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two photon processes should be no background to Drell-Yan signals in pp
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Introduction

The firet events at the pp comder“} have started a new era in experimental high
energy physics. A new generaton of wmachines lke the pj collider, LEP, HERA,
the Fermflab collider, ISABELLE and the SPC will open a whole new range of
energles to investigation. At most of these machines 2 photon events will be
copiously present even though they may not be the primary target of attention.
Whether these events are judged a signal of interest or a potential background it
will be necessary to have a computer program with which one can study thelr
theoratical properties and a Monte Carlo event generator to be able to compare
theory with experiment.

Por ete” colliglons much work has been done already{2'3] and also a number of
papers["’s'é] exist concerning p(f)) colislons. Nevertneless as of yet no good
event generator exiats for ep or p(ﬁ) 2 photon reactions while the generator for
the reaction a¥e” + efe utu" 17} suffere occasionally from numerical Instabfities.
Even though these instabilities occur at the moment only in umobservable corners of
phase space, higher centre of mass energles could change this. It is therefore the
aim of this paper to remedy this sltuation by presenting the formulse that are
necessary for a numetically stable computer program thet can handle 2y reactiome
at any energy for any set of Incoming particles. Using such a program ther, the

obsarvable cross sectiona are calculated for varicus machines and energy ranges.
+ -

This 1s done for the 2y reactlons e seteyty™, ep ¢ ep’uX and

p(ﬁ) + ';;*'p."x, assuming a muon acceptance that might be called typleal for the
machines involved. The wuons can be considered as a veasonable test case for
most of 2y physics as high p; hadron physics in 2y collisions can also be treated
as the production of 2 pointllke fermions, be it with different charges and
masses. Experimental Information has become avallable, recently, that confirms
tial®].

It should be noted that in many cases the two photon diagrams are not the only
ones that contribute to a. specific final sr.ate[?l- Usually these extra diagrams
contribute only on the level of 1% of the two photon diagrams or in an easily
recognizable separate corner of phase space. In the case of small angle tagging
experiments their contribution erays limited to less than 10% but in the case of
double tagglng at large angles these extra diagrams may even become dominant[gl.

The caleulation of these extra diagrams presents however fewer techoical
difficulties than the calculation of the multiperipheral two photon diagrams so they
will not be considered in this paper.

The outline of the paper is as follows. The kinematics of general two photon
reactions s described in sectfon T and the appendices A and B. It is also
explained in this section how one should make the extension to specific two photon
reactions. Special emphasis is placed on the strategy concerning the numerical
integration and the possibility of event generation. Section III shows a new method
to formulate matrix elements when gauge cancellations can cause severe numerical
problems. The result is a numecically stable formula for the matrix element of the
two photon production of a palr of fermions in which the beam particles can have
arbitrary structure functions. In section IV it is shown what kind of two photon
signals can rvoughly be expected at the new generation of e+e", ep or pp
colliders. The whole {s finished with some conclusions in section V.

FEFREETE
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II The Kinematice

The main feature of 2y processes is thelr multiperipheral structure in which
there are two photons in the t-channel. This is responsible for the large
cross sectlons and also for the very strong gauge cancellations In the matrix
elament. Most of the cross section {3 found at very small values of t for
both photons. This can cause severe problems for a mumerical integration
program. Additional difffculties arise when one needs cross sections which are
integrated over an experimental acceptance. Many mathematically orlented
integration methods are excellent for integrating smooth functions hut have
great difficulties with the dlscontouities caused by experimental cuts. The
traditional solution for this problem is that used in ly production processes,
namely to gemerate events according to the total cross section and only see
afterwards which events survive the cuts. Such programs are called event
generators and we will call this specific procedure event generation of the
first ind., Thia method is not very practical for 2y processes or other t-
channel dominated veactions ltke Bhabha scattering since a typical detector,
only measures a fraction of the total cross section, It would be very time
conguming to generate events according to the total cross section and
eventually throw most of them away because they do not gatisfy the
experimental acceptance. A more practical method is to implement cuts during
the lntegration or during the generatdon of events. There exist two main lines
of thought on how this should be done.

In the first method one rewrites the phase space Integral In such a way that
' thoge cuts which reduce the observable event rates most, Hke for instance the
angle cut on an electron in a tagging experiment, can each be expressed in a
single integration variable. The advantage of this approach {s that one can
remove most of the discontinufties by readjusting the Integration toundaries. A
first disadvantsge fa that the peaks of the watrix element now show up as a
correlation batween several variables so it is harder to Integrate over them .
It might be necessary therefore to aplit the phase space up into various

_f

pleces such that each piece contalns a slngle peak. One can then concentrate
separately on each plece {n order rto Integrate it accurately. A second
disadvantage is that sometimes there are wmore cuts than varfables so it is
impossible to remove all the discontinuities. The fact that one may also need
a completely different reformulation of the phase space integrals if the nature
of the cuts is changed drastically caa be considered a third disadvantage.
Event generatlon according to this method we call event generation of the
second kind.

The different method which is the one used here relies on a complete
veformulation of the basic phase space Integrals. The integral is rewritten so
that the denominators of the propagators which are responsible for the sevare
peaks of the matrix element are used directly as integration varlables. It is
then rather easy to control the near divergences which are caused by the
ioverse photon propagators t; and ty. The differentlal cross section behaves
roughly lke t;ltz—l so by changlng the integrals over tj and ty into
{ntegrals over Xn(-~ty) aod An(-tp} the integrand 1s not so badly peaked any-
wore. The drawback of this method is of course that now nearly all cuts
become conditions that are Eunctions of more than one varlable. For a good
automatic integratfon routine this 1is usually not too hard a problem. The
program used here is VEGAS (10} .nd the results show it to be satisfactory.
The combination of VEGAS, 1its extenslon by Kawabata [11] 4nd tiis
reformulation of phase space ylelds a good event generator = of the third
kind ~ that can compete with a dedicated generator of the second kind (1],
The great advantage of this method is its unlversality as one program can deal
with any kind of experimental cuts.

The basic inematics of the two photon reaction caa be writtea as a 2+ 3
process ke in figure 1. All two photoa physies properties can be found In
rhis system independently of the particle contents of the systems described by
the 4 wvectors p3, Pg OF Pse The treatment of the phase space integrals 1s
according to the following decomposition formula in which we assume that
Py contalns nq particles, p, contains n; particles and pg contains
ng particles:
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This formula shows that every two photon reaction can be rreated
kinematically as 1f it 1s a 2 to 3 reaction Uke in figure 1 in widch the
squares of the masses of the [inal state systems ave also to be integrated
over and normal n-body phase space deacribes the “decay” of these three

gystems. Norﬁmlly Py, Py and pg contaln only one or two particles each so,

this "decay" will be rather elmple. The reformulation of the essential 2 + 3
reaction to make 1t suitable for 2 photon physics s done in appendix A. If
the bheams carry no polarization the whole system s symmetric undar rcotatrions
around the beam axls and the integration over such an azimuthal angle is
trivial,  Congequently the {ntegral fd3p3l(253) dapq/(%z.) d3?5/(255)
6(!')(91 +py " p3 ~ Py ~ P5) can be reformulated in terms of only &
velativistic lnvariants among which one has to take t; and t;. The choice of
the other two variables, s; and 4, made it possible to write the formulae of
appendix A in such a form that the matrix element can be evaluated in a
numerically stable way, eliminating all problems with gauge cancellations.

The expressions for the CM angles and energles in terms of the invariants of
appendix A can be found In appendix B. These CM quantities are needed
because the experimental cute are usually expressed in terms of them.

b

The rest of the ldnematlcs concetns the treatment of the "decay” of the final
state systems described by p3, p; and pg. As an example we will congider
here the aystem described by p,. If it contains only ome particle with mass
@y its phase space {ntegral {s trivial:

fan L..Ldl gt ) e’ Epe 2P0 (L)

in ZR)" 2

and particle 4 13 on-shell. If there are two particles in the system described
by py it is easlest to use angles In the centre of mass of the twe particles:

2 tw 2
(T2 ) o0 ko) (a2 Poun

(,g.tt)5 zEf'ﬂ 26, 2By ant

: )\'}‘CP-T.W:,M?‘)E aQ™ (T,s
w2n? pl

in which we switched to the notation pg = p]_(t') and py; = pz({'). The one
problem with this reformuladon is that {t needs an additonal transformation
from this centre of mass to the laboratory Erame. At flrst sight this does not
seem too difffcult as one can just boost this CM frame tfll system 4 acquires
the proper energy and then rotate it into the right direction, indicated by
84 and 4,. The angles 8, and b, can be obtained from the formulae In
appendix B. The difficulty arlses if the orlentation of the €M frame of
system &4 s not vandom. It i3 for Instance best to have the incoming Y's
define the z~axds in the CM¥ frame. Many interactions of the two photons will
exhibit a forward or a backward peak. With the above orientation of the z-
axds, all peaking is conflned to the O variable and any varlatlon with ¢ witl
be due to spin structure and/or expecimental cuts. Having chosen the z—axis

Y and ¢Y before boosting and
rotating over 01‘ and ¢4. The formulae for GT and ¢T can be obtalned by
inverting this procedure and observing the direction of the y'® after the

this way one needs to rotate aver the angles O

rotations over -¢, and —~G; and the boost that brings system 4 to rest.
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Finally the x~z plane stfll has to be dafined. One can do this by requiring
pp to He fn the xz plane of the CM frame of gystem 4. This means that
theve will be another rotation around the z-axis over the angle (. This angle
can be found by studylng py under the rotations ~¢y and -8y, the boast that
brings aystem & at rest, and the rotations —'¢T, -GT' Some of the formulae
that are obtalned this way may not be very stable numerically. In that case
it may be betier to obrain quantitles lke ainG]_CM directly from the Levi-
Civita tensors of appendix A, the same way this is dore for the lab varlables
in appendix B, and then use the results of the transformations only to
determine the sign of cosGICM
1f the systems 3 and 5 are only representing & general inelastie reaction as
tn deep inelastic scattering the corredpoading structure functions do not
depend on the Winematics of the "decay" . This means that the “decay”
‘ integrals can be done leaving a function of p3 or p5 which is absorbed into
the structure functions. In such a case only the dpy or dpsz integrals ace
left to represent the systems 3 and 5.
Using the above set of varisbles all severe peaks that occur in the matrix
element of a two photon reaction can be controlled. The t1 tz ~! behaviour
by changing the Integradon variables ty and t; into ,tn(—tl) and An(~ty},
the forward backward peaking of for instance the subreaction Y y * p.+p" by
changing c0s0™ fnto a more exotie variable and the 1/(p42)2 behaviour of
du!dpk by replacing dp.ﬁ by d(llp;,) Other changes of varlables are

shown in appendix A. Usually the change concetnlng c:os(‘.)cM is not needed in-

the presence of experimental cuts as the observation of some of the ceatre
particles is demanded. This wmeans that they should have a reagsonable value
for thelr py which in {ts turn means that GCM ghould not be too near the
forward or backward peaks. One should also realize that experimental cuts
can change the asymptotic behaviour of the cross section considerably,
requiring different changes of variables. Most cuts require for example the
replacenent of dp: by d).npk instead of d(llpﬁ Y

1 The Matrix element

Normally the dertvadon of a matrix element i3 a rather stralghtforward
exercise with Feynman rules 1f one does not need to worry about the practical
problem of numerleal evaluatlon. Consider for instance the reaction
ete™ » ote”uu” at PETRA or LEP energles. 1f the matrix element were to
be evaluated in the standard fashion ~1.e. expressiog it completely in tetms
of 4~vector products and then substituting thelr numerical values for each
Monte Carlo generated point in phase space - then the cancellations between
the varlous teras would be so bad that even the 60 bit accuracy of a CDC
computer would not suffice. It is therefore necessary to use a different form
for the matrix element - and thus a differect derivation -, which 1z slightly
aore tedlous.

To get a feeling for how this can be done In a very simple system let us
caleflate the matelx element of the reactlon ete” 5 e*e"rn! under the
assumption that the 1t0 behaves Uke a point particle, 4,e. without
formEactors, The coupiing between the photons and the no can then be written
as %gnnl-‘w?“" = ig‘rtol-‘w\?poswpc. Adopting the notatfon of figure 2 the
matrix element can be written as:

&= _ -8
O p%se LR Yy VI (P2D \

- pve!
\"W(.\lg %7- e \U'LPQ_KP“(PJ Eq:. AL
From now on we will use the notatlon that if an index of a Levi—-Clvita tensor
{s contracted with the lodex of a 4-—vector this index of the Levi~Civita tensor
{s replaced by the A-veetor, so e 92 g for ghVPY, q5 + The matrix
element is now brought into Its final form by working oul:(I the square,
summing over the spins, taking the 2 traces and making the substitutions
Py " Py T 9 and ps = py " 4y This glves the expression

PP ?ﬂ.chr*
f@el* «q e_“[ b4 € Cropuga POUE  Cpaa

(ITL.2)
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If the Levi-Civita tensors are contracted into &4-vector dot products this
formula becomes numericslly wmstable, but in its Levi-Civita form all 4 terms
are positive so no cancellations occur. It should be noted that the first term
(P191P292

Pia1P2492
terms are minors of it, so all four terms have a meaning in the kinematics.

is the Gram determinant of the system and the other 3

When these kinematics are treated according to the method of appendix A all
4 gperms in formula (II1,2) will be cobtained in a numerically stable fashion.
The teason for the numerical stabflity of formula (II1.2) 1is due to the fact
that the amplitude of the subreaction y*v* * 116, gselqlezqz
the polarfzation vectors of the twoe photons) 1s a single term which is

m:;\lfesﬂy gauge dnvariant. Formula (IIL.2) 4s derived by multiplying
1v42
[

(e; and ey are

ep’lql"'qz with the tensors from the electron and the positron lines,
so each term in (I0.2) is necessarily gauge independent and there can be ac
more gauge cancellations.

The procedure to obtaln a corresponding result for the reaction
ete™ » afemutu™  shoutd consequently follow a similar path. First the
aaplitude for the subreaction y*'r* + 117 has to be written in a mantfestly
gauge invariant way in which each Individual term js gauge fndependent. Then
the matrix element for this subreaction fs evaluated and rewritten In a
sultable form, after which the coatraction with the electron and the positron
glves the full matrix element. As the electron and the positron are put in
lagt, it becomes also easy to Insert structure functions and obtain the matrix
elements of the reactions pp + pou'E”, ep + epp+p" and thelr corresponding
inelastic veraions.

The first atep of the above procedure ls achieved via the ldentity:

Gpodsh B g e B g i)

(IIL.3)

Q| i
' - d}* q e ph u'(.ﬂ) Eﬁfﬁ* &!'L\‘ M(P-,,J
(Rint) (Ri-m?)

uglog the notation of figure 3. To derlve the above formula the idendtfes
ﬁ(pﬁ)(fﬁ ~m) =0 and (f-, + m)v(py) = O had to be used several tlmes,
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together with some Y matrix algebra and the Schouten identity for Levi-Civita
tensors. It should be noted that the right—hand side of (III.3) has a common
denominator suggesting simitarities between the method used here and the
derlvation of “super“formulae of ref. [12].

The natrix element for the subreaction y*y* > p+p.— is now brought into the
form

gea0n qe¥8 g esp’ 92,78
€ € & € F«pzﬁa'p‘x’&' (1. 4)

Obtaiming the precise form of the tensor F {mvolves a spin sum and the taking
of a trace. In this form it is rather difficult to evaluate (TIL.4) for a given

polnt in phase space. An example of a term that is far from trivial is
qlelaa qzezﬁY

Sqpegep®
companérly, let us introduce a new notation Inspired by the fact that
q424%
£

€ q e YQ with @ = pg " P7e To write such forms
is an antisymmetric tensor with two Iindices. In this notation the
above "difficult” term becomes Qele2eZele(}. Terms like this one are to be
reduced to sums and products of scalar quantities that are coatractions
between two Levi~Civita tensors only. The necessary reduction formulae can be
found In apperdix C. Once these reduction formulae have been applied the
matrix element of the subreaction takes a rather simple form. Using also the

qqe,af
notation Tr[i.j] =g quejﬂd this matrix element {3 glven by the formula:

lare|” = i 8((qiany’ - CQ.q,)‘)(;‘; (Tr[uz ) -G 'e'q‘e‘eq.elqw‘)
=2 LQ"‘-)“ Telio1] Tef202] - 8 ‘l Qe - 'I‘Tr[nz](Q""tq..qt) }1
L ("% qQ.q;) « Trl2e2] (¥ e, Q‘p) } (11L.5)

« (ara)-(Qa )"

Even though the terms in this formula are not 4l positive there are no
problems with the resudlting cancellatipns. As all the gauge cancellations are
hidden inside the Levi-Civita tensors whatever cancellation fs left is due to
spin structuwre and therefore not serious. To llustrate this somewhat we
calculate the auplitule for the reactlon Y*y* > 1t+11", assuming again that the
plons are point particles. Even though theve is an extra seagull diagram the
game notation can be used as in the Y*T* hd u+|.1_' reaction and the amplitude

becomes
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becomes

q . =2 (Q0122.Q - §Trfaa](@0g.a,) (11.6)
(Ba)! -@.a,)"

using k12 - m2 = - qqy.qp - Qeqp amd kzi - mz = = gy+q97 * Q.qq. Onme
can gee now that one of the terms of (I11.5) is -2 times the matrix element
for the production of two pointlike charged scalar particles. At high energles
the cross section of the reaction e+e" + efe™n™n” 1s almost an order of
magnitude smaller than the eross secton of the reaction
ete™ > e+e_p+p‘[13] even 1f one allows for the fact that the lighter mass
of the wmuon 1s to be compensated for by a factor mﬂz/mu2 in the cross
section, so cancellations involving this term are not severe.

The addition of the clectrons {or protons) is now rather simple. The electren

glves:
T [Urm)¥r (Biemdpo ] 2 2(a0Gp ~Qupan)+ 2QPp-2pY2Po-aw) (UL 7)

2
uslng py = p; — Gp+ Skuce py-g; = %) this ean be rewritten ast

Tt 4 5 (1I1.8)
g‘q.lt C%tﬂ? - q—l;Tq:!) + a(Pi?A‘%QIP)(PW‘Lq%'qH)
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This formula is symmetric In p and v and therefore the contraction with
(11f.5) gives no problems as to which e, should be caplaced by a u and

which one by a v. For protons we take

:QT‘(%.,N-%%!) W, +8(pp- P{% 2l —?‘f"{qw)wx (111.9)

This way the normalizatfon Is such that for polnt particles W, and W, are
both equal to one. Even though these definitions differ feram the customary
ones by factors --2:;1]_2 and 8 respectively we belleve that this undque way of
defining W; and W, is the better one.

The full matcix element for the two photon production of a palr of spin %
point particles with mass m can now be written as:

) w @ (1)
2 _ W: wnmﬂn +Wh "‘-‘z Mizs Mm*\'-';“wz Mz (I1X.10)

(a? a2 ({arad - (@a )

(T
2 W

kudl

where the upper index of the structure fuactions refers to photon number 1
and photon number 2 respectively. The evaluation of My, and Mg, still needs
some reductlon formulae. Those are also present In Appendix C. After this
the final expression for the Mij becomes:
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The Levi~Civita tensors contracted with the 4~vector Q have to be evaluated
carefully as they are not coutained In the kinematics of the reaction discussed
in the appendices. It {s however not too complicated to do so as the only
relevant cancellations come from the interplay between p; and q; or between

_th-

71912 ¥
py and q3. To evaluate for example € 1" 891‘11Q §

analytically, the components of the axial 4-vector at = ¢

one could calculate,
P18Q B
in the lab
0.2
frame and then compute a“'au. There are some cancellations between (a2 )
3.2
and (a")  and oaly after cancelling these terms analytically should one
substitute numerical values. It fs also possible to do this in the CM frame of
the two collding photons.

+EbrE
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1V _ Resulta

With the ald of the previous two chapters acd the appendices it {s posaible to
constru¢t a computer program for two photon reactions that produce two
fermions at the centre. Whenever a beam particle is a proton It is necessary
to specify irs structure functlons. Most of the cross section will be at small
values for the invarlant mass of the hadron system so it is necessary to use
structure functions that are good in the resonance region. In principle it is
possible to use the data from ep and pp scattering to get good structura
functions in the whole Q2 and invarlant mass range that is relevant for the
two photon processes under conaideration. This would go far beyond the scope
of this paper. To get a rough impression of the inelastic results we decided
to use the structure functions from the paper by Surl and Yennie[M] which
are a reasonable fit to the measured structure functions In the resonaace
reglon. For the elastic case the usual dipole form factors were used,

As a first check the total cross section of the reactlon efe™ + efe™pty” was
calclated at a CM energy of 30 GeV because this number is known to be
between 119 nb and 120 nb from previous programs[?]. The current resylt is
119.555 + 0.019 nb. This accuracy which took about 3 million Monte Carlo

points is of course absolutely useless from a physics point of view. The.

integrand is however a good test case for numerical integration programs. For
the rest we conglder total cross sections irrelevant for most cases. The cross
sections that ave relevant are total observable cross sections within a glven

acceptance .

Let us therefore conslder the 2y production of & muon palr In e+e—, ep and
pp collisions with the condition that the muon palr ghould be cobservable. The
detector should have a geometry that is typleal for LEP, HERA or ISABELLE.
A wmuon was defined observabtle when its angle with respect to the beam axis
gatisfles the conditfon [cos@] < 0.95. Addidonally the muon has to have a
perpendicular momentum of at least 1 GeV/e when |cosof < 0.75 or a
longitudinal momentum of at least 1 GeV/c when 0.75 < Jcosd] < 0.95. This
last condition comes from the fact that the muon shield has two endcaps,
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thus forming a Mg cylinder with two holes for the beam. The most significant
difference between this “standard” datector and UAl at the pp collider is the
momentum that the muon needs to traverse the shield. In the case of the Ual
experiment at least 3 GeV/c is ceeded in the direction that is perpendicular
to the shield, The observable cross sections for the “standard” detector can
be found in table 1.

Tt is posaible to completely eliminate 2y processes as a background to brell-
Yan events if one considers the very steep t dependence of the cross sectlon
which indicates that elastic protons will almost never be vislble and the
inelastlc systems also go forward, The separation criterion 13 that Dreli-Yan
events are accompanied by hadrons along both beam directions - the remnants
of fragmentation -while in the case of 2y processes It is a very great
exception to see hadrons ocutside both beam pipes simultaneously. Of the 67.5
pb in the elastic-elastic channel for pp collislons about 0.4 pb has one
proton come out at an angle larger than 3,7 wmrad (this corresponds to
Q2 = i Ge\.’z). The cross section for both of them to have Qz > 1 GE:V2 is
much less than 10_33 cm2. Of the 66.8 pb in the elastle~inelastic case only
3.10"37 cm2 has the elastlc proton come out at more than 3.7 urad. This
leaves at best the inelastic—inelastlc events as a potentlal background for
Drell-Yan processes and most of those will have hadronic systems with a swmall
{nvariant mass in the rescnance reglon. When such a resonance decays irs
decay products will have a relatively small py and a lot of energy - the
energy of the resonance {s about 270 GeV - so agaln only a small percentage
will be visible. The total cross sectlon of two photon events accompanied by
hadroas outslde both beam plpes with an angle of at least 10 mrad with
respect to the beam directions is estimated to be lzss than 1 pb. A hetter
egtimate needs a Monte Carlo of the inelastlc hadronic system. More
knowledge about the inelastie hadronic system will also lead to & better
selection criterion reducing the possible background even further. This method
of separating the 2y events from the Drell-Yan events 1s better than the use
of a cut In the value of the perpendicular momentum Qg of the dimuon
pau-[f’). There will be a oumber of Dreil-Yan events at small Qp and the
experimental resclution will glve some 2y events at larger Qp. Therefore the
experimental resolution will make such a cur less efficlent.

Of course the above numbers are very sensitive to the specific expression that
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is used for the structure functions. In due time it will be necessary to have
a rellable set of structure functions that is specifically fitted to the data for
the use in two photon phyaica. A comparison between the results here and
those of ref. [4] which uses the parametrization of ref. [153] shows ‘the
current caleculation to glve a afgnificantly larger lnelastie cross section.

It should also be noted that 2y eventa were discovered at the ISR[16] via the
observation of an excess of dimuon events with no accompanylng hadrons.
Finally the total ohservable cross section for dimuon events coming from two
photon colHsions is only about 7 pb if the muons need at least 3 GeV to
traverse the shield, This shows that two photon physics should cause
absolutely no problems for the pp collider experiments.

Dimuon production by two photons can also glve a rough idea of the hadron
glgnal that can be expected in 2y collislons., For estimating the mumber of 2
jer events fn two photon collislons one needs the value of Ryy and dulduw.
This dc/dnw is given in figure &, while the value of RYY is 34/27 in the
region where 4 flavours are relevant and 35/27 if five flavours contribute.
From figure 4 41t is clear that HERA will need a sgignificantly better
luminosity than LEP in order to be better at two photon physics in the mass
range of 10-20 Geh‘lc2 for the 2y system. For ISABELLE to compete with
LEP it will be necessary to cealize a luminosity that is an order of magnitude
better than that of LEP.

2 -
The rather atrange looking dip in the dimuon mass distribution at 2 GeV/c ia

due to the cuts. When the p; cut iz relevant (|cos@p| < 0.75) there are
almost no events below 2 GeV/cz, but when the cut is on py there is a
completely separate signal that peaks at a smaller value of the dimuon mass.
If a ouon has casd = 0.95 and py = 1 GeV/c its p, is elightly larger than
300 MeV/c so one would expect this second peak to be above 600 He\i’/cz.
The figure shows it dlightly above 1 Gevfcz in the elastic channels while it
1{s partially washed out in-the inelastic channels.

The total cross sectlon with two muons and one electron observed 13 another
gignal of interest. For this {t was assumed that an electron or positron is
observable if it has at least a 20 mrad angle with respect to the beam
direction. The cross sections ave presented in table 2. It should be mentioned
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that these signals «ill actually be larger due to the other dlagrams that
contribute to the reactions ete™ + e*e-p.*'u- or ep * eg"'p.-x. In the case of
double tagging there are some cute that even make them the
dominant diagrams, but, as mentloned fn the Intreduction, we will not
conslder then in this paper.

The most remarkable feature of table 2 13 the fact that the event rate sat
HERA for tagging experiments will not be bettec than at LEP unless the
luminosity at HERA 1a two times higher. The main disadvantage of HERA 1s
due to the fact that at LEP one can tag on both sides while the HERA
advantage of the smaller electron energy (this means a smaller Q2 for equal
angles) 1s not quite enough to make up for it.

LA
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Conclugions

A working progras has been constructed that can caledlate two photen
processes for the accelerators of the near future. At equal luminosgities LEP
is the better two photon machine but 1if the luminosities at HERA and
ISABELLE will be significantly higher this situation wmight be reversed. A
careful stdy of the hadeon system in the inelastic channels will eliminate two
photon processes completely as a background to Drell-Yan signals. Very simple
eriterla like callng an event a Drell-Yan event if there ate hadrons at an
angle of more than 10 mrad near both beam pipes should already reduce the
two photon signals in pp colliglons at Y3 = 540 GeV by two ovders of
magnitide .

To conclude, the author would Uke to thank J. Smith of SUNY Stony Brook.
and W, van Meerven for stimulating discussions.
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Appendix A

The nucleus of the kinematics as used for the two photon caleulations ia this
paper congists of a reformulation of the two to three body phase space such that
the iategration variables are relativistic invariants“”. One of these invarlants Is
then replaced by a slightly more exotic variable

A 2 pLepy 4199 ~ Py-92 P29y according to the notation of Eigure 1. This gives

then for the phase space integral:

S Ek_}.i‘- ciaj-‘!- ia_?.‘_ &L“)(pw[:z_m_fy.‘__p,.) =
2Ey 26, 26s

L — s, Ay aby Aty (a1}
.h 1 i
A (5, mim ) WIS
. * A ds, db, ke
= (A2)

4 »h (s,mi m)> (sa-k-mi) - By (PuBLB,Pa)

with A,. being the Gram determinant of the system. This Gram determinant can be
written as:

PiPets Py
ba= e PPy Py

{43
PSP
€ e B, P2 9Qe
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When A, is written in terms of A, 8, tj, ty it will yield the integration
boundar{es once the condition =4, > 0 1s imposed. These boundaries are derived
below for three different orders of integration:

W § b dsy dby d,
Gy § aa deg ds,; dy
Gy §da dedn ds,

The first of these three orders of integration requires most cere while the other
two can almost be conaldered as speclal cases of it. Therefore the main effort
will concern the derivation of the first one while the nodifications that are
needed for the others will be mentioned at the appropriate places. It should be
mentioned that many of the formulae presented here can also be Eound in
ref. [18], however we rvepeat them for completeness. The treatment here differs
from ref. [7] in the use of the wvarfable A and the emphasis on numerical
stability of the formulae.

For a given value g of 8y the mimmun and maximum of t, are:

Max

Be xomiemd L 2CEMEM 5 )

= miem} o 4 Csemiomi)(sem)-o)

. . AG
+ N mimE Y NG, m3.0) 5’/ 25 o

ETET < ndomd) (o) 4 (m3omt) - Coemd b
(A5)

«d mECmpmi) - mi(e-mid } /g

where max and min refer to absolute values. We will use the same notatlon for
the boundaries on tg. In case (1) o is a value of B9 between its aininum

_2d-

(m,‘ + r|15)2 and its maximun (/s - 1113)2 while in the other cases one substtutes
for o only the minimum value (m, + m5)2. For numerical reasons it {3 advisable
to keep &y = m32 - m12 as one unlt, aince if my; = mq &) becomes exactly
zero and the numerical accuracy of an expregsion ke my = my -+ m22 will
not be affected, even If m; and my are Individually much larger than mg or o.

In mumerlcal integration one can. now begin by choosing a value for t; between
tlmax and r_lmin_ Then the boundaries for 8y can be found by Inverting {Al4}
substtuting £y for timax and g, for o. This ylelds:

59_: ={3(b|-8|) - 8{(E.-M}-M§'J12—MEM;
(46)
L "y N
TN, mbmi) A (t.,n«.ﬁm,)ﬁ-/ml

S: 8 a { s(k (seky —m2ampomb ) _m.I'S,)
EY)

w my (B8, + mimd) }/m'*

2 2 2
with 6, = m; - my and &4 = ) - my . In the case that my = 0 there fs oaly
oue root [see also (Al0)):

S5 oz (e (sebpambomt) omimd ) v mdmd (mdem] -t) (A8)
$-md)lk-mi)
The teal boundaties of g, are now (for order {U)):
mcu((mwms)",s,_‘) 4%, <S4 (49)
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Equation (A7) 1s sgain used to provide a numerically stable evaluation of one Umit
(tike in (AS5}). The stable voor of {A8) is usually sy” which is obvious in the
cage that my is small and t; negative. In the lmit that my + 0 (gy < 3]
az"' goes to —~ « and 52+ becomes the dfference of two very big terms, so it is
best to calculate °2+ from (A7). Even when the order of integratloa is glven by
{1) or (ifl) the values of 921 are needed because they facilitate a stable
evaluation of the quantity Dy which is defined by:

Dy o= :: o (_S;._"-S;)(S{'-a,_} Cm, po)
(a10)
Div -4 Gem) e m3)(5-50) {m =0)
Dy can alao be expressed in terms of Levi-Civita tensora as
PiP‘qu}“
Doe € € npap (a11)

In this form it is easy to recognize that Dy is a minor of the Gram determinant,
and we can explolt this fact during the evaluatlon of the matrix element (see,
gection IIT).

For a given value ¢' of sy the extrema of £y can now alse be found:

{::\m et emg e emd) (S - miemg')
(A12)

: 7:"(5' 1y AP Lot
* »hhml.}?\ (G)M‘\.ms) /

'

Sl Sus s TS S (Bu-Be) (:::h‘ 2bsmd) (a13)
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with &, = m52 - m22 and &g * maz - t;e In case {1} o' is taken. to be 32+
Wwhila in cases ({i) and ({ii) the correct value of 8y is substituted. New
boundaries for sy, can be obtained by Inverting equation (Al2) after veplacing
£, by the value of t) that has becu taken between t,®2* and czmin and o'
by 89: -

S,ft = v)l—(m.}—ﬁ,_{-.z)(_&.,-%l)+1E2(&.+m,})

n , (al4)
£ XAl k) N Cbimdmg') }/zh
L

- Y +
575"« By B + (8y-80) (Byms*. Bprme) (A1%)

£y

2 2
with 56 = m, = mg « In a computer program ode ghould check which root is the
stable one that can be evalnated using {Al4). The boundaries of s, are now such
that

- +
81 < 5, £°9; {ALG)

The limits sz‘i’ are needed for a stable evaluation of the quantity D, since:

D2 « ‘I: by (52-5.70Cs; -507) (a1h)
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o chmap
€ l ePnQﬁ;r* (A18)

The boundaries of A are obtalned directly from the Grem determinant 4,, since
Ay can be rewritten as a quadratic polynomial In A:

&y alls bAse (a19)
with:
oL (P2a) -mik, (A20)
(Pra)?
and:

% a 0P Paa - Pif kY E\x-ﬁ. Pagy -4, My ) (A?.l,)
kpl-QJ

The expresslon for c¢ 1s more complicated but not really needed here as it s
posalble to rewrite the discriminant of equation (AL9):

4D, Da (A22)

D b.gac = -
(P29}

26~

The 4=vector product py.qy can be expressed fn terms of the iavarfants via the
relation gy.q) = %(sy =ty — @y ). The boundaries of A are now:

_% _ 3B 454,&,,\{% (423)

2a LECN 25

and the Gram determinant can be written as - 4, = a(A+ - M)A -A). To
remove the singularities due to (- 1\5‘)-xx one extra change of variables {s called

for:
) b \S_ A
) 20, ) 2.0, (azty

where 0 < x < 1. The final form of the phase space {ategral now becomes:

}
SSB‘ A% ohyy Sk iy W (422)
it )

o N emie) N sk m)

The Gram determinant, whose value is stfll needed in the rest of the kinematics
(see appendix B) and often in the matrix element is now given by:

Ay 2 -4 sm{nx) DDy (426)
ANy b mt)
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Othet quantities that can be useful are the counterparts of the ainors Dy and Dyt
PLPqyh p1d1G2H
Dq £ [ and Dy = € € « Also
P1D2P4t P1P2G2K P1414924
Dg [4 PLPIP4H ¢an be of use. The evaluation of Dy and Dy is slmilar to
(a6) ~ (All), (al4) - (Al7) respectively. Tt is only necessary to make the
exchanges m) = mp, Mg * Mg, % ~ 8 and t; = tz. 0f course 91.+ and
sl‘" are not the real boundarles of s8] because the order of Integration has not
been changed. As a consequence the expressions for Dq and D, are more stable
than one would expect nalvely. For most applications there are only "random "
4
instabftities, 1.e. for 10 Monte Carlo points roughly one point would have the
property that (sl+ ~ 81)/s; would be of order 1074 utdeh means a loas of
aceuracy of 4 digits. To lmprove this situation requires much work as one needs
to express Dy and Dy In terms of the four quasi random variables that come from
the Monte Carlo integrator, and then rewrite alt coefficients in such a way that
the whole formula becomes numerfcally stable. After this the formula is not

necessarily so compact.

The evaluation of Dy can be done by substituting py, = q; + q9 which gives:

Dgs Dy + Dy + e?' F‘q‘"*e?. Pr Gyt (427)
The final Levi~Civita term can be rewritten:
Plplqlf"
€ €pptape = - (PR R -mpa)
(A28)

+ (oo bt pa) Ot b - meaad b g,

Normally when there 1s a t-channel structure Hke t and ty there are no strong
cancellatlons in (A27). If however such cancellations do occur it is stil] possible
to use the trlangle relation

ADLDs,Ds) =4 By pd (429)
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to define D5, A stable evaluation of (A29) involves (o, ~ 03)2- If this guantity
is persistently unstable it s necessary to write Dy as a functioa of % ard then
Dy - Dq as a function of s, and ite boundaries. This cae then be made stable but
the results are messy. Often the best soluticn [s to go back teo the beginning and
relabel the external momenta.

- 2
Finally the factor A a(sz,tl,mz ) in (A25) can be made to disappear by one
more change of varlables. If a function £(y) has to be "mapped” away while
integrating over y one calculates F(x) = _jx f(y)dy and defines the new variable
y

u by:

Fx)
™)

(A30)

in which y+ and y~ are the upper and lower boundaries of the integration over y.
This change of varlable ¢an be done analytically if {A30) can be inverted to glve
x as a function of u. When f(y) is given by k“%(y,a,b) this can be done leading
to the relations:

Lg*c«@;w.' -
Y:Qth+ -l(l-[' aﬂatd)(\fq&“‘)
‘\QQ" (Y a- [ )LL} (Asl)
' 2 -a- Q:q--( \( q.ﬁ:«—o{
and
% - |. whea b et
o A (v.0, &) 9#»( _a_&m) (A32)
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In these equations a™ and o™ are given by

«f 0 N (v a,B)

FEIFE

(433
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Appendix B

Once the integration over the 2 to 3 particles phase space has been expressed in
tecms of invariants and/or the variable &4 or x of appendix A, 1t is still necessary
to tranglate these quantities into lahoratory varlables. Especlally a Monte Carlio
integrarion over an experlmental acceptance needs this, since wmost of the
experimencal cuts are expressed in terms of laboratory angles and monmenta. Again
numerical stability turns out to be of great importance as careless evaluaticn can
easfly lead to a loss of 10 to 20 digits by subtracting a large number from
another large number to obtaln a result that 1s 10 to 20 orders of magnitude
smaller. A good example of this is the caloulation of the quantity E = p for a 50
GaV electron. If the final result {s obtained via the relation

(B1)

there Is no loss of accuracy and it 1is seen that the answer 15 about
2.5%10”% GeV. The orlginal terms E and p were 50 GeV so the relative loss of

“11 or more than 10

accuracy due to the subtraction E - p would be about 5x10
digits.

The necessary formulae are derived for the CM frame and can almost all be found
in vef. [18]. In the case that the lab frame is not the same as the CM frame a
simple hoost along the z~axls {s usually sufficlent. This does not cause any severe
problams as the perpendicular components of the f4-vectors which are usually
responaible for the numerical instabflitdes, are not affected by such a boost.

In the CM frame the energles of all particles can be found from the relation
’s B =P+ P tpry Py The righthand side 4-vector products can be expressed

in terms of invarlants and masses leading to the equations
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Sermr - My
B DU

e\
¥y
S+t -md
E, = 2rT -

PRTY

. 1 T (82)
£ € - (Sa-mirmim')

VN

(5 -mgemg-m?
Bs - B2 -

Elq: E|-E3+ Eq_-Es‘

Sometimes s is useful to define {5 = E; - Ej and G4 = E; - Eg because these
energy transfers can occasionally be small. The values of the three momenta can,
be éasﬂy obtained from (B2).

The @ angles (angles with the positive z-axis which is chosen here as the
direction of py) can be rather close to 0° or 180° whenever the ecnergles get
large. It is therefore better to calculate sin® and the sign of cosd rather than to
use the relation pj.py = EqE; = |9 ilp;lcos0,. This can be done via the relatiens
(see also ref. [18]

D o= SIRIRT wwds

(83)
Dy = $ \ﬁ\‘\'ﬁ}’sl‘ wnids

Dz « § i?\l1\E11 st Iy

-3

Stnce cosdy = (Ey&y = propy) / (Ip1}lpyl) the sign of cos@ can be obtained by
comparing E1& with py.p;- For reasons of convenlence patrticle 4 is chosen to
define the %z plane so that pg = 1o j(stney, O, cosdy). This is the most
convenient chofce for 2y physics since “particle” 4 is the ane which decays. The
y components of pj is equal in magaitude to the y component pg but opposite in
sign because they are the ouly two three vectors with an y component. They are
found via the relation:

?\PLP!'P“
-8y o - E€ €50 By P

e i (34
= SIPHIFLt sy (1 sty sty

The sign of sing, is ambiguous as it is not determined by the values of the
invariants or the G4~vector products. It can therefore be taken randomly. This
leaves only the signs of cos$y and cospsg to be fixed. They can be determined by
jmposing conservation of three wmomentum in the x-direction. This gives that
P4x * Pix ¥ P5x = 0. As py, I8 kaown and also the absolute values of py, and
p5, 1t 1is tather easy to find the combloation of signs that satisfies this

conservation law.
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Appendix C

To obtain equatdon (III.5) several reduction formulae were needed. Thelr
derivation 1s mainly dependent on the use of the so~called Schouten identity for
Levi~Civita tensors:

QoChear = Fplacde * Ve Chade * LaCheae " Vebleda (ch)

Nevertheless at least one of the identities (Cll) 1is far from trivial and it is
much easler to have a computer program Llike Schoonachip[w] check it by
comparing the left~ and vighthand aldes after contracting the Levi-~Civita tensors
rather than to derfve the relatfon by hand. For fllustrative purposes one of the
relations is derlved below. This will indicate sowe of the techniques that are
useful.

(e Qu qepy

Qeie2eistsR 2 € eml,me ¢ Egqe ¥R (c2y

To reduce this term one exchanges the index a of the first Levi~Civita tensor with
the tndices of the third, using the Schouten identity:

e, QU Qs
Q12012 R 20 +0 ¢+ & eq‘_e,_,q.,el e‘}@z‘n’ﬂ
QINAL Qe pel (€3
+€ Cammp € CqeyR
:-Q.h?.-l-?.-R q-—rt"'[\oﬁ] Qohl-R
The final result is now:
Q.\c').-loﬂ'R- s’j.Tf‘L“’-] Q-lol-_R (c4)

~34-

This result {s independent of the 4-vectors Q and R. Relation (C9) is derived by
notieing that

" WA H\J
“p¥b Sqeien Sque, pv € {(cs)

@18 1 G@mi Quayh
€ qR.q.8 o € &

8y contracting the two Levi~Civita tensors that are not
contracted with ¢y, qp, ey or eg one can obtain equation (C9). The only direct
derivation of (CL1l) known to the author involves the introduction of extra Levi~
Civita tensors via the relation:

; - QY .
PR®, 2T T egq oy + (@Al (R

‘e o e B ()
'Ql %IPQ *Q QcPQ‘C‘I. +Qg5°\.. Q-q“

If this expression is contracted with the tensor c':102.OZOlB the final three terms
glve zero and the gag glves [1-202-1.]. Now the Schouten identity has to be
used several times to obtain the desired result. The relations needed for equation
(IIl.5) are:

Q-I-i-i-lops = %T(‘[i-'l] Qeta2sR 7

Telrviza102] 24 Te (2] Telie2] (c8)

Telveaa2] o £ el Telaad » 5 Telhe] Trln2]

e%e-“n.%
= 42 qa 2

cH

PR LT PN \
?-1-2.2-1-? =-.C|.,_G. eq.e\q,_e,_+ET'{1'2]'?"""P (Cl0)
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q'.ch 1e223 1@ = q: Tftlu?.] Q-lﬂ.oQ -Q-q,TftlcﬁlQo\-Z-‘P

+ (Q-'l +2 .?.)1 + L“T?‘D .Z]Tr‘[l a’-] C(.Q-Qn)l ‘qul‘D

‘ tass . (c11)
- Ir Y| (G e eQ‘\.“(‘»)

In these relations ¢ and R are arbitvary 4-vectors and P = q + qz+ One can of
course alao substitute the 4-vector P for Q in relation (C11). In that case the
followlng identity is rather useful:

Lach - 3 :
Qo dpefm-tp) =2 Te[22)((qa) -gtal) + 49, PerenaP (c12)

To obtain the quantities My, and My in equatfon (LIL.1l) one needs a few
additfonal relations:

q#8ch 18y s \
M egeqa, = 5 (€ Pegaup) -1 Tl (@AY-QM1)

(c13)
PP gl Q1. Q +20.g, QtatlF

2Q-Q| LTS Qstel P LQ»Q\)Z Pt tuP + CQl-q‘\.)‘Q-lol.Q

« {01404 Rau g -10a) g2 -iQqua) | (€10

-i‘-bl (eq‘eldPqu‘«@)’-
The procedure to obtaln M, and Mgy 13 to First execute the comtraction in which
for instance both ez‘s are replaced by the same index p. Then the two Levl~
Civita tensors containing this | are coatracted after which the reduction formulae
{C13) and (Cl4) can be used. This leads to Mgq. To obtain My, one contracts
the el's by replacing them by the same index v. Then one needs the verslons of
(C13) and (C14) in which the indices L and 2 have been interchanged.
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Figure captions
1. The general structure of a two photon process.
- - Q -
2. The reaction efe” + e'e™n . The four-vectors e; and e, are the
polarization vectors of the two photons.
& -
3. The diagrams of the reaction v v p+p. + The polarization vectors of the
two photons are represented by ¢ and &4.
4. Differentlal cross sectlons with tegpect to the dimuon mass under the

assumption that both muoas pass the cuts. The solld lines are for the
purely elastic processes. They are from top to bottom:

() ete” at /s = 100 Gev, () ep at HERA energles, ({i) pp at
/s = 540 GeV. 'The dashed cutves represeant processes in which at least one
proton 1s scattered inelastically. The top curve ls for HERA and the bottom
curve for pp at ¥s = 540 GeV. The systematic uncertalnty of these dashed

curves is much greater due to the structure functions (see text).
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Table captions

1. Observable dimuon cross sectlons. It s assumed that both muons are seen
ingide the standard detector defined in the text.

2. Observable dimuon cross sectlons with a 20 mrad electron tag. Both muons
are seen inside the standard detector of the text and at least one electron is

seen at an angle of at least 20 mrad.
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Configuration

elastic
inelastic
elastic-elastic
el.-inel.+inel.~el.
inelastic-inelastic

Configuration

single tag
double tag
2lastic
inelastic
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Table 1

Fnecgies {GeV)

30
70
30
30
270
270
270

Zable 2

on

on

on

on

on

on

an

50

70
820
820
270
27¢
270

Cross section (pb)

588.5
644.1
239.7
125.7
67.5
66,8
19.7

[C s S S B L

i

1.6
1.9
0.7
0.5
0.3
0.6
0.2

FEnergies (GeV)

Cross section (pb)

50 on
50 on
30 en
30 on

Friv e

50
50
820
820

87.7

5.8
29.6
18.0

t D.4

0.1
0.2
0.1



