

F2 Terms in output = 26

Bytes used = 1000

F1 =

A2^3 + 3*A2^2*B2 + 3*A2*B2^2 + B2^3 + 3*A1*A2^2 + 6*A1*A2*B2 + 3*

A1*B2^2 + 3*A1*A1*A2 + 3*A1*A1*B2 + A1*A1*A1 + A1*A1*B1 + 3*A1*B1



*A2 + 3*A1*B1*B2 + A1*B1*A1 + A1*B1*B1 + 3*B1*A2^2 + 6*B1*A2*B2

+ 3*B1*B2^2 + 3*B1*A1*A2 + 3*B1*A1*B2 + B1*A1*A1 + B1*A1*B1 + 3*

B1*B1*A2 + 3*B1*B1*B2 + B1*B1*A1 + B1*B1*B1;

F2 =

A2^3 + 3*A2^2*B2 + 3*A2*B2^2 + B2^3 + 3*A1*A2^2 + 6*A1*A2*B2 + 3*

A1*B2^2 + 3*A1*A1*A2 + 3*A1*A1*B2 + A1*A1*A1 + A1*A1*B1 + 3*A1*B1

*A2 + 3*A1*B1*B2 + A1*B1*A1 + A1*B1*B1 + 3*B1*A2^2 + 6*B1*A2*B2

+ 3*B1*B2^2 + 3*B1*A1*A2 + 3*B1*A1*B2 + B1*A1*A1 + B1*A1*B1 + 3*

B1*B1*A2 + 3*B1*B1*B2 + B1*B1*A1 + B1*B1*B1;

Here we see that in F1 there are two non-commuting objects inside the bracket and hence
Form is not using binomial coefficients. In F2 we have the two non-commuting objects inside
an extra pair of brackets. This means that when the outer level of brackets is worked out,
there is only a single non-commuting object and the binomial expansion can be used. After
that the inner bracket is worked out. This results in powers of (A1+B1) and those are then
written in all detail. The answers are identical, but it should be clear that the second one is
faster.



Functions A1,B1,C1,D1;

CFunctions A2,B2,C2,D2;

Local F1 = (A1+B1+C1+D1+A2+B2+C2+D2)^7;

Local F2 = ((A1+B1+C1+D1)+A2+B2+C2+D2)^7;

.end

Time = 1.78 sec Generated terms = 2097152

F1 Terms in output = 51720

Bytes used = 1860560

Time = 1.83 sec Generated terms = 51720

F2 Terms in output = 51720

Bytes used = 1860560

1.83 sec out of 1.84 sec

Form does not do such grouping by itself. It does not manipulate the input. This way you
can have control over the order in which the terms are generated cq. processed. Sometimes
this can help you make your program much faster or using less disk space.



Functions can have any number of arguments as long as the term still fits inside a predefined
(and user controlable) maximum internal size.

* Example of nontrivial functions

CFunction f,S,R;

Symbol x,N;

Local F = f(x)+f(x^2)+f(x,x+1)+f;

Local G = S(R(3,1,-2),N+1);

Print;

.end

F =

f + f(x^2) + f(x) + f(x,1 + x);

G =

S(R(3,1,-2),1 + N);

The number of arguments and what they mean is totally up to the user.

Lines that start with the character * are seen as commentary.



Next we have vectors and indexes. The following is a bit tricky. We attach dimensions to
indexes, not to vectors! For the indexes we have also a very special function: the Kronecker
delta.

Vectors have an index and when we have contracted indexes the index is removed and we
write the two vectors as a dotproduct.

Index i1,i2,i3;

Vector p1,p2,p3;

Local F = p1(i1)*(p2(i1)+p3(i3))*(p1(i2)+p2(i3));

Print;

.end

F =

p1(i1)*p1(i2)*p3(i3) + p1(i1)*p2.p3 + p1(i2)*p1.p2

+ p2(i3)*p1.p2;



The Einstein summation convention is applied whenever possible. However, be careful with
too many identical indexes:

Index i1;

Vector p1,p2,p3,p4;

Local F = p1(i1)*p3(i1)*p2(i1)*p4(i1);

Print;

.end

F =

p1.p3*p2.p4;

This goes purely by the order in which Form encounters the vectors. There are no warnings.
If you do something more complicated Form may get an answer that is different from what
you intend.



The dimension of an index can be specified in its declaration. The default dimension is 4.

Symbol x,D;

Index i1=3,i2 = 4,i3=D,i4=0,i5,i6,i7;

Local F = x*d_(i1,i1)

+x^2*d_(i2,i2)+x^3*d_(i3,i3)

+x^4*d_(i1,i2)*d_(i2,i1)+x^5*d_(i2,i1)*d_(i1,i2)

+x^6*d_(i5,i6)*d_(i6,i7)

+x^7*d_(i4,i4)

+x^8*d_(i5,i4)*d_(i4,i7);

Print +s;

.end

F =

+ 3*x

+ 4*x^2

+ x^3*D

+ 4*x^4

+ 3*x^5



+ d_(i4,i4)*x^7

+ d_(i4,i5)*d_(i4,i7)*x^8

+ d_(i5,i7)*x^6

;

Here we see the first built in object: d which is the Kronecker delta. Because it is a systems
object its name is case insensitive and you could also write D . All systems defined objects
have a name with a trailing underscore character. This character is not allowed to occur in
user defined objects. This avoids confusion and gives the user free choice of names. There are
no reserved names in the namespace of the user!



Back to the above program. The dimension of an index is specified after its name and an
equal sign. Blank spaces are allowed. The dimension can be

• A positive integer, not bigger than a Form word.

• A symbol.

• Zero.

An index with dimension zero will not be summed over. The dimension comes only in play
when we have a Kronecker delta with two identical indexes as one can see in the above
program. The program has a few funny things. The x7 term has a Kronecker delta with
indexes with zero dimension. They are not summed over. Neither are they in the x8 term.
Special attention should be given to the x4 and x5 terms. If you mix dimensions you can get
unpredictable results. It all depends on the order in which the indexes are contracted. This
order is not defined. It may be changed if the internal architecture asks for it. Hence try to
keep your code unambiguous.

Form does not complain about such ‘dubious’ things. It is totally up to the user to interpret
what they mean.



The next built in function is the Levi-Civita tensor. It is indicated by e or E . It is totally
antisymmetric and Form knows how to contract pairs of Levi-Civita tensors:

Symbol D;

Index m1=2,m2=2,m3=2,m4=2;

Index n1=3,n2=3,n3=3,n4=3,n5=3,n6=3;

Index r1=D,r2=D,r3=D,r4=D,r5=D,r6=D;

Local F1 = e_(m1,m2)*e_(m3,m4);

Local F2 = e_(m1,m2)*e_(m2,m3);

Local F3 = e_(m1,m2)*e_(m1,m2);

Local G1 = e_(n1,n2,n3)*e_(n4,n5,n6);

Local G2 = e_(n1,n2,n3)*e_(n3,n4,n5);

Local G3 = e_(n1,n2,n3)*e_(n2,n3,n4);

Local G4 = e_(n1,n2,n3)*e_(n1,n2,n3);

Local H1 = e_(r1,r2,r3)*e_(r4,r5,r6);

Local H2 = e_(r1,r2,r3)*e_(r3,r4,r5);

Local H3 = e_(r1,r2,r3)*e_(r2,r3,r4);

Local H4 = e_(r1,r2,r3)*e_(r1,r2,r3);

Contract;



Print;

.end

F1 = d_(m1,m3)*d_(m2,m4) - d_(m1,m4)*d_(m2,m3);

F2 = - d_(m1,m3);

F3 = 2;

G1 = d_(n1,n4)*d_(n2,n5)*d_(n3,n6) - d_(n1,n4)*d_(n2,n6)*d_(n3,n5) -

d_(n1,n5)*d_(n2,n4)*d_(n3,n6) + d_(n1,n5)*d_(n2,n6)*d_(n3,n4) +

d_(n1,n6)*d_(n2,n4)*d_(n3,n5) - d_(n1,n6)*d_(n2,n5)*d_(n3,n4);

G2 = d_(n1,n4)*d_(n2,n5) - d_(n1,n5)*d_(n2,n4);

G3 = 2*d_(n1,n4);

G4 = 6;

H1 = d_(r1,r4)*d_(r2,r5)*d_(r3,r6) - d_(r1,r4)*d_(r2,r6)*d_(r3,r5) -

d_(r1,r5)*d_(r2,r4)*d_(r3,r6) + d_(r1,r5)*d_(r2,r6)*d_(r3,r4) +

d_(r1,r6)*d_(r2,r4)*d_(r3,r5) - d_(r1,r6)*d_(r2,r5)*d_(r3,r4);

H2 = - 2*d_(r1,r4)*d_(r2,r5) + d_(r1,r4)*d_(r2,r5)*D

+ 2*d_(r1,r5)*d_(r2,r4) - d_(r1,r5)*d_(r2,r4)*D;



H3 = 2*d_(r1,r4) - 3*d_(r1,r4)*D + d_(r1,r4)*D^2;

H4 = 2*D - 3*D^2 + D^3;

As you see, the dimension of the indexes is not bound to be the same as the number of
arguments in the LC-tensor. If there is a contracted index that has a dimension that is
different from the number of arguments, Form does not use the ‘shorter’ formula, but writes
all n! terms with Kronecker delta’s and only then contracts the indexes.



When the index of a vector is contracted with an index of a LC-tensor the vector is written
in the location of the index in the LC-tensor:

Index i1,i2,i3,i4;

Vector p1,p2;

Local F = e_(i1,i2,i3,i4)*p1(i1)*p2(i2);

Print;

.end

F =

e_(p1,p2,i3,i4);

This is called Schoonschip notation. All memory of the original indexes i1 and i2 is erased. It
is much easier to put the contracted representation in the input. This saves much work and
is much easier to read:



Index i1,i2;

Vector p1,p2,p3,p4;

Local F = e_(i1,i2,p1,p2)*e_(i1,i2,p3,p4);

Contract;

Print;

.end

F =

2*p1.p3*p2.p4 - 2*p1.p4*p2.p3;

Just try to write this out ‘properly’, do the contraction with the indexes and then contract
them with the vectors again. That is much more complicated.

If you are worried about upper and lower indexes, you have to be patient. We have a nice
example of how to deal with them in a later session. The important thing is to realize that
you rarely need to worry about them anyway. Try to figure out why.



The last function we are going to see in this session is the gamma matrix g or G . This
‘tensor’ is in principle non-commuting because we indicate spin lines as the first argument as
in

Index mu1,mu2,mu3,mu4;

Vector p1,p2,p3,p4;

Local F1 = g_(1,mu1)*g_(1,mu2)*g_(1,mu3)*g_(1,mu4);

Local F2 = g_(2,p1)*g_(2,p2)*g_(2,p3)*g_(2,p4);

Print;

.sort

F1 =

g_(1,mu1,mu2,mu3,mu4);

F2 =

g_(2,p1,p2,p3,p4);

Tracen,1;

Trace4 2;



Print;

.end

F1 =

4*d_(mu1,mu2)*d_(mu3,mu4) - 4*d_(mu1,mu3)*d_(mu2,mu4)

+ 4*d_(mu1,mu4)*d_(mu2,mu3);

F2 =

4*p1.p2*p3.p4 - 4*p1.p3*p2.p4 + 4*p1.p4*p2.p3;

The gamma’s are combined into strings. This notation comes from Reduce. Basically what
we do here is

γµ1i1i2γ
µ2
i2i3γ

µ3
i3i4γ

µ4
i4i5 = γµ1µ2µ3µ4i1i5

and we replace the i indexes by a spinline index to say which other matrices have to be pulled
in.



There are two trace commands: one is an n-dimensional trace which does not allow γ5 and
the other is a 4-dimensional trace which does allow γ5 and applies many 4-dimensional tricks
like Chisholm identities to keep the expressions short. There are some varieties of the γ5 that
were introduced by Veltman in Schoonschip:

γ5 → g5_(1) or g_(1,5_)

γ6 = (1 + γ5)→ g6_(1) or g_(1,6_)

γ7 = (1− γ5)→ g7_(1) or g_(1,7_)

In addition there is the unit matrix gi_(1).



Let us see whether you can do the following trace by hand:

Vector p1,p2,p3,p4,q1,q2,q3,q4;

Index i1,i2,i3,i4;

Local F = g_(1,p1,i1,7_,p2,i2,7_,p3,i3,7_,p4,i4,7_)

*g_(2,q1,i1,7_,q2,i2,7_,q3,i3,7_,q4,i4,7_);

Trace4,1;

Trace4,2;

Print;

.end

Time = 0.00 sec Generated terms = 1

F Terms in output = 1

Bytes used = 76

F =

65536*p1.q1*p2.q2*p3.q3*p4.q4;

and whether you can do it the way Form does it by generating just a single term! If you
want to know how Form does this you will have to look in the manual.



The next important thing is ‘pattern matching’. When we make a substitution we might need
some form of wildcarding: having generic arguments.

Symbol x,y,z,a,b;

CFunction f;

Local F = f(x)+f(y)+f(4)+f(a+b);

id f(z?) = z^2;

Print;

.end

F =

16 + b^2 + 2*a*b + a^2 + y^2 + x^2;

Wildcards are indicated by placing a questionmark after the object. Wildcard symbols can
match symbols, numbers or scalarlike expressions. Wildcard indexes can match indexes or
vectors (making the assumption that there was an index there that contracted with the index
of the vector). Wildcard vectors can match only vectors, the negative of a vector or a vectorlike
expression.



Symbol x,y,z,a,b;

CFunction f;

Local F = f(x)*f(y)*f(y)*f(4)*f(a+b)*f(a+b);

id f(z?)*f(z?) = z^2*f(3,z);

Print +s;

.end

F =

+ f(3,y)*f(3,b + a)*f(4)*f(x)*y^2*b^2

+ 2*f(3,y)*f(3,b + a)*f(4)*f(x)*y^2*a*b

+ f(3,y)*f(3,b + a)*f(4)*f(x)*y^2*a^2

;

If the same wildcard occurs more than once in the LHS (the pattern) it indicates that both
must match the same thing.



There is a special wildcard that can pick up fields of arguments. They are indicated by a
questionmark, followed by a name.

Symbol a1,a2,a3,a4,a5,a6;

CFunction f,g;

Local F = f(a1,a2,a3,a4)*f(a1,a3,a2,a1,a4,a5,a6);

id f(?a,a3,?b) = g(?b,a3,?a);

Print +s;

.end

F =

+ g(a2,a1,a4,a5,a6,a3,a1)*g(a4,a3,a1,a2)

;



This can become rather powerful when combined with a new set of statements: the repeat
loop.

Symbol a1,a2,a3,a4,a5,a6;

CFunction f,g;

Local F = f(a1,a2,a3,a4)*f(a1,a3,a2,a1,a4,a5,a6);

repeat;

id f(a1?,a2?,?a) = f(a1)*f(a2,?a);

endrepeat;

Print +s;

.end

F =

+ f(a1)^3*f(a2)^2*f(a3)^2*f(a4)^2*f(a5)*f(a6)

;

What is between the repeat and the endrepeat will be repeated as a block of statements as
long as any of the statements in that block did anything.



It is easy to do very nice things with this, provided you have something that can stop the
loop:

Symbol n,x1,x2;

CFunction f,fib;

Local F = f(10,1,1);

repeat;

id f(0,?a) = fib(?a);

id f(n?,?a,x1?,x2?) = f(n-1,?a,x1,x2,x1+x2);

endrepeat;

Print;

.end

F =

fib(1,1,2,3,5,8,13,21,34,55,89,144);



It is of course easy to make infinite loops this way:

Symbol x;

Local F = x;

id x = x+1;

id x = x+1;

Print;

.sort

Time = 0.00 sec Generated terms = 3

F Terms in output = 2

Bytes used = 52

F =

2 + x;

repeat;

id x = x+1;

endrepeat;



print;

.end

=== Workspace overflow. 40000000 bytes is not enough.

=== Change parameter WorkSpace in form.set

Program terminating at prog23.frm Line 10 -->

0.00 sec out of 0.00 sec

As you see, the program ends suddenly with an error message because it had a workspace
overflow. Sometimes, when you do very complicated things and have many statements inside
a single module, this is a problem that can be repaired by increasing the size of the workspace,
but in this case it is because of an infinite loop, hence there will never be enough workspace.

You can also see that an id-statement is ordinarily only executed once.



To show that we can also play and that function arguments can contain functions again:

CFunction O;

Symbol o;

Local F = O;

id O(?a) = O(O(?a,o),0,O(?a));

id O(?a) = O(O(?a,o),0,O(?a));

id O(?a) = O(O(?a,o),0,O(?a));

id O(?a) = O(O(?a,o),0,O(?a));

id O(?a) = O(O(?a,o),0,O(?a));

Print;

.end

F =

O(O(O(O(O(O(o),0,O,o),0,O(O(o),0,O),o),0,O(O(O(o),0,O,o),0,O(O(o)

,0,O)),o),0,O(O(O(O(o),0,O,o),0,O(O(o),0,O),o),0,O(O(O(o),0,O,o),

0,O(O(o),0,O))),o),0,O(O(O(O(O(o),0,O,o),0,O(O(o),0,O),o),0,O(O(

O(o),0,O,o),0,O(O(o),0,O)),o),0,O(O(O(O(o),0,O,o),0,O(O(o),0,O),o

),0,O(O(O(o),0,O,o),0,O(O(o),0,O)))));



Homework:

The double wiggles are W-bosons (with V-A coupling) and the normal wiggles are photons.
Try to work out this trace in 4 dimensions (forget about the denominators).
Hint: use γ7. Assume that photons do not change the mass of a particle, but W-bosons do.
If you use also other systems, try this also on the other systems and explain the differences.



Although you have only a very basic knowledge of Form, try to program the power series
expansion of log(1 − x) for a number of terms and substitute the expansion of 1 − ex in it.
See how far you can go. (we will look at this in the next session). Try to figure out how to
cut off the sequence.

For this assignment the sum function can be handy:

Symbols x,y,j,n;

Local F = sum_(j,1,5,x^j);

Print;

.sort

F =

x + x^2 + x^3 + x^4 + x^5;

id x^n? = sum_(j,1,n,y^n);

Print;

.end

F =



y + 2*y^2 + 3*y^3 + 4*y^4 + 5*y^5;


