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In this lecture we are going to study integration by part identities (IBP’s) for Feynman
diagrams. We are going to restrict ourselves only to some ”simple” graph, because in general
this is a whole industry and one cannot get very far in two hours. The principles should
however become very clear. At the same time we will study a number of ways of automating
such manipulations. The principle of IBP’s is based on the paper:

”Integration by Parts: The Algorithm to Calculate beta Functions in 4 Loops”,
K.G. Chetyrkin, F.V. Tkachov, Nucl.Phys. B192 (1981) 159-204
DOI: 10.1016/0550-3213(81)90199-1.



We will study the following diagram in which all lines are massless. It is called the T1
topology:
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In this topology there are three independent momenta. We take them to be Q, p1 and
p2. All dotproducts can be expressed in terms of the squares of the propagator momenta and
Q.Q.



The basic IBP’s are of the form

0 =
∂

∂pµi
pµj
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(p21)
n1 · · · (p25)

n5

For the pi we can choose any loop momentum and hence there are two possible choices (the
others being linearly dependent). For the pj we have three choices: Q, p1 and p2. Therefore
we can construct 6 equations. In addition the n1 to n5 are five independent parameters. And
of course the dimension D = 4 − 2ε will enter the equations via

∂

∂pµi
pµj = δijD



The next step is to decide on a notation. We will call our integrals Z and give this function
the arguments n1 · · ·n5. In addition we will have the first argument to indicate the negative
of the complexity of the integral which will be defined as the deviation from n1 · · ·n5. Hence
the integral

Z(−3, n1, n2 − 1, n3, n4, n5 + 2)

because it has complexity three. This negative is to make sure that Form will order the
integrals in such a way that the highest complexity comes first.

Our goal will be to reduce any integral either to integrals that we can do, or a minimal set
of integrals that have to be obtained by other means (master integrals). If, for instance, one
of the ni can be reduced to zero or a negative integer, the integral can be done by simple
means, because it is either a product or a convolution of two one-loop integrals. Here we are
more interested in cases for which such simplicity may not occur.



Let us start with the construction of the IBP’s. We do this in a procedure which we call
IBPforT1

#procedure IBPforT1

*

* We use Q, p1 and p2 as independent momenta. Hence

* p4 = p1-Q;

* p3 = p2-Q;

* p5 = p1-p2;

*

#define DER(i) "2*n‘~i’*p.p‘~i’/p‘~i’.p‘~i’"

G A1 = der( Q,p1)*Z(n1,...,n5);

G A2 = der(p1,p1)*Z(n1,...,n5);

G A3 = der(p2,p1)*Z(n1,...,n5);

G A4 = der( Q,p2)*Z(n1,...,n5);

G A5 = der(p1,p2)*Z(n1,...,n5);

G A6 = der(p2,p2)*Z(n1,...,n5);

*

id der(p?,p1)*Z(n1?,...,n5?) = Z(n1,...,n5)*(



+D*(del(p,p1)+del(p,p4)+del(p,p5))

-‘DER(1)’

-‘DER(4)’

-‘DER(5)’

);

id der(p?,p2)*Z(n1?,...,n5?) = Z(n1,...,n5)*(

+D*(del(p,p2)+del(p,p3)-del(p,p5))

-‘DER(2)’

-‘DER(3)’

+‘DER(5)’

);

id der(p?,Q)*Z(n1?,...,n5?) = Z(n1,...,n5)*(

+2*(n1+...+n5-D)

-‘DER(1)’

-‘DER(2)’

);

*

id del(p?,p?) = 1;



id del(?a) = 0;

*

id p4 = p1-Q;

id p3 = p2-Q;

id p5 = p1-p2;

*

id Q.p1 = (Q.Q+p1.p1-p4.p4)/2;

id Q.p2 = (Q.Q+p2.p2-p3.p3)/2;

id p1.p2 = (p1.p1+p2.p2-p5.p5)/2;

*

id <p1.p1^x1?>*...*<p5.p5^x5?>*Z(n1?,...,n5?) =

Z(<n1-x1>,...,<n5-x5>);

*

id Q.Q = 1;

.sort

#endprocedure



The first thing that is new here is the use of the macro DER. It looks similar to regular
define instructions, but it has an argument. As in procedures such parameters are used as
preprocessor variables.

The function der(pj,pi) is the combination ∂
∂p

µ
i
pµj we have seen in the previous pages.

We use the DER function to take the derivatives of the propagators. It takes the direction
of the momenta into account.

To try this out, we also need a main program of course. This gives:



Symbols D,ep,n1,n2,n3,n4,n5;

Dimension D;

Symbols x,x1,x2,x3,x4,x5;

Vector Q,p,p1,p2,p3,p4,p5;

CFunction der,del,Z,Y;

Off Statistics;

Format nospaces;

.global

#call IBPforT1

Bracket Z;

Print +f;

.end

A1=

+Z(-1+n1,n2,n3,1+n4,n5)*(-n4)

+Z(-1+n1,n2,n3,n4,1+n5)*(-n5)

+Z(1+n1,n2,n3,-1+n4,n5)*(n1)

+Z(1+n1,n2,n3,n4,n5)*(-n1)



+Z(n1,-1+n2,n3,n4,1+n5)*(n5)

+Z(n1,n2,-1+n3,n4,1+n5)*(-n5)

+Z(n1,n2,n3,-1+n4,1+n5)*(n5)

+Z(n1,n2,n3,1+n4,n5)*(n4)

+Z(n1,n2,n3,n4,n5)*(n4-n1);

A2=

+Z(-1+n1,n2,n3,1+n4,n5)*(-n4)

+Z(-1+n1,n2,n3,n4,1+n5)*(-n5)

+Z(n1,-1+n2,n3,n4,1+n5)*(n5)

+Z(n1,n2,n3,1+n4,n5)*(n4)

+Z(n1,n2,n3,n4,n5)*(-n5-n4-2*n1+D);

A3=

+Z(-1+n1,n2,n3,1+n4,n5)*(-n4)

+Z(-1+n1,n2,n3,n4,1+n5)*(-n5)

+Z(1+n1,-1+n2,n3,n4,n5)*(-n1)

+Z(1+n1,n2,n3,n4,-1+n5)*(n1)



+Z(n1,-1+n2,n3,n4,1+n5)*(n5)

+Z(n1,n2,-1+n3,1+n4,n5)*(-n4)

+Z(n1,n2,n3,1+n4,-1+n5)*(n4)

+Z(n1,n2,n3,1+n4,n5)*(n4)

+Z(n1,n2,n3,n4,n5)*(n5-n1);

A4=

+Z(-1+n1,n2,n3,n4,1+n5)*(n5)

+Z(n1,-1+n2,1+n3,n4,n5)*(-n3)

+Z(n1,-1+n2,n3,n4,1+n5)*(-n5)

+Z(n1,1+n2,-1+n3,n4,n5)*(n2)

+Z(n1,1+n2,n3,n4,n5)*(-n2)

+Z(n1,n2,-1+n3,n4,1+n5)*(n5)

+Z(n1,n2,1+n3,n4,n5)*(n3)

+Z(n1,n2,n3,-1+n4,1+n5)*(-n5)

+Z(n1,n2,n3,n4,n5)*(n3-n2);

A5=



+Z(-1+n1,1+n2,n3,n4,n5)*(-n2)

+Z(-1+n1,n2,n3,n4,1+n5)*(n5)

+Z(n1,-1+n2,1+n3,n4,n5)*(-n3)

+Z(n1,-1+n2,n3,n4,1+n5)*(-n5)

+Z(n1,1+n2,n3,n4,-1+n5)*(n2)

+Z(n1,n2,1+n3,-1+n4,n5)*(-n3)

+Z(n1,n2,1+n3,n4,-1+n5)*(n3)

+Z(n1,n2,1+n3,n4,n5)*(n3)

+Z(n1,n2,n3,n4,n5)*(n5-n2);

A6=

+Z(-1+n1,n2,n3,n4,1+n5)*(n5)

+Z(n1,-1+n2,1+n3,n4,n5)*(-n3)

+Z(n1,-1+n2,n3,n4,1+n5)*(-n5)

+Z(n1,n2,1+n3,n4,n5)*(n3)

+Z(n1,n2,n3,n4,n5)*(-n5-n3-2*n2+D);

This is the ’raw’ form of the equations. They do not look like the equation that is derived
in the paper by Chetyrkin and Tkachov, because they used p5 as one of the independent



variables. We can obtain those by taking linear combinations. We see this when we continue
the program with:

Local A2 = A2-A3;

Local A6 = A6-A5;

Bracket Z;

Print +f A2,A6;

.end

A2=

+Z(1+n1,-1+n2,n3,n4,n5)*(n1)

+Z(1+n1,n2,n3,n4,-1+n5)*(-n1)

+Z(n1,n2,-1+n3,1+n4,n5)*(n4)

+Z(n1,n2,n3,1+n4,-1+n5)*(-n4)

+Z(n1,n2,n3,n4,n5)*(-2*n5-n4-n1+D);

A6=

+Z(-1+n1,1+n2,n3,n4,n5)*(n2)

+Z(n1,1+n2,n3,n4,-1+n5)*(-n2)



+Z(n1,n2,1+n3,-1+n4,n5)*(n3)

+Z(n1,n2,1+n3,n4,-1+n5)*(-n3)

+Z(n1,n2,n3,n4,n5)*(-2*n5-n3-n2+D);

Now we do have the form of the paper and we can see that if either n1, n4, n5 are integer
or n2, n3, n5 are integer, we can always kill one of those lines by repeated application of one
of the above equations. In the paper they are explaining also what to do, when n5 is not
integer, because it contained an extra loop that was integrated out and hence now the power
of p25 contains an ε. In that case there will be one integral remaining: Z(1, 1, 1, 1, 1 + ep). It
is a master integral and it can be evaluated by a variety of means. One is in x-space, using
Gegenbauer polynomials, but a better way is described in
”The Massless two loop two point function” Isabella Bierenbaum, Stefan Weinzierl, Eur.Phys.J.
C32 (2003) 67-78 DOI: 10.1140/epjc/s2003-01389-7
They show how to do such master integrals, even when all lines have extra multiples of ε in
their power. Here we will assume that all such master integrals ’are known’.



We will be interested in the case in which potentially all lines have a multiple of ε in their
power, and hence that we cannot bring any of the powers to zero. The reduction to a minimal
number of integrals is far from trivial in that case. And of course there is the question: ”how
many of such integrals are there?”

Let us start by taking our original set of equations and let us add the complexity argument.
This we do in a dedicated procedure:

#procedure ResetComplexity(N,par)

*

#if ( ‘par’ == 0 )

id Z(x?,x1?,...,x‘N’?) = Z(x1,...,x‘N’);

#elseif ( ‘par’ == 1 )

id Z(x?,x1?,...,x‘N’?) = Z(x1,...,x‘N’);

id Z(x1?,...,x‘N’?) =

Z(-(<abs_(n1-x1)>+...+<abs_(n‘N’-x‘N’)>),x1,...,x‘N’);

#endif

*

#endprocedure

If we couple this to our original program we obtain:



A1=

+Z(-2,-1+n1,n2,n3,1+n4,n5)*(-n4)

+Z(-2,-1+n1,n2,n3,n4,1+n5)*(-n5)

+Z(-2,1+n1,n2,n3,-1+n4,n5)*(n1)

+Z(-2,n1,-1+n2,n3,n4,1+n5)*(n5)

+Z(-2,n1,n2,-1+n3,n4,1+n5)*(-n5)

+Z(-2,n1,n2,n3,-1+n4,1+n5)*(n5)

+Z(-1,1+n1,n2,n3,n4,n5)*(-n1)

+Z(-1,n1,n2,n3,1+n4,n5)*(n4)

+Z(0,n1,n2,n3,n4,n5)*(n4-n1);

and similar for the other expressions.



If we want to eliminate all parameters that differ by one from one of the ni, we have
a problem, because there are 10 possible deviations in our equations and there are only 6
equations. HOWEVER! We can create any number of new equations by shifting the ni to
ni±xi. Of course this generates also more ”bad parameters”, but, as you will see, the number
of equations increases faster than the number of integrals that we do not like. But before we
do this, let us change our system by combining some equations, as we did when we wanted
to show the equations of the paper. This time the objective is to keep the equations as short
as possible.

Local A1 = A1-A2;

Local A3 = A3-A2;

Local A4 = A4-A6;

Local A5 = A5-A6;

Print +f;

Bracket Z;

.end

A2=

+Z(-2,-1+n1,n2,n3,1+n4,n5)*(-n4)



+Z(-2,-1+n1,n2,n3,n4,1+n5)*(-n5)

+Z(-2,n1,-1+n2,n3,n4,1+n5)*(n5)

+Z(-1,n1,n2,n3,1+n4,n5)*(n4)

+Z(0,n1,n2,n3,n4,n5)*(-n5-n4-2*n1+D);

A6=

+Z(-2,-1+n1,n2,n3,n4,1+n5)*(n5)

+Z(-2,n1,-1+n2,1+n3,n4,n5)*(-n3)

+Z(-2,n1,-1+n2,n3,n4,1+n5)*(-n5)

+Z(-1,n1,n2,1+n3,n4,n5)*(n3)

+Z(0,n1,n2,n3,n4,n5)*(-n5-n3-2*n2+D);

A1=

+Z(-2,1+n1,n2,n3,-1+n4,n5)*(n1)

+Z(-2,n1,n2,-1+n3,n4,1+n5)*(-n5)

+Z(-2,n1,n2,n3,-1+n4,1+n5)*(n5)

+Z(-1,1+n1,n2,n3,n4,n5)*(-n1)

+Z(0,n1,n2,n3,n4,n5)*(n5+2*n4+n1-D);



A3=

+Z(-2,1+n1,-1+n2,n3,n4,n5)*(-n1)

+Z(-2,1+n1,n2,n3,n4,-1+n5)*(n1)

+Z(-2,n1,n2,-1+n3,1+n4,n5)*(-n4)

+Z(-2,n1,n2,n3,1+n4,-1+n5)*(n4)

+Z(0,n1,n2,n3,n4,n5)*(2*n5+n4+n1-D);

A4=

+Z(-2,n1,1+n2,-1+n3,n4,n5)*(n2)

+Z(-2,n1,n2,-1+n3,n4,1+n5)*(n5)

+Z(-2,n1,n2,n3,-1+n4,1+n5)*(-n5)

+Z(-1,n1,1+n2,n3,n4,n5)*(-n2)

+Z(0,n1,n2,n3,n4,n5)*(n5+2*n3+n2-D);

A5=

+Z(-2,-1+n1,1+n2,n3,n4,n5)*(-n2)

+Z(-2,n1,1+n2,n3,n4,-1+n5)*(n2)



+Z(-2,n1,n2,1+n3,-1+n4,n5)*(-n3)

+Z(-2,n1,n2,1+n3,n4,-1+n5)*(n3)

+Z(0,n1,n2,n3,n4,n5)*(2*n5+n3+n2-D);

This way, each equation has only 5 terms. This step can be automated, but for now we will
not do this, because we would run out of time.



Another ’improvement’ in which we lower the number of terms is a feature that is called
the PolyRatFun. In our manipulations that will follow we try to concentrate on the integrals,
and we consider the contents of the brackets more or less as a fancy coefficient. These coeffi-
cients are essentially multivariate polynomials, and because we will eventually also have such
polynomials in the denominator, we will have to allow for rational multivariate polynomials
as coefficients. This is done by declaring a function (I usually call it rat) as polyratfun as in:

Symbol x,y,n;

CFunction rat;

Off Statistics;

Format nospaces;

Local F = (x+y+2)^3+y*(x+2*y+3)^2-1;

Bracket y;

Print;

.sort

F=

+y*(21+18*x+4*x^2)

+y^2*(18+7*x)



+y^3*(5)

+7+12*x+6*x^2+x^3;

We begin with some typical polynomial.

id x^n? = rat(x^n,1);

Bracket y;

Print;

.sort

F=

+y*(4*rat(x^2,1)+18*rat(x,1)+21*rat(1,1))

+y^2*(7*rat(x,1)+18*rat(1,1))

+y^3*(5*rat(1,1))

+6*rat(x^2,1)+rat(x^3,1)+12*rat(x,1)+7*rat(1,1);

After introducing the function rat, there is still nothing special.

PolyRatFun rat;

Print +s;

.sort



F=

+y*rat(4*x^2+18*x+21,1)

+y^2*rat(7*x+18,1)

+y^3*rat(5,1)

+rat(x^3+6*x^2+12*x+7,1)

;

Once we declare rat to be the polyratfun, we see that all the terms are combined, ie. terms that
are otherwise identical have their coefficients added. In the function rat, the first argument
is supposed to be the numerator and the second the denominator of a rational multivariate
polynomial. At all times this polynomial is to be kept normalized.

id y^n? = y^n*rat(1,x+1+n);

Print +s;

.sort

F=

+y*rat(4*x^2+18*x+21,x+2)

+y^2*rat(7*x+18,x+3)



+y^3*rat(5,x+4)

+rat(x^2+5*x+7,1)

;

Here we see that in the last term the program saw that the x + 1 in the denominator could
be divided out.

id y = 3;

Print +s;

.end

F=

+rat(x^5+26*x^4+279*x^3+1477*x^2+3542*x+3030,x^3+9*x^2+26*x+24);

When possible the rational polynomials are added, just as with numerical coefficients.
This looks almost too good to be true. And indeed it is. There are restrictions on the size

of information inside a single term. This places also restrictions on how big the polynomials
inside a function like rat can be. In addition, calculus with multivariate rational polynomials
can become very slow when these polynomials have many terms and many variables. The big
culprit here is the gcd calculation: it is even worse than for numbers. But we have no choice.



Just remember: there are limitations and hence we should make special efforts to keep the
fractions as simple as possible. This holds for all computer algebra systems.

So now we add the code to put our coefficients together. We also omit the complexity for
now. We obtain

CFunction acc, rat;

PolyRatFun rat;

Collect acc;

id acc(x?) = rat(x,1);

Print +s;

.end

A2=

+Z(-1+n1,n2,n3,1+n4,n5)*rat(-n4,1)

+Z(-1+n1,n2,n3,n4,1+n5)*rat(-n5,1)

+Z(n1,-1+n2,n3,n4,1+n5)*rat(n5,1)

+Z(n1,n2,n3,1+n4,n5)*rat(n4,1)

+Z(n1,n2,n3,n4,n5)*rat(D-2*n1-n4-n5,1)

;



A6=

+Z(-1+n1,n2,n3,n4,1+n5)*rat(n5,1)

+Z(n1,-1+n2,1+n3,n4,n5)*rat(-n3,1)

+Z(n1,-1+n2,n3,n4,1+n5)*rat(-n5,1)

+Z(n1,n2,1+n3,n4,n5)*rat(n3,1)

+Z(n1,n2,n3,n4,n5)*rat(D-2*n2-n3-n5,1)

;

A1=

+Z(1+n1,n2,n3,-1+n4,n5)*rat(n1,1)

+Z(1+n1,n2,n3,n4,n5)*rat(-n1,1)

+Z(n1,n2,-1+n3,n4,1+n5)*rat(-n5,1)

+Z(n1,n2,n3,-1+n4,1+n5)*rat(n5,1)

+Z(n1,n2,n3,n4,n5)*rat(-D+n1+2*n4+n5,1)

;

A3=



+Z(1+n1,-1+n2,n3,n4,n5)*rat(-n1,1)

+Z(1+n1,n2,n3,n4,-1+n5)*rat(n1,1)

+Z(n1,n2,-1+n3,1+n4,n5)*rat(-n4,1)

+Z(n1,n2,n3,1+n4,-1+n5)*rat(n4,1)

+Z(n1,n2,n3,n4,n5)*rat(-D+n1+n4+2*n5,1)

;

A4=

+Z(n1,1+n2,-1+n3,n4,n5)*rat(n2,1)

+Z(n1,1+n2,n3,n4,n5)*rat(-n2,1)

+Z(n1,n2,-1+n3,n4,1+n5)*rat(n5,1)

+Z(n1,n2,n3,-1+n4,1+n5)*rat(-n5,1)

+Z(n1,n2,n3,n4,n5)*rat(-D+n2+2*n3+n5,1)

;

A5=

+Z(-1+n1,1+n2,n3,n4,n5)*rat(-n2,1)

+Z(n1,1+n2,n3,n4,-1+n5)*rat(n2,1)



+Z(n1,n2,1+n3,-1+n4,n5)*rat(-n3,1)

+Z(n1,n2,1+n3,n4,-1+n5)*rat(n3,1)

+Z(n1,n2,n3,n4,n5)*rat(-D+n2+n3+2*n5,1)

;

At this point we are ready to generate more equations. How are we going to do this? And
how many are we going to generate. Let us start with defining a parameter that says how
much extra complexity we are allowed to add. After this we have to divide this over the five
arguments and we might either raise or lower such a parameter. Here is a very simple program
to do this:

#define INCCOMPLEXITY "4"

CF inc,inc1;

Symbol x1,...,x5;

Local FC =

#do i1 = 0,‘INCCOMPLEXITY’

#do i2 = 0,‘INCCOMPLEXITY’-‘i1’

#do i3 = 0,‘INCCOMPLEXITY’-‘i1’-‘i2’

#do i4 = 0,‘INCCOMPLEXITY’-‘i1’-‘i2’-‘i3’

#do i5 = 0,‘INCCOMPLEXITY’-‘i1’-‘i2’-‘i3’-‘i4’



+inc1(‘i1’,‘i2’,‘i3’,‘i4’,‘i5’)

#enddo

#enddo

#enddo

#enddo

#enddo

;

Multiply inc;

repeat id inc(?a)*inc1(x1?,?b) = (inc(?a,x1)+inc(?a,-x1))*inc1(?b);

id inc1 = 1;

.sort

Time = 0.00 sec Generated terms = 4032

FC Terms in output = 681

Bytes used = 20360

DropCoefficient;

Print +f +s;

.end



Time = 0.01 sec Generated terms = 681

FC Terms in output = 681

Bytes used = 20360

FC =

+ inc(-4,0,0,0,0)

+ inc(-3,-1,0,0,0)

+ inc(-3,0,-1,0,0)

etc.

Note that some terms will be generated twice because when there is a zero the ’doubling’ is
not really necessary. Each of the terms in this expression will generate us a new system of six
equations. Hence if we allow the complexity to be increased by up to 4 we will end up with
4086 equations! The table shows this increment even better.



INCCOMPLEXITY systems equations reduced equations
1 11 66 66
2 61 366 186
3 231 1386 966
4 681 4086 1626
5 1683 10098 5646
6 3653 21918 7686

When we run our programs (this is hindsight, but it will save us much time running our ex-
amples), we do not consider cases for which more than half the increased complexity (rounded
up) comes from positive contributions, or more than half (rounded up) comes from negative
contributions. This is indicated in the last column.

Let us however start a bit more modest with INCCOMPLEXITY at 2. How do we combine
this with our program? We put it together as follows:

#define INCCOMPLEXITY "2"

Symbols D,ep,n1,n2,n3,n4,n5;

Dimension D;

Symbols x,x1,x2,x3,x4,x5;

Vector Q,p,p1,p2,p3,p4,p5;



CFunction der,del,Z,Y,inc,inc1;

Off Statistics;

Format nospaces;

.global

#define N "5"

#call IBPforT1

.sort

Local A1 = A1-A2;

Local A3 = A3-A2;

Local A4 = A4-A6;

Local A5 = A5-A6;

Bracket Z;

.sort

CFunction acc, rat;

PolyRatFun rat;

Collect acc;

id acc(x?) = rat(x,1);

.sort



Hide; * <-------------------

Local FC =

#do i1 = 0,‘INCCOMPLEXITY’

#do i2 = 0,‘INCCOMPLEXITY’-‘i1’

#do i3 = 0,‘INCCOMPLEXITY’-‘i1’-‘i2’

#do i4 = 0,‘INCCOMPLEXITY’-‘i1’-‘i2’-‘i3’

#do i5 = 0,‘INCCOMPLEXITY’-‘i1’-‘i2’-‘i3’-‘i4’

+inc1(‘i1’,‘i2’,‘i3’,‘i4’,‘i5’)

#enddo

#enddo

#enddo

#enddo

#enddo

;

Multiply inc;

repeat id inc(?a)*inc1(x1?,?b) = (inc(?a,x1)+inc(?a,-x1))*inc1(?b);

id inc1 = 1;

if ( match(inc(?a,x?{2,-2},?b)) ) Discard;



if ( match(inc(?a,1,?b,1,?c)) ) Discard;

if ( match(inc(?a,-1,?b,-1,?c)) ) Discard;

.sort

DropCoefficient;

.sort

Hide; * <-------------------

#$numeq = 0;

#do oneterm = FC

Global G{‘$numeq’+1} = A1*‘oneterm’;

Global G{‘$numeq’+2} = A2*‘oneterm’;

Global G{‘$numeq’+3} = A3*‘oneterm’;

Global G{‘$numeq’+4} = A4*‘oneterm’;

Global G{‘$numeq’+5} = A5*‘oneterm’;

Global G{‘$numeq’+6} = A6*‘oneterm’;

#$numeq = $numeq+6;

#enddo

id inc(x1?,...,x5?) = replace_(<n1,n1+x1>,...,<n5,n5+x5>);

#call ResetComplexity(‘N’,1)



Multiply replace_(D,4-2*ep);

Print +s;

.end

We may notice the Hide statements and the funny new element here is the do loop which now
goes over the terms in the expression FC. This means that the do loop parameter oneterm
will contain a textual representation of one of the terms of FC, each time we go through the
loop. The variable $numeq is a counter that labels the equations and in the end tells us the
number of equations.



We will keep these G equations and remove the others. Our task is to eliminate the unde-
sirable integrals and see what remains at complexity one or zero. We want to do this with a
gaussian elimination scheme, but one possible complicating factor may be that the rational
polynomial coefficients may become very complicated. In addition it may well be that there
will be coefficients that are zero for particular values of the parameters ni. Let us just start
the naive way. The highest complexity integrals in the system have complexity INCCOM-
PLEXITY+2. We will make a procedure that eliminates all terms of a given complexity.
Once we have such a procedure we can work our way down and see whether that gives us a
’proper solution’.

Let us start with making a simple gaussian elimination routine:



#procedure gauss0(NUM,C)

*

* Procedure takes a system of NUM equations named G1,...,G‘NUM’.

* Eliminates all integrals of complexity C.

* We use the most trivial variety of a Gaussian elimination

*

#do i = 1,‘NUM’

#if ( termsin(G‘i’) > 0 )

#$lhs = firstterm_(G‘i’);

#$match = 0;

#inside $lhs

if ( match(Z(-‘C’,?a)) );

id rat(x1?$x1,x2?$x2) = 1;

$match = 1;

endif;

#endinside

#if ( ‘$match’ > 0 )

#$rhs = -(G‘i’*rat($x2,$x1)-$lhs);



id ‘$lhs’ = $rhs;

.sort

#endif

#endif

#enddo

#endprocedure

We run through the equations, and if there is one with an integral of the proper complexity
(this is why we count the complexity negative. It makes the highest complexity to end up in
the first term) we replace this integral in all equations.



We add the following code to our program to make the restriction on the various complexity
combinations (the three if statements):

repeat id inc(?a)*inc1(x1?,?b) = (inc(?a,x1)+inc(?a,-x1))*inc1(?b);

id inc1 = 1;

if ( match(inc(?a,x?{2,-2},?b)) ) Discard;

if ( match(inc(?a,1,?b,1,?c)) ) Discard;

if ( match(inc(?a,-1,?b,-1,?c)) ) Discard;

.sort

DropCoefficient;

and the elimination code

Multiply replace_(D,4-2*ep);

.sort

#do c = ‘INCCOMPLEXITY’+2,2,-1

#call gauss0(‘$numeq’,‘c’)

#enddo

#do i = 1,‘$numeq’

#if ( termsin(G‘i’) > 0 )



Print +s G‘i’;

#endif

#enddo

.end

When we run this program we run into a crash. The program ends with a rather annoying
message:

ERROR: PolyRatFun doesn’t fit in a term

(1) num size = 35956, den size = 7336, MaxTer = 160000

Program terminating at gauss1 Line 25 -->

3.02 sec out of 3.05 sec

This message indicates that the maximum size for a term is not large enough to contain the
rational polynomial that should be in that term. We can try the easiest solution, which is
to increase the maximum term size, although that will put a heavy demand on the memory
management of the computer. We do this by adding the following line to the program as its
first line:

#: MaxTermSize 1M



Such instructions that start with #: have to be at the start of the program and are read
during the startup of the program, before Form makes its memory allocations. With this
term size the program can indeed finish in a bit more than 5 sec. The output consists of
33 equations, each with integrals of at most complexity one. At first sight this looks great,
because there are only 10 integrals of complexity one (and one of complexity zero). Let us
study this a bit better though and add a few lines to our Gauss procedure to see what it is
doing:

#if ( ‘$match’ > 0 )

#$rhs = -(G‘i’*rat($x2,$x1)-$lhs);

id ‘$lhs’ = $rhs;

#$factors = acc($x1);

#inside $factors

FactArg,acc;

ChainOut acc;

id acc(x?number_) = 1;

id acc(x?symbol_) = x;

#endinside

#write "Taking out %$, factors = %$",$lhs,$factors



.sort

#endif

The extra lines make the program show the numerator of the term we are replacing. We can
use this to see whether we may be accidentally dividing by zero. This could occur with a
factor like ni − nj.

The output is now much more verbose with lines like:

Taking out Z(-2,-1+n1,n2,n3,1+n4,n5), factors = acc(-3+2*n4+n1+2*ep)

Taking out Z(-2,-1+n1,1+n2,n3,n4,n5), factors = acc(-1+n1)

.....

The factors here are safe: we assume that n1 contains an integer plus a positive integer times
ε. In the case n1 is an integer the second factor could be zero, but that would be for an integral
with an argument that is zero, and those integrals can be solved directly (see the paper by
Chetyrkin and Tkachov). What is a problem however is that only 22 integrals of complexity
two are removed, while counting reveals that there exist 50 of such integrals. And indeed, if
we run the program down to integrals of complexity one we obtain that only 7 integrals of
complexity one are removed, and hence there are four integrals that are undetermined.

The next attempt is to remove the three if-statements that we added to restrict the number
of equations and use all 366 equations. This makes the program much slower (nearly 30 sec)



and now 42 integrals of complexity two are replaced. When we reduce also the complexity
one integrals we get a crash again. To resolve this crash we have to know a bit more about
Form.

We saw in lecture one that Form uses a hierarchy of buffers to sort expressions. But what
happens when it has to sort function arguments? For this it has similar buffers, but those are
much smaller than the ones for complete expressions. Typically they are no bigger than 100
Kbytes. Fortunately we can also configure these buffers. This is much needed here because
the arithmetic of the arguments creates very many terms, even though afterwards they fit
inside a single term (inside the rat function). Hence the first lines of the program become now

#: MaxTermSize 1M

#: SubTermsInSmall 1M

#: SubSmallSize 100M

#: SubLargeSize 1000M

Again, this puts some more demands on the memory of the computer, which is a laptop with
16 Gbytes. But now the program runs. Unfortunately again there are only 7 reductions of
complexity one integrals.

Why is this bad? Well, if we cannot reduce all complexity one integrals, we would at least
like to reduce all complexity two integrals. Hence we need to raise INCCOMPLEXITY to get



more equations and see whether that will satisfy us. For this we decide to raise MaxTermSize
to 10 Mbytes after which the system complains that its WorkSpace is not big enough. This
workspace is a stack onto which terms are placed during expansion. Hence if MaxTermSize
is very big its regular size may not be enough. Hence we also raise that one. This leaves one
more complication: internally Form has a maximum size for numbers. When we do not use
a polyratfun and have only numerical fractions, this is automatically set to about half the
maximum size for terms. In the case that we have a polyratfun with lots of terms inside the
polyratfun, this is particularly devastating, because each of these terms gets a buffer during
factorizations, and Form would start allocating enormous amounts of memory. Hence we
force the size of such numbers to a more realistic value.

#: MaxTermSize 10M

#: WorkSpace 1000M

#: SubTermsInSmall 1M

#: SubSmallSize 100M

#: SubLargeSize 1000M

#: MaxNumberSize 50K

All these parameters and more are explained in the manual in the chapter about the setup.
Now things proceed better, but the program becomes very slow. And we see some horrible



factors coming by on the screen with up to 30 lines. This may not be the way to proceed.
We have to become a bit more sophisticated, trying to make substitutions based on the

simplest term with a given complexity, rather than the first we see. This we do with the next
procedure:



#procedure gauss2(NUM,C)

*

* Procedure takes a system of NUM equations named G1,...,G‘NUM’.

* Eliminates all integrals of complexity C.

* Second attempt in the Gauss elimination: we take the term

* with weight C but with the simplest coefficient.

*

#do i = 1,‘NUM’

#if ( termsin(G‘i’) > 0 )

#$expr = G‘i’;

#inside $expr

if ( match(Z(-‘C’,?a)) );

id Z(-‘C’,?a)*rat(x1?,x2?) = Z(-‘C’,

nterms_(x1)+nterms_(x2),nterms_(x1),?a)*rat(x1,x2);

endif;

#endinside

*

* Having sorted $expr the ’simplest’ term is now first



*

#$lhs = firstterm_($expr);

#$match = 0;

#inside $lhs

if ( match(Z(-‘C’,?a)) );

id Z(x1?,x2?,x3?,n1?,...,n5?) = Z(x1,n1,...,n5);

id rat(x1?$x1,x2?$x2) = 1;

$match = 1;

endif;

#endinside

#if ( ‘$match’ > 0 )

#$rhs = -($expr*rat($x2,$x1)-$lhs);

#inside $rhs

id Z(x1?,x2?,x3?,n1?,...,n5?) = Z(x1,n1,...,n5);

#endinside

id ‘$lhs’ = $rhs;

* here goes the inspection code.........

.sort



#endif

#endif

#enddo

#endprocedure

Even though this improves things, it is still not sufficient. There are some really bad terms
here. Hence we have to think again.



The next thing we realize is that we take the first equation we run into with an integral of the
proper complexity. This can be very bad, because there are very simple equations, and there
are very complicated equations. We should inspect each time which equation is the simplest,
and which integral in that equation is the one that should be substituted. Such a program
will however be much more complicated. A second improvement would be to check whether
an equation has an overal factor (this is called the content of an expression) and divide this
out (provided it cannot be zero). This will not only help in selecting which equation is the
’simplest’, but also make the substitutions in the other equations easier. Hence we have to
construct two procedures: gauss3.prc and takefactor.prc which checks whether we can divide
out a factor (and then divides the equation by it).

Let us start with the takefactor procedure. It reads:



#procedure takefactor(G)

*

* We try to divide out overal factors.

* The set of equations is given in the macro TODO

* The equations are marked as ‘G’<number>

*

PolyRatFun;

id rat(x1?,x2?) = num(x1)*den(x2);

FactArg,num;

FactArg,den;

ChainOut num;

ChainOut den;

id num(x?number_) = x;

id den(x?number_) = 1/x;

*

.sort

*

* The content_ function can handle only symbols. Hence:



*

ToPolynomial;

.sort

#do i = ‘TODO’

#if ( ‘$exists‘i’’ > 0 )

#if ( termsin(‘G’‘i’) > 0 )

#$content‘i’ = content_(‘G’‘i’);

*

* Exchange num and den. First get rid of the extra symbols.

*

#inside $content‘i’

FromPolynomial;

$ccc = 1/coeff_;

Multiply replace_(num,den,den,num)*$ccc^2;

#endinside

#write <> " content‘i’ = %$",$content‘i’

if ( expression(‘G’‘i’) ) Multiply ‘$content‘i’’;

#endif



#endif

#enddo

.sort

PolyRatFun rat,RAT;

*

* Back to normal. Get rid of the extra symbols in the expression.

*

FromPolynomial;

id num(x?)*den(x?) = 1;

id num(x?) = rat(x,1);

id den(x?) = rat(1,x);

.sort

#endprocedure

We see here a number of new things. FactArg and ChainOut we have seen in lecture 4.
To refresh your mind: FactArg,num; factorizes the argument(s) of the function num. Each
factor will now be a separate argument. ChainOut, num; then takes the arguments of num
and puts each of them in a separate occurrence of function num. This way we can handle
them better. The PolyRatFun,rat,RAT; is a variety of the polyratfun statement in which we



declare a second function to be 1/rat. This is handy when manipulating formula’s by hand
as when changing

Z(....)*rat(xx1,xx2)+Z(...)*rat(yy1,yy2)+....;

into

id Z(....) = -RAT(xx1,xx2)*(+Z(...)*rat(yy1,yy2)+....);

This way one does not have to touch the arguments of the rat function, which could be really
messy when they are rather lengthy.

The ‘$exists‘i” is explained a little further in the text.
Next we want to obtain the content of each equation. This is basically the GCD of all

terms in the equation, but the problem is that at the moment of creating these programs the
content function could not do this for functions (has been repaired as of 6-mar-2018). There
is however a solution: we can replace all nontrivial objects by program-generated symbols,
called extra symbols. Their names will end in an underscore character. Their default names
are Z1 , Z2 , etc. The start string of these names can be changed by the user (see manual).
We invoked this change with the ToPolynomial statement. There is one extra complication:
because FactArg also works only over the symbols, it uses the extra symbol system and hence



the two cannot be in the same module (would generate an error message). At a later point
we can return to the original notation with the FromPolynomial statement.

Symbols a,b,c;

CFunction f1,f2,f3;

Off Statistics;

Format nospaces;

Local F = f1(a)+f1(a+b)*f2(c)*(b+c)+f3(f1(a),f2(b),f3(c));

ToPolynomial;

Print;

.sort

F=

Z1_+Z4_+c*Z3_*Z2_+b*Z3_*Z2_;

#write "\n %X"

Z1_=f1(a);

Z2_=f1(b+a);

Z3_=f2(c);



Z4_=f3(f1(a),f2(b),f3(c));

.sort

ExtraSymbols,array,Y;

#write "\n %X"

Y(1)=f1(a);

Y(2)=f1(b+a);

Y(3)=f2(c);

Y(4)=f3(f1(a),f2(b),f3(c));

Print;

.sort

F=

Y(1)+Y(4)+c*Y(3)*Y(2)+b*Y(3)*Y(2);

FromPolynomial;

Print;



.end

F=

f1(b+a)*f2(c)*c+f1(b+a)*f2(c)*b+f1(a)+f3(f1(a),f2(b),f3(c));

The extra symbols are also very useful when trying to optimize output formulas, to make
them contain fewer multiplications and additions. For this you should see the chapter on
optimizations in the manual. It is a rather advanced and unique feature of Form which led
to several publications.

We can now pick up the content of the various expressions and convert it into 1/content.
This is rather simple. After that we multiply each expression by their inverted content and
we are done. We write the various contents to the log file to allow inspection for potential
division by zero.

Next is a new gauss procedure that at each step searches for the expression that is simplest.
For this we will of course need to define what we mean by simplest. Before we study the
procedure, we make some changes in the program. We define an ‘array’ of dollar variables
$exists1 to $exists‘$numeq’ that tells whether an equation still exists. This way we can quickly
check whether we have to consider that equation and we can eliminate the equations that have
become zero. After that a print statement will not print endless lines with equations that are



relevant no longer. It needs a supporting procedure:

#procedure Drop(m)

#$exists‘m’ = 0;

Drop G‘m’;

#endprocedure

In addition we make the gaussian procedure slightly more general by adding a parameter
that indicates the ‘array’ of expressions (which is G in our case). This is to make the procedure
more general for later. Finally we use a preprocessor variable TODO to indicate which
equations have to be summed over in a #do loop. In our current program that variable is
initialized as

#define TODO "1,‘$numeq’"

but when we are experimenting we could replace it by a list of numbers as in

#define TODO "{5,11,56,965}"



#procedure gauss3(G,c)

*

* This procedure does a Gaussian elimination for terms

* with complexity ‘c’.

* The equations containing the elements that are

* eliminated are lost.

* We assume that there are $numeq equations,

* named ‘G’1,...,‘G’‘$numeq’.

* There is also an array $exists1,...,$exists‘$numeq’

* that tells whether an equation still exists.

*

.sort

#message Procedure gauss3 dealing with complexity ‘c’

*

* Suborder Z by the number of terms in rat.

*

if ( match(Z(-‘c’,?a)) );

id Z(-‘c’,?a)*rat(x1?,x2?) = Z(-‘c’,



nterms_(x1)+nterms_(x2),?a)*rat(x1,x2);

endif;

B Z;

.sort

#$numc‘c’ = 0;

#do j = 1,1

#if ( ‘c’ <= 2 )

#$numc‘c’ = $numc‘c’+1;

#message $numc‘c’ = ‘$numc‘c’’

#endif

*

* Start with counting:

* The number of terms with leading complexity in $nn

* The number of terms with subleading complexity in $ns

* The number of terms in rat in the whole expression in $nc

* The number of terms in rat in the first term in $nc

* The total number of terms of the expression in $nt

*



#do i = ‘TODO’

#if ( ‘$exists‘i’’ )

#$nn‘i’ = 0;

#$ns‘i’ = 0;

#$nx‘i’ = 0;

#$nt‘i’ = termsin_(‘G’‘i’);

#$nc‘i’ = 0;

#endif

#enddo

if ( match(Z(-‘c’,?a)) );

#do i = ‘TODO’

#if ( ‘$exists‘i’’ )

if ( expression(‘G’‘i’) );

$nn‘i’ = $nn‘i’+1;

id rat(x1?$x1,x2?$x2) = rat(x1,x2);

if ( $nn‘i’ == 1 );

id rat(x1?$x1,x2?$x2) = rat(x1,x2);

$nx‘i’ = termsin_($x1)+termsin_($x2);



endif;

endif;

#endif

#enddo

elseif ( match(Z(-‘c’+1,?a)) );

#do i = ‘TODO’

#if ( ‘$exists‘i’’ )

if ( expression(‘G’‘i’) ) $ns‘i’ = $ns‘i’+1;

#endif

#enddo

endif;

#do i = ‘TODO’

#if ( ‘$exists‘i’’ )

if ( expression(‘G’‘i’) );

id rat(x1?$x1,x2?$x2) = rat(x1,x2);

$nc‘i’ = $nc‘i’+ termsin_($x1)+termsin_($x2);

endif;

#endif



#enddo

B Z;

.sort

*

* Get now the totals of all our variables.

*

#$nnsum = 1;

#$nssum = 1;

#$ntsum = 1;

#$nxsum = 1;

#do i = ‘TODO’

#if ( ‘$exists‘i’’ )

#$nnsum = $nnsum+‘$nn‘i’’;

#$nssum = $nssum+‘$ns‘i’’;

#$ntsum = $ntsum+‘$nt‘i’’;

#$nxsum = $nxsum+‘$nx‘i’’;

#endif

#enddo



#if ( ‘$nnsum’ > 1 )

#$imin = 0;

*

* Starting value that is bigger than any weight

*

#$nmin = 1000*‘$nnsum’+40*‘$nssum’+‘$ntsum’\

+40*‘$nxsum’+1000000;

#do i = ‘TODO’

#if ( ‘$exists‘i’’ )

#if ( ‘$nn‘i’’ > 0 )

*

* Finally the weight function

*

#$n = 100*‘$nn‘i’’+4*‘$ns‘i’’+‘$nt‘i’’\

+4*‘$nx‘i’’+‘$nc‘i’’;

#if ( ‘$n’ < ‘$nmin’ )

#$imin = ‘i’;

#$nmin = $n;



#endif

#endif

#endif

#enddo

*

* At this point we see $imin as optimal.

*

#if ( ‘c’ == 2 )

Print +f +s ‘G’‘$imin’;

B Z;

.sort

#endif

#$eq = ‘G’‘$imin’;

*

#$lhs = FirstBracket_(‘G’‘$imin’); * object to replace

#$lhsc = ‘G’‘$imin’[‘$lhs’]; * coefficient

#$xxx = $lhs*$lhsc-(‘G’‘$imin’);

#inside $lhsc;



id rat(x1?$x1,x2?$x2) = rat(x2,x1);

#endinside;

#write <> "Eliminating ‘$imin’ ((‘$nn‘$imin’’,‘$ns‘$imin’’\

,‘$nt‘$imin’’,‘$nx‘$imin’’,‘$nc‘$imin’’))"

#$xxx = $xxx*$lhsc; * the right hand side

*

* PolyRatFun does not work inside dollars.

* Manually simplify the rat functions a bit.

*

#inside $xxx

id Z(-‘c’,x?,n1?,...,n‘N’?) = Z(-‘c’,n1,...,n‘N’);

id rat(x1?,x2?)*rat(x3?,x4?) = rat1(x1,x4)*rat2(x3,x2);

id rat1(x1?,x2?) = rat1(x1,x2,gcd_(x1,x2));

id rat2(x1?,x2?) = rat2(x1,x2,gcd_(x1,x2));

id rat1(x1?,x2?,x3?) = rat(div_(x1,x3),div_(x2,x3));

id rat2(x1?,x2?,x3?) = rat(div_(x1,x3),div_(x2,x3));

id rat(x1?,x2?)*rat(x3?,x4?) = rat(x1*x3,x2*x4);

#endinside



#call Drop(‘$imin’)

*

* Back to the regular form of the Z.

* Then we write to the .log file what we will replace.

*

id Z(-‘c’,x?,n1?,...,n‘N’?) = Z(-‘c’,n1,...,n‘N’);

#write "id ‘$lhs’ ="

#inside $lhs;

id Z(-‘c’,x?,n1?,...,n‘N’?) = Z(-‘c’,n1,...,n‘N’);

#endinside;

*

* And this is the statement that eliminates this integral.

*

id ‘$lhs’ = ‘$xxx’;

.sort

*

* Now knock out expressions that become zero accidentally.

*



#do ijj = ‘TODO’

#if ( ‘$exists‘ijj’’ != 0 )

#if ( termsin(‘G’‘ijj’) == 0 )

#call Drop(‘ijj’)

#endif

#endif

#enddo

#if ( ‘c’ <= 2 )

#call takefactor(‘G’)

#endif

id Z(-‘c’,?a)*rat(x1?,x2?) = Z(-‘c’,

nterms_(x1)+nterms_(x2),?a)*rat(x1,x2);

B Z;

.sort

#redefine j "0"

#endif

#enddo

#endprocedure



These procedures allow us to go to larger values of INCCOMPLEXITY. When we run this
with INCCOMPLEXITY = 3 we find reduction equations for all 50 integrals of complexity
2. This means that any integral of complexity 2 or higher can be broken down to integrals of
complexity one and zero. Unfortunately there are only 8 reduction equations for complexity
one integrals. This means that there are 3 objects that we cannot determine with IBP
equations. Hence in the case that all powers are noninteger we must conclude that there must
be three master integrals.

Let us assume that the three remaining integrals are

Z(-1,-1+n1,n2,n3,n4,n5)

Z(-1,n1,n2,n3,-1+n4,n5)

Z(0,n1,n2,n3,n4,n5)

which means that eventually all integrals can be reduced to

Z(-1,0+m1*ep,1+m2*ep,1+m3*ep,1+m4*ep,1+m5*ep)

Z(-1,1+m1*ep,1+m2*ep,1+m3*ep,0+m4*ep,1+m5*ep)

Z( 0,1+m1*ep,1+m2*ep,1+m3*ep,1+m4*ep,1+m5*ep)

and in the case that some of the mi are equal the symmetry of the diagram could make that
there are at most two master integrals.



This means that for a given set of mi there are at most three master integrals and the set of
50 equations for complexity two integrals and the 8 equations for complexity one are sufficient
to reduce any integral of this type to its master integrals.

Actually we can do a bit better. With the above master integrals we only need a subset of
the complexity two reduction equations: Those that contain n1 − 1, n4 − 1, n1 − 2 or n4 − 2,
which makes a total of 17 equations. This means that any complete reduction scheme needs
17+8 = 25 equations.

For the calculation of the master integrals one could use the methods in the paper by
Bierenbaum and Weinzierl.

The above reduction method is called parametric reduction. We can use it to create a proce-
dure as in

#procedure reduceT1

*

* Procedure automatically created Tue Mar 6 02:11:58 2018

*

#$numloop = 0;

#do inumloop = 1,1

#$numloop = $numloop+1;

#$loopaction = 0;



id,ifmatch->looplabel,Z(n1?,m1?,n2?,m2?,n3?{>1},m3?,n4?neg0_,m4?,n5?,m5?)

=Z(-1+n1,m1,n2,m2,-1+n3,m3,1+n4,m4,n5,m5)*num(n4+ep*m4)*num(-6+n5+n4+n3+n2+n1+

3*ep+ep*m5+ep*m4+ep*m3+ep*m2+ep*m1)*den(-1+n3+ep*m3)*den(-2+n3+ep+ep*m3)-Z(n1,

m1,n2,m2,-1+n3,m3,1+n4,m4,n5,m5)*num(n4+ep*m4)*num(-5+n5+n3+n2+n1+2*ep+ep*m5+

ep*m3+ep*m2+ep*m1)*den(-1+n3+ep*m3)*den(-2+n3+ep+ep*m3)+Z(n1,m1,n2,m2,-1+n3,

m3,n4,m4,n5,m5)*num(-5+n5+n3+n2+n1+2*ep+ep*m5+ep*m3+ep*m2+ep*m1)*num(-6+n5+n4+

n3+n2+n1+3*ep+ep*m5+ep*m4+ep*m3+ep*m2+ep*m1)*den(-1+n3+ep*m3)*den(-2+n3+ep+ep*

m3);

id,ifmatch->looplabel,Z(n1?neg0_,m1?,n2?,m2?,n3?,m3?,n4?{>1},m4?,n5?,m5?)

.....24 more statements (most a bit longer) ....

ep*m3);

goto looplabel2;

label looplabel;

id num(x?)*den(x?) = 1;

id num(x?) = rat(x,1);

id den(x?) = rat(1,x);

$loopaction = 1;

label looplabel2;

ModuleOption Maximum,$loopaction;

.sort:reduceT1-loop ‘$numloop’;

#if ( ‘$loopaction’ == 1 )



#redefine inumloop "0"

#endif

#enddo

*

#endprocedure

We have taken out the complexity parameter and each argument ni has been written now
as two arguments ni,mi with ni integer and mi a positive integer. Let us see how this works:

Symbols ep,x,n,n1,...,n5,m1,...,m5;

CFunctions Z,Y,rat,RAT,num,den;

PolyRatFun rat;

Format nospaces;

.global

Local F = Z(2,1,2,2,2,3,2,4,2,5);

#call oldreduceT1(0)

Time = 0.04 sec Generated terms = 3

F Terms in output = 3

reduceT1-loop 1 Bytes used = 1744

.

.



.

Time = 0.24 sec Generated terms = 3

F Terms in output = 3

reduceT1-loop 6 Bytes used = 3868

id num(x?) = rat(x,1);

id den(x?) = rat(1,x);

Print +f +s;

.end

Time = 0.24 sec Generated terms = 3

F Terms in output = 3

Bytes used = 3868

F=

+Z(0,1,1,2,1,3,1,4,1,5)*rat(2605522570858994688*ep^15+

5733124412457058560*ep^14+5434061766013820736*ep^13+

2933159127648654960*ep^12+996429020871290448*ep^11+

219700993695997072*ep^10+30474403711289040*ep^9+2187759395822333*

ep^8-34031776903998*ep^7-23713496692257*ep^6-2182471844556*ep^5-

68940490489*ep^4+2676851682*ep^3+312393745*ep^2+10480200*ep+

127116,32961195540000*ep^15+129399858315000*ep^14+224421151745700



*ep^13+230148131079510*ep^12+156992002169205*ep^11+75753182355795

*ep^10+26785824281580*ep^9+7081231070340*ep^8+1413094602990*ep^7+

213064001010*ep^6+24090692640*ep^5+2006803890*ep^4+119252805*ep^3

+4773195*ep^2+115080*ep+1260)

+Z(1,1,1,2,1,3,0,4,1,5)*rat(7752013764359546880*ep^15+

15950087750181139200*ep^14+14377035448750008960*ep^13+

7474636263030531408*ep^12+2470132996699900656*ep^11+

534012149452956832*ep^10+73086003770458548*ep^9+5199933433250555*

ep^8-82580941868658*ep^7-56616880594755*ep^6-5243831418792*ep^5-

169480601095*ep^4+6223006662*ep^3+755399563*ep^2+25839024*ep+

319572,131844782160000*ep^15+517599433260000*ep^14+

897684606982800*ep^13+920592524318040*ep^12+627968008676820*ep^11

+303012729423180*ep^10+107143297126320*ep^9+28324924281360*ep^8+

5652378411960*ep^7+852256004040*ep^6+96362770560*ep^5+8027215560*

ep^4+477011220*ep^3+19092780*ep^2+460320*ep+5040)

+Z(1,1,1,2,1,3,1,4,1,5)*rat(-1018482066734444928*ep^15-

2213760426861637152*ep^14-2151247814777837088*ep^13-

1239313907404952520*ep^12-472671287088809324*ep^11-

126101083932262932*ep^10-24215192894038369*ep^9-3388926888965814*

ep^8-345637150383747*ep^7-25379551373304*ep^6-1306144656547*ep^5-

44872918806*ep^4-942184241*ep^3-10114752*ep^2-34236*ep,



32961195540000*ep^15+129399858315000*ep^14+224421151745700*ep^13+

230148131079510*ep^12+156992002169205*ep^11+75753182355795*ep^10+

26785824281580*ep^9+7081231070340*ep^8+1413094602990*ep^7+

213064001010*ep^6+24090692640*ep^5+2006803890*ep^4+119252805*ep^3

+4773195*ep^2+115080*ep+1260)

;

This integral might come about in a 17-loop calculation.......
The polyratfun has an interesting option. Often in the 4-loop calculations of moments of
splitting functions and coefficient functions we ran into the problem that the powers of ε in
the rat function would become very high, but the actual calculation would produce only a
limited number of poles in ε. In addition, the master integrals were only available in a limited
power series expansion in ε. Hence the calculation might be much faster if we can expand the
contents of the rat function. This can be done with

PolyRatFun rat(expand,ep,10);

for 10 powers. In a 17-loop calculation we would need up to 17 powers but for demonstration
purposes we will use only 10.

PolyRatFun rat(expand,ep,10);

Print +f +s;



.end

Time = 0.25 sec Generated terms = 3

F Terms in output = 3

Bytes used = 1548

F=

+Z(0,1,1,2,1,3,1,4,1,5)*rat(3531/35-94144/105*ep-32985809/630*

ep^2+2853141427/3780*ep^3-5113646773/4536*ep^4-4615816332221/

136080*ep^5+95520335002859/163296*ep^6-5505333372797891/699840*

ep^7+443278782772060729/4199040*ep^8-51508666473478911961/

35271936*ep^9+21813342889351406230279/1058158080*ep^10)

+Z(1,1,1,2,1,3,0,4,1,5)*rat(8877/140-139523/210*ep-14938465/504*

ep^2+1383622943/3024*ep^3-112521249101/90720*ep^4-5082603133133/

544320*ep^5+658515315781339/3265920*ep^6-1588086750856687/559872*

ep^7+130557893406403961/3359232*ep^8-383612041150078109501/

705438720*ep^9+32692137006874616833147/4232632320*ep^10)

+Z(1,1,1,2,1,3,1,4,1,5)*rat(-951/35*ep-582322/105*ep^2-87132401/

630*ep^3+323704849/540*ep^4+3324883475/4536*ep^5-1031319405421/

27216*ep^6+88728924538811/163296*ep^7-35281794395723201/4898880*

ep^8+82633996073507453/839808*ep^9-243807353102501443601/



176359680*ep^10+20832364564601418947143/1058158080*ep^11)

;

When you inspect the last term, you will see an ε11. Form expands to ten terms from the
leading term. In this case the last integral has a leading term in ε1 and hence the ε11.



The above looks very workable, but there is still one significant weakness. How do we
generate the reduceT1 procedure without making mistakes, or in other words automatically?
Also this can be done by Form with some nice facilities. Let us first study this for a single
weight 2 equation. Let us take the first of those equations as generated by the program
that worked with INCCOMPLEXITY=2. This is rather fast for experimentation. The first
equation that we select (number 159) looks like:

+Z(-2,2,1+n1,n2,n3,1+n4,n5)*(

+rat(2*n1*n4,n5)

)

+Z(-1,1+n1,n2,n3,n4,n5)*(

+rat(-2*ep*n1-2*n1^2-2*n1*n4+2*n1,n5)

)

+Z(-1,n1,n2,n3,1+n4,n5)*(

+rat(-2*ep*n4-2*n1*n4-2*n4^2+2*n4,n5)

)

+Z(-1,n1,n2,n3,n4,1+n5)*(

+rat(2*ep+2*n5-2,1)

);



It generates the id statement

id Z(-2,1+n1,n2,n3,1+n4,n5) =

Z(-1,1+n1,n2,n3,n4,n5)*rat(ep+n1+n4-1,n4)+

Z(-1,n1,n2,n3,1+n4,n5)*rat(ep+n1+n4-1,n1)+

Z(-1,n1,n2,n3,n4,1+n5)*rat(-ep*n5-n5^2+n5,n1*n4);

but we would like the statement

id,ifmatch->looplabel,Z(n1?{>1},m1?,n2?,m2?,n3?,m3?,n4?{>1}

,m4?,n5?,m5?) =

Z(n1,m1,n2,m2,n3,m3,n4-1,m4,n5,m5)*

rat(ep+n1-1+m1*ep+n4-1+m4*ep-1,n4-1+m4*ep)+

Z(n1-1,m1,n2,m2,n3,m3,n4,m4,n5,m5)*

rat(ep+n1-1+m1*ep+n4-1+m4*ep-1,n1-1+m1*ep)+

Z(n1-1,m1,n2,m2,n3,m3,n4-1,m4,1+n5,m5)*

rat(-ep*(n5+m5*ep)-(n5+m5*ep)^2+n5+m5*ep,

(n1-1+m1*ep)*(n4-1+m4*ep));

and if possible we would also like the polynomials in rat to be factorized to make them simpler,
because eventually the ni and mi will be numbers and it is better to combine those in short



function arguments before multiplying them out.
The code in the gauss procedure that writes the statement to file is

#write <subs> "id ‘$lhs’ = %2$;",$xxx

Unfortunately, if we keep this statement in this form, it rewrites into other complexity two
integrals and all lower integrals. In that case we may need all 50 complexity 2 relations. We
want to rewrite the necessary integrals to the three basis integrals, and hence we should not
eliminate them from the system. This way the gauss elimination gets fully diagonalized. And
of course we only keep the ones we need. For this we change the gauss procedure once more:

#call Drop(‘$imin’)

#$match = 0;

#if ( ‘c’ <= 1 )

#$numout = $numout+1;

G H‘$numout’ = ‘$lhs’-(‘$xxx’);

#$match = 1;

#elseif ( ‘c’ == 2 )

#inside $lhs

if ( match(Z(-2,?a,-1+n1,?b)) || match(Z(-2,?a,-1+n4,?b))



|| match(Z(-2,?a,-2+n1,?b))

|| match(Z(-2,?a,-2+n4,?b)) ) $match = 1;

#endinside

#if ( ‘$match’ > 0 )

#$numout = $numout+1;

G H‘$numout’ = ‘$lhs’-(‘$xxx’);

#endif

#endif

*

* Back to the regular form of the Z.

* Then we write to the .log file what we will replace.

*

id Z(-‘c’,x?,n1?,...,n‘N’?) = Z(-‘c’,n1,...,n‘N’);

#write "id ‘$lhs’ ="

#inside $lhs;

id Z(-‘c’,x?,n1?,...,n‘N’?) = Z(-‘c’,n1,...,n‘N’);

#endinside;

*



* And this is the statement that eliminates this integral.

*

#if ( ‘c’ <= 2 )

if ( ( $match == 1 ) && ( expression(H‘$numout’) == 0 ) )

#endif;

id ‘$lhs’ = ‘$xxx’;

.sort

This way we create a new series of equations H that contain all relevant equations and no
more. In addition the relevant integrals all have coefficient one. This means that they will
need no further work. They will be available at the end of the program, where we can use
them to write the reduceT1 procedure.

The procedure that can do this contains a new feature again: a dictionary. A dictionary
has a name and it allows us to give us very flexible control over the output. If we need for
instance LATEX output we can let Form print n1 as n 1, and we can let Form print a blank
space instead of a multiplication sign. And many more things. In this case we tell Form that
when the dictionary is active some variables have to be printed as wildcards. We assume that
the expressions have already been expressed in terms of factorized num and den functions.

#procedure CreatePRC(name,H,num)



#opendictionary LHS

#do j = 1,5

#add m‘j’: "m‘j’?"

#add n‘j’p0: "n‘j’?"

#add n‘j’m0: "n‘j’?"

#add n‘j’p1: "n‘j’?{>1}"

#add n‘j’m1: "n‘j’?neg0_"

#add n‘j’p2: "n‘j’?{>2}"

#add n‘j’m2: "n‘j’?neg_"

#enddo

#closedictionary

#write <‘name’.prc> "#procedure ‘name’"

#write <‘name’.prc> "*\n"

#write <‘name’.prc> "* Procedure automatically created ‘date_’\n*"

#write <‘name’.prc> "#$numloop = 0;"

#write <‘name’.prc> "#do inumloop = 1,1"

#write <‘name’.prc> "#$numloop = $numloop+1;"

#write <‘name’.prc> "#$loopaction = 0;"



*B Z;

.sort

#do i = 1,‘num’

#$lhs = firstterm_(H‘i’);

#$xxx = -H‘i’+$lhs;

#do j = 1,5

#$change‘j’ = 0;

#enddo

#inside $lhs

id Z(x1?,x?,n1?,...,n‘N’?) = Z(n1,...,n‘N’);

#do j = 1,5

#do k = 0,2

if ( match(Z(?a,n‘j’+‘k’,?b)) );

$change‘j’ = ‘k’;

id Z(?a,n‘j’+‘k’,?b) = Z(?a,n‘j’p‘k’,?b);

elseif ( match(Z(?a,n‘j’-‘k’,?b)) );

$change‘j’ = -‘k’;

id Z(?a,n‘j’-‘k’,?b) = Z(?a,n‘j’m‘k’,?b);



endif;

#enddo

#enddo

id Z(n1?,...,n5?) = Z(<n1,m1>,...,<n5,m5>);

id rat(1,1) = 1;

#endinside

#inside $xxx

id Z(x1?,x?,n1?,...,n‘N’?) = Z(n1,...,n‘N’);

id Y(?a) = Z(?a);

Argument Z,rat,num,den;

#do j = 1,5;

id n‘j’ = n‘j’+m‘j’*ep-‘$change‘j’’;

#enddo

EndArgument;

Argument Z;

id ep = 1;

EndArgument;

#do j = 1,5



SplitArg,((m‘j’)),Z;

#enddo

#endinside

#usedictionary LHS($)

#write <‘name’.prc> "id,ifmatch->looplabel,%2$",$lhs

#closedictionary

#write <‘name’.prc> " =%2$;",$xxx

#enddo

#write <‘name’.prc> "goto looplabel2;"

#write <‘name’.prc> "label looplabel;"

#write <‘name’.prc> "id num(x?)*den(x?) = 1;"

#write <‘name’.prc> "id num(x?) = rat(x,1);"

#write <‘name’.prc> "id den(x?) = rat(1,x);"

#write <‘name’.prc> "*id num(x?number_) = x;"

#write <‘name’.prc> "*id den(x?number_) = 1/x;"

#write <‘name’.prc> "$loopaction = 1;"

#write <‘name’.prc> "label looplabel2;"

#write <‘name’.prc> "ModuleOption Maximum,$loopaction;"



#write <‘name’.prc> ".sort:‘name’-loop \‘$numloop\’;"

#write <‘name’.prc> "#if ( \‘$loopaction\’ == 1 )"

#write <‘name’.prc> " #redefine inumloop \"0\""

#write <‘name’.prc> "#endif"

#write <‘name’.prc> "#enddo"

#write <‘name’.prc> "*"

#write <‘name’.prc> "#endprocedure"

#endprocedure

The major work in the procedure is to change something like

id Z(n1,n2+1,n3,n4,n5) = f(n1,n2,n3,n4,n5)

for some function f, into

id Z(n1,n2?{>1},n3,n4,n5) = f(n1,n2-1,n3,n4,n5)

or

id Z(n1,n2-1,n3,n4,n5) = f(n1,n2,n3,n4,n5)

into

id Z(n1,n2?neg0_,n3,n4,n5) = f(n1,n2+1,n3,n4,n5)



The needed modifications are detected in the #inside $lhs part of the code, the shifts are
executed and the left hand side of the id statement is written while the dictionary is active.
Then there is one more complication: The ni contain also a multiple mi of ε. We have to
take the mi separately, because otherwise we cannot check the ni for the conditions we want
to impose on them.

At this point we can run the complete program for INCCOMPLEXITY=3 again. The
value 4 was also tried but gives nothing new, except for that it takes almost 20000 sec on a
big computer while the value 3 takes 2422 sec.



How does this compare with how other people reduce their integrals to master integrals?
The most popular other method has been introduced in ”High precision calculation of mul-
tiloop Feynman integrals by difference equations”, S. Laporta, Int.J.Mod.Phys. A15 (2000)
5087-5159 DOI: 10.1142/S0217751X00002157. Whereas the parametric reduction starts with
the most complex integrals and gradually work things down to the lowest complexities, the
Laporta method works the other way. One starts with the simplest equations and solves what
can be solved. The results are stored. Next one goes to the next level in complexity and
solves what can be solved, storing the results. Etc. Eventually all integrals that are needed
have been stored, ready for use.

Both methods have advantages and disadvantages. In the method of Laporta one may need
very large storage facilities. Also, one has to compute many integrals that are never needed.
In the parametric reduction one calculates only the integrals that are actually needed, without
the need for storage. On the other hand, the derivation of a parametric reduction scheme
requires much more care and usually more manual interference. Because the Laporta method
can be fully automated (as done by A. von Manteufel with the Reduze program and later also
by others), nowadays most people use this method. The parametric reduction however gives
by far the fastest programs.

Both methods suffer from problems with rational polynomials. It gets worse when masses



and more external lines are included. This gives extra variables in the problem and they
become part of the rational coefficient. One popular solution for the Laporta method is to
use an external program (Fermat) for the rational polynomials. The whole becomes very slow
and programs can run sometimes for months on powerful computers with many cores, just to
obtain tables for the topologies of a reaction, and the tables may take Terabytes. In contrast
the whole Forcer program for four-loop massless integrals takes about 10 Mbytes in total.
Homework: Try to modify the ending of the reduceT1 procedure such that it can handle

also the cases in which some of the mi can be zero. This involves getting the integrals to such
a basis that there are as few Z integrals as possible remaining. In the case that both the ni
and mi are zero, the integral is renamed as a Y integral. Those can be expressed in terms of
Γ functions. In particular, when there are three mi that are zero, there is at most one master
integral (of the Z type). The equations (all are zero) that are relevant here are:

H18=

+Z(n1,-1+n2,n3,n4,n5)

-Z(-1+n1,n2,n3,n4,n5)*num(n4-n2)*num(-4+n5+n4+n1+2*ep)*

den(-3+n5+n3+n2+ep)*den(-4+n5+n3+n2+2*ep)

-Z(n1,n2,n3,-1+n4,n5)*num(-3+n5+n2+n1+ep)*

num(-4+n5+n4+n1+2*ep)*den(-3+n5+n3+n2+ep)*



den(-4+n5+n3+n2+2*ep)

+Z(n1,n2,n3,n4,n5)*num(n4-n2)*num(-3+n5+n2+n1+ep)*

den(-3+n5+n3+n2+ep)*den(-4+n5+n3+n2+2*ep)

;

H19=

+Z(n1,n2,-1+n3,n4,n5)

-Z(-1+n1,n2,n3,n4,n5)*num(-3+n5+n4+n3+ep)*

num(-4+n5+n4+n1+2*ep)*den(-3+n5+n3+n2+ep)*

den(-4+n5+n3+n2+2*ep)

+Z(n1,n2,n3,-1+n4,n5)*num(n3-n1)*num(-4+n5+n4+n1+2*ep)*

den(-3+n5+n3+n2+ep)*den(-4+n5+n3+n2+2*ep)

-Z(n1,n2,n3,n4,n5)*num(n3-n1)*num(-3+n5+n4+n3+ep)*

den(-3+n5+n3+n2+ep)*den(-4+n5+n3+n2+2*ep)

;

H20=

+Z(n1,n2,n3,n4,-1+n5)

-Z(-1+n1,n2,n3,n4,n5)*num(-3+n5+n4+n3+ep)*

num(-7+2*n5+n4+n3+n2+n1+3*ep)*den(-3+n5+n3+n2+ep)*



den(-4+n5+n3+n2+2*ep)

-Z(n1,n2,n3,-1+n4,n5)*num(-3+n5+n2+n1+ep)*

num(-7+2*n5+n4+n3+n2+n1+3*ep)*den(-3+n5+n3+n2+ep)*

den(-4+n5+n3+n2+2*ep)

+Z(n1,n2,n3,n4,n5)*num(-3+n5+n2+n1+ep)*num(-3+n5+n4+n3+ep)*

den(-3+n5+n3+n2+ep)*den(-4+n5+n3+n2+2*ep)

;


