
1 Some crosssections

The part that translates the variables that vegas uses to integrate our functions
into variables that are needed in the matrix element is called the kinematics
part. We have already seen that we can translate the integration over the final
states into something that makes some sense (i.e. variables for which we can
determine the range).

Now we have to actually do this. The first program would be a two body
decay. We have a two particle phase space and we have seen that we have to
integrate over the angles in the CM-frame. If the system is axially symmetric
we only have to integrate over the azimuthal angle and we can take

cos θCM = 1− 2x0 (1)

in which x0 is one of the variables that come from vegas. Those variables have
values between 0 and 1. Note that this transformation has a Jacobian:

d cos θCM

dx0
= −2 (2)

Of course the minus sign disappears when we flip the order of the integration
boundaries.

If we want to emulate an experiment it is often a good idea to also choose
a value for φCM . There are two good reasons for this:

• We can check that there is no dependence on φCM .

• The detector may not be axially symmetric.

Of course, if we are very sure that everything is axially symmetric and no checks
are needed we can take a fixed value for φCM . This is usually taken to be zero,
which means that the events take place in the x-z plane. When we do the φ
integral we would have

φCM = 2πx1 (3)

with a Jacobian of 2π.
In the library we have a routine for a generic two body phase space. This

routine has the name mgoto2. It assumes that the initial state can be moving
with any momentum. This state is represented by a 4-vector. The routine
determines the Lorenz transformation from the CM-frame to this moving frame.
Then it uses the two input values between 0 and 1 to select a cos θCM and φCM .
From this it can determine the outgoing momenta in the CM-frame, after which
these momenta are boosted to the frame of the initial state. The return value
of the routine is the Jacobian of the transformation.

Routines like mgoto2 can make life very easy. We will see a few more
later. The whole library that contains these routines, vegas, the histogramming
routines and a few more things is called axolib. The first version of this library
dates from 1977 (at that time in Fortran). In the years after it has been extended

1

a bit. Most (semi)automatic systems that exist nowadays have started out using
similar routines and libraries. The current version of axolib is in C.

To use these routines efficiently in a language like C, we need to determine
a number of data types. This is done in the file axolib.h. The most important
for now is

typedef struct {

double e;

double px,py,pz;

double m;

} PVEC;

This data type defines a 4-vector in momentum space. It contains however
also the mass of the particle. One may argue that this isn’t necessary, but
try to imagine what happens when we have an electron which moves along the
z-direction and has an energy of 100 GeV. If we know the energy and the three
momentum we can compute the mass:

m =
√

e2 − p2

=
√

(e− p)(e+ p) (4)

Now how big is e − p? Imagine that we have to compute this from those two
numbers. We get

e− p =
(e− p)(e+ p)

e+ p

=
m2

e+ p

= O(10−9) (5)

which means that we loose about 11 digits, just for something simple. This is
why we carry seemingly superfluous information around.

The above cancellation is due to the Lorenz invariance of space-time. Many
kinematics routines have to be protected against numerical cancellations and it
is the major part of the job in their construction. Also the matrix elements may
contain very bad numerical cancellations between the terms. These are called
gauge cancellations. Sometimes special variables need to be used to transfer
information from the kinematics to the matrix element in a numerically stable
way. Another solution to this problem can be to use very high precision in the
calculations. This can go at the cost of very much computer time. We may get
to see some of these cancellations at a later stage.

Back to our program for the reaction e−e+ → µ−µ+. The structure of such
programs is that we have:

• A main routine that contains the definition of some constants, the call to
some initialization routines and finally the call to vegas.

2

• A routine that contains the kinematics. Here we will give that routine a
name that starts with the letter f as in feemm. This is the routine that
gets called by vegas and its argument is an array of numbers between 0
and 1. The return value is the value of the complete integrant including
overal factors.

• A routine that contains the matrix element. This routine is called by the
kinematics routine.

• Various library routines like vegas, histogram routines, mgoto2, etc.

And for each project we have a make file. Because this reaction corresponds to
the third program for which we use a make file we have named the make file
make3 and the file of the main program main3.c.

For the moment the important routines are the first two. Hence you should
have a good look at them and try to understand everything that is done there.

Homework: Determine the crosssection of this reaction inside the experi-
mental acceptance of | cos θCM | < 0.8 and assuming there is a dead zone in the
detector for 10 degrees < θCM < 25 degrees and φ between 17 and 39 degrees.
Take the energy to be 20 GeV.

The next reaction we study is the reaction e−e+ → e−e+. This reaction has
two diagrams:

pa

pb

p1

p2

s

pa

pb

p1

p2

t

The first diagram has a propagator with the invariant s and hence is called
an s-channel graph. The second diagram has a propagator that corresponds
to the invariant called t and hence is called a t-channel graph. The complete
matrix element is given in the file meeee.c.

In principle the kinematics is the same as in the muon case. There is however
one complication. If we compute what the quantity t is in terms of the θ angle
in the CM-frame we have:

t = (pa − p1)
2 (6)

= 2m2
e − 2EaE1 + 2pap1 cos θ

CM (7)

= 2m2
e − 2(s/4) + 2(s− 4m2

e)/4 cos θ
CM (8)

= −s− 4m2
e

2
(1− cos θCM) (9)

and we see that at the edge of phase space t can have the value zero. Because in
the matrixelement the t-channel graphs introduce terms with t in the denomi-
nator, this means that the matrix element goes to infinity when cos θCM goes to
one and after integration it is still infinite! This is a well known effect: elastic

3

electromanetic scattering has an infinite crosssection. The infinite part is how-
ever in a region where it is impossible to see the difference between scattering
and no scattering. This is the region in the beampipe. There is no detector in
that region. Hence we won’t observe this. If we only integrate over the region
that we do observe the crosssection is finite. This means that experimental cuts
are essential here. These are put in the function feeee.c.

If we use the same kinematics as we use for the muons we see already that the
crosssection is much bigger. This is also due to the t-channel graph. In general
t-channel graphs give much bigger contributions than s-channel graphs. The
s-channel graphs give usually crosssections that go asymptotically like O(1/s)
while the t-channel graphs give crossections that go like O(ln s) or even some
power of the logarithm.

Our program will produce also some distributions and when we look at them
we see that almost all the crosssection is in one bin. It takes vegas a bit of work
to zoom in on this peak. This is why we have a second routine in which we use
a mapping to take care of the 1/t2 behaviour. First we notice that if we have
a cut c on the value of sin θCM this translates into the value a for the variable
y0 = (1 − cos θCM)/2 which we feed to the routine mgoto2. The integral we
have to take care of is now

∫ 1−a

a
dy0 1/y20 (10)

with

a =
1−

√
1− c2

2

=
c2

2(1 +
√
1− c2)

(11)

Now we can proceed with the mapping as explained in the chapter about Monte
Carlo integration with

x0 =
F (y0)− F (y

−
)

F (y+)− F (y
−
)

=
−1/y0 + 1/a

−1/(1− a) + 1/a
(12)

and hence

y0 =
1

1/a− x0b

b = 1/a− 1/(1 − a) (13)

dy

dx
= b y20

We put this in the routine feeeea and can now run the program prog2a. It be-
comes very clear that this program converges much faster and in the differential
distributions we can see why.

4

Remark: often there may be terms of the type 1/t2 but they are not the
dominant terms. The really important terms are the terms in 1/t because they
have a much bigger coefficient/factor. The 1/t2 mapping occurs more in special
cases or in integrals over invariant masses (the t-integral is equivalent to an
angle integral).

Homework: The third reaction concerns the reaction e−e+ → γγ. This
reaction has two Feynman diagrams and its matrix element is given in the file
meegg.c. Using the examples of main3.c, main4.c, main4a.c, feemm.c feeee.c
and feeeea.c you are to construct the files main5.c and feegg.c and obtain the
crosssections for this process. You should again use an anglecut variable with
the value 0.05 and a beam energy of 15 GeV. If you want to create histograms,
use the value 5 in the file boundaries.c.

Reaction number 4 is more complicated. We will look at the reaction
e−e+ → τ−τ+ → e−νeντµ

+νµντ . This has six particles in the final state!

pa

pb

p1 ντ

p2 e−

p3 νe

p4 νµ

p5 µ+

p6 νµ

pin

q1

q2

τ−

τ+

There is a generic way by which any number of particles in the final state
can be obtained. Given the phase space integral

P.S. =

∫

d4p1
(2π)4

(2π)δ(p21 −m2
1)θ(E1)

∫

d4p2
(2π)4

(2π)δ(p22 −m2
2)θ(E2)

∫

d4p3
(2π)4

(2π)δ(p23 −m2
3)θ(E3)

∫

d4p4
(2π)4

(2π)δ(p24 −m2
4)θ(E4)

∫

d4p5
(2π)4

(2π)δ(p25 −m2
5)θ(E5)

∫

d4p6
(2π)4

(2π)δ(p26 −m2
6)θ(E6)

δ(4)(pa + pb − p1 − p2 − p3 − p4 − p5 − p6) (14)

one can insert the integrals

1 =

∫

d4q1
(2π)4

(2π)4δ(4)(q1 − p1 − p2 − p3)

∫

d4q2
(2π)4

(2π)4δ(4)(q2 − p4 − p5 − p6) (15)

5

after which the complete integral becomes

P.S. =

∫

d4q1
(2π)4

(2π)4
∫

d4q2
(2π)4

(2π)4δ(4)(pa + pb − q1 − q2)

∫

d4p1
(2π)4

(2π)δ(p21 −m2
1)θ(E1)

∫

d4p2
(2π)4

(2π)δ(p22 −m2
2)θ(E2)

∫

d4p3
(2π)4

(2π)δ(p23 −m2
3)θ(E3)δ

(4)(q1 − p1 − p2 − p3)

∫

d4p4
(2π)4

(2π)δ(p24 −m2
4)θ(E4)

∫

d4p5
(2π)4

(2π)δ(p25 −m2
5)θ(E5)

∫

d4p6
(2π)4

(2π)δ(p26 −m2
6)θ(E6)δ

(4)(q2 − p4 − p5 − p6) (16)

This can be separated in the phase space integral of a 2 → 2 reaction pa+pb →
q1 + q2, followed by two decays q1 → p1 + p2 + p3 and q2 → p4 + p5 + p6. The
only things we miss are the delta functions that fix the masses of q1 and q2.
This means that we have

∫

d4q1
(2π)4

=

∫

1

(2π)3
d3q1
2ω1

dq21
2π

(17)

in which ω1 is the energy of the particle and q21 its invariant mass squared.
Hence for extras we have to integrate over the invariant mass of the intermediate
particle. This makes sense because it is a virtual particle.

From the above it should be clear that we can do the two particles phase
space as before with a call to mgoto2. The two decays we can do with calls to
the similar routine mgoto3.

Next we can make one important simplification. It is not needed but it
does save some work (which you can do for homework). The propagator of an
unstable particle is given by 1/((q2−m2)+ imΓ) in which Γ is the decay width.
In the matrix element squared this becomes 1/((q2 − m2)2 + m2Γ2). In the
narrow width approximation we use

∫

dq2

(q2 −m2)2 +m2Γ2
=

2π

2mΓ

∫

dq2δ(q2 −m2) (18)

In other words, we can take the particle on shell and the factor in front works
out quite nicely. The 1/(2m) is the flux factor for the decay of a particle with
a mass m. The decay q1 → p1 + p2 + p3 would give the partial width for this
channel and hence, when divided by the total width we obtain the branching
fraction. Hence what we obtain is a complete factorization for production and
decay. The only thing that is not factored is the matrix element squared and
as a result we retain the so-called spin-spin correllation. We will see what this
means.

6

In reaction 4 we will use indeed this kinematical configuration with the
narrow width approximation. the files are

• make6

• main6.c

• feett.c

• meett.c

Homework (optional)(very difficult): Modify reaction 4 by inserting the
integrals over the mass squared of the intermediate tau’s. The width of the tau
is given in the file ex4main.c, and so are all other parameters. The width is
rather narrow. Hence there is a very sharp spike in the integration area. Very
sharp. The chances that VEGAS will find both spikes are super small. Try this
and see what happens. Next one can try to improve the two mass integrations
with two mappings. These mappings have to compensate a behaviour like
1/((q2−m2)2+m2Γ2). Hint: think about the arctan. If you run into numerical
problems, just take the width temporarily a bit bigger for testing purposes. Of
course then one has to increase the value of the coupling constant GF , which
is the Fermi constant, as well. Just realize that the width of the τ depends on
the square of the Fermi constant. By varying the width you can see that the
results are very insensitive to it.

Homework (optional): For the next example we look at the reaction e−e+ →
γγγ. The matrix element resides in the file meeggg.c. The main routine sits
in main7.c. Please construct the rest of the program. You are to use the same
angle cut as before (sin θ > 0.05 for all photons) and in addition we assume
that each photon has an energy of at least 0.1 GeV. What happens if we don’t
set that last requirement? Do you have any idea why? And would you know
what to do about it?

Finally we go back to our original reaction e−e+ → µ−µ+, but now with
also the Z particle in the s-channel. This presents more problems because now
we have to introduce the constants in the coupling of the Z to leptons. The
coupling to the electron is given by γµ(cV − cAγ

5). Although the coupling to
the muon is identical we will indicate it by different symbols in the program.
This allows the changing of the program in such a way that we have quarks in
the final state. Of course, when there are quarks there are different electrical
charges and this will need to be adapted in the matrixelement.

We compute the various cV and cA in the main program and pass them on
to the matrix element in the form of external variables. In the main program
we have to provided a few extra constants: MZ ,MW and ΓZ .

The files that are extra for this reaction are main3z.c, feemmz.c, meemmz.c
and make3z. For the remainder everything is similar to running the reaction
without the Z. Setting the energy is done in the main program as well and it
is nice playing to see what the crossections are with and without the Z for a
variety of energies.

7

