
Answers
This file contains the answers to the problems for as far as they are not treated in the course

itself.



Problem 1: We have to start with a nice notation in which we define the components of
the graph. Hence we define a function for the propagators and two functions for the different
vertices. These functions should be non-commuting and they should carry the spinor index.

The definitions are
Vectors p;
Functions prop,vert1,vert2;
Index mu,i;
Symbols m;

id vert1(i?,mu?) = g_(i,mu);
id vert2(i?,mu?) = g_(i,mu,7_);
id prop(i?,p?,m?) = g_(i,p)+gi_(i)*m;

You see that the spinor index is declared indeed as an index, even though it is a number. We
use the unit gamma-matrix in the term with the mass to make sure that we never end up
with terms that do not contain any gamma-matrices. This is shown here:

Index mu,mu1,mu2,mu3,mu4,mu5,mu6;
Local F1 = gi_(1);



Local F2 = 1;
Local F3 = g_(1,mu1,mu2);
Local F4 = g_(1,mu1,mu2,mu3,mu4);
Local F5 = g_(1,5_,mu1,mu2,mu3,mu4);
Local F6 = g_(1,5_,mu1,mu2,mu3,mu4,mu5,mu6);
Trace4,1;
Print +s;
.end

F1 =
+ 4

;

F2 =
+ 1

;

F3 =



+ 4*d_(mu1,mu2)
;

F4 =
+ 4*d_(mu1,mu2)*d_(mu3,mu4)
- 4*d_(mu1,mu3)*d_(mu2,mu4)
+ 4*d_(mu1,mu4)*d_(mu2,mu3)

;

F5 =
+ 4*e_(mu1,mu2,mu3,mu4)

;

F6 =
+ 4*e_(mu1,mu2,mu3,mu4)*d_(mu5,mu6)
- 4*e_(mu1,mu2,mu3,mu5)*d_(mu4,mu6)
+ 4*e_(mu1,mu2,mu3,mu6)*d_(mu4,mu5)
+ 4*e_(mu1,mu4,mu5,mu6)*d_(mu2,mu3)



- 4*e_(mu2,mu4,mu5,mu6)*d_(mu1,mu3)
+ 4*e_(mu3,mu4,mu5,mu6)*d_(mu1,mu2)

;

You see that F2 is just one. There was no gamma matrix. As an added exercise, you may try
to figure out how it can be that the last trace has only 6 terms, while most other programs
have 15 terms there.



With the above building blocks, it is easy to make the program, taking into account that
one has to work against the direction of the arrows in the diagram.

Vectors p,p1,p2,p3,p4,p5,p6,p7,p8,q1,q2,q3,q4,q5,q6,q7,q8;
Functions prop,vert1,vert2;
Index mu,mu1,mu2,mu3,mu4,mu5,mu6,mu7,mu8,i;
Symbols m,m1,m2,m3,m4,m5,m6,m7,m8;
Local F =
prop(1,q1,m1)*vert1(1,mu1)*prop(1,q2,m1)*vert2(1,mu2)*
prop(1,q3,m2)*vert1(1,mu3)*prop(1,q4,m2)*vert2(1,mu4)*
prop(1,q5,m3)*vert1(1,mu5)*prop(1,q6,m3)*vert2(1,mu6)*
prop(1,q7,m4)*vert1(1,mu7)*prop(1,q8,m4)*vert2(1,mu8)*
prop(2,p1,m5)*vert1(2,mu1)*prop(2,p2,m5)*vert2(2,mu2)*
prop(2,p3,m6)*vert1(2,mu3)*prop(2,p4,m6)*vert2(2,mu4)*
prop(2,p5,m7)*vert1(2,mu5)*prop(2,p6,m7)*vert2(2,mu6)*
prop(2,p7,m8)*vert1(2,mu7)*prop(2,p8,m8)*vert2(2,mu8);

id vert1(i?,mu?) = g_(i,mu);
id vert2(i?,mu?) = g_(i,mu,7_);
id prop(i?,p?,m?) = g_(i,p)+gi_(i)*m;



.sort

Time = 0.13 sec Generated terms = 1024
F Terms in output = 1024

Bytes used = 122684
Trace4,1;
Trace4,2;
.end

Time = 0.14 sec Generated terms = 256
F Terms in output = 256

Bytes used = 26548

As you can see, even though the diagram is extremely complicated, the answer is actually
rather compact. Things are different if we reverse the direction of the arrow on one of the
spin lines:



Vectors p,p1,p2,p3,p4,p5,p6,p7,p8,q1,q2,q3,q4,q5,q6,q7,q8;
Functions prop,vert1,vert2;
Index mu,mu1,mu2,mu3,mu4,mu5,mu6,mu7,mu8,i;
Symbols m,m1,m2,m3,m4,m5,m6,m7,m8;
Local F =
prop(1,q1,m1)*vert1(1,mu1)*prop(1,q2,m1)*vert2(1,mu2)*
prop(1,q3,m2)*vert1(1,mu3)*prop(1,q4,m2)*vert2(1,mu4)*
prop(1,q5,m3)*vert1(1,mu5)*prop(1,q6,m3)*vert2(1,mu6)*
prop(1,q7,m4)*vert1(1,mu7)*prop(1,q8,m4)*vert2(1,mu8)*
prop(2,p1,m5)*vert2(2,mu8)*prop(2,p2,m5)*vert1(2,mu7)*
prop(2,p3,m6)*vert2(2,mu6)*prop(2,p4,m6)*vert1(2,mu5)*
prop(2,p5,m7)*vert2(2,mu4)*prop(2,p6,m7)*vert1(2,mu3)*
prop(2,p7,m8)*vert2(2,mu2)*prop(2,p8,m8)*vert1(2,mu1);

id vert1(i?,mu?) = g_(i,mu);
id vert2(i?,mu?) = g_(i,mu,7_);
id prop(i?,p?,m?) = g_(i,p)+gi_(i)*m;
.sort



Time = 0.13 sec Generated terms = 1024
F Terms in output = 1024

Bytes used = 139068
Trace4,1;
Trace4,2;
.end

Time = 0.25 sec Generated terms = 82872
F 1 Terms left = 71286

Bytes used = 3922984

Time = 0.37 sec Generated terms = 165733
F 1 Terms left = 141535

Bytes used = 7827280

Time = 0.49 sec Generated terms = 248605
F 1 Terms left = 213115

Bytes used = 11745148



Time = 0.61 sec Generated terms = 331470
F 1 Terms left = 289500

Bytes used = 16038032

Time = 0.73 sec Generated terms = 414343
F 1 Terms left = 358057

Bytes used = 19800208

Time = 0.85 sec Generated terms = 497214
F 1 Terms left = 430128

Bytes used = 23823344

Time = 0.97 sec Generated terms = 580075
F 1 Terms left = 503449

Bytes used = 27884668

Time = 1.09 sec Generated terms = 662946



F 1 Terms left = 575880
Bytes used = 31864628

Time = 1.21 sec Generated terms = 745819
F 1 Terms left = 648853

Bytes used = 36055464

Time = 1.33 sec Generated terms = 828682
F 1 Terms left = 719668

Bytes used = 39944908

Time = 1.45 sec Generated terms = 911556
F 1 Terms left = 791370

Bytes used = 43825476

Time = 1.57 sec Generated terms = 994422
F 1 Terms left = 865380

Bytes used = 48131036



Time = 1.70 sec Generated terms = 1077290
F 1 Terms left = 935492

Bytes used = 52049152

Time = 1.82 sec Generated terms = 1160160
F 1 Terms left = 1007784

Bytes used = 55874636

Time = 1.94 sec Generated terms = 1243025
F 1 Terms left = 1081473

Bytes used = 60165548

Time = 2.06 sec Generated terms = 1325895
F 1 Terms left = 1150738

Bytes used = 63994320

Time = 2.18 sec Generated terms = 1408768



F 1 Terms left = 1222751
Bytes used = 67982988

Time = 2.29 sec Generated terms = 1485632
F 5 Terms left = 1289511

Bytes used = 72950760

Time = 2.40 sec Generated terms = 1560687
F 18 Terms left = 1351093

Bytes used = 77792804

Time = 2.50 sec Generated terms = 1637673
F 33 Terms left = 1413753

Bytes used = 82465260

Time = 2.61 sec Generated terms = 1716163
F 65 Terms left = 1455429

Bytes used = 85749640



Time = 2.72 sec Generated terms = 1795070
F 129 Terms left = 1507292

Bytes used = 89830280

Time = 2.82 sec Generated terms = 1873601
F 133 Terms left = 1542432

Bytes used = 92632312

Time = 2.92 sec Generated terms = 1953565
F 261 Terms left = 1602084

Bytes used = 97345212

Time = 3.02 sec Generated terms = 2025644
F 1024 Terms left = 1636316

Bytes used = 100433048

Time = 3.50 sec



F Terms active = 1076943
Bytes used = 76903428

Time = 3.82 sec Generated terms = 2025644
F Terms in output = 1074170

Bytes used = 80583532



The problem is to evaluate

�10
P P.p

10
1 P.p

10
2 P.p

10
3

Of course it may be better to start with lower powers.
We will try various approaches, each time reaching a higher level of sophistication.



One way to take derivatives of products is to work with non-commuting objects. Let us
have a look at the following program:

Functions f,f1,f2,f3,der;
Symbols x, n;
Local F = f1(0)*f2(0)*f3(0);
Multiply,left,der*der;
repeat id der*f?(n?) = f(n+1)+f(n)*der;
id der = 0;
Print +s;
.end

The notation here is that the argument of the functions tell us how many derivatives we took
of that function.

This program makes sure that each derivative acts only once on each function. If the
functions fi would be commuting, the loop would become infinite. Once the derivative is all
the way on the right it can only act on the coefficient or whatever other constants we have
and hence it will become zero.

The result of the program is:



Functions f,f1,f2,f3,der;
Symbols x, n;
Local F = f1(0)*f2(0)*f3(0);
Multiply,left,der*der;
repeat id der*f?(n?) = f(n+1)+f(n)*der;
id der = 0;
Print +s;
.end

Time = 0.00 sec Generated terms = 9
F Terms in output = 6

Bytes used = 340

F =
+ f1(0)*f2(0)*f3(2)
+ 2*f1(0)*f2(1)*f3(1)
+ f1(0)*f2(2)*f3(0)
+ 2*f1(1)*f2(0)*f3(1)
+ 2*f1(1)*f2(1)*f3(0)
+ f1(2)*f2(0)*f3(0)

;



We notice already that some terms get generated twice. This becomes worse with more
functions and/or higher derivatives:

Functions f,f1,f2,f3,der;
Symbols x, n;
Local F = f1(0)*f1(0)*f2(0)*f2(0)*f3(0)*f3(0);
Multiply,left,derˆ5;
repeat id der*f?(n?) = f(n+1)+f(n)*der;
id der = 0;
.end

Time = 0.07 sec Generated terms = 7776
F Terms in output = 252

Bytes used = 15284

Considering that each d’Alembertian stands for two derivatives, it becomes clear that we have
a rather formidable task to keep things manageable.



Let us first have a look at a single d’Alembertian, because already there we have to worry
about the Lorenz indices.

Vector P,p,p1,p2,p3;
Function dal,D,dot;
Index mu,nu;
L F = dot(P,p1)*dot(P,p2)*dot(P,p3);
multiply,left,dal(P);
id dal(P) = D(P,mu)*D(P,mu);
repeat;

id D(P,nu?)*dot(P,p?) = p(nu)+dot(P,p)*D(P,nu);
endrepeat;
id D(P,mu?) = 0;
id dot(mu?,nu?) = d_(mu,nu);
Print +f +s;
.end

Time = 0.00 sec Generated terms = 6
F Terms in output = 3



Bytes used = 132

F =
+ 2*P.p1*p2.p3
+ 2*P.p2*p1.p3
+ 2*P.p3*p1.p2

;

Here we have done something similar, but the d’Alembertian is now two derivatives with a
contracted index. We represent the dotproducts by a non-commuting function named dot to
make life easier.

The substitution with wildcard indices will also work when there is a vector in that location,
because then FORM assumes that there must have been an index which was contracted with
the index of that vector (Schoonschip notation).



With higher derivatives we have to be more careful. It would be very tempting to write the
following program:

Vector P,p,p1,p2,p3;
Function dal,D,dot;
Index mu,nu;
L F = dot(P,p1)ˆ2*dot(P,p2)ˆ2*dot(P,p3)ˆ2;
multiply,left,dal(P)ˆ2;
id dal(P) = D(P,mu)*D(P,mu);
repeat;

id D(P,nu?)*dot(P,p?) = p(nu)+dot(P,p)*D(P,nu);
endrepeat;
id D(P,mu?) = 0;
id dot(mu?,nu?) = d_(mu,nu);
Print +f +s;
.end

Time = 0.00 sec Generated terms = 212
F Terms in output = 12



Bytes used = 644

F =
+ 53*P.p1*P.p2*p1.p2*p3.p3
+ 43*P.p1*P.p2*p1.p3*p2.p3
+ 76*P.p1*P.p3*p1.p2*p2.p3
+ 20*P.p1*P.p3*p1.p3*p2.p2
+ 13*P.p1ˆ2*p2.p2*p3.p3
+ 11*P.p1ˆ2*p2.p3ˆ2
+ 58*P.p2*P.p3*p1.p1*p2.p3
+ 38*P.p2*P.p3*p1.p2*p1.p3
+ 16*P.p2ˆ2*p1.p1*p3.p3
+ 8*P.p2ˆ2*p1.p3ˆ2
+ 13*P.p3ˆ2*p1.p1*p2.p2
+ 11*P.p3ˆ2*p1.p2ˆ2

;

but unfortunately this answer is wrong. The reason is that suddenly we have 4 indices µ and
the contractions are not always what they should be. Hence a proper program would be;



Vector P,p,p1,p2,p3;
Function dal,D,dot;
Index mu,nu;
L F = P.p1ˆ2*P.p2ˆ2*P.p3ˆ2;
#do i = 1,2
id P.p? = dot(P,p);
multiply,left,dal(P);
id dal(P) = D(P,mu)*D(P,mu);
repeat;

id D(P,nu?)*dot(P,p?) = p(nu)+dot(P,p)*D(P,nu);
endrepeat;
id D(P,mu?) = 0;
id dot(mu?,nu?) = d_(mu,nu);
#enddo
Print +f +s;
.end

Time = 0.00 sec Generated terms = 258



F Terms in output = 12
Bytes used = 644

F =
+ 32*P.p1*P.p2*p1.p2*p3.p3
+ 64*P.p1*P.p2*p1.p3*p2.p3
+ 64*P.p1*P.p3*p1.p2*p2.p3
+ 32*P.p1*P.p3*p1.p3*p2.p2
+ 8*P.p1ˆ2*p2.p2*p3.p3
+ 16*P.p1ˆ2*p2.p3ˆ2
+ 32*P.p2*P.p3*p1.p1*p2.p3
+ 64*P.p2*P.p3*p1.p2*p1.p3
+ 8*P.p2ˆ2*p1.p1*p3.p3
+ 16*P.p2ˆ2*p1.p3ˆ2
+ 8*P.p3ˆ2*p1.p1*p2.p2
+ 16*P.p3ˆ2*p1.p2ˆ2

;

Clearly this is already much more complicated. Note that we have to get rid of the contracted
indices, before we introduce the next d’Alembertian.



We can make the program at least a bit more economical by putting a .sort inside the loop:
#define MAX "2"
Vector P,p,p1,p2,p3;
Function dal,D,dot;
Index mu,nu;
L F = P.p1ˆ‘MAX’*P.p2ˆ‘MAX’*P.p3ˆ‘MAX’;
#do i = 1,‘MAX’
id P.p? = dot(P,p);
multiply,left,dal(P);
id dal(P) = D(P,mu)*D(P,mu);
repeat;

id D(P,nu?)*dot(P,p?) = p(nu)+dot(P,p)*D(P,nu);
endrepeat;
id D(P,mu?) = 0;
id dot(mu?,nu?) = d_(mu,nu);
.sort: pass ‘i’;

Time = 0.00 sec Generated terms = 24



F Terms in output = 6
pass 1 Bytes used = 336

#enddo

Time = 0.00 sec Generated terms = 63
F Terms in output = 12

pass 2 Bytes used = 644
.end

Time = 0.00 sec Generated terms = 12
F Terms in output = 12

Bytes used = 644

F =
+ 32*P.p1*P.p2*p1.p2*p3.p3
+ 64*P.p1*P.p2*p1.p3*p2.p3
+ 64*P.p1*P.p3*p1.p2*p2.p3
+ 32*P.p1*P.p3*p1.p3*p2.p2



+ 8*P.p1ˆ2*p2.p2*p3.p3
+ 16*P.p1ˆ2*p2.p3ˆ2
+ 32*P.p2*P.p3*p1.p1*p2.p3
+ 64*P.p2*P.p3*p1.p2*p1.p3
+ 8*P.p2ˆ2*p1.p1*p3.p3
+ 16*P.p2ˆ2*p1.p3ˆ2
+ 8*P.p3ˆ2*p1.p1*p2.p2
+ 16*P.p3ˆ2*p1.p2ˆ2

;
0.00 sec out of 0.00 sec

You can see that we get the same answer, but the number of terms generated is less. This
way we might try to go to the 10 d’Alembertians of the original problem:



Time = 0.02 sec Generated terms = 492
F Terms in output = 6

pass 1 Bytes used = 340
#enddo

Time = 0.11 sec Generated terms = 2586
F Terms in output = 21

pass 2 Bytes used = 1408

Time = 0.35 sec Generated terms = 7854
F Terms in output = 56

pass 3 Bytes used = 4120

Time = 0.86 sec Generated terms = 17976
F Terms in output = 126

pass 4 Bytes used = 9648

Time = 1.72 sec Generated terms = 34272



F Terms in output = 252
pass 5 Bytes used = 21556

Time = 2.99 sec Generated terms = 57177
F Terms in output = 453

pass 6 Bytes used = 40056

Time = 4.65 sec Generated terms = 84114
F Terms in output = 735

pass 7 Bytes used = 66744

Time = 6.11 sec Generated terms = 85216
F 569 Terms left = 937

pass 8 Bytes used = 86896

Time = 6.52 sec Generated terms = 109095
F 735 Terms left = 1320

pass 8 Bytes used = 121536



Time = 6.52 sec Generated terms = 109095
F Terms in output = 1080

pass 8 Bytes used = 99152

Time = 7.77 sec Generated terms = 83120
F 708 Terms left = 1167

pass 9 Bytes used = 115144

Time = 8.38 sec Generated terms = 124380
F 1080 Terms left = 1877

pass 9 Bytes used = 182304

Time = 8.38 sec Generated terms = 124380
F Terms in output = 1435

pass 9 Bytes used = 139336

Time = 9.39 sec Generated terms = 78668



F 892 Terms left = 1379
pass 10 Bytes used = 140392

Time = 9.96 sec Generated terms = 123270
F 1435 Terms left = 2304

pass 10 Bytes used = 230412

Time = 9.97 sec Generated terms = 123270
F Terms in output = 1701

pass 10 Bytes used = 170044
.end

Time = 9.97 sec Generated terms = 1701
F Terms in output = 1701

Bytes used = 170044
9.97 sec out of 9.99 sec

It works, but somehow one gets the feeling that this can be done more efficiently.



Let us think a bit. If we have a set of dotproducts, each with one occurrence of P, we could
write the other vectors as a string of arguments of a tensor. A program for that would be:

#define MAX "4"
Vector P,p1,p2,p3;
Tensor T;
L F = P.p1ˆ‘MAX’*P.p2ˆ‘MAX’*P.p3ˆ‘MAX’;
L G = P.Pˆ2*P.p1ˆ‘MAX’*P.p2ˆ‘MAX’*P.p3ˆ‘MAX’;
ToTensor,T,P;
Print;
.end

Time = 0.00 sec Generated terms = 1
F Terms in output = 1

Bytes used = 80

Time = 0.00 sec Generated terms = 1
G Terms in output = 1

Bytes used = 96



F =
T(p1,p1,p1,p1,p2,p2,p2,p2,p3,p3,p3,p3);

G =
T(p1,p1,p1,p1,p2,p2,p2,p2,p3,p3,p3,p3,N1_?,N1_?,N2_?,N2_?);

The ToTensor statement needs a vector and a tensor for its arguments and replaces dotprod-
ucts that involve the vector by the tensor with the spectator vectors for its arguments. In the
case that the vector occurs as a square, we obtain a pair of computer generated indices. In
some cases that is not desirable. Hence we have the option nosquare:

#define MAX "4"
Vector P,p1,p2,p3;
Tensor T;
L F = P.p1ˆ‘MAX’*P.p2ˆ‘MAX’*P.p3ˆ‘MAX’;
L G = P.Pˆ2*P.p1ˆ‘MAX’*P.p2ˆ‘MAX’*P.p3ˆ‘MAX’;
ToTensor,nosquare,T,P;
Print;
.end



Time = 0.00 sec Generated terms = 1
F Terms in output = 1

Bytes used = 80

Time = 0.00 sec Generated terms = 1
G Terms in output = 1

Bytes used = 100

F =
T(p1,p1,p1,p1,p2,p2,p2,p2,p3,p3,p3,p3);

G =
T(p1,p1,p1,p1,p2,p2,p2,p2,p3,p3,p3,p3)*P.Pˆ2;

In our example we do not need this.



Next we realize that, due to the fact that each dotproduct had only one power of P , N
d’Alembertians take out 2N of the arguments of the tensor, but then in all possible ways.
This is a matter of combinatorics and FORM has a special function for this, the distrib
function:

#define MAX "4"
Vector P,p1,p2,p3;
Tensor T,dd;
L F = P.p1ˆ‘MAX’*P.p2ˆ‘MAX’*P.p3ˆ‘MAX’;
ToTensor,nosquare,T,P;
id T(?a) = 2ˆ‘MAX’*distrib_(1,2*‘MAX’,dd,T,?a);
Print +f +s;
.end

Time = 0.00 sec Generated terms = 15
F Terms in output = 15

Bytes used = 1108

F =



+ 16*T(p1,p1,p1,p1)*dd(p2,p2,p2,p2,p3,p3,p3,p3)
+ 256*T(p1,p1,p1,p2)*dd(p1,p2,p2,p2,p3,p3,p3,p3)
+ 256*T(p1,p1,p1,p3)*dd(p1,p2,p2,p2,p2,p3,p3,p3)
+ 576*T(p1,p1,p2,p2)*dd(p1,p1,p2,p2,p3,p3,p3,p3)
+ 1536*T(p1,p1,p2,p3)*dd(p1,p1,p2,p2,p2,p3,p3,p3)
+ 576*T(p1,p1,p3,p3)*dd(p1,p1,p2,p2,p2,p2,p3,p3)
+ 256*T(p1,p2,p2,p2)*dd(p1,p1,p1,p2,p3,p3,p3,p3)
+ 1536*T(p1,p2,p2,p3)*dd(p1,p1,p1,p2,p2,p3,p3,p3)
+ 1536*T(p1,p2,p3,p3)*dd(p1,p1,p1,p2,p2,p2,p3,p3)
+ 256*T(p1,p3,p3,p3)*dd(p1,p1,p1,p2,p2,p2,p2,p3)
+ 16*T(p2,p2,p2,p2)*dd(p1,p1,p1,p1,p3,p3,p3,p3)
+ 256*T(p2,p2,p2,p3)*dd(p1,p1,p1,p1,p2,p3,p3,p3)
+ 576*T(p2,p2,p3,p3)*dd(p1,p1,p1,p1,p2,p2,p3,p3)
+ 256*T(p2,p3,p3,p3)*dd(p1,p1,p1,p1,p2,p2,p2,p3)
+ 16*T(p3,p3,p3,p3)*dd(p1,p1,p1,p1,p2,p2,p2,p2)

;

The first argument of this function tells that we want to put something in the function in the
third argument (the first function) as opposed to the function in the fourth argument which



will get the remainder (the second function). The second argument tells how many arguments
we want to take out. After the four arguments come the arguments we are referring to. Notice
that FORM generates exactly the right number of terms and gets the combinatorics right.
This helps a lot.

The factor 2MAX is a combinatorics factor that comes from the fact that each d’Alembertian
represents two identical derivatives.

The next problem is what to do with this. First the tensor T can now be written back
to dotproducts with the ToVector statement that is the opposite of the ToTensor statement.
And then we have to decide what to do with the dd tensor. Its arguments should be divided
over dotproducts in all possible ways. This can be done with the dd function which is the
generalized Kronecker delta as in

Indices m1,m2,m3,m4;
Local F = dd_(m1,m2,m3,m4);
Print;
.end

F =
d_(m1,m2)*d_(m3,m4) + d_(m1,m3)*d_(m2,m4) + d_(m1,m4)*d_(m2,m3);



Hence the full program looks now like:
#define MAX "4"
Vector P,p1,p2,p3;
Tensor T,dd;
L F = P.p1ˆ‘MAX’*P.p2ˆ‘MAX’*P.p3ˆ‘MAX’;
ToTensor,nosquare,T,P;
id T(?a) = 2ˆ‘MAX’*distrib_(1,2*‘MAX’,dd,T,?a);
ToVector,T,P;
id dd(?a) = dd_(?a);
.end

Time = 0.00 sec Generated terms = 69
F Terms in output = 69

Bytes used = 5044

We see that we have no terms generated twice!



Hence now we can safely set MAX to 10:
#define MAX "10"
Vector P,p1,p2,p3;
Tensor T,dd;
L F = P.p1ˆ‘MAX’*P.p2ˆ‘MAX’*P.p3ˆ‘MAX’;
ToTensor,nosquare,T,P;
id T(?a) = 2ˆ‘MAX’*distrib_(1,2*‘MAX’,dd,T,?a);
ToVector,T,P;
id dd(?a) = dd_(?a);
.end

Time = 0.00 sec Generated terms = 1701
F Terms in output = 1701

Bytes used = 157108

And indeed we get the same number of terms in the answer as with the previous program
that took almost 10 sec on the same computer.



The combinatorics here is astounding. This is seen by looking at some of the output terms:
+ 32920473600000*P.p1*P.p2*P.p3ˆ8*p1.p1ˆ4*p1.p2*p2.p2ˆ3*p2.p3ˆ2
+ 4115059200000*P.p1*P.p2*P.p3ˆ8*p1.p1ˆ4*p1.p2*p2.p2ˆ4*p3.p3
+ 8230118400000*P.p1*P.p2*P.p3ˆ8*p1.p1ˆ4*p1.p3*p2.p2ˆ4*p2.p3
+ 60197437440000*P.p1*P.p2*P.p3ˆ8*p1.p2ˆ7*p1.p3ˆ2*p2.p2
+ 30098718720000*P.p1*P.p2*P.p3ˆ8*p1.p2ˆ8*p1.p3*p2.p3
+ 1672151040000*P.p1*P.p2*P.p3ˆ8*p1.p2ˆ9*p3.p3

Conclusion: it takes some thinking (= user unfriendly?), but in the end one can program
the whole operation in 4 lines and with absolute efficiency.


