
FIVE
In this lecture we will have a look at the construction of the mincer program. The mincer

program is a program that calculates 3-loop massless propagator diagrams in n-dimensional
regularization. We saw already an example of it in the second lecture:

#include- minceex.h

Off Statistics;

Format nospaces;

.global

L F = Q.Q^4/p1.p1^2/p2.p2^2/p3.p3/p4.p4^2/p5.p5;

#call integral(t1,0)

#call subvalues

~~~Answer in the Gscheme

#call expansion(1)

~~~Answer in the Gscheme


Print +f;

.end

F=

-16+2*ep^-2-3*ep^-1+73/2*ep;

0.01 sec out of 0.01 sec

First some history.

The algorithms mincer uses for calculating such diagrams come from the following papers:

K.G. Chetyrkin, A.L. Kataev and F.V. Tkachov, Nucl. Phys. B174 (1980) 345.
K.G. Chetyrkin and F.V. Tkachov, Nucl. Phys. B192 (1981) 159.
F.V.Tkachov, Phys. Lett. 100B (1981).
F.V. Tkachov, Teor. Mat. Fiz. 56 (1983) 350.

A first program was already constructed in 1989 for the Schoonschip system. (S.G. Gorishny,
S.A. Larin, L.R. Surguladze and F.V. Tkachov,Comp. Phys. Comm. 55 (1989) 381.) This
was quite an achievement considering many of the limitations of Schoonschip. It was used
then for the calculation e−e+ → hadrons to O(α3

S) which is actually a 4-loop calculation
but because only the divergent parts were needed some theorems could be applied and it
could be converted to the calculation of 3-loop massless propagator diagrams. S.G.Gorishny,
A.L.Kataev and S.A.Larin, Phys. Lett. B212 (1988) 238, ibid. B259 (1991) 144;

Shortly after Form became available and the mincer algorithms were reprogrammed in
terms of Form. It was then used for a number of calculations, each more demanding than
the previous one. This was possible due to the steady increase in computer power and the
continuous expansion of the capabilities of Form. For several years mincer was the great
inspiration for Form improvements. This role was later taken over by other programs, most
recently by forcer which is the 4-loop variety of mincer. This program is however much more
complex and hence not really suitable for a class of two hours. The Form version of the
mincer program has been used by others as well and is still very relevant.

There are basically two versions of mincer: mincer.h and minceex.h. The first works with
expansions in ε = 2 − D/2 (D is the dimension of space-time) and the second is exact but
slower.

Before starting off with 3-loop diagrams, we better have a look at 1-loop diagrams.
The basic one loop diagram is given by:

P

P+Q

Q Q

The integral is given by∫
dDP

(2π)D
Pn(P)

P 2α(P + Q)2β
=

1

(4π)2
(Q2)D/2−α−β

[n/2]∑
σ≥0

G(α, β, n, σ)Q2σ

{
1

σ!

(2
4

)σ
Pn(P)

}
P=Q

,

in which

Pn(P) = Pµ1Pµ2 · · ·Pµn.
D is the dimension of space-time and is also given by D = 4 − 2ε, 2 = ∂2/∂Pµ∂Pµ and G
can be expressed in terms of Γ-functions:

G(α, β, n, σ) = (4π)ε
Γ(α + β − σ −D/2)Γ(D/2− α + n− σ)Γ(D/2− β + σ)

Γ(α)Γ(β)Γ(D − α− β + n)
.

If we only solve a one-loop problem, we will have integer values for α and β, but when we
go to higher loops we will see that this is not the case. Yet we can normalize these functions
to just a few functions of the type G(1 + mε, 1, 0, 0) multiplied by Pochhammer symbols:

P (x, n) =
Γ(x + n)

Γ(x)

which we can make into

Poch(n,m) =
Γ(n + mε)

Γ(1 + mε)

in which case it becomes clear that these Pochhammer symbols are rational polynomials in ε
(or in D if one prefers it that way).

How to deal with rational polynomials in Form?
For this we have a special system. Sometimes we would like the coefficient of a term to be

more general than just a number. In that case we have two options. The first is the ’polyfun’:

CFunction acc;

PolyFun acc;

In this case the argument of acc is supposed to be a polynomial and the whole function is
treated as the coefficient of the term:

Symbols x,ep;

CFunction acc;

Off Statistics;

Format nospaces;

L F = x*acc(1+ep+ep^2)+(1+x)^2*acc(2+3*ep);

Print +s;

Bracket x;

.sort

F=

+x*(

+acc(1+ep+ep^2)

+2*acc(2+3*ep)

)

+x^2*(

+acc(2+3*ep)

)

+acc(2+3*ep)

;

PolyFun,acc;

Print +s;

Bracket x;

.end

F=

+x*(

+acc(5+7*ep+ep^2)

)

+x^2*(

+acc(2+3*ep)

)

+acc(2+3*ep)

;

As you can see, in the x term the contents of the acc functions have been combined. The
advantage of the polyfun is that there are effectively fewer terms and hence the pattern
matching on the ’relevant’ parts of the terms will be faster. The action Form takes is

•When there are multiple polyfuns in a term their contents are multiplied and the whole
is replaced by a single polyfun.

• If a term does not have a polyfun yet, a polyfun with argument 1 is created.

• A possible numerical coefficient of the term is taken inside the polyfun.

•When two terms need to be added the contents of their polyfuns will be added.

•When a term is printed, the polyfun is always printed last.

Symbols x,ep;

CFunction acc;

PolyFun acc;

Off Statistics;

Format nospaces;

L F = x*acc(1+ep+ep^2)+(1+x)^2*acc(2+3*ep);

Print +s;

.sort

F=

+x*acc(5+7*ep+ep^2)

+x^2*acc(2+3*ep)

+acc(2+3*ep)

;

Drop;

L H = F^2;

Print +s;

.end

H=

+x*acc(20+58*ep+46*ep^2+6*ep^3)

+x^2*acc(33+94*ep+77*ep^2+14*ep^3+ep^4)

+x^3*acc(20+58*ep+46*ep^2+6*ep^3)

+x^4*acc(4+12*ep+9*ep^2)

+acc(4+12*ep+9*ep^2)

;

The second option is far more expensive: the polyratfun. This function needs two argu-
ments: the first is interpreted as the numerator and the second as the denominator of a
fraction. It is always normalized in such a way that the symbols inside (other objects are not
allowed) have positive powers and the numerical coefficients are integers.

Symbols x,ep;

Cfunction rat;

PolyRatFun rat;

L F = x*rat(2,1+ep)+x*rat(2,1-ep);

Print;

.end

F =

x*rat(-4,ep^2 - 1);

The algorithms for dealing with rational polynomials are rather efficient when only a single
variable is involved. In the case of multivariate polynomials there are faster dedicated pro-
grams. People have used a system called Fermat as external program to deal with multivariate
rational polynomials before Form had this capability, but the overhead of the communication
is rather big.

OK, now we can program a Pochhammer symbol:

repeat id Pochhammer(x?pos_,m?) = Pochhammer(x-1,m)*rat(x-1+m*ep,1);

repeat id Pochhammer(x?neg_,m?) = Pochhammer(x+1,m)*rat(1,x+m*ep);

id Pochhammer(0,m?) = 1;

It is convenient to also define the function

PochhammerINV(n?,m?) = 1/Pochhammer(n,m)

because of the fact that Form does not really like denominators.
We are now ready to build our first routine, which is the routine that can work out the G

function in terms of a few basic integrals and rational polynomials in ε. The G function here
has 6 arguments to make it easier to work with the multiples of ε. Effectively

G(n1,x1,n2,x2,n3,n4) = G(n1+x1*ep,n2+x2*ep,n3,n4)

#procedure DoG

*

* The only objects left are the G(1,x1,1,x2,0,0)

* which have been written as GschemeConstants(x1,x2)

*

id G(n1?,x1?,n2?,x2?,n3?,n4?) = GschemeConstants(x1,x2)/(1+x1+x2)*

Pochhammer(n1+n2-n4-2,ep+x1*ep+x2*ep)*

Pochhammer(1-n1+n3-n4,1-ep-x1*ep)*

Pochhammer(1-n2+n4,1-ep-x2*ep)*

PochhammerINV(n1-1,1+x1*ep)*

PochhammerINV(n2-1,1+x2*ep)*

PochhammerINV(2-n1-n2+n3,2-2*ep-x1*ep-x2*ep);

repeat id Pochhammer(n?pos_,x?) = Pochhammer(n-1,x)*num(n-1+x);

repeat id Pochhammer(n?neg_,x?) = Pochhammer(n+1,x)*den(n+x);

repeat id PochhammerINV(n?pos_,x?) = PochhammerINV(n-1,x)*den(n-1+x);

repeat id PochhammerINV(n?neg_,x?) = PochhammerINV(n+1,x)*num(n+x);

id GschemeConstants(0,n?pos_) = GschemeConstants(n,0);

id GschemeConstants(1,1)*GschemeConstants(0,0) =

GschemeConstants(1,0)*GschemeConstants(2,0)*rat(1-3*ep,1-2*ep);

id Pochhammer(0,x?) = 1;

id PochhammerINV(0,x?) = 1;

id num(x?)*den(x?) = 1;

id den(x?number_) = 1/x;

id num(x?number_) = x;

id num(x?) = rat(x,1);

id den(x?) = rat(1,x);

*

#endprocedure

In principle we have two lines that can have a noninteger power but by studying different
ways of solving so-called watermelon diagrams we can always reduce this to G functions with
only a single line with a noninteger power.

The GschemeConstants function is the G function of a diagram with no numerators, one
line with power one and one line with power 1 + mε. We have to work out the ratio G(1 +
mε, 1, 0, 0)/G(1, 1, 0, 0) which is rather simple, and we keep the powers of G(1, 1, 0, 0) as
overal constants. Exclusion of these factors is called the G-scheme. Conversion to MS-bar
involves working out the powers of G(1, 1, 0, 0) which means mostly expanding a number of
gamma functions.

Note that as long as we keep the formulas in terms of the GschemeConstants function the
routine is exact when expressed in the polyratfun rat.

Now we can program the routine for doing the one-loop diagrams. Note that we have a
sum over d’Alembertians and that this is exactly what one of the homework problems was
about. Actually, the distrib and dd functions were invented for this one-loop problem. In
practical calculations one may encounter rather high powers of the integration momentum in
the numerator (the record is bigger than 30).

#procedure IntOne(p3,p4,Q,in,out)

*

* Loop momenta are p3 and p4. The ’propagator’ is Q.

* We integrate over p3

* epp3 = 1/p3.p3^ep, epp4 = 1/p4.p4^ep, epQ = 1/Q.Q^ep

* in and out are markers to tell whether a term should be integrated

* over, in for here and out for potentially next routines.

*

if (count(int‘in’,1));

if ((count(ep‘p3’,1) == 0) && (count(‘p3’.‘p3’,1) >= 0)) Discard;

if ((count(ep‘p4’,1) == 0) && (count(‘p4’.‘p4’,1) >= 0)) Discard;

ToTensor,nosquare,ftensor,‘p3’;

if (count(ftensor,1) == 0);

id int‘in’*ep‘p3’^x3?*ep‘p4’^x4?/‘p3’.‘p3’^n3?/‘p4’.‘p4’^n4? =

int‘out’*G(n3,x3,n4,x4,0,0)*

‘Q’.‘Q’^2/‘Q’.‘Q’^n3/‘Q’.‘Q’^n4*ep‘Q’^x3*ep‘Q’^x4*ep‘Q’;

elseif (match(ftensor(i1?)));

id int‘in’*ep‘p3’^x3?*ep‘p4’^x4?/‘p3’.‘p3’^n3?/‘p4’.‘p4’^n4?*

ftensor(i1?) = int‘out’*‘Q’(i1)*G(n3,x3,n4,x4,1,0)*

‘Q’.‘Q’^2/‘Q’.‘Q’^n3/‘Q’.‘Q’^n4*ep‘Q’^x3*ep‘Q’^x4*ep‘Q’;

elseif (match(ftensor(i1?,i2?)));

id int‘in’*ep‘p3’^x3?*ep‘p4’^x4?/‘p3’.‘p3’^n3?/‘p4’.‘p4’^n4?*

ftensor(i1?,i2?) = int‘out’*‘Q’.‘Q’^2*ep‘Q’*ep‘Q’^x3*

ep‘Q’^x4/‘Q’.‘Q’^n3/‘Q’.‘Q’^n4*(

+G(n3,x3,n4,x4,2,0)*‘Q’(i1)*‘Q’(i2)

+G(n3,x3,n4,x4,2,1)*d_(i1,i2)*‘Q’.‘Q’/2);

else;

id int‘in’*ep‘p3’^x3?*ep‘p4’^x4?/‘p3’.‘p3’^n3?/‘p4’.‘p4’^n4?*

ftensor(?a) = int‘out’*ftensor(?a)

*sum_(isum2,0,integer_(nargs_(?a)/2),

G(n3,x3,n4,x4,nargs_(?a),isum2)

y^isum2‘Q’.‘Q’^isum2/2^isum2)*‘Q’.‘Q’^2

*ep‘Q’*ep‘Q’^x3*ep‘Q’^x4/‘Q’.‘Q’^n3/‘Q’.‘Q’^n4;

id y^isum2?*ftensor(?a) = distrib_(1,2*isum2,del,ftensor,?a);

tovector,ftensor,‘Q’;

id del(?a) = dd_(?a);

endif;

id P.P = 0;

endif;

*

.sort:IntOne-‘in’-1;

*

#call DoG

*

.sort:IntOne-‘in’-2;

*

#endprocedure

As in the answers file, we introduce a tensor and in the general case we use the distrib
and dd functions to work out the d’Alembertians, but we keep the cases of zero, one or two
powers of the loop momentum separate, because the use of the sum function does represent
a certain overhead that we try to avoid when things are very simple.

Time to try things out:

#include- minceex.h

Off Statistics;

Format nospaces;

.global

L F = epp1/p1.p1^5*epp2/p2.p2^3*Q.Q^6;

#call integral(l1,0)

Print +f;

.end

F=

GschemeConstants(1,1)*epQ^2*rat(62208*ep^7+295488*ep^6+521424*

ep^5+415260*ep^4+132672*ep^3-4068*ep^2-10344*ep-1440,4*ep^7+56*

ep^6+319*ep^5+956*ep^4+1621*ep^3+1544*ep^2+756*ep+144);

0.01 sec out of 0.01 sec

Before going to the two-loop diagrams we need a whole new type of relations. These are
called Integration By Parts (=IBP) relations. This is currently the most powerful tool for
dealing with multi-loop integrals and a number of programs has been developed for working
with them: Reduze, Fire, LiteRed,.... They all have one thing in common: they are extremely
demanding w.r.t. computer resources. Yet, in many cases we do not have anything better.
However, in the case of massless propagator diagrams we do.

Let us start with the triangle graph:

P1 P2P

We define the integral

I(n, α0, β1, β2, α1, α2) =

∫
dDP

Pµ1 · · ·Pµn
(P 2)α0((P + p1)2)β1(p21)

α1((P + p2)2)β2(p22)
α2
,

This integral can be studied by first considering the identity:∫
dDP

{
∂

∂Pµ

Pµ Pn(P)

(P 2)α0((P + p1)2)β1(p21)
α1((P + p2)2)β2(p22)

α2

}
= 0

which is an integral over a total derivative.
Working out the derivative one obtains the recursion relation (called the rule of the triangle):

I(n, α0, β1, β2, α1, α2) =
(

+β1(I(n, α0 − 1, β1 + 1, β2, α1, α2)− I(n, α0, β1 + 1, β2, α1 − 1, α2))

+β2(I(n, α0 − 1, β1, β2 + 1, α1, α2)− I(n, α0, β1, β2 + 1, α1, α2 − 1)))
/(D + n− 2α0 − β1 − β2).

If this is part of a diagram in which the α parameters are all positive integers, repeated
application of this equation will eventually make one of these parameters zero. It is however
possible to improve upon this by ‘solving’ the recursion. This gives the formula (Tkachov):

I(n, α0, β1, β2, α1, α2)Γ(β1)Γ(β2) =

+

α2−1∑
i=0

α0−1∑
j=0

α0−j−1∑
k=0

(−1)α1+iI(n, α0−j−k, β1+α1+j, β2+i+k, 0, α2−i)

Γ(α1 + i + j + k)Γ(β1 + α1 + j)Γ(D + 1 + n− 2α0 − β1 − β2 − α1 − i)
Γ(D + 1 + n− 2α0 − β1 − β2 + j + k)Γ(α1) i! j! k!

×Γ(β2 + k + i)

+

α1−1∑
i=0

α2−1∑
j=0

α0∑
k=0

(−1)i+jI(n, 0, β1+i+k, β2+α0+j−k, α1−i, α2−j)

α0Γ(α0 + i + j)Γ(D + n− 2α0 − β1 − β2 − i− j)Γ(β1 + k + i)

(α0 − k)! i! j! k! Γ(D + n− α0 − β1 − β2)
×Γ(α0 + β2 − k + j)

+

α1−1∑
i=0

α0−1∑
j=0

α0−j−1∑
k=0

(−1)i+α2I(n, α0−j−k, β1+i+k, β2+α2+j, α1−i, 0)

Γ(D + 1 + n− 2α0 − β1 − β2 − α2 − i)Γ(i + j + k + α2)Γ(β1 + i + k)

Γ(D + 1 + n− 2α0 − β1 − β2 + k + j)Γ(α2)i! j! k!
×Γ(β2 + α2 + j).

The complete triangle routine looks like
#procedure ntriangle(p,pa,pb,p1,p2)

*

* Routine solves the triangle recursion

* p

* n1 -------------------------- n2

* p1 \ n0 / p2

* \ /

* n3 \ / n4

* pa \ / pb

* \ /

* \/

*

* n3,n4,n0,n1,n2 are the powers of the denominators

* eppa and eppb are 1/pa.pa^ep and 1/pb.pb^ep

* p is the momentum in n0. We need it here to determine the extra

* momenta in the numerator.

*

id ‘p’ = xpower*‘p’;

if (count(‘p1’.‘p1’,1,‘p2’.‘p2’,1,‘p’.‘p’,1) >= -4);

*

* Here we can just use the recursion

*

repeat;

id xpower^n8?/‘p1’.‘p1’^n1?pos_/‘p2’.‘p2’^n2?pos_/‘p’.‘p’^n?pos_/‘pa’.‘pa’^n3?/‘pb’.‘pb’^n4?

*ep‘pa’^x1?*ep‘pb’^x2? = xpower^n8/‘p1’.‘p1’^n1/‘p2’.‘p2’^n2/‘p’.‘p’^n/‘pa’.‘pa’^n3/‘pb’.‘pb’^n4

*ep‘pa’^x1*ep‘pb’^x2*(

+num(n3+x1*ep)*(‘p’.‘p’/‘pa’.‘pa’-‘p1’.‘p1’/‘pa’.‘pa’)

+num(n4+x2*ep)*(‘p’.‘p’/‘pb’.‘pb’-‘p2’.‘p2’/‘pb’.‘pb’)

)*den(4-2*ep+n8-2*n-n3-n4-x1*ep-x2*ep);

endrepeat;

id num(x?number_) = x;

id den(x?number_) = 1/x;

id num(x?)*den(x?) = 1;

id num(x?) = rat(x,1);

id den(x?) = rat(1,x);

else;

*

* Here we have to use the general formula

*

id xpower^n8?/‘p1’.‘p1’^n1?pos_/‘p2’.‘p2’^n2?pos_/‘p’.‘p’^n?pos_/‘pa’.‘pa’^n3?/‘pb’.‘pb’^n4?

*ep‘pa’^x1?*ep‘pb’^x2? = ftriangle(n8,n,n3,x1,n4,x2,n1,n2);

id ftriangle(n?,n0?,n3?,x1?,n4?,x2?,n1?,n2?) =

+sum_(isum1,0,n2-1,sum_(isum2,0,n0-1,sum_(isum3,0,n0-1-isum2,

ftriangle(n,n0-isum2-isum3,n3+n1+isum2,x1,n4+isum1+isum3,x2,0,n2-isum1)*sign_(n1+isum1)

*fac_(n1+isum1+isum2+isum3-1)

*Pochhammer(n1+isum2,n3+x1*ep)

*Pochhammer(isum3+isum1,n4+x2*ep)

*Pochhammer(-n1-isum1-isum2-isum3,isum2+isum3+5-2*ep+n-2*n0-n3-n4-x1*ep-x2*ep)

*invfac_(isum1)*invfac_(isum2)*invfac_(isum3)*invfac_(n1-1)

)))

+sum_(isum1,0,n1-1,sum_(isum2,0,n2-1,sum_(isum3,0,n0,

ftriangle(n,0,n3+isum1+isum3,x1,n4+n0+isum2-isum3,x2,n1-isum1,n2-isum2)*sign_(isum1+isum2)

*fac_(n0+isum1+isum2-1)

*Pochhammer(isum3+isum1,n3+x1*ep)

*Pochhammer(n0-isum3+isum2,n4+x2*ep)

*Pochhammer(-isum1-isum2-n0,4-2*ep+n-n0-n3-n4-x1*ep-x2*ep)

*n0*invfac_(n0-isum3)

*invfac_(isum1)*invfac_(isum2)*invfac_(isum3)

)))

+sum_(isum1,0,n1-1,sum_(isum2,0,n0-1,sum_(isum3,0,n0-1-isum2,

ftriangle(n,n0-isum2-isum3,n3+isum1+isum3,x1,n4+n2+isum2,x2,n1-isum1,0)*sign_(n2+isum1)

*fac_(n2+isum1+isum2+isum3-1)

*Pochhammer(n2+isum2,n4+x2*ep)

*Pochhammer(isum3+isum1,n3++x1*ep)

*Pochhammer(-n2-isum1-isum2-isum3,isum2+isum3+5-2*ep+n-2*n0-n3-n4-x1*ep-x2*ep)

*invfac_(isum1)*invfac_(isum2)*invfac_(isum3)*invfac_(n2-1)

)));

repeat id Pochhammer(n?pos_,x?) = Pochhammer(n-1,x)*num(n-1+x);

repeat id Pochhammer(n?neg_,x?) = Pochhammer(n+1,x)*den(n+x);

id Pochhammer(0,x?) = 1;

id num(x?number_) = x;

id den(x?number_) = 1/x;

id num(x?)*den(x?) = 1;

id num(x?) = rat(x,1);

id den(x?) = rat(1,x);

id ftriangle(n?,n0?,n3?,x1?,n4?,x2?,n1?,n2?) =

ep‘pa’^x1*ep‘pb’^x2/‘p’.‘p’^n0/‘p1’.‘p1’^n1/‘p2’.‘p2’^n2/‘pa’.‘pa’^n3/‘pb’.‘pb’^n4;

endif;

id xpower = 1;

*

#endprocedure

Again, the simple cases are treated separately.

Recently a multi-loop generatization of this formula was formulated, called the diamond
rule. It starts becoming relevant for 4- and more-loop propagator diagrams.

How does the triangle formula affect us?

The two loop topologies are given by

Q Q
P5

P2P1

P4 P3

Q Q

P3

P1

P2

P4
Q Q

P1

P2

P3

P4

The topologies T1, T2, T3

The topologies T2 and T3 can be solved by applying the one-loop equation twice. The
topology T1 is treated by applying the rule of the triangle. This will eliminate the denominator
belonging to one of the lines and the resulting integrals are either of the type T2 or of the
type T3. There is one complication that arises when the power of the center line in T1 is not
an integer. In that case the application of the rule of the triangle is useless as it cannot reduce
the power of the center line (α0) to zero. Hence we have to use different recursion relations
which are derived by using other momenta than the center line for the derivative in the IBP

relation(s):

(β1 − 1)I(n, α0, β1, β2, α1, α2)Q
2 =

+(α0 + β1 + 2β2 −D − 1)I(n, α0, β1 − 1, β2, α1, α2)

+(β1 − 1)I(n, α0, β1, β2 − 1, α1, α2)

+α0(I(n, α0 + 1, β1 − 1, β2 − 1, α1, α2)

−I(n, α0 + 1, β1 − 1, β2, α1, α2 − 1)).

and

(α0 − 1 + ε)I(0, α0, 1, 1, 1, 1) =

−(α0 − 2 + 2ε)I(0, α0 − 1, 1, 1, 1, 1)Q−2

−2(3− 3ε− 2α0)G(1, α0, 0, 0)G(1, α0 + ε, 0, 0)Q−2(2+α0).

In both cases we have one integral left that cannot be solved by these means. We call this a
master integral. It has been computed to order ε6 with the use of symmetry considerations
and more recently by other powerful techniques:

I(0, 1 + ε, 1, 1, 1, 1) = (6ζ3 + 9ζ4ε + 102ζ5ε
2 + 240ζ6ε

3 − 186ζ23ε
3 + · · ·)(1− 2ε)

In the case that more lines have a noninteger power things can become rather messy. One
has to write down all possible IBP identities for the system and then keep combining them in

such a way that one gets relations that can bring each line down to either zero or 1+mε. Then
either there is still an equation left that can still eliminate one line, or we have to stop and
call the result a master integral. Solving such master integrals is an active field of research.
For the T1 topology all integrals can be expanded in ε to rather high powers (Bierenbaum
and Weinzierl).

Test:

#include- minceex.h

Off Statistics;

Format nospaces;

.global

L F = Q.Q^11/p1.p1/p2.p2^2/p3.p3^3/p4.p4^4/p5.p5^5;

#call integral(t1,0)

*#call subvalues

*#call expansion(1)

Print +f +s;

.end

F=

+GschemeConstants(0,0)^2*rat(-512*ep^8-9472*ep^7-71680*ep^6-

281344*ep^5-595744*ep^4-615952*ep^3-156176*ep^2+171720*ep+77400,3

*ep^2+27*ep+60)

+GschemeConstants(0,0)*GschemeConstants(1,0)*rat(314928*ep^18+

12807072*ep^17+234621360*ep^16+2562787836*ep^15+18618955245*ep^14

+95025037491*ep^13+350726473557*ep^12+948624569001*ep^11+

1879549568667*ep^10+2678165031051*ep^9+2599404875847*ep^8+

1465738694559*ep^7+182381717340*ep^6-217188534474*ep^5+

85111370496*ep^4+214785970344*ep^3+54977266080*ep^2-23618822400*

ep-7838208000,2*ep^10+102*ep^9+2284*ep^8+29508*ep^7+242922*ep^6+

1326798*ep^5+4845736*ep^4+11607432*ep^3+17286656*ep^2+14252160*ep

+4838400)

;

0.08 sec out of 0.08 sec

#define MSBAR "1"

#include- minceex.h

Off Statistics;

Format nospaces;

.global

L F = Q.Q^11/p1.p1/p2.p2^2/p3.p3^3/p4.p4^4/p5.p5^5;

#call integral(t1,0)

#call subvalues

~~~Answer in MS-bar

#call expansion(1)

~~~Answer in MS-bar

Print +f +s;

.end

F=

+41497259/5880

-330*ep^-2

-21507/28*ep^-1

+220765958387/9878400*ep

+11260*ep*z3

;

0.12 sec out of 0.12 sec

For three-loop integrals there are 14 topologies that have to be considered. Some of these
are rather easy but there are 5 topologies that need special attention. One of them is outright
complicated.

The first topology to consider is the ladder topology, also called LA:

Q Q

P5

P2

P7 P8

P1

P6

P3

P4

Diagrams of this type can be simplified by applying the rule of the triangle to either the
loop with P7, P1 and P6, or to the loop with P8, P4 and P3. Assuming that we use the first
triangle we will get then a diagram that misses either P7 in the denominator (topology O3)
or it misses P2 or P5 in the denominator (topology FA). The resulting topologies are treated
later in this section.

The second basic topology is the Benz topology, also called BE:

Q Q

P8

P7P6

P3

P2

P1

P5 P4

Again we can apply the rule of the triangle to simplify such a diagram. The triangle contains
the momenta P2, P6 and P7. After this we have diagrams that miss either P2 (topology O1)
or they miss P1 or P3 (topology BU). These topologies are treated later in this section.

The topology BU is a derivative topology. This means that it is a topology that can be
obtained by removing one or more denominators in a more complicated topology with the
same number of loops. It is given by:

Q Q

P2

P4

P5

P6P1

P3 P7

Also this topology can be simplified with an application of the rule of the triangle. In
this case the triangle is either the triangle with the momenta P4, P1 and P2 or the triangle
with the momenta P5, P3 and P2. The choice of the triangle depends on which triangle will
give the fewest number of terms. Assuming that we used the rule for the first triangle we
have diagrams that miss either P4 in the denominator (topology O2), or they miss P6 in
the denominator (topology O4) or they miss P5 in the denominator (topology O2). These
topologies are treated below.

Another derivative topology is the FA topology. It is given by

Q Q

P2

P6 P7

P1

P5

P3

P4

and it is basically the Benz topology with momentum P8 missing. We apply again the rule
of the triangle and have then either topology O1 left or topology O2.

By far the most complicated topology is the non-planar topology, also called the NO topol-
ogy:

Q Q

P2

P5

P7 P8

P1

P6 P4

P3

In this diagram there are no triangles, so we need additional relations. The first step in a
reduction is to reduce the dotproducts in the numerator to squares of the 8 momenta P1 to P8,
the external Q.Q and then either Q.P2 or P2.P5. The last dotproduct causes problems, but
it is inevitable, as there are 10 independent variables before integration and only 9 squares.
An important step in the reduction removes this mixed dotproduct (or denominators which
effectively simplifies the topology). There are two ways to do this. The first method was
introduced in the original mincer paper. We define the integral

N ′(α1, · · · , α8, α9) =

∫
dDp1 d

Dp2 d
Dp3 (Q.p2)

α9

(p1.p1)α1 · · · (p8.p8)α8
.

and the recursion is given by

N ′(α1, · · · , α9) =

(
+

1

2
(D − 1− α1 − 2α2 − α3 + α9)9

−

+
1

2
α11

+7−9− − 1

2
α11

+2−9−

+
1

2
α33

+8−9− − 1

2
α33

+2−9−

+
α9 − 1

2
2−9−9−

)
/

(
2D − 1 + α9 −

8∑
i=1

αi

)
.

The notation here is somewhat schematic: 1+7−9− means that in N the α1 should be
incremented by one, the α7 should be decremented by one and the α9 should also be lowered
by one. This equation can be applied as many times as needed to eliminate all powers of
Q.p2. Note that there will never occur negative powers of Q.p2 because the term that could
generate such a negative power will have a zero coefficient.

The second scheme comes from Chetyrkin and Tkachov. For this we define the integral

N(α1, · · · , α8, α9) =

∫
dDp1 d

Dp2 d
Dp3 (p2.p5)

α9

(p1.p1)α1 · · · (p8.p8)α8
.

First we apply the recursion

N(α1, · · · , α9) = +
1

2
(3−9− − 2−9− − 8−9−)

+
1

2(α6 − 1)
(D − 1− α1 − 2α2 − α8 + α9)6

−9−

+
α1

2(α6 − 1)
(1+6−7−9− − 1+2−6−9−)

+
α8

2(α6 − 1)
(3−6−8+9− − 2−6−8+9−).

till either α9 = 0, or α6 = 1, or one of the other denominators is completely removed. In the
first case we have reached our objective of removing the mixed dotproduct and in the last case
the topology has been simplified. Hence we can concentrate on the second case. By applying
a symmetry transformation we can use it to make α1, α3 and α4 equal to 1 (or remove α9 or
remove one of the other denominators). Hence when we are done with this recursion four of
the denominators have only a single power. The next relation is

N(1, α2, 1, 1, α5, 1, α7, α8, α9) =

−D−1+α9−2α2−α7−α8
2(α5−1)

5−9− + α9−1
2(α5−1)

2−5−9−9−

+ α7
2(α5−1)

(2−5−7+9− − 1−5−7+9−) + α8
2(α5−1)

(2−5−8+9− − 3−5−8+9−).

This recursion will make α5 = 1 (or again remove α9 or another denominator) and a symmetric
version of it will do the same for α2. After that we need two more recursions:

N(1, 1, 1, 1, 1, 1, α7, α8, α9) =

+
1

2
(2 1−9− + 2 3−9− − 2 2−9− − 7−9− −Q2 9−)

+
1

2

α9 − 1

α8 − 1
(1−8−9−9− − 2−8−9−9− − 7−8−9−9−)

+
D − 1− 2α7 − α8

2(α8 − 1)
8−9− +

1

α8 − 1
(1−2+8−9− − 2+7−8−9−),

N(1, 1, 1, 1, 1, 1, α7, 1, α9) =

+
1

2
(2 4−9− + 2 6−9− − 2 5−9− − 8−9− −Q2 9−)

+
1

2

α9 − 1

α7 − 1
(6−7−9−9− − 5−7−9−9− − 7−8−9−9−)

+
D − 3− α7

2(α7 − 1)
7−9− +

1

α7 − 1
(5+6−7−9− − 5+7−8−9−).

They will make α8 and α7 equal to one. This brings us to the last recursion

N(1, 1, 1, 1, 1, 1, 1, 1, α9) = 3−9− − 8−9− + Q2 1 + 2ε− α9

2(α9 − 1− 4ε)
9−

+
Q2

α9 − 1− 4ε
(2−3+9− − 3+8−9−).

After this all integrals that are left have either a simpler topology or have α9 = 0.
The advantage of the first reduction scheme is its simplicity, while the second scheme is

faster because at each step (except for the last) it does not only reduce the value of α9, but
the sum of the other α’s is also reduced and hence it leaves simpler integrals behind. The
simplicity of the programming made that the first method was used in the original Mincer
program. In the FORM version of Mincer we have selected the second method.

After eliminating α9 we still have to try to remove one of the other α’s. First we apply:

Q2N(α1, · · · , α8) = 1− +
−2D − 1 + 2α1 + 2α2 + α5 + α6 + 2α7 + α8

α6 − 1
6−

+
α8

α6 − 1
6−8+(2− − 3−) +

α5

α6 − 1
6−5+(7− − 4−).

or a symmetric version of it to make α6, α1, α3 and α4 equal to one (or remove one of the
denominators). Note that when α9 is not present the N ′ and the N integrals are identical.

Then we use

(α5 − 1)(2−D + 2α5)N(1, α2, 1, 1, α5, 1, α7, α8) =

(−2D + 4 + β)Q25−(+4− 3D + 2β + 3−4+ + 1−6+)

+(α5 − 1)(7−4+ + 8−6+)

−(3− 2D + β + α5)(5
−4+ + 5−6+),

with β = α2 + α5 + α7 + α8 to make α5, α2, α8 and α7 equal to one. At this point we have
either killed off at least one denominator in which case the most complicated topologies that
are left are of the type FA or BU, or we are faced with the integral

N(1, 1, 1, 1, 1, 1, 1, 1) = 20ζ5 +O(ε).

This integral was first evaluated by Chetyrkin and Tkachov. Currently many more terms are
known in this expansion, but strictly speaking we do not need them in the mincer program.

The leftover topologies have all a one loop two-point function subgraph that can be inte-
grated directly. We still distinguish two groups. Diagrams that still need work at the two loop
level (diagrams of type O) and diagrams that do not even need that work anymore (diagrams
of type Y). The topologies of type O are

Q Q

P2P1

P4 P3

P5

P7P6

Q Q

P4

P5

P1

P7

P6

P2

P3

Q Q
P5

P2P1

P4 P3

P6

P7

and

Q Q
P5

P2P1

P6

P7

P4 P3

The topologies O1-O3 have a trivial two point subintegral (with momenta P6 and P7). The
topology O4 requires more care. Based on scaling and Lorentz invariance arguments one can
treat the integral over P6 first. This is particularly simple when there are no dotproducts in
the numerator. If there are such dotproducts, dotproducts between momenta in the two loop
subgraph are also trivial, dotproducts involving P7 can be rewritten with P7 = Q− P6, and
P6 = P1 − P4. This leaves as only complicated dotproducts the ones involving Q and P1−5.

Let us replace Q.Pi by xR(Pi). Then we can use:

xndDp6
(p26)

x1(p27)
x2 =

1

(Q2)x1+x2−D/2

n/2∑
s=0

G(x1 − s, x2, n− 2s, 0)

n/2−s∑
j=0

Γ(n + 2− ε− 2s)Γ(n + 1− ε− 2s− j)(−1)j

Γ(n + 2− ε− s)Γ(n + 1− ε− 2s) s! j!

×
(
Q22R

4

)s+j
The d’Alembertian 2R acts only on the function R. If it is defined by 2R = ∂µ∂µ then
∂µR(pi) = pµi . The evaluation of these derivatives is identical to what is done in the one-loop
procedure.

The Y topologies are given by

Q Q

P3

P1

P6

P2

P4

P5

Q Q

P5

P1

P3

P2

P6P4 Q Q

P5

P3

P1

P2

P6

P4

Q Q

P5

P6

P3

P1

P2

P4
Q Q

P1

P2

P3

P4

P5

P6

In the case of these topologies one can directly apply the one-loop equation leaving a diagram
of topology T2 or T3.

An example of one of the Y routines:

#procedure integy2

*

if (count(inty2,1));

id p6.p?!{p6} = p1.p-p5.p;

id p4.p?!{p4} = p1.p-p3.p;

id p2.p?!{p2} = Q.p-p1.p;

endif;

.sort:integy2-1;

if (count(inty2,1));

id p1.p5 = p5.p5/2+p1.p1/2-p6.p6/2;

id p1.p3 = p3.p3/2+p1.p1/2-p4.p4/2;

id Q.p1 = p1.p1/2+Q.Q/2-p2.p2/2;

endif;

.sort:integy2-2;

if (count(inty2,1));

if ((count(epp2,1) == 0) && (count(p2.p2,1) >= 0)) Discard;

if ((count(epp3,1) == 0) && (count(p3.p3,1) >= 0)) Discard;

if ((count(epp4,1) == 0) && (count(p4.p4,1) >= 0)) Discard;

endif;

#call IntOne(p5,p6,p1,y2,t2)

*

#endprocedure

The final call to IntOne tells to integrate over p5 in a loop that is made up of momenta
p5 and p6, while the line outside this loop is p1. Only terms with the marker inty2 will be
integrated and the resulting topology is t2 and hence the integrated terms are provided with
the marker intt2.

Unfortunately the more complicated topologies require much more code.

At the toplevel the integration routines look like

#procedure integral(TOP,par)

*

#switch ‘TOP’

* ## no :

* ## be :

* #[la :

#case la

Multiply intla;

#call integla

#call integfa

#call intego1

#call intego2

#call intego3

#call integy4

#call integy3

#call integt1

#call integt2

#call integt3

#call integl1

Multiply 1/epQ^3/int0;

#break

* #] la :

* ## fa :

* ## bu :

* ## o1 :

* ## o2 :

* ## o3 :

* ## o4 :

* ## y1 :

* ## y2 :

* ## y3 :

* ## y4 :

* ## y5 :

* ## t1 :

* ## t2 :

* ## t3 :

* ## l1 :

* ## tr :

#endswitch

*

#call propagators

#if (‘par’ == 1)

id GschemeConstants(0,0) = GC0;

id GschemeConstants(1,0) = GC1;

id GschemeConstants(2,0) = GC2;

id BasicNOIntegral = BNO;

id BasicT1Integral = BT1;

#endif

*

#endprocedure

The call to the propagators routine provides some shortcuts for when a diagram contains
a higher order propagator. It can give big savings, both in the number of diagrams to be
computed, the complexity of the integrals to be computed and the number of terms that are

coming from the substitution of the Feynman rules.

Let us test it a bit again with something bad:

#define MSBAR "1"

#include- minceex.h

Off Statistics;

Format nospaces;

.global

L F = Q.Q^8/p1.p1^2/p2.p2^2/p3.p3^2/p4.p4^2/p5.p5^2

/p6.p6^2/p7.p7^2/p8.p8^2*Q.p2^2;

#call integral(no,0)

*#call subvalues

*#call expansion(1)

Print +f +s;

.end

F=

+BasicNOIntegral*rat(4096*ep^10+93184*ep^9+938240*ep^8+5462848*

ep^7+20209376*ep^6+49173312*ep^5+78744136*ep^4+80631340*ep^3+

49372908*ep^2+15733320*ep+1843200,ep^2+3*ep+2)

+GschemeConstants(0,0)*BasicT1Integral*rat(786432*ep^18+24182784*

ep^17+341596392*ep^16+2928167964*ep^15+16954921542*ep^14+

69845836809*ep^13+209901452148*ep^12+463647927096*ep^11+

746395834995*ep^10+849522664377*ep^9+632771403654*ep^8+

236737319010*ep^7-42491736879*ep^6-93675541320*ep^5-41389099884*

ep^4-6548629680*ep^3,16*ep^8+216*ep^7+1236*ep^6+3906*ep^5+7434*

ep^4+8694*ep^3+6074*ep^2+2304*ep+360)

+GschemeConstants(0,0)^2*GschemeConstants(1,0)*rat(-589824*ep^19-

22069248*ep^18-384110592*ep^17-4118947008*ep^16-30384614016*ep^15

-163007347344*ep^14-655231813872*ep^13-2001476709348*ep^12-

4654835099040*ep^11-8154156766935*ep^10-10449299704155*ep^9-

9147309946377*ep^8-4434802783065*ep^7+243896023899*ep^6+

1873714328823*ep^5+1051949773077*ep^4+104710382361*ep^3-

100963232748*ep^2-28713178188*ep+136080,8*ep^11+156*ep^10+1354*

ep^9+6897*ep^8+22881*ep^7+51840*ep^6+81724*ep^5+89493*ep^4+66581*

ep^3+31974*ep^2+8892*ep+1080)

+GschemeConstants(0,0)^2*GschemeConstants(2,0)*rat(4194304*ep^19+

159383552*ep^18+2824339456*ep^17+30951342080*ep^16+234252156928*

ep^15+1295409152000*ep^14+5400777891840*ep^13+17255349485568*

ep^12+42458741623808*ep^11+79978710307328*ep^10+113055412375552*

ep^9+114753257953024*ep^8+75143655942272*ep^7+20239135295776*ep^6

-12363288097920*ep^5-14147366590912*ep^4-4869122329472*ep^3-

62393890656*ep^2+332502717312*ep+52393271040,24*ep^11+468*ep^10+

4062*ep^9+20691*ep^8+68643*ep^7+155520*ep^6+245172*ep^5+268479*

ep^4+199743*ep^3+95922*ep^2+26676*ep+3240)

+GschemeConstants(0,0)*GschemeConstants(1,0)*GschemeConstants(2,0

)*rat(-53477376*ep^24-2432696320*ep^23-52437421696*ep^22-

711848675872*ep^21-6810303750480*ep^20-48870780662128*ep^19-

273337326673088*ep^18-1220205166546754*ep^17-4411362001445873*

ep^16-13029160087232780*ep^15-31581435659895828*ep^14-

62854804608688977*ep^13-102283535876360332*ep^12-

134707722249968162*ep^11-140946801731199762*ep^10-

113465995174910478*ep^9-66100155450256875*ep^8-23801424032896466*

ep^7-1628478603696138*ep^6+3360332178325841*ep^5+1811204047215096

*ep^4+331736956846896*ep^3-38912162995728*ep^2-25995261802320*ep-

3143708107200,384*ep^16+10368*ep^15+129312*ep^14+988416*ep^13+

5179464*ep^12+19717992*ep^11+56375790*ep^10+123395508*ep^9+

208805490*ep^8+273845232*ep^7+277173954*ep^6+214024356*ep^5+

123461862*ep^4+51373008*ep^3+14522544*ep^2+2488320*ep+194400)

;

1.75 sec out of 1.76 sec

If you look at this output, you will see that we have 5 terms. They represent the 5 integrals
that we have to evaluate by different means and currently those means all involve expansions
in ε. Let us do that here (same program but now expanded):

#define MSBAR "1"

#include- minceex.h

Off Statistics;

Format nospaces;

.global

L F = Q.Q^8/p1.p1^2/p2.p2^2/p3.p3^2/p4.p4^2/p5.p5^2

/p6.p6^2/p7.p7^2/p8.p8^2*Q.p2^2;

#call integral(no,0)

#call subvalues

~~~Answer in MS-bar

#call expansion(1)

~~~Answer in MS-bar

Print +f +s;

.end

F=

-368808805411/81000

-1348/3*ep^-3

-42409/9*ep^-2

-13820447/900*ep^-1

+18432000*z5

-36312616/3*z3

+18131921333431/810000*ep

+46080000*ep*z6

+277141200*ep*z5

-18156645*ep*z4

-11700571136/45*ep*z3

+62668800*ep*z3^2

;

3.23 sec out of 3.23 sec

As you can see, these expansions also take time, because they have not been programmed in
the most efficient way. That is not really needed, because this is always at the end of the
program, when the number of terms is limited to 5, or even only after we have added all
diagrams (there could be thousands). This is not timing critical.

The constants z3,z4,z5,z6 in the output are so-called harmonic sums:

ζm =

∞∑
i=1

1

im

These occur in the power series expansion of the gamma function. The expansions of the
master integrals can contain more complicated nested sums, called multiple zeta values. And
when the number of loops becomes large enough there can be even more complicated objects.
The full class of functions that can occur in such master integrals is not yet known. Especially
when masses are involved each year new categories of functions are found. Currently the
fashion word is ’elliptic integrals’.

The regular mincer routines work with a fixed power series expansion in ε. If one studies the
algorithms carefully one sees that one will never have more than 6 powers of 1/ε. Therefore
one never needs more than 6 powers of ε in the expansions. And by shifting a bit with powers
of ε at the moment new poles can be introduced, one can avoid carrying more powers around
than necessary. The result is a much faster program:

#define MSBAR "1"

#include- minceex.h

Off Statistics;

Format nospaces;

.global

L F = Q.Q^15/p1.p1^3/p2.p2^3/p3.p3^3/p4.p4^3/p5.p5^3

/p6.p6^3/p7.p7^3/p8.p8^3*Q.p2^3;

#call integral(no,0)

#call subvalues

~~~Answer in MS-bar

#call expansion(0)

~~~Answer in MS-bar

Print +f +s;

.end

F=

-24973420135522816669757627/5334336000

+48128763/2*ep^-3

+97098455533/336*ep^-2

+5386541947602953/4233600*ep^-1

+19030585077504000*z5

-12521623875310875*z3

;

92.18 sec out of 92.24 sec

versus

#include- mincer.h

Off Statistics;

Format nospaces;

.global

L F = Q.Q^15/p1.p1^3/p2.p2^3/p3.p3^3/p4.p4^3/p5.p5^3

/p6.p6^3/p7.p7^3/p8.p8^3*Q.p2^3;

Multiply ep^3;

#call integral(no)

~~~Answer in MS-bar

Print +f +s;

.end

F=

-24973420135522816669757627/5334336000

+48128763/2*ep^-3

+97098455533/336*ep^-2

+5386541947602953/4233600*ep^-1

+19030585077504000*z5

-12521623875310875*z3

;

8.07 sec out of 8.07 sec

Note that the extra ε3 is part of the shifting. It is a little weakness in the system that this
is needed.



Because mincer has been used for some rather barbaric calculations the tables had to be big.
This is why the mincer.h file contains more than 182000 lines. The programs that were used
to generate the tables are included. Hence if further extensions are needed it is a relatively
small task to extend them.

The minceex.h file consists of more than 6000 lines, although there are quite a few lines
that involve manipulations to get physical objects in a form that the library can handle.

The 4-loop program forcer consists of more than 200000 lines. Of course those have not
been programmed by hand. Also the recursion schemes like the one for the NO topology in
mincer (but now far more complicated) have been derived by computer, albeit hand guided.
In principle there are no fixed expansions (there is an option in the polyratfun statement that
forces fixed expansions if needed) because the number of poles in ε that can develop during
the calculation is currently not known in advance, hence the regular mode is to work with
rational polynomials in ε.



This is the end of the course. I hope that it has given you an idea of what Form can do and
how you go about solving problems with it. If you pay enough attention to details of efficiency
you can obtain very fast programs. Once you have reached some proficiency, it might be useful
to go through the manual to see roughly what kind of commands/statements/features there
are that were not treated in this course. It might give you ideas.

If you run into problems, you can bring up an issue in the github pages of Form. There
are always people who are willing to help you.


