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Abstract

We provide a data mine of proven results for multiple zetaiegl(MZVs) of the
form 4(s1, %+, %) = Sione..on-01 1/ (N...n¥) } with weightw = 3% ; 5 and
depthk and for Euler sums of the for@iy o~ o {(€7%...€7%)/(nF...n¥) } with
signsg; = +£1. Notably, we achieve explicit proven reductions of all MZWith
weightsw < 22, and all Euler sums with weights< 12, to bases whose dimensions,
bigraded by weight and depth, have sizes in precise agraemitérthe Broadhurst—
Kreimer and Broadhurst conjectures. Moreover, we lench&rrsupport to these
conjectures by studying even greater weights{(30), using modular arithmetic. To
obtain these results we derive a new type of relation for iEsuens, the Generalized
Doubling Relations. We elucidate the “pushdown” mechanistmereby the ornate
enumeration of primitive MZVs, by weight and depth, is recited with the far
simpler enumeration of primitive Euler sums. There is somidesce that this push-
down mechanism finds its origin in doubling relations. Wedtmat our data mine,
obtained by exploiting the unique power of the computer lalgdanguageoRrm,
will enable the study of many more such consequences of thiglelshuffle algebra
of MZVs, and their Euler cousins, which are already the sttlpé keen interest, to
practitioners of quantum field theory, and to mathematgiike.
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1 Introduction

Multiple Zeta Values (MZVs) and Euler sums [1-3] have beemtdrest to mathemati-

cians [1,4-7] and physicists [8] for a long time. One placehysics in which they are

important is perturbative Quantum Field Theory. The irgelecame even larger when
higher order calculations in Quantum Electrodynamics (Q&m Quantum Chromody-

namics (QCD) started to need the multiple harmonic s8¥) [9-11]. Euler sums are

obtained as the limiN — o of the related multiple sunmi&:(N)

b k k—1
=y S'gkﬁﬂ Y Za() CED
k=l
with ¢ = (b,&), b,a € Z and
N b k
ZoaN) = T O 74(k-1), Zo=1, Z4(0) =0, (1.2)
k=1

with o(b) = sign(b). Euler sums for which all indices are positive are called tipie
Zeta Values. Euler sums and MZVs with the first index 1 diverge, but will be in-
cluded symbolically in the following, for convenience. Tihgegree of divergence can be
uniquely traced back to a polynomial in the single harmooim s

N1
Go = Sy() = lim ZE (1.3)
We call the number of indices of the Euler sums and MZVs theptldd and
d
w = Z || (1.4)
K=1

their weight.

The number of Euler sums, resp. MZVs, up to a given weiglgrows rapidly and
amounts to 23"~ and 21, respectively. A central question thus concerns to find all
the relations between the Euler sums, resp. MZVdii@d weightanddepth and even
more importantlynew relationsbetween MZVs at the one hand and Euler sums on the
other hand, and the corresponding bases. Besides weigltegtd, another degree of
freedom, being discussed later, theshdowrp, quantifies the relation between MZVs
and Euler sums. The way to view MZVs, embedded into Euler sutates back to
Broadhurst [12], who conjectured the counting of basis elas at fixed{w,d}. The
corresponding conjecture for the MZVs is due to Broadhumstlareimer [13f. For the
number of basis elements for MZVs of a given weight, with@gtard to depth, an upper
bound has been proven in [14]. This coincides with the restihined by summing the
numbers conjectured in [13] over all depths at a fixed weight.

2Conijectures for fixed weight are due to Zagier [2] and propalso independently due to Drinfel'd,
Goncharov and Kontsevich.



The relations between MZVs and Euler sums in Ref. [12] argembared using algo-
rithms for integer relations aBSLQ [15] andLLL [16] which use representations based
on a large number of digits.

It is well-known that MZVs obey shuffle- and stuffle-relatsonThis is due to their
representation in terms of Poincaré iterated integraf$ §t argumenk = 1, which are
harmonic polylogarithms [18] on the one hand, and harmomness[9—-11] on the other
hand. The former quantities obey a shuffle- the latter a egladifle algebra, i.e. shuf-
fling with “stuff” from polynomials of harmonic sums of loweveight. Currently no
other relation independent is known between MZVs. The Esliens are also related by
both the shuffle- and stuffle-relations, where now also megatdices occur to indicate
alternating sums. However, these relations are not suttiteeobtain the minimal set of
basis elements as being conjectured in [12]. Starting with8 it requires the doubling
relation and withw = 11 generalized doubling relations derived in the present pdgee
ginning withw = 12 relations occur, which allow to express MZVs of a given depth
terms of Euler sums of a lesser depth. Part of these relatians been conjectured in
the past using integer relations [12,19]. A main objectivthe present paper is to prove
these relations applying computer algebra methods anddadiations of this type in a
more systematic way.

We investigate the Euler sums o= 12 completely, deriving basis-representations
for all individual values in an explicit analytic calculati. For the MZVs the same anal-
ysis is being performed up t@ = 22. Tow = 24 we checked the conjectured size of the
basis using modular arithmetic. Under the further conjecthat the basis elements can
be chosen out of MZVs of depth< w/3 we confirm the conjecture up te = 26. Fur-
thermore, the following runs at limited depth, using modaldhmetic keeping the high-
est weight terms only, were performedi=7, w=27;d=6, w=28;d=7, w=29;

d =6, w=230. For the Euler sums complete results were obtained for3, w = 29;
d<4, w=22;d<5, w=17andford <3, w=51;d<4, w=30;d<5, w=21;

d <6, w =17 using modular arithmetic neglecting products of lower veigrhe con-
jectures on the number of basis elements Wwd} were verified in all these cases. The
results of our analysis are made available in the MultipleaZ@ata Mine [20], to allow
users to search for yet un-discovered relations.

The paper is organized as follows. In Sectidn 2 we summa@ds&cotations and
the well known relations between Euler sums. A novel typeetdtions, the generalized
doubling relations, is derived in Sectibh 4. There we alsowhs its impact in finding the
basis elements at a given weightand depthd. In Sectior’b an outline is given on the
details of the computer algebra code, which allowed to éetfie basis-representations
of the MZVs and Euler sums. Details on the running for theedédht cases are reported
in Section[6. The results are stored in tkeltiple Zeta Value Data Mine E which is
described in Sectidd 7. To establish the solution of thelprab dealt with in the current
project required some new featuresF@fRM21] andTFORM22], which are described in
Sectior 8. In Section] 9 we briefly review the status achiewedtber groups and present
first results of the analysis. In particular a series of coinjees made in the mathematical
literature are confirmed within the range explored in thespné study. Here we discuss

3]t goes without saying that also the Euler sums are coveresl he



also particular choices for the respective bases. An isti@gaspect representing MZVs
by Euler sums concerns the so-called pushdowns, i.e. thesemation of a MZV of a
given depthd with Euler sums of deptd’ with d’ < d. These are studied in Sectibnl 10
in which we also introduce a new kind of object, tAg-functions. They play a key
role in representing a class of Euler sums. Some more sgegial sums are studied in
Section 1. Section 12 contains the conclusions and anadutlm the Appendices we
provide different basis representations and discuss thledmwns in more detail.

2 Basic Formalism

In the following we work with three types of objects, the feitested harmonigs-sums,
Zz-sums, both at argumemM € N, and the harmonic polylogarithnid; at argument
X, 0<x<1. They all can be used to define the MZVs and the Euler sumsen th
limit N — o andx = 1, respectively. We generally consider the case of cololgeots
corresponding to = 2, i.e. numerator weights Withtl)", I.e. polylogarithms of square
root of unity.

The harmoni&sums are defined by

S(0) = 0
v (o(b))"

S(N) = kZl Kbl
N k

S = 3 S0, @)
=1

In this form these sums are usually used by physicists. Itiqodar results in QCD
[23—-26] are expressed in terms of these objects

Next there are th&-sums. They are defined in_(1.2). These are of course veryasimi
to the Ssums and it is straightforward to convert from one notatimnhe other. The
Z-sums are mostly used by mathematicians. In the INnit- 0 and wheno(b) = 1 for
all b they define the Multiple Zeta Values (MZVs):

Ca= lim Za(N) (2.2)

When we allowo(b) to take the values-1 or —1 and we take the limiN — o we speak
of Euler sums.

Finally, there are the harmonic polylogarithms, which wd aiso call H-functions.
We consider the alphabets

h = {0,1,—-1} and
H = {1/x,1/(1-x),1/(1+x)}, (2.3)

4The class of Euler sums is known to be too small in generalpoesent all Feynman diagrams for
no-scale processes in scalar field theories, but have toteeded in higher orders [27-30]. This will apply
also for field theories as QCD and QED. Feynman-integralpanieds [31] if all ratios of Lorenz invariants
and masses have rational values [32].




which define the elements of the index set of the harmonidm@rithm@ and the func-
tions in the iterated integrals, respectively. ket {my,....m¢}, my,b € h, k>1,
then

Hoa) = [ dzb@Ha(2

Ho(x) = log(x)

Hix) = —log(1—x

H_1(x) = log(1+x) . (2.4)

The sums to infinity and thEl-functions at unity are all related and can be readily trans-
formed into each other. For some applications it is most eoi@nt to work with one set

of objects and for others other objects may be more usefulrdasons being explained
later our computer programs work mostly whkhfunctions at unity.

A first aspect to note is that the index fields of the sums anduhetions are of a
different nature. This can be seen by introducing the nmah which the index in the
sums can alternatively be written as- 1 zeroes followed by a one anéh is written as
n—1 zeroes followed by a minus one. In tHefunctions we can absorb alternatively the
zeroes in the nonzero number to their right by raising itohlte value by one for each
zero being absorbed. This leaves only the rightmost zetbesce:

S 34(N) = S0-10001(N)
Z; 5(N) = Zp10000-1(N)
Ho1-100-100X) = Hz-1-300(X) . (2.5)

The notation in terms of the, &1 we call the (iterated) integral notation. The natural
notation of the sums we call the (nested) sum notation.

Reference to the alphabgtallows us to count the number of objects and to classify
them. The number of indices in this integral notation isexalihe weight of the sum or
the function. For a given weight there are 23“~1 sums and '3 H-functions. When the
sums are written in the original sum notation, the numbendides indicates the number
of nested sums. This is also called the depth of the sum. Wisea &are no trailing zeroes
in the H-functions we can introduce the depth in the same way. Becafialgebraic
relations we can express the functions with trailing zessesroducts of powers of |0x)
andH-functions with fewer indices [18, 37]. In that case the @ptof depth can be used
in a similar way as with the sums.

For any argument # 1 theH-functions form a shuffle algebra:

Hs(X)Hg(x) = ) ; qu(x), (2.6)

wherep LU d denotes the shuffle product, cf. e.g. [37], gudyi € h. Whenx =1 H-
functions for which the first index is one are divergent. Ih@vever possible to express
them in terms of a single divergent object and other finitentein a consistent way.

5Special cases are the classical polylogarithms [33] and\tbksen polylogarithms [34]. Generaliza-
tions of harmonic polylogarithms are found in [35, 36].
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The only thing that breaks down is that there are correceoms to the shuffle relations
when both objects in the left hand side are divergent, seeRds. [18]. Because the
number of non-zero indices remains the same during the shoyffération, we call it
depth preserving.

For general argumem the sums form a stuffle algebra, [37]. This is a general prop-
erty of sums which we show here for a double sum:

N N i

22

= J:]_

+

M= M=
M ]
_+

Il

T

s

2.7)

[
1Mz 1]
S

Mz M=

i=1=1

The diagonal terms give extra ‘stuff’ beyond the normal #img in the natural notation
for the sums. Even though the diagonal terms add terms ydhalktuffle relations have
fewer terms because most of the time some of the indices aué lan absolute value
greater than one. We write in terms$f or Z—notation :

Sn(N)S(N) = Sn,n(N) ‘|‘Sn,m(N> —Snen(N) (2.8)
Zm(N)Zn,k(N) = Zm,n,k(N) +Zn,m,k(N) + Zn,k,m(N) + Zm&n,k(N) +Zm,k&n(N) .
(2.9)
Here the operator & is defined by
m&n = o(m)o(n)(|m +|n])
= Oopm+0omn. (2.10)

The above algebraic relations can be used to bring an expnesgh many harmonic
polylogarithms or harmonic sums into a standard form. Falwation, however, it is
often useful to work it the other way and reduce the numberbpéais at the highest
weight in favor of products of objects with a lower weight wiiare easier to evaluate.
For this the theory of Lyndon words [38] applies, but espciaith the stuffles the extra
terms which have the same weight but a lower depth have tokes @ong and make
things considerably more involved than pure shuffles.

A k-ary Lyndon word of lengtm is an-letter concatenation product over an alphabet
of sizek, which, observing lexicographical ordering is smallemtld its suffixes. Equiv-
alently, it is the unique minimal element in the lexicogrigah ordering of all its cyclic
permutations. The uniqueness implies that a Lyndon worgesiadic. So it differs from
any of its non-trivial rotations. In our case we will usuatgplace minimal by maximal
when we form Lyndon words of indices of MZVs or Euler sums. flisawe will put the
larger indices to the left. One could also say that the canokgreater than is defined
in a special way inside the alphabet. The practical advantathat this guarantees that
none of the MZVs of which the index string forms a Lyndon wasdlivergent.

When we use the stuffle relations to simplify the set of olsj@tta given weight, we
can arrange that they are used in such a way that they nesertha value of the depth



parameter. Some terms will have a lower value for the depther&fore we call the
stuffles potentially depth lowering.

When we consider the sums to infinity there are two classegtod eelations worth
mentioning. The first is the ‘rule of the triangle’ which isdeal on

N N N N—i
lim = lim Zl + I|m Zl NZ (2.11)
N—eo & j; N—oo & & i1

For most sums the second term will give a limit that goes to réth at least one power
of 1/N, possibly multiplied by powers of Idé{). This system can be generalized to the
product of any pair of sums and it can be proven that the lifrtth® second term vanishes
when at least one of the sums in the left hand side is finite [\0jen both are divergent
it is possible to work out which extra terms are needed. Bee#ue sums of the first term
in the right hand side can be worked out, even in the most gecase, the above gives us
an extra algebraic relation for the sums to infinity. Thes$ati@ns are depth preserving.

When we consider thid-functions at unity, it is easy to see that they can be writien
nested sums to infinity of the same variety asZh&ums or the&s~sums. Hence they now
obey also the stuffle algebra. And it can be shown that the @tithe triangle’ is no more
than the equivalent of the shuffle algebra for Hid¢unctions, with the same restrictions
for the double divergent terms.

The next set of relations is easy to see for finite sums:

= szl[sm(zN)JrsLm(zN (2.12)
which generalizes into
S -np(N) = 2“1+"'+”rp;sﬂb...inp(zN). (2.13)

Here the sum is over all’plus/minus combinations. These relations are called the-‘d
bling relations’. For finite sums with; # 1 these relations can be used directly. In the
case that divergent sums are involved there are again tiomg¢erms.

The equivalent formula for thie-functions is obtained by looking &t;(x?) and notic-
ing that atx = 1 this is the same &d4(x). In that case we have

Hi010) = 2[Hy01(X)—H 101(X) —H1o 1(X)+H 10 1(x], (2.14)

which generalizes to any number of indices. The rule is thefactor is identical to2
in whichmis the number of zeroes in the indices, and each one in thiedaft side gives
a doubling of terms in the right hand side: one term with aesponding 1 and one with
a corresponding-1 and an extra overall minus sign. In the left hand side oneaamave
negative indices. Again one should be careful with the djget functions.

Divergences are expressed in terms of the olggeb), (1.3). In most cases one can
use this as a regular symbol and take it along in the equatindsxpressions. Unless

6



we mention the problems explicitly, one can exchange lilanitd sums when this object
is combined with finite sums. The reason is that our finite scomserge faster than that
this object diverges. A problem occurs when we use the doglstirmula on it. We find:

Si(®) = Si(2)+S 1(2%)
— S(2%) —log(2) (2.15)

which just shows that the divergence&f«) is logarithmic, since

1 1 1
N) =In(N —+—+0(— 2.16
SN) = In(N)-+¥e + 51+ 1 +O () - 216)
cf. [25]. One can however use the stuffle relations on thegectsh This allows one in
principle to express the divergent sums in terms of prodoic& () and finite sums as
in

SIN)San(N) = Symn(N)+Sn1n(N) +Sn1.n(N) — Snga.n(N) — Smnea(N) .
(2.17)

If we assumeam # 1 this allows us to express the divergent s8m,n(«) the way we
want it. Similarly one can now look at stuffles §f- S; to determine5, 1 and then look at
stuffles ofS; 1(N) with finite sums. In the programs we gi%g(c) the namesinf which,
due to the above, can be treated as a regular symbol.

Because we have two shuffle products - the stuffle-algebrayissi-shuffle algebra
[39] - we can equate the result of the stuffle product of tweotg with the result of the
shuffle product of the same two objects. The resulting m@tas called a double-shuffle
relation and contains only objects of the same weight. Thels¢ions have been used
in a number of calculations. For our type of calculations/the, however, not suitable.
We will use the stuffle and the shuffle relations individuallihis will allow a better
optimization of the algorithms.

The concept ofluality is very useful and allows us to roughly half the number of
objects that need to be computed. The duality relation isidéfin the integral notation
using harmonic polylogarithms at one. It states that if weel@MZV and we reverse the
order of its indices while at the same time transforming esrimto ones and ones into
zeroes the new object has the same value as the original. sin# of this duality is the
relation

Ho1011111 = Ho0000101 (2.18)

In mathematics one traditionally considers this dualitgum notation. In that case, for a
sequence

= (p1+1,{1}q-1,P2+ 1L, {1}qp-1,---, P+ 1, {1}g-1) (2.19)
there is a dual sequence
() =(&+1,{1}p-1,k-1+1,{1}p_y-1,---, 1+ 1,{1}p,-1) . (2.20)

The duality theorem [2] states
G =Gy - (2.21)

7



It was conjectured in [40] and is easily proven by the tramafitionx — 1 —t of the
corresponding iterated integrals.

Because for even weights there are some elements that &auakkhis does not
divide the number of terms exactly by two. Considering thatde not have to consider
the divergent objects we hav& 2 relevant objects whew is odd and 23+ 2%/2-2
relevant objects whew is even.

For Euler sums the equivalent transformation is more caraf@d due to the three
letter alphabet. It is obtained by studying the transforomat

1-t

in the integral representation. Its effect is that givenalabet

A =0 « 1
X
1
B =1 —
1_
C 1 . (2.23)
= — — .
1+x

and a string of letters from this alphabet as indices of ariEsuimH, the ‘dual expres-
sion’ is obtained by reverting the string of letters and mghkthe replacement

A — B&aC
B — A&C
CcC — C. (2.24)

The addition and subtraction operators here mean that ébr ®&ch transformation there
will be a doubling of the number of terms, one with the firstdeand the other with the
other letter. The sign-operatay(©) refers to the sign of the complete term. Because
these relations can both raise and lower the depth of a teroalivthem depth mixing.

We have tested that this transformation does add somet@wgbeyond what the
stuffles and the shuffles give us. In particular, when onevdsmequations for all sums at
a given weight, they can be used to replace the doubling anGémeralized Doubling
Relations(GDRs), see Sectidd 4. We have tested this to weight12. Unfortunately
they cannot be used when the concept of depth of the sums tamp and hence we
have not used these equations in our programs.

A generalization of the Riemarfifunction is Hurwitz’ {-function [6,41] :

(o]

(sign(n))*
Z e (2.25)

which can be extended to generalized Euler sums analogdislio Sincea is a real pa-
rameter, one may differentiaf¢c,a) w.r.t. a and seek for new relations. We investigated
this possibility, but did not find new relations beyond thqgseted above.



When we are discussing bases into which we write the MZVs aadEtler sums we
recognize two types of basis :

Definition. A basis of a vector space of all Euler sums or MZVs at a giverghiter is
called aFibonacci basis

Definition. A basis of the ring of all Euler sums or MZVs at a given weighis called a
Lyndon basisf all its elements have an index field that forms a Lyndon word

In a Fibonacci basis all basis elements are nested sums shthe weight. The name
derives from the observation that the size of such a basithiiEuler sums seem to
follow a Fibonacci rule [42]. Also the MZVs seem to follow thde that the total number
of their basis elements follow the Fibonacci-like Padovamhbers [43], see AppendiX A.
In a Lyndon basis we write in the complete basis as many elesranpossible as
products of lower weight basis elements and what remairgeiyndon basis. Simulta-
neously we require the index field to form a Lyndon word. Semes a Lyndon basis can
be formed from a Fibonacci basis by just selecting the Lyngords from it. The number
of basis elements in the case of MZVs is counted by a Witt-tgbetion [44] based on
the Perrin numbers [45]. In the case of the Euler sums thesponding relation relies
on the Lucas numbers [46], see Apperdix A. Any other basis ileall a mixed basis.
We will usually try to arrange the Lyndon bases in such a way they are ‘mini-
mal depth’. This means that if an element can be expresseatnmstof objects with a
lower depth, it cannot be a member of the basis. Details omiatyaf bases are given
in Appendix[A. The complete basis we actually selected ferMZVs is presented in

AppendixB.

3 Conjectures on Bases at Fixed Weight and Depth

Broadhurst [12] and Broadhurst and Kreimer [13] formulatedjectures on the size of
the basis for Euler sums and MZVs, respectively, which wersanze in the following.

Let Ey,q be the number of independent Euler sums at weight2 and depthd that
cannot be reduced to primitive Euler sums of lesser depthtfagid products. Thus we
believe thaEz 1 = 1, since there is no known relationship betwéenr? and IN2). Itis
rather natural to guess thi}, 4 is given by a filtration of the coefficients of powers»of
andy in the expansion of A(1 — xy—x?), i.e. that

1-xy—x2 X3y

WUzJ:L(l RS I)1—0) A1)

It is then easy to obtail, 4 by Mobius transformation of the binomial coefficients in
Pascal’s triangle. Let

(3.1)

| (3/d+b/d)!
T@ Z ) (@/d)b/a)

a

(3.2)

where the sum is over all positive integefghat divide botha andb and the Mobius



function is defined by

1 whend =1
pd)y=4¢ 0 whend is divisible by the square of a prime (3.3)
(—1)X whend is the product ok distinct primes
Whenw andd have the same parity, amd> d, one obtains fron(3]1)
Eua=T <W7_d,d> . (3.4)

With the exception of If2) andp, which act as the seedy andx?, all elements of the
basis are thereby conjecturally enumerated. In this papgoravide extensive evidence
to support conjecturé (3.1).

Now let Dy be the number of independent MZVs at weight> 2 and depthd
that cannot be reduced to primitive MZVs of lesser depth dmir {products. Thus we
believe thaDg» = 1, since there is no known relationship between the douleZ =
S men>0 1/(nPn3) and single sums or their products. It is tempting to gueshdbtD g
is generated by filtration of the expansion ¢gf1— x? — x%y), seeded by® andz. But
this is not the case, since the solution of the double-shaffjebra at weightv = 12
leaves one quadruple sum undetermined, while the obvioessguould leave none. The
conjecture [13] in this case is rather ornate, cf. Table 16.

w\Dua 21 XY, X1y
w[lcho<l_X ¥O? _1_1—x2+(1—x4)(1—x6) (3:5)

with a correction term whose numeratot?y?(1—y?), ensures thdbp4 = 1 andD1p, =

1, in agreement with the solution of the double-shuffle algelfhe denominatofl —

x*)(1—x5) is then chosen to givBom 2 = | (m— 1) /3] for the number of primitive double

sums with weight &h. Conjecture[(3]5) is impressively supported by the dataemin
Furthermore,

1—x%—x%y
71— Wy Mg - =272 — 2 3.6
W|:|2J:|O( xMy?) - (3.6)

is the conjectured generating function of the basis elesiéijty of the MZVs when
expressed as Euler sums in a minimal depth representatiefable 117.

4 Generalized Doubling Relations

Up tow = 10 the shuffle-, stuffle-, and doubling relations were suffiti@nexpress the
alternating Euler sums over a basis whose size is in accoedaith the conjecture in
Ref. [12]. This is not the case from = 11 onwards. Therefore one has to seek a new
kind of relations, which we derive in the following. Of coetsvhen we derive all rela-
tions at a given weight we could use the relationd of (2.24)e fact that they are depth
mixing makes them useless for calculations in which the ephof depth plays a role.
Hence we need our new (depth lowering) relations anyway. Wegdresent the deriva-
tion of this class of relations and discuss then their efbedihe number of basis elements
representing the Euler sums.

10



4.1 Derivation of the generalized doubling relations

The only relations we could find thus far adding something t@whe system are the
depth 2 relations of Ref. [12]. They are based on partiativamg in two different ways.
One way is:

1 1 1
—— = T —— + P
2+))  (@+2)@2+]))  (@+2)))
We can take out the factor two and in the first term thés2aken care of by changing
the summation overinto a summation over the even numbers by including a fadter

(—1)")/2, which introduces negative indices in some Euler sumsidmther way we use
the more regular form

(4.1)

1 1 1
@+p3)  @)J) @)2+ij)"
Together these partial fractions produce new types ofioslat
Here we will give the new set of relations and their derivatid/e will work with the

Z-sums. The reason is a particularly handy representatidinesie sums to infinity [40,
47]:.

(4.2)

© 1412, . 4'P
Z (oo) _ 0103 Op
My,---,Mp - N1:No Np
i1>ip>>ip>0 11127 1p

0 oo 00 Xy +Xo+ 4 Xp _Xo+--+Xp Xp

-y Y-y 1 9 Op

n ... Np ’
X1=1%=1 xp=1 <X1+X2+ +XP) l(X2+ +XP) 2 (Xp) P

(4.3)

in which we taken; = |m| anda; to be the sign ofiy.

Let us start with the re-derivation of the equation for depth 2. Actually we do not
reproduce it exactly, but we obtain a similar equation. Hegavrite for brevityZ(a,b) =
Zap(). Throughout this Section we assume thgt, c andd are positive integers. We
consider the following combination @-sums :

E(a,b) = =(Z(a,b) —|—Z(—a —b))

1= (X +%2)2 X5

I\JII—‘
—

- ZD(ZZ 2X1+X2

X 2

00

= Z Aia,b 1 N b B-(a’b) 1 _
Xi=1xa=1 i; (2x1+2x2)a+b—| (2X1+%2)! i; [ (2X1+2X2)a+b—i X,

1M s TMs
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absi—ab v 1

+ iB-(a’b)Zi_a‘bZ(a—i—b—i i)
| )

_ 0 B'(a,b)zifasz(a_i_b_i i)—l— 2 Ai(a,b)zi—a—b i - 1
i; | ’ iZ\

iyat+b—i
X1:1X2:X1+1 (Xl + XZ)IXg
b a 00 00 1

_ ZBi(a,b)Zi—a—bZ(a_i_b_i’i) + ZlAi(a,b)Zi—a—b Z

b
= = x=1xi=1 (X +%2) G

] X1 1

a,b) Hi—a—
ZIAI x1—1X2Z (Xl + X2)'X§+b_'

_ZlBabZ' abz7(a+b—i,i)+ Z Ploi—abz(i atb—i)

b) si—a—b c 1
- Ala 2
Z XzzlxlzXQ (X1+X2)I 2+b !

. a .
- le§avb>2'—a—b2(a+ b—i,i)+ S APP2-ab7( aybi)

S (@bsiab v w e A@b)i—ab w 1
— 5 Al@Pgi-a- : __ 5 AldPgi-a- -
ZIAI xzzlxlZ (Xl+2X2)IXa+b_I ZIAI xzzzl (ZXZ)IXSH_b_I

= ZlBabZ' abz@a+b—i,i) +ZA|ab2' ab7(i,a+b—i)

b = <« 1+( 1)% 1 @b)n-ab — 1
_ A,a . — A| 0) 5 =
Z\ Xo— 1x1 2 (X1+X2)'X§+b I i; XZZ_1X§+b

b) i 2 (@b)ai
- ZiBi(& )2'*a*bZ(a+b—i,i)+ ZLA& Joi-a-bz(i atb—i)
2 2

_.%Ai(a,b)%(z(i,aer—i)+Z(i,—(a+b—i))) %2 abz(ath), (4.4)
wit
ab _ (a+b—i-1)!
AR CEICES] o
ab (a+b_| 1)'
5 by o

Actually there is a slight problem with the above derivatidtwo points we changed the
summation range. Once fromto /2 and once frome to 2c0. This causes no problems
if the sum is finite, but for the divergent sums this needs aection term. The second
case is harmless as it concerns only an inner sum, the stefpich (v-1)*? is introduced.

But the first case, in the very first step of the derivationdses correction term. Hence

12



the full formula becomes :

E(a,opb) = %(Z(a, opb) +Z(—a, —opb))

— %5(61_ 1)Z(—1)Z(opb) — %6(&— 1)8(opb—1)Z(-2)

b .
+ .lefa’b)z'—a—bZ(aJr b—i,0pi)
=

a

+ ZAi(a’b)Zi_a_bZ(obi,a—l—b—i)
i_

a

_ _ZAi(a’b)%(Z(Gbi,ob(a-i— b—i)) + Z(0yi, —Op(a-+b—i)))

(a+b-1)!__.

@a—1b 2 Z(a+b). 4.7
Here also the signs on the indicesndb are included which is only a very mild com-
plication in the derivation. The functiod(m) is one whemm s zero and zero otherwise.
The o-variables have a value that is eithet or —1 and indicate non-alternating and al-
ternating sums. Due to the symmetry of the starting formugigga on the first variable is
not necessary. If we put it anyway in the formaf, op will have to be replaced bg,op
in the right hand side.

It is quite relevant to take thesefactors along. Although they are usually not needed
to get a complete coverage of depth- 2 sums, in the case of greater depth sums they
are necessary.

The above derivation shows basically all techniques we tieethe derivation of
the greater depth formulas. In the sequel we will only cahyd factors that survive
conditions posed during the derivation.

The derivation of the depth 3 formula follows a similar bugjstly more complicated
path. Again, we first omit the signs of the indices and theemiion terms for divergent
integrals when we double or half the summation range. Thepnesent the complete
formula. In the derivation we will be a bit shorter this time the techniques are all
similar to what we have shown above.

E(a,b,c) = %(Z(a, b,c)+Z(—a,—b,c))
_ (%) 00 (%) 1 1+ (_1)X1
xlzlxzzzlxgl (X1 +X2+X3) (X2 + X3>b X% 2
i [o0] o0 1

X1=1Xxo=1x3=1 (2X1 + X2 + Xs)a (XZ + X3>b Xg

13



_|_

Xlzzlxzzzlxgli; "

2 (b b-+i
EB 278 Z(a+b—i,i,c)
i=

(o] (o] (29

1

(a,b)
2,2 Zli;Al (2x1+ 2% + 2%3)3 01 (2% + X2 + Xa)' X§

X1:1X2=lX3=

(o] (o] (29

(a,b) 1
(2x1 + 2%2 4 2x3) 3071 (X2 + X3)1 %§

a b _
ZAi(a: )27a7b+lz(i,a_|_ b—i,C)
i=1

a .
Z\Ai(avb) 27a7b+l Kj(_l) (a+ b— i7 i7 C)
B

2

Ai(a,b)zfa—bJri Kél)(i,a—l— b—i,c), (4.8)

with theK functions given below. The full formula becomes

E(a,op b,0¢ C)

%(Z(a, op b,0¢ ¢) +Z(—a,—op b,oc €))

:—ZLZ(—l)Z(Ubb, occ)d(a—1)
%z(_z)z(occ)é(a— 1)%(opb—1)
%z(—S)é(a— 1)d(opb —1)d(0cc— 1)

b b ]
ZBF"’ )2-abtiz(a 1+ b—i,0pi,0cC)
i=
a

ZA&‘*’) 2-abHz(gni a+b—i,00)
if

a

Z\Ai(a,b) 2—a—b+i KF') (a—|— b—i,0pl, GCC)
i=

a

Z\Ai(a,b) 2-abHiK D (G a+b—i,00) . (4.9)
i=

The correction terms with th&-functions are due to the halving of the summation range
in the first step. Th&—functions are given by

K

(
1

1)(

a,0pb, 0cC)

o0 %) 0§Xl+X2 O-)éZ

Xlz_lxzz_l (X1 +%2)2 (2x1 +X%2)° X5

(—1)biAi(a’b)2a_iZ(i,oboc(a—l— b+c—i))
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b
+ (1P Y B*E Al oc(art boi)

+2Z(—i,~0poc(at+b+c—i)))

+ (—1)PBPP2a-17(_1)Z(0p0.(a+b+c— 1)) (4.10)
00 00 0 X1 +2Xp+X3
O3 0'(;

(1) =
Kz (Gaa7 b7 000) - (Xl + 2X2 + XS)a (XZ + Xs)b Xg

= 131X
= (—1)%2°- 1Zle° Z(0aa, (b+c—i),0)
+2Z(0a8, —(b+c—i),—0ci))
- (—1)°2b1_iAi(b’°)(Z(oaa,oc(b+c—i),i) (4.11)
+2Z(0aa,0¢(b+c—i),—i))

(
(—1)%2°~ 1((2)—1_ Cl> 1>' (Z(0aa, (b+¢)) +Z(0a8,—(b+c)))
The last term in the functiol‘ql) is also a correction term because we have to double the
summation range on th&function of which the first index is one. Because the second
index cannot be one in that case, we only need one correetion t

At depth 4 the relation becomes yet a bit more complicatedhmutlerivation follows
exactly the same path. We start with applying the non-trpp@atial fractioning and then
we have to try to rewrite the results in termsZeffunctions by percolating the factors two
to the right. As there is one more sum this takes another stda get two layers of
K—functions:

E(a,0pb,0cc,0qd) = %(Z(a, 0p b, 0¢ ¢, 04 d) + Z(—a, —0p b, ¢ ¢, 04 d))
= %Z(—l)z(obb, 0cC,0g d))d(a—1)
_ % (—2)Z(occ, 04 d))8a— 1)3(opb — 1)
+ % (~3)Z(0g d))5@— 1)3(0pb — 1)5(acc — 1)
_ % (—4)3(a—1)5(0pb — 1)d(0cc— 1)d(agd — 1)

b .
+ Zi B*”2-2241Z(a 1 b—i,0pi,0cc,04 )
|

a .
+ _ZAi(a’b)Z_a_b“Z(Obi,ajL b—i,0cC,0q d))
i=

a

B Zi APP2-a-biik D @y b_i o, occ, g d))
=

a

_ ZlAi(a’b)ZabHKél)(Obi,a-l-b—i,GcC,Od d) (4.12)
=
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2X
© o oo Ob 1+X2+X30X2+X30§3

K(l)(a,obb,o c,0qd) =
! ’ x1=1sz=1X3Z:1(X1+X2+X3) 3 (2% + X2+ X3)P (X2 4 X3)¢ X§

a .
= (~1)P ZAi(a’b)Za"Z(i,oboc(a-i—b+c—i),0dd)

b
+ (_1)b_zl B 221(Z(i 0,0c(a+b+c—i),04d)

+Z(—1,—0p0c(a+b+c—i),0qd))
+ (—1)PBEPY217(_1)Z(0p0c(at b+c—1),04d) (4.13)

® 0 X1+2X0+X3+X4 - X3+X4
Kél) (O-aa, b7 OCC7 Odd) - Z . Z Oal 2 3 0C3 0;(;4
x1=1 X4= (X1+2X2+X3+x4)a (X2+X3+X4) (X3—|—X4)C Xg

— °2b 1Zle° Z(0za,(b+c—1i),0ci,04d)
+Z(0za,—(b+c—i),—0c¢l,0¢d))

b .
+ (—1)°ZAi(b’C)Zb"Z(oaa,oc(b-i—c—i),i,odd)
b _
~ (-1° zﬁb’@zb'Kiz%oaa, oc (b+c—i).i,04 d))
i=
b b i (2
- (—1)02\4 -1k (Gaa,0¢ (b+c—i),i,04d)) (4.14)

X1+2Xo+X3 _2Xp+X3 X
(2) 00 00 00 o 1 2 3O-b 2 3O-d3
K,”(0aa,0pb,c,04d) =

1X221X3Z (X1 4 2% +X3)2 (2X2+X3>b (X2+X3>ng

= ZlAfd 2°17(04 a,0,0q (b+c+d—i),i)

+ 1)doe-1 ZB Cd Z(0za,(b+c+d—i),0p04 1)
+Z(0, &, —(b+c+d—i), —opog i))

_ (_1)d201ilAi(°’d)(Z(oa a,0p04 (b+c+d—i),i)
+£(oa a,0p0¢ (b+c+d—i), —i))

 (Lqpaer(erd—1!
(—1)92 - Did (Z(0a &, (b+c+d))
+Z(0a & —(b+c+d))) (4.15)
00 X1+Xo+2X3+Xg X2+2X3+X40_X4
KEZ)(Gaaaobb,C,Odd) = Z Oz oy x

x1=1

M s

1 (X1FX+2xg+X4)3 (Xo+2X3+%4)P (X3-+%4)C Xd
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- (—1)d2°_1iBi(c’d)(—l)'(Z(oaa,obb,(c+d—i),0di)
+IZ_(O'aa, opb, —(c+d—i),—0agi))

c .
+ (—1) _ZlAi(c’d)ZC'Z(oaa, opb, 0g(c+d—i), i)
i=

— (—1)92¢1 i\Ai(c’d) (Z(0aa,0pb, 0g(c+d—i),i)

+Z(0aa,0pb, 0g(c+d—i), —i)

- (—1>dzc1%(2(oaa,obb,(b+c>)
+Z(04a,0pb, —(b+c))) . (4.16)

When we do depth 5 we see that, IiKél), also theKil) splits off two new functions.
Hence to produce a generic routine for any depth we have todba few very general
steps.

In the general case the equations (#[12,14.13) land] (4.1 rstee or less the same.
They just get more indices to the right. The difference comgk the equations for
K. We have to make a distinction whether there are still madicés to the right or
whether we are terminating. The terminating equations @ more or less the same
as the equations fdt(? above, but now with more indices to the left. This leaves the
‘intermediary’ objects:

K\"(M,04a,b, occ,N) =
o o GéM +2X1-HXo XN 0>é2+XN

4.17
xglxgl (X +2x1 X2+ XN ) (X1 +Xo+XN) P (X2 +XN ) (4.17)
Kg)(M,oaa, opb, c,04d,N) =
0§M+2X1+X2+XN 0§X1+X2+XN 0-)52+XN

00 00

Xlz:m; (XM +2X1+X2+XN ) (2% X2+ XN) P (X X2+ XN ) C (%o +x ) D
(4.18)
In these formula$/ andN indicate a range of indices. There are more sums and factors
in the numerator and denominator, but we just omit them agdbenot take part in the
‘action’. We use the same techniques applied before to muéaictor 2 that multiplies

X1 to X2, to the right. WherN is empty we run into a termination condition and switch to
the equations foK (2,

K{((M),0aa,b,0cC, (n,N)) =

b _
(—1)° ZlAi(b’c)Zb'Z(M,oaa, oc(b+c—i),i,n,N)
i=

C .
+(=1)°y B*922(-1){(Z(M, 0za, (b+c i), 0ci,n,N)
i=1
+Z(M, 048, —(b+c—1i),—0c¢i,n1,N))
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_(_1>C.iAi(b’c)2b_iKf)((M,oaa),oc(b-i—c— i),i,n1, (N))

—(—1)° % AP0k (M), 052, 0c(b+c—i),i,ng, (N)) (4.19)
i=1

Kg)((M),Gaaa O-bb, C? 0dd7 (nl’ N)> -

C .
(—1)d ZlAi(C’d)ZC'Z(M,Gaa, 0,0 (C+d —i),i,m,N)
i=

d .
(1) ZlBi(c’d)ZC_l(—l)'(Z(M,oaa, Op(b+c+d—i),0qi, N, N)
i=
+Z(M, 053, —0p(b+c+d—i),—0gi,n1,N))
c i .
—(-1)° zfé‘:"”zc'Ki')(<M,oaa>,obod<b+c+d —i),i,ng, (N))
i=

—(—1)¢ .ilAi(C’d)ZC_iKS)((M,oaa, (b+c+d—i),0,04i,n, (N)) . (4.20)

As one can see, each step of the iteration diminishbg one unit (i1 is an index with its
sign) andM may or may not get one more index.

The above formulas can be programmed rather easily and atippa a language
like FORM We have first programmed and tested the cases 2, 3, 4, 5 andlsdt we
have made a generic routine that can handle any depth. Asootltine has been tested
exhaustively. It can be found in the library.

4.2 The Role of the Generalized Doubling Relations

Let us start with a modification of the program for expres$tiouder sums into a minimal
set that was used for testit§ORM22]. It was modified, so as to allow running only with
sums/functions up to a given depth. We use the same relatipris that depth, as in the
complete program, i.e. we use the stuffles, the shuffles anddtbling relations, but not
the GDRs. This should generate new information becausesarféen interested in sums
of limited depth but large weight.

When we compare the number of remaining variables with tmgectures [12, 13],
we note that in many cases we have more variables left. Hawiéwe increase the depth
these remaining variables are eliminated after all. We peha program in such a way
that these objects may be recognized easily. In Table 1 weeptdow many of these
constants are left and at which depth.

Table 1 indicates that there must be a significant ‘leakifgelations at greater depths
that create nontrivial results at lower depth. As an exaweléerived thel = 2 relation at
weight 6 without substituting the lower weight constantd keeping track of all products
of lower weight objects that combined in shuffles and in stsfflThe relation we refer to
is given as Eq. (27) in Ref. [12] :

97 .5 3,

Zoa—2(®) = —Hoa2(1)= 50— 05, (4.1)
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weight | depth| number| type
6 2 1 d=2
6 3 1 d=2
6 4 0
6 5 0
6 6 0
7 3 1 d=3
7 5 0
8 2 1 d=2
8 4 2 d=2d=4
8 6 0
9 3 3 3x(d=3)
9 5 2 d=3d=5
9 7 0
10 2 2 2x(d=2)
10 3 2 2x(d=2)
10 4 6 2x(d=2),4x(d=4)
10 5 6 2x(d=2),4x (d=4)
10 6 3 d=2d=4d=6
10 8 0

Table 1: Number of constants remaining when running at fbegutldfor a given weight.
With fixed depth we mean all depths up to the given value.

depth| shuffles| stuffles
2 11 8
3 52 19
4 72 41

Table 2: Number of shuffles and stuffles separated by depthilcoting to equatior((4]1).

The results are shown in Talilk 2.

We see that a total of 203 equations make contributions thrihkresult. Considering
this, it should not come as a great surprise that attempterigedthis equation by hand
using shuffle and stuffle relations have failed thus far.

It is of course possible to obtain this result by differentaimeas was shown in ref [26]
where the finite harmonic suf.4_>(N) was calculated in terms of the following one-
dimensional integral representation:

S4-2N) = —M [(4“5(_’();'_ngx)u“(_x))J (N) (4.2)

+302[SiN) — S a(N)] ~ S5Ss(N) + 5 LS(N) ~ 225N

where

M (x)](N) = /Oldx (%) 4.3)
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Since

3.2

1 4[Lis(—x)+ (15/16)Cs5] — In(x)Lia(—x) 811,
/0 dx x—1 = ga0tz 4% *4)
one obtains with
Z4_ o = ,jlianS—4,—2(N) — (6 (4.5)

the above result. It should, however, be clear that if sucthots are needed to replace
the phenomenon of leakage, it will be a near impossibilityado much greater values of
the weight parameter.

Using the GDRs at depth= 2 resolves the problem completely. Only the depth 2
shuffles and stuffles in combination with these GDRs giveadlyehe desired formula.

To study the problem at depth= 3, we recreated an old program by one df trsat
only determines relations at leading depth for objects attvthe index field is a Lyndon
word. TheFORMversion of the program is rather fast when applied at deptls, see
Table[3.

We see a steady increase in the number of undetermined ntndta Table§ 3,14 we
list under ‘expected’ the number of undetermined constactsrding to conjecture [12].
The results for the weights 7 and 9 are in agreement with thebews in Tabl€]1.

To see whether we could improve the situation, we tried @ogning generalizations
of the formulasDg and D; of Ref. [48]. They made no difference. Close inspection
reveals that the formulBg is another form of the shuffle formulas with the combinateric
included properly. The formulB1, or Markett formula [49], also does not add anything
new. It seems to be a combination of shuffles and stuffles. Wexapplied the GDRs
at depthd = 3 and these reduce the number of undetermined constantsit@xtpected
value. This means that if we include the GDRs we can run thgrpro at maximum
depthd = 3 and get a complete set of expressions for all dejpthl, 2 and 3 objects. At
the moment we have verified this for all weights upate= 51. The run for the highest
weight took about 20 hours of CPU time on a single Xeon prawests2.33 GHz.

We have made a similar program for depth= 4. This is of course much slower
and hence we cannot go to such large values for the weight. r@haéts are given in
Table[4. Again we see an increase in the number of extra umdieked objects and again
application of the GDRs resolved the issue.

The phenomenon of leakage is rather messy. Basically emsatiat are in nature of
a greater depth have to combine first to eliminate most objgfdthis depth. After this a
few equations remain between lower depth objects. Sucla¢gals impossible without
the stuffle relations. The shuffle relations by themselvesatagive terms with a lower
depth and neither do the relations based on the doublingdierrBut whether these extra
relations come from the stuffles alone or materialize ontgrafombining stuffles and
shuffles, and maybe doublings, is currently not clear. Wéatear is that they involve a
very large number of equations. In all cases which we stuttiedeakage goes over at

6The program had an error and hence gave rise to a wrong corgect
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Table 3: Remaining constants at degth 3 compared to the number of expected con-

stants.

Table 4. Remaining constants at degth 4 compared to the number of expected con-

stants.

weight | constantg expected

5 1 1

7 3 2

9 6 3

11 11 5

13 17 7

15 23 9

17 32 12
19 41 15
21 51 18
23 63 22
25 76 26
27 89 30
29 105 35
31 121 40
33 138 45
35 157 51
37 177 57
39 197 63
41 220 70
43 243 77
45 267 84
47 293 92
49 320 100
51 347 108

weight | constantg expected
6 1 1
8 3 2
10 9 5
12 21 8
14 39 14
16 66 20
18 102 30
20 149 40
22 209 55
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weight | no doubling| no GDRs
8 1 0
10 1 0
11 2 1
12 3 1

Table 5: Number of excess elements when no doubling re{edso no GDRS) are used,
and when only no GDRs are used.

least two units of depth. This makes it very difficult to intgate. Fortunately the GDRs
seem to resolve these problems. We formulate

Conjecture 1. The stuffle, shuffle, doubling and Generalized Doublingaehs are
sufficient to reduce the Euler sums of a given weight and digpgéhminimal set that is in
agreement with the conjecture [12], both in weight and intkdep

Even if we could dispense with the GDRs up to weight 10, the whole situation
changes at weightt = 11, see Tablé]5. Running only stuffles, shuffles and doubling
relations leaves one variable in excess of the conjectlp [The GDRs provide the
missing equation by which this variable is expressed in $eainthe other remaining
variables and agreement with conjecture [12] is reached.s@ime effect occurs at weight
w = 12. Again there is one variable too many if the GDRs are not ugétdcannot check
this beyond weighiv = 12, because leakage forces us to run all depths for a given weigh
if we exclude the GDRs. This becomes excessive in terms oégticomputer resources.
Alternatively one could have used the relations of equaffbB4) to resolve this issue,
but these relations do not help with the problem of running lanited depth. Hence we
have to add the GDRs anyway.

5 The Computer Program

We have combined the above relations into a new computergmog¢p resolve all re-
lations between MZVs and reduce them to a minimal set. Incjpla this is done by
writing down all equations for the MZVs of a given weight amen solving the system.
A few variables at the given weight may remain and there valplboducts of objects of
lower weight.

Considering the size of the problem and its sparsity it dideowk to us like a typical
problem to solve by matrix techniques even though other leelagve done so [50, 51].
Typically there would be many thousands of zeroes for eachzeoo element. The ad-
vantage of computer algebra is that in a sparse polynonpedsentation those zeroes will
not be present and need no attention. Hence we have seleettttaspecial method the
essence of which has already been used in references [P2]18lthough not described
there in detail. We select tH®RMsystem, because it is by far the best suited for this kind
of problems. Since we go to much greater weights than preiyonvestigated, we take
the opportunity to give here a better description of the detepy renewed version of the

22



program.

We start generating a master expression which containseomefor each sum that we
want to compute. For the MZVs of weight= 4 this expression looks in computer terms
like

FF =
+E(0,0,0,1)*(H(0,0,0,1))
+E(0,0,1,1)¥(H(0,0,1,1))
+E(0,1,0,1)*(H(0,1,0,));

We have used already that we will only compute the finite elgmand that there is a
duality that allows us to eliminate all elements with a dggptbater than half the weight.
When the depth is exactly half the weight we choose from a sudita dual the element
that comes first lexicographically. We work in terms of theunctions because for the
Euler sums the basis of reference [12] turns out to be idehls basis consists of all
Lyndon words of negative odd integers that add up in absoaiige to the weight. For
the MZVs thesdd-functions and th&-functions are identical anyway and hence we could
keep a single program for most procedures.

We pull the function E outside brackets. The contents of akatais what we know
about the object indicated by the indices of the functionrEthle beginning this is all
trivial knowledge.

Assume now that we generate the stuffle relation

HoiHo1 = Hoo001+2Ho101 (5.1)

The left hand side can be substituted from the tables footverl weight MZVs. Hence it
becomes{%. The right hand side objects are replaced by the contentealdrresponding
E brackets in the master expression. These are for nowltsulastitutions. From the
result we generate the substitution

id H(0,1,0,1) = z22/2-H(0,0,0,1)/2;
which we apply to the master expression. Hence the masteegsipn becomes

FF =
+E(0,0,0,1)*(H(0,0,0,1))
+E(0,0,1,1)*(H(0,0,1,1))
+E(0,1,0,1)%(z2"2/2-H(0,0,0,1)/2);

Let us now generate the corresponding shuffle relation:
HoaiHo1 = 4Hoo01.1+2Ho1,01 (5.2)

and replace the right hand side objects by the contents @iiesponding E brackets in
the master expression. This gives

{3 = 4Hop11+5—Hopoo1 (5.3)

which leads to the substitution
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id H(0,0,1,1) = H(0,0,0,1)/4;
and we obtain

FF =
+E(0,0,0,1)*(H(0,0,0,1))
+E(0,0,1,1)*(H(0,0,0,1)/4)
+E(0,1,0,1)%(z2"2/2-H(0,0,0,1)/2);

We also need the divergent shuffles and stuffles. This is dpmeluding the shuffles
involving the basic divergent object and breaking down thatiple divergent sums with
the stuffle relations as in:

HiHoo1 = 2Hop11+Ho1,01+H1001
= —Ho00,1+Hoo011+Hoz101+HiHoo1; (5.4)

In the case we uskl; as the only divergent object, this is equivalent to usingfHof
mann’s [52] relation. We can use any combination involvingedyent objects, provided
not both are divergent simultaneously. Substituting fromrhaster expression we get the
relation

5

1.2
0 = _ZHO’O’O’1+§ZZ (5.5)

and hence the substitution
id H(0,0,0,1) = z2°2*2/5;
and finally the master expression becomes

FF =
+E(0,0,0,1)%(z2"2*2/5)
+E(0,0,1,1)(z2°2/10)
+E(0,1,0,1)¥(z2°2*3/10);

Now we can read off the values of all MZVs of weight 4 that weagtto compute. All
other elements can be obtained from these by trivial oparatihat involve the use of one
or two relations only.

The method should be clear now: we generate the master sigmébat contains all
nontrivial objects that we need to compute. Then we genalhtenown equations one
by one, putting in the knowledge that is contained in the prastpression. After that
we incorporate the new knowledge in the master expressionifed the equation does
not become trivial which will happen frequently, becausehage more equations than
variables).

With this method we do not need all equations to be in memanpkaneously. But
there is a very important observation: the order in whicheitpeations are generated will
determine the size the master expression can have durimglitidation. This intermedi-
ate expression swell should be controlled as much as pesbitause it can make many
orders of magnitude difference in the execution time andsibece needed. And there
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wig | 64| 128 | 256 | 512 | 1024 | 2048 | 4096
9 | 62| 56 61

10 477 | 406 | 442
11 5826 | 4651 | 3799| 3623 | 5157
12 65591| 50926| 62867

Table 6: Execution times in seconds for Euler sums at anyhdepa function of weight
and the size of the groups in the Gaussian elimination schatheins were withTFORM
on an 8 Xeon-cores machine at 3 GHz.

is another problem: substituting a new equation in the masgeression can be rather
costly when this expression becomes rather big. To have this@ach time is wasteful
because the master expression will have to be brought toalarder again. Therefore
we have adopted a scheme in which we generate the equatigraips. Then we apply
first a Gaussian elimination scheme among the equationigrtiup, eliminating both
above and below the diagonal. If we haBesquations left we can substituBevariables
in the master expression simultaneously. Again, this ioptitnal yet as that would give
G substitution statements and hence each term néquistitern matchings. To improve
upon this we enter the<e objects in a temporary table and the substitution in the enast
expression is by a single table lookup. This is a binary $eiasideFORMand hence when
we have grouped for instance 512 equations, the lookup kg9 compares, each of
which is anyway much faster than a full pattern matching. difference shows in a run
we made on a machine with a single Opteron processor. Whemgithe equations for
MZVs one by one at weight 18, the run took 26761 sec, while grthups of 256 equa-
tions the same program ran in 2974 sec. Over the range in tgdight we experimented
with, the optimal group size we found for the MZVs was clos@t1/2. This is the
value we use in the program. For the Euler sums the best véleysa more involved
relation because the number of variables goes with a powttreé. We have measured
the effect and it is shown in Tablé 6. From this Table it lodke b decent value for the
size of the groups is®/2-7 in which the exponent is rounded down to the nearest integer.
We see, however, that the exact value is not very critical.

If it would be of great importance to improve over this schewre could set up a
tree structure in the Gaussian scheme. This would changeatdratic (in the size of the
groups) nature to &log(G) behaviour. It would, however, make the code much more
complicated and anyway, this is not where currently mostpaer time is used. As a
consequence we decided to stay with the simple grouping.

This leaves determining a good order in which to generatedjuations. It requires
much trial and error and we are not claiming that we have tis¢ sheme possible. The
scheme for the stuffles is rather good, but for the shufflesulccprobably be better. Once
we could run what we wanted to run, we have stopped searahiegsively. Anyway, the
intermediate expression swell is rather moderate as issihothe Tables containing the
results below.

Before we discuss the order of the equations, we make semMesatvations:

¢ Shuffles preserve depth.
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Stuffles either preserve depth or lower it.

The number of indices that are one in sum notation is eitheseawed or lowered
by stuffles.

The shuffle relations can contain many more terms than tliestelations.

The shuffles (which are executed in integral notation) cartain large combina-
toric factors when there are long sequences of zeroes or ofieis lowers the
number of terms in the equation.

Based on the above observations we start with the equatighgive lowest depth,
and then do the ones with the next depth, etc. In the case thahly look at the MZVs,
we only need to go up to half the weight (rounded down), bexdlus duality relation
takes care of the other sums. In the case of the Euler sumsweddgo ‘all the way’.

For each depth we do first the stuffles and then the shufflesrere actually con-
jectures about that one does not need all stuffles but oniyitelil subset. We do not use
these conjectures because they would make it necessarpliorapre shuffle relations
and those are more complicated than the stuffles that we wonitd We have verified
experimentally that this would make the program signifigasiower.

In the case of Euler sums we have two more categories of emsatthe equations
due to the doubling relation and the equations due to the GIXRsoks like we do not
need all equations from the latter category, but becaugestteenot extremely costly, we
have not been motivated enough to run many programs testingaan be done here. We
just run them all and this way there is no risk that we omit sitning essential. They are,
however, more costly than the shuffle equations and hencaitxtbgm after the shuffles.
But more ordering within the group of (generalized) doulpkguations is not relevant as
there are only comparatively few substitutions generageithém.

To deal with the stuffles at a given weight and depth we geaematexpression that
contains one term for each stuffle relation that we will uskemwe apply several oper-
ations that multiply each term with a function with argungehased on the equation to
be generated. The effect of this is that at the next sortiegetiuations will be ordered
according to these arguments. This can be done in a rathél@exay. The ordering is
in sum notation according to:

e The number of indices that are one.

e Next comes the number of indices that are two, then three etc.
e The number of indices in the sum with the smallest depth.

e The largest first index in either of the two sums.

This relatively simple ordering is amazingly effective. @hwe compute the size of
the basis, using arithmetic over a 31-bit prime number,\egia nearly monotonically
increasing size in the master expression, indicating thatllibe very hard to improve
upon it. Once we have this expression we use a featurF®RkMhat allows one to define
a loop in which the loop variable takes a value which is (satjaly) each time a term
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from a given expression. This way we can now create expnes$ each equation and
each time we have enough equations to fill a group we call tien®that will expand the
equations and process them. We do not consider stuffle egsahat contain a divergent
sum. Those are taken into consideration anyway when we basdract the divergences
in the shuffle equations, and for the Euler sums the GDRs.

For the shuffles things are more complicated. Again we gémea expression for
all shuffles for the given depth. In this case we generate hemanly those objects that
correspond to shuffles in which one of the objects is only gtll@ne. This seems to be
sufficient. We have never run across a case where the othilesthad any additional ef-
fect. Itis actually possible to restrict the number of sleuéitjuations even more, although
this is only based on conjectures and experimentation. mabiproof is missing. The
ordering is now done according to

e The weight of the object of depth one.
e The number of indices that are one in sum notation.

e For each sum we compute the sum of the squares of the indicegnmotation.
We order by the maximum of either of the two. The biggest cofinsis

e We select which of the two sums has the smallest first inde. |&tger values for
this number come first.

e We add the first indices of the two sums. The larger values doste

The complicating factor here is that we have to keep divargems. We only keep those
equations in which at most one object is divergent, and tisepaly a single divergence.
Hence sums that have the first two indices equal to one areonstdered.

According to observation the shuffle equations that fulfilf@lowing requirements
always reduce to trivial (6 0) equations:

e The combined depth is at least three.
e There is at least one index that is equal to one.
e The depth one object has at least weight two.

¢ If the depth one object has weight= 2, there are at least two indices equal to one
in the other object.

Harmonic sums with all the same index decompose algebhaicab a polynomial of
single harmonic sums. It is easily shown that the algebedations [37] always allow to
write any harmonic sum in terms of polynomials®fN) and sums, which converge in
the limit N — oo. All the above greatly reduces the number of shuffle equatibat have
to be evaluated. Because this evaluation is one of the exgesteps, it speeds up the
program significantly. On the other hand, it is only an obagon made in runs that do
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MZVs /, MZVs

Rational arithmetic Modular arithmetic
Complete results o Basis only

W=21 . :! W=26,D=8

v

Figure 1: Performance of the program. On ¥&xis we have the number of the module
in which one group of equations is substituted and orytheis the size of the expression
at the end of the module (arbitrary units). The spikes aretdltiee shuffles.

not involve the greatest weights. For the more critical [fume have left these equations
active and spent the extra computer time.

The above describes the basic program. At this point weispliseveral varieties. To
first determine whether shuffles and stuffles are sufficienédoice all MZVs to a basis
of the conjectured size, we have made the simplifications:

e All products of lower weight objects are set to zero. This nseae will only
determine whether reduction to a Lyndon basis takes place.

e We work modulus a 31-bit prime.

We have also made runs over the rational numbers. This becomng problematic for
the very highest values of the weight.

For constructing tables of all sums at a given weight we renftil program. The
performance of the program is shown in Figlhte 1 for a compigteat weightw = 21
and a run to depth = 8 at weightw = 26. We see that the stuffles give a steady growth
of the master expression but that the shuffles cause intéateeskpression swell which
is worse when the depth is much less than half the weight. &beltris that when we
run the complete system most time is spent with the stuffaiozls while for the limited
depth runs by far most time is spent with the shuffle relations

In the case of Euler sums the master expression is creatbauliree letter alphabet
(—1,0,1) rather than the two letter alphabet (0,1) for the MZVs. Iniadd there are

"With this we mean the programs that determine the size of #séstwhen using arithmetic over a
prime number. Once we have established this, any furthertafor instance determine all values over the
rational numbers, we can safely drop these equations.
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many more equations to consider because the number of logight\objects that we can
multiply either by shuffles or stuffles is correspondinglgager. Of course also for the
Euler sums it is possible to just study the basis.

In addition it is possible to study sums to a limited depthishMmy we can go to much
greater values of the weight. This is of course only possille use a basis in which the
concept of depth is relevant, like the basis of the odd negatdices that form a Lyndon
word. Without such a basis the calculations become muctehard

When we are constructing tables we cannot go quite as far ighivas when we are
determining rank deficiency. When we use a Lyndon basis, @jenty of terms consists
of products of basis elements of lower weights. This meaas e have many more
terms to carry around. We observe, in addition, that thefiobafits containing the most
digits are in the terms with powers §3. This is to be expected siné%‘ IS our repository
for all terms of the fornt5) {5, with N = ma+ nb.

The representation we have selected, together with the lawoalithmetic, makes for
a very fast treatment of the terms. This is reflected in thelbmmof terms that can be
processed. In one run, which took more than 30 days the progemerated a total of
more than 7- 10'? terms. This seems to be a new record.

6 The Running of the Programs

We have used the programs of the previous Section to obtsitseo as high a weight
and depth as possible, both for MZVs and Euler sums. Beforstaré discussing these
results we show the parameters of these runs to give therrandepression of what is
available and why there are limitations to obtain more.

We start with the Euler sums. We have first run the completeesy$or the given
weights, see Tableg 7. This means thatoe 12 there are expressions for all 236196
Euler sums with that weight, all expressed in terms of theshafsLyndon words of the
negative odd integers, see Appendix A, which is the basis seefar all Euler sums,
unless mentioned differently.

The columns marked ‘variables’ mentions how many variabilese are at the start
of the program. ‘Remaining’ tells how many basis elementsaia in the end. Under
‘output’ we give the size of the output expression in textdat. The column ‘size’ refers
to the largest size of the master expression during the legicn. Time refers to real time
to run the program. If the column ‘CPU time’ is present it refto the total CPU time by
all processors. We notice that computer time is not the ibgue, see Tab(e7 The size
of the results becomes the major problem. This is one of thgores why we stopped at
w = 12. Technically the run atv = 13 is feasible as it should take of the order of 10 days.
The output is, however, projected at almost 8 Gbytes whickansidered excessive.

We have also run programs that go to a maximum value of thenddpitis involves
only a subset of the Euler sums of that weight and hence sugrgns are much faster.
As a consequence we can go to much greater values of the weight

8The first time we ran thes = 12 case on an 8-core Xeon machine at 2.33 GHz the run took two full
weeks. It just shows how good a test case this problem is. B{#ORM and the MZV program have been
improved greatly during this project.
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w | variables| egns | remaining| size | output| time
4 36 57 1 43K | 2.0K | 0.06
5 108 192 2 21K | 89K | 0.12
6 324 665 2 98K | 42K | 0.37
7 972 2205 4 472K | 219K | 1.71
8 2916 7313 5 2.25M | 1.156M| 7.78
9 8748 | 23909 8 11M | 6.3M 50
10| 26244 | 77853 11 58M | 36M 353
11| 78732 | 251565 18 360M | 213M | 3266
12| 236196 | 809177 25 3.1G | 1.29G | 47311

Table 7: Runs on an 8-core Xeon computer at 3 GHz and with 32&Skyf memory.
The column ‘eqns’ gives the number of equations that wasidered.

weight | constants running time [sec] output [Mbyte]
9 956 7 0.26
10 1412 13 0.64
11 1996 24 1.25
12 2724 39 3.18
13 3612 68 5.04
14 4676 108 17.1
15 5932 199 17.1
16 7396 436 71.1
17 9084 602 54.9
18 11012 1323 275.9
19 13196 2761 157.1
20 15652 5424 877
21 18396 14090 395
22 21444 21875 2559

Table 8: Summary of the runs at= 4. The runs were performed on a computer with 8
Xeons at 3 GHz, usin§FORM

In Table[8 we show the statistics of the runs up to depth4. These are full runs in
the sense that they are over the rational numbers and we bpvalkterms, including the
products of lower weight objects.

The dependence on the parity of the weight for the higheregailsidue to the fact that
we run up to an even depth and the independent variables weausean even depth for
even weights and an odd depth for odd weights. This meansi$tance that the depth
4 objects for weightv = 17 can all be expressed in terms of degth- 3 objects. The
results for the depth 5 runs are summarized in Table 9.

We have a nice example here of what happens if we change tbeionghich we deal
with the shuffles and the stuffles. We reran the program ofel@lior the weightsy = 14
andw = 15 under these conditions, obtaining running times of 1009%8403489 sec
respectively. This is more than an order of magnitude sldinen the order we select in
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weight | constantg remaining| running time [sec] output [Mbyte]
9 3394 7 27 1.15
10 5702 7 72 3.11
11 9042 13 172 8.5
12 13686 11 478 20.9
13 19938 22 1330 68.9
14 28134 17 4306 133
15 38642 35 27607 473
16 51862 24 110336 688
17 68226 55 450462 2767

Table 9: Summary of the runs @t 5. Same computer as used in Table 8.

weight | constants running time [sec] output [Mbyte]
14 4676 35 1.3
16 7396 105 2.9
18 11012 323 6.0
20 15652 939 11.3
22 21444 2211 20.5
24 28516 5335 35
26 36996 13127 57
28 47012 47056 89
30 58692 100813 137

Table 10: Summary of the runsét 4 in modular arithmetic, dropping all terms that are
products of lower weight objects.

the regular programs.

Because we like to compare results of the MZV runs with thdsee Euler runs to
as high a weight as possible we made also runs in which we dmalaililus modulus a
31-bit prime number. The number we selected is 21474792 €nhéMer ran into a case in
which this seemed to cause problems. In the programs in wiealrsed this modulus we
also dropped all terms that are products of lower weightaibjeThis means that in the
end all sums are expressed into elements from the samewsgigtion part of the basis
only. Such programs are much faster. This can be seen ins[ableL1 an@12 which are
for depthd < 4, depthd < 5 and depthd < 6, respectively.

The run atw = 18,d = 6 deserves some special attention. It was our most costly run
and during the runninFORMorocessed more than Z0'2 terms.

We come now to our runs for the Multiple Zeta Values. Thoses ook more spec-
tacular because there is much more literature on them. Wegtresent the ‘complete’
runs in which all calculus is over the rational numbers ahteains are kept, cf. Table113.

‘Rat’ is the real time of this run divided by the real time ofumrwith a 31-bit prime
number dropping also products of lower weight objects. Tlogiewith the numbers in the
‘num’ column it shows that making several runs modulus a Bpitime and then using
the Chinese remainder theorem [53], will not be efficient. Wdaild need at least 12
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weight | constants running time [sec] output [Mbyte]
13 16812 388 55
15 33388 2932 18
17 60044 18836 53
19 100236 118874 131
21 157932 554870 299

Table 11: Summary of the runsét 5 in modular arithmetic, dropping all terms that are
products of lower weight objects.

weight | constantg remaining| running time [sec] output [Mbyte]
13 56940 22 2611
14 90564 37 12716 51
15 138636 35 55204 87
16 205412 66 206951 214
17 295916 55 789540 288
18 416004 109 2622157 711

Table 12: Summary of the runsét= 6 in modular arithmetic, dropping all terms that are
products of lower weight objects. Times refer to an 8 Xeoregoachine at 3 GHz and
32 GBytes of memory.

w | d G size | output | num| CPU real | Eff. | Rat.
16| 8 | 128 | 11M ™ 22 289 56 5.16| 0.99
17| 8 | 256 | 30M 21M 19 677 129 | 5.25| 0.96
18| 9 | 256 | 88M 64M 29 3071 517 594|111

19| 9 | 512 | 224M | 182M | 28 6848 1206 | 5.68| 1.00
201 10| 512 | 790M | 558M | 36 | 44883 | 6834 |6.57|1.42
21| 10| 1024| 1766M | 1821M| 40 | 86318 | 13851 | 6.23| 1.12
221 11| 1024| 8856M | 5927M | 46 | 1572605 208972| 7.53| 3.18

Table 13: Runs on an 8-core Xeon computer at 3 GHz and with 32eSlmf memory.
‘Num’ indicates, for the final expressions, the maximum nembf decimal digits in
either a numerator or a denominator. ‘Eff.” is the ratio ofUCEme versus real time
indicating how well the processors are used. The meaningeaddlumn labeled ‘Rat.’ is
explained in the text. The anomaly between size and output fo 21 is due to the fact
that the output is in text and size isiHORMoinary notation.
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w G size | output| CPU real Eff.
16| 128 | 1.7M | 1.2M 300 57 5.25
17| 256 | 5.6M | 3.2M 713 134 | 5.32
18| 256 | 14.4M | 7.2M 2706 465 |5.82
19| 512 | 39M | 19M 6901 1206 |5.72
20| 512 | 104M | 45M | 30097 4819 | 6.25
21| 1024 | 239M | 114M | 75302 | 12379 | 6.08
22| 1024 | 767M | 280M | 449202 | 65644 | 6.84
23| 2048| 2.17G| 734M | 992431 | 151337 | 6.56
241 2048| 8.04G | 1.77G | 9251325| 1268247| 7.29

Table 14: Runs on an 8-core Xeon computer at 3 GHz and with 32eSkof memory.
G is the size of the group used in the Gaussian eliminatiare’ss the maximum size
of the master expression during the run, ‘output’ is the sizéhe master expression in
the end, CPU is the total CPU time of all processors togethseconds, ‘real’ denotes
the elapsed time in seconds and ‘Eff.” is the pseudo effigiethefined by the CPU time
divided by the real time.

runs for thew = 22 case and even then we have to account for dropping the lowightve
terms.

We indicate the maximum value of the depth which, due to theigurelation for
MZVs, is sufficient to obtain all MZVs at the given weight.

The basis in which these results are presented is descril#gmpendiXB. If we let the
program select the basis, the outputs are shorter but fremi¢hvpoint of basis elements
selected there is less structure.

The next sequence of runs is performed using in modulamaeitic in which we refer
to the same 31-bit prime number as before. Again we run theange of depths needed
to obtain all sums. As usual in modular runs, we drop the prtsdof lower weight
objects. The results are given in Tablé 14.

The output of the run at = 23 gives the results for? MZVs expressed in terms of
the 28 same-weight elements of a Lyndon basis selected lprolgeam.

In Table[I5 we give the statistics of runs to a more restridiguth. If the conjecture
[13] is correct the runs at = 25,26 should still give us a complete basis. In the higher
runs some elements will be missing.

We would have liked to have a run for depth< 9 atw = 27, but it would probably
take more than a year with current technology. A run for depth8 at w =28 will
require a smaller CPU time. The reason why these runs anestiieg is explained in
Section[1D on pushdowns. They may give us a new type of bamisesit that would
indicate a double pushdown.

The outputs of all of the above runs are collected in the data nogether with some
files in which the results have been processed to make them agoessible.

At the end of this Section we would like to discuss the stafub® general investi-
gation of MZVs and Euler sums in the foregoing literaturee Tolations between MZVs
were studied both by mathematicians and physicists. Aly stuly is due to Gastmans
and Troost [54], which gave a nearly complete list for thedEglums ofv = 4 and many
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w | D| G size | output| CPU real Eff.
23| 7 | 2048 | 1.55G| 89M 61447 9579 | 6.41
24| 8 | 2048| 673M | 380M | 536921 | 72991 | 7.36
25| 7 | 4096| 6.37G| 244M | 369961 | 50197 | 7.37
26 | 8 | 4096| 38.3G| 1160M | 4786841 651539 | 7.35
27| 7 | 6144| 12.7G| 914M | 2152321 277135 | 7.77
28| 6 | 6144| 2.88G| 314M | 235972 | 30960 | 7.62
29| 7 | 6144| 41.0G| 3007M | 8580364| 1112836| 7.71
30| 6 | 6144| 6.27G| 658M | 829701 | 106353 | 7.80

Table 15: Runs on an 8-core Xeon computer at 3 GHz and with 32eSkmf mem-
ory. D indicates the maximum depth (see text). We reran at23 andw = 24 to have
information for extrapolation purposes.

relations forw = 5, supplemented in [11] later. Various authors, among therBribad-
hurst, tow =9, and D. Zagier, performed precision numerical studies [5%)gPARI [56]
during the 1990’s for MZVs, which were not published. A veay-feaching investiga-
tion concerned the study of some of the MZVswat 23 and depthd = 7 by Broad-
hurst by numerical techniques (PSLQ). Double sums wereestud [57] using thé®SLQ
method [15]. Vermaseren both studied the MZVs and the Eulerssow = 9 [10] using
aFORMprogram [21]. This was the situation around the year 200@nathe Lille group
presented thew = 12 results for the MZVs and = 7 results for the Euler sums [58]. In
Ref. [59] the solution ofv = 8 for the Euler sums is mentioned by the Lille—group. How-
ever, the data-tables made available [58] only contain ¢hetions tow = 7. Moreover,
the relations used in [59] do not cover the doubling relgtishich is needed to reduce
to the conjectured basis at this weight, as will be showrr.|&ter the MZVsw = 10 had
been solved in [60] and = 13 in [61], cf. [62]. Vermaseren could extend the MZVs to
w = 16 [63]. Studies forw = 16 were also performed at Lille [64] without making the
results public. In the studies by Vermaseren also the dérgrgarmonic sumé; 5 were
included, as this is sometimes necessary for physics apiolics, cf. also [11].

The primary goal in this paper is to derive explicit repréagons of the MZVs over
several bases suitable to the respective questions igaésti. If one only wants to de-
termine the size of the basis one may proceed differentl)y{56f. Here forw = 19 in
the MZV case it was shown, that the basis has the expectethldmgt modulo powers
of T® at even weights. In [51] the case= 20 was studied determining the size of the
basis calculating the rank of the associated matrix modulb-hit prime. Although the
computation times are not excessive, higher weights cantld@investigated yet because
of memory limitations. Since these methods are based orefipective algebra only they
can be extended to colored multiple zeta values by exteridmgnderlying alphabet.

7 The Data Mine

The results of our runs, together with a numbefFORMprograms to manipulate them and
clarifying text, are available on the internet in pages thatcall the MZV data mine. It
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can be located as a link in tlf®RNMhome page [65]. Here we will describe the notations
and how to use the programs.

The notations we use in the data mine are that the MZVs aresepted either by a
functionZ of which the variables are its indices or by a single symbat ttonsists of a
string of objects of which the first character is the leteand the remaining characters
are decimal digits. Each of these strings refers to an indeékeoMZV. Let us give an
example :

z11z3z3 = 7(11,3,3)

For the Euler sums we use mostly the functibiit can have positive and negative indices,
the negative ones indicating alternating or Euler sums. Milie use basis elements a
compact notation is the lettér followed by a number of alphabetic characters or dig-
its. Each character stands for a negative index. The digits O stand for the indices
—1,---,—9 and the upper case charactérs- - ,Z stand for the indices-10,---,—35.
We had no need to go further in this notation. The next exastpdelld illustrate this:

hL33 = H(-21,-3-3).

If there is ever any doubt about which variable indicatesciiubject one can look in the
corresponding library file (always included as a file with éx¢éensionh in the directory
in which the integrals reside) in the procedure ‘frombasis’

For reasons of econoﬁyne H-functions with a single negative index have a different
notation. They are related to the constamtslefined by

= (1- 501 ) & 1)

In the program we call these constaeds5,...
In some cases we use a variable with a notation similar todkegtion for the MZVs,
except for that the charactelis replaced by the character

aiajak = A(i,j,k)
= Z(,j,K)+Z( K+ Z (0,55, K)+ 2 (1,51, K)
= H(,j,K)-HE, K)-HGA, K+HEK)

HereA is the function defined in (10.3).

In exceptional cases we referZefunctions with negative indices. The most common
notation for this in the literature is to put a bar over the bem This is however a
notation that cannot be used in programs FK&RMHence we use negative indices for the
alternating sums there. For the symbolic variables we usadtation for the MZVs but
with the charactembetweere and the number :

zm11zm3z3 = Z(-11,-3,3) = -H(-11,3,3)

91t turns out that the number of digits in the fractions is samat smaller inn-notation than inl-
notation.
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The programs run in what we call integral notation. This nseiduat the master ex-
pression has the index fields of the functidhsH and HHE in terms of the three letter
alphabet{0,1, —1} for Euler sums and the two letter alphalét1} for MZVs. This is
then the way the outputs are presented. Actually, interriaé whole string of indices
is put together as one large ternary number for Euler sum®aeadarge binary number
for MZVs. This speeds up the calculation, but makes it viljuianpossible to interpret
intermediate results.

The outputs are presented in a method that one may considsualn INFORMt is
often more efficient to have one big expression, rather ti&m2pressions as would be
the case for the MZVs at = 23. Hence the output contains functiodsvith the indices
of the corresponding MZV and eac¢his multiplied by what this MZV is equal to. In
the case that we fixed a basis this can be an expression thastsoof symbols like we
defined above. In the case that we did the calculus moduluisree @nd only wanted to
determine a basis, it will be an expression that consistsraig that each contain a single
functionHHwith its indices in integral notation. Theskifunctions form the basis. Often
at the end of the program there is a list of tftéfunctions used. Becaus®©RMwill print
the output in such a way that the functidnsre taken outside brackets, the contents of
each bracket are what eadHunction is equal to. With a decent editor it takes very few
(< 4) edit commands to convert such output into the definitiop*Btable elements.

If this output should be used as input for other systems,daisbe done, provided
that the expressions do not cause memory problems. Thetf@marinciple compatible
with Pari/GP, Reduce andMaple . There may be a problem with large coefficielfORM
does not like to make output lines that are longer than a &ygreen width. Hence they
are usually broken up after some 75 characters. This hatgsfat long numbers. These
are broken off by a backslash character and continued onexidine. The problem is
usually thaFORMlaces some white space at the beginning of the line and smogegmns
may have problems with that. Hence one can use an editor tovesiall white space
(blanks and tabs) at the beginning of the lines.

The data mine consists of several parts. The main part isedrby the different
data sets. The remainder files give information about hovstothe data mine and links
to other useful information and/or programs. The data aveded over a number of
directories, each containing the results of one type of fana range of values of the
weight. In each directory there are several types of filesnagehe log—files of the runs
are stored. These contain the run time statistics and thibat the runs in text format.
Then there are the table files. They are in text format andagonable definitions for
FORM programs. Their extension j@c as inmzv2l.prc . Some of these files have
been split into several files because they become much to lbig handled conveniently.
These tables can be read and compiled. Yet the case of the MZWs= 22 with its
nearly 6 Gbytes can be too large for a system with ‘only’ 16 8byIf one does not have
a bigger machine to ones disposal, one should use eitheirthgy/tsav file or the.tbl
file defined below.

The third type of files are the binargav files. They can be used to read in the
complete tables without having to go through the compilet aithout having to load

10The functionHHis the same as the functiéh We need two different names because when we present
the results the functiod marks the brackets and the functiedmarks the remaining basis elements.

36



the complete table as table elements (which needs also bigitsy buffers). Finally we
have created so-called tablebases which allow very fasisado individual elements. A
tablebase is a type of database for large tables. They atieytar to FORMand have
been used with great success in a number of very large catmsa Their working is
explained in Ref. [66] and thEORMmanual. The tablebase files have traditionally the
bl extension.

In each directory we have also the programs that were usa@atecthe various files
and in some cases some example programs.

There is another section in the data mine that contains pagesich it is explained
how to manipulate the information in the files. Although méitgs are in text format it is
not easy to manipulate a 4 Gbyte text file and hence it mightinecnecessary to either
useFORMand one of the binary files, or to use tG€edi editor which has been used to
manipulate these files on a computer with 16 Gbytes of main engnbLinks are set to
these programg=ORMorograms are provided for the most common manipulationgef t
data. They contain much commentary. This should make it®aiglie user to customize
the programs should the need arise. The data mine is located a
http://www.nikhet.nl/ ~torm/datamine/datamine.html . Its structure is given in
Figure 2 :

W <= 29

W <= 22

W<=17

W<=12

depth4 | |wW<=30]|

| modular | basis 6 depth5 | |w<=21|

depth6 | | W<=18]|

datamine

W <= 22

modular | W <= 24

| Mzv

W <= 30

programs

| other things |

Figure 2: Layout of the data part of the data mine.
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In this figure we use the following names:

complete Complete expressions over the rational numbers.

modular Products of lower weight terms are dropped and thgatation is
performed modulus a large prime.

limited As modular but incomplete bases.

rational Complete expressions over the rational numbers.

other things Conventions, publications, help, links, etc.

The main problem with the data mine is its size. Many files axesal Gbytes long. We
have usetzip2 on most files, because it gives a better compression ratatiya , even
though it is much slower, both in compressing and decomimgsBut even withbzip2
the combined files are larger than 30 Gbytes.

All programs areFORM(or TFORNI codes. They will run with the latest versions of
FORM(or TFORNL The executables dfORMcan be obtained from thEORMweb site:
http://www.nikhef.nl/ ~form . Please remember the license condition: if you use
FORMor TFORN!Ifor a publication, you should refer to Ref. [21].

8 FORM Aspects

As mentioned the running of the programs used posed grediesges forFORMand
TFORM This is not simply a matter of whether the system containgrer It is much
more a matter of whether the system deals with the problemsienaible and efficient
way. Where are the bottlenecks? What is inefficient? A cl@ample is the conversion
between sum notation and integral notation. This can beranogied in one line:

repeat id H(?a,n?Y{-1,0,1},?b) = H(?a,0,n-sig_(n),?b);
for going to integral notation and
repeat id H(?a,0,n?Y0,0},?b) = H(?a,n+sig_(n),?b);

for going to sum notation. It turns out that when one goesngelaveights (for instance
more than 20), this becomes very slow because it involvesmeich pattern matching.
Considering also that the use of harmonic sums is becoming mod more popular it
was decided to built two new commandsH@RMor this transformation:

Argimplode,H;
ArgExplode,H;

The first one convertsl to sum notation and the second one to integral notation. This
made the program noticeably faster and easier to read.

Another addition tdFORMconcerns built-in shuffle and stuffle commands. One of the
problems with shuffles is that the simple programming of utally gives many identical
terms. This means that the shuffle product of two MZVs can tmeceery slow, which is
illustrated by the following little program:
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S nlnz

CF HHH;

L F = H(3,53)*H(6,2,5);

ArgExplode,H;

Multiply HH;

repeat;

id HH(?a)*H(n1?,?b)*H(n2?,7c) =

+HH(?a,n1)*H(?b)*H(n2,?c)
+HH(?a,n2)*H(n1,?b)*H(?c);

endrepeat;
id HH(?a)*H(?b)*H(?c) = H(?a,?b,?c);
.end
Time = 37.38 sec Generated terms = 2496144
F Terms in output = 2146
Bytes used = 63176

By putting much combinatorics in the built-in shuffle stagsthwe could solve most of
these problems (although not all as the combinatorics canrbe very complicated).
With the shuffle command the program becomes:

S nlnz;

CF HHH;

L F = H(3,53)*H(6,2,5);
ArgExplode,H;

Shuffle,H;
.end
Time = 0.01 sec Generated terms = 5163
F Terms in output = 2146
Bytes used = 63176

This is a great improvement of course.

For the stuffle product things are much easier. There we tevedmplication that
there are two definitions. One is the product used foraksims and the other is the
product used for th&sums. We have resolved that by appending a + foZtmetation
and a - for theS-notation:

stuffle,Z+;
stuffle,S-;

Not only did this make the program significantly faster, g#aimade it more readable.
This way the stuffle product of two Euler sums in integral tiotabecomes in princi-
ple (assuming that we are in integral notation):

Argimplode,H;
#call convertHtoZ(H,2)
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Stuffle,Z+;
#call convertZtoH(Z,H)
ArgExplode,H;

except for that in the actual program we substituted theesdatof the two conversion
procedures. Of course for MZVs the conversions are not rteadé we can use just:

Arglmplode,H;
Stuffle,H+;
ArgExplode,H;

A third improvement concerns the parallelization. The ioidd) parallelization of
TFORM22] assumed the treatment of a single large expression affmthe terms are
distributed over the workers and later gathered in by thetena®uring the phase in
which we execute a Gaussian elimination inside a group aftities, this is very inef-
ficient, because we deal with many small expressions, eathgga certain amount of
overhead when they are distributed over the worker thraaesce it was decided to cre-
ate a new form of parallelization in which the user tells thegoam that there are many
small expressions coming. The reaction of the master thiseaol to divide the expres-
sions over the workers. It only has to tell each worker whigpression to do next, after
which the worker is responsible for obtaining its input angking its output. The only
remaining inefficiencies are that the writing of the outpatiges a traffic jam because
that has to be done sequentially. The final results are kgmtimgiple in a single file or
its cached version. Additionally, there may be some loadrmahg problem in the end.
This load balancing becomes rapidly less when the size ajrigps of equations that is
treated becomes bigger. The running of this phase of ther@mogan give nearly ideal
efficiencies.

A fourth improvement concerns the fact that very lengthygpams run a risk of dis-
continuity. This could be a power failure or a sudden urgehefgervice department to
‘update’ the system, etc. For this a facility has been imgeted insidé-ORMhat allows
one to make ‘snapshots’ of the current internal state, &. [At a later moment one can
then restart from the point of the snapshot. The completighis facility came however
too late to have a practical impact for this paper.

The possibility to perform the calculus modulus a prime nantias existed iFORM
since its first version. Much of it remained untested bec#usse facilities had not been
used extensively. It turned out to be necessary to redesigs pf it and add a few new
features.

Other aspects aiFORMperformed amazingly well. We have seen the program running
with eight workers who all eight had to enter the fourth stagéhe sorting simultane-
ously. This is rather rare even for single threads and onbpéas for very large expres-
sions. It gives a bit of a slow down due to the great amount sk dccesses, but it all
worked without any problems. The most impressive singleutecesult observed was

Time =  15720.03 sec Generated terms =1202653196013
FF Terms in output = 1508447974
substitution(7-sh)-7621 Bytes used = 36215474400
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The execution time is that of the master. Actually the maspent 1000 CPU sec on this
step and the eight workers each almost 200000 CPU sec.

One may wonder about the probability that calculations,edaith a system under
development, give correct answers. We have several remancrning this topic:

¢ WhenevelFORMailed, it was always in a very obvious way, like crashingdese
it couldn’t interpret something.

e The full all-depth outputs from the MZVs up @ = 22 and the Euler sums up
to w = 12 have been tested numerically by completely independegfranas, run
underPARI-GP [56].

e Because of botifTFORMand the MZV programs being under development many
programs have been run at least several times with diffe@mfigurations and/or
different orders of solving the equations.

e TFORMoperates in a rather non-deterministic fashion. Termsanadyr distributed
twice in the same way over the workers because the mastessdeworkers when
they have finished a task and this is usually not in the samer.oid the case of
errors this would lead to different results in differentsun

e There are effects that are expected on the basis of exttapylbke the pushdowns
and the construction of a basis. If anything goes wrong, sfffelcts are absent.

e If forinstance aterm gets lost in a calculation over theoradl numbers, usually the
output would have terms with fractions that are abnormallighnmore complicated
than the others. This is due to the fact that in intermediaiges the coefficients are
usually much more complicated than at the end. Such termspatted relatively
easily.

9 Results

Armed with the vast amount of information contained in théadaine we start with

having a look at a number of conjectures in this this field. yrbencern the number
of basis elements, either just as a function of the weightsaa &unction of weight and

depth. We first check some conjectures made in the literatsirey the data mine and
then describe the selection of the basis to represent thex Bwins and MZVs in the data
mine.

9.1 Checking some Conjectures with the Data Mine

Zagier conjecture [2]:

The number of elements in a Lyndon-basis for the MZVs at weighis given by
Eq. (AI13).0

As far as we can check, the Zagier conjecture holds to weightA2suming that in the
modular calculus no terms were lost due to spurious zeroesan say that it holds to
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weight 24. With the additional assumption that all (Lyndbakis elements have a depth
of at most one third of the weight we can even say that it hadsdight 26. If we com-
bine the findings in the thesis of Racinet [68] that there m&ag basis elements of depth 9
for weight 27 with our runs to depth 7, the Zagier conjectwielb also at weight 27. This
conjecture is in accordance with the upper bound for thedfiiee basis being derived in
Refs. [14].

Hoffman conjecture [69]:

A Fibonacci-basis for the MZVs at a given weighis formed out of MZVs the index set
of which is formed out of all words over the alphalét3}. O

We could test the basis conjectured by Hoffman up to weight22. If we take the sub-
variety in which we only look at the Lyndon words made fromitgices 2 and 3, we can
even verify this Lyndon basis to weight 24. Because thissiasiot centered around the
concept of depth, we cannot use the partial runs at largeghieand limited depths for
further validation.

Broadhurst conjecture [12]:

The number of basis elements of the Euler sums at fixed weiginid depthd is given by
Eq. (3.4).0

All our runs for Euler sums are in complete agreement withBheadhurst conjecture
about the size and the form of a basis for these sums. Thissroeanplete verification
up to weight 12, for depth 6 verification (in modular arithmgto weight 18, for depth
5 complete verification to weight 17 and modular verificatiorweight 21. For depth 4
these numbers are weight 22 and weight 30 respectively.

Broadhurst-Kreimer conjectures [13]:

The number of basis elements of the MZVs at fixed weigldnd depthd is given by
Eqg. (3.5). The number of basis elements for MZVs when exprkss terms of Euler
sums in a minimal depth representation is given by Eql (3.6)

The runs for the MZVs confirm this conjecture over a large earng Table§ 16, 17. The
second part of the conjecture is harder to check than thepfst because for this we
need the results for the corresponding Euler sums.

Another conjecture by Hoffman [3]:

Hy123—H2222—2H233 0 (9.1)
Hy1223—H22202—2H2233 = 0 (9.2)
H212223—H222222—2H22233 = O (9.3)
H2122223—H2222222—2H222233 = 0 (9.4)

Ha12h3 = Hizhs —2Hzpszs = 0 O (9.5)

We verified these relations up to weight=22. At w = 24 we checked the weight-24
part, since we have only the modular representation ateiaed.|

There are identities for special patterns of indices as

m—2

21 =M1~ 3 Inilicst, 2<M € Z, (9.6)
k=1
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wid|[1]2] 3] 4[5]6]7]8]9]10
1

2 |1

3 |1

4

o |1

6 0

7 11

8 1

9 |1 0

10 1

11 |1 1

12 1 1

13 |1 2

14 2 1

15 |1 2 1

16 2 3

17 |1 4 2

18 2 5 1

19 |1 5 5

20 3 7 3

21 |1 6 9 1

22 3 11 7

23 |1 8 15 4

24 3 16 14 1
25 |1 10 23 11

26 4 20 27 5
27 |1 11 36 23 2
28 4 27 45 16
29 |1 14 50 48 7
30 4 35 73 37 2

Table 16: Number of basis elements for MZVs as a function ofgiiteand depth in
a minimal depth representation. Underlined are the valuesave verified with our
programs.
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wd [1]2[ 3] 4[5]6]7]8[9]10
1

2 |1

3 |1

4

o |1

6

7 11

8 1

9 |1

10 1

11 |1 1

12 2

13 |1 2

14 2 1

15 |1 3

16 3 2

17 |1 5 1

18 3 5

19 |1 7 3

20 4 8 1

21 |1 9 7

22 4 14 3

23 |1 12 14 1
24 5 20 9

25 |1 15 25 4
26 5 30 20 1
27 |1 18 42 12
28 6 40 42 4
29 |1 22 66 30 1
30 6 55 75 15

Table 17: Number of basis elements for MZVs as a function dffteand depth when
expressed as Euler sums in a minimal depth representatmaderlined are the values we
have verified with our programs.
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cf. [1,4] or

1 1 21"
2+ 10120 = %9 = gy ©.7)

conjectured in [2] and proven in [47]. Another relation is

{31y, =

J

1 a
Q2013 = Zzm ) (=1 Uy, {(4k+ Diai2a—43% Z4jlz4k—4i+3}
o =1

(9.8)
conjectured in [19] and proven in [70]. For the Euler sums fomas, [71],
{3t =821, - (9.9)
In Ref. [19] conjectures were given for special cases basét5bQ
3¢t A1re [, 77023° 7] 397 4
Uarn, = g oo~ &sla] - o0 | G~ apmmc] + g Gola+ U
(9.10)
7517 34 452880110 ] 825
= —2 2 - 11
(221,232 32 (82— 2(7(3+ 22535+ 6129723600$ 5 (7¢s, (9.11)

which we verified. A series of special relations for the Eldams were conjectured
in [19] based orPSLQ:

39 193 593
(21,22 = 1—283413 — a3512 + 1—28Z7 (9.12)
9 447 1537
2212 = 159 o lslo— s 1
(2212 128Z4Z3 + 1283512 >EE (7 (9.13)
39, 1 1,72
(31, = —7 [0(5 - 5}5 + §Z4|n(2)} (3+ {20(4 - 154}
15, 7 2 1
+2 [0(4 - 1_GZ4+ éisln(Z)} - 3_218 . (9.14)

Here

n! 2 (n—2)!

tn = Lin(1/2) 4+ (—1)" ['”n(2> G |n(n—2)(2)] . (9.15)

These relations are verified analytically as well by our detse. Relationg (9.10-9]13)
were also obtained in [58].

In Ref. [12] a series of relations was conjectured for weight8 ...12 andd = 3,4 for
Euler sums being related to valugs, | |-

315

(333 = 6(5_1_3+6(3_1_5— 32 IN(2){3l5+6(_5_1C3
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40005 39 3 1993 8295 22636
+ 178 Z2Z7—azs+ ﬁ@%"‘EZKS—Wg@,
(9.16)
1059 701
(3-5-3 = ﬁ15,3,3 +157 1, 3+15(3 17+ @Z—s,—e@s
6615 11852967 30159
15 _7 _1(3— ——1In(2 R
+ 150_7_183 256 (2)C3C7 2560 11+ 178 9(259
12494 2 1753577 296010 3405
— 588832315+735328 Z328+75120 %4Z7+—32 (sCe,
9.17)
61 14 185
(3-13-1 = 2—71—3,—3,—1,—1 3 (5-1-1-1— ELHZZ
16349 2051 28 35
- e g T 2 1 TIN3(2) s 1+ In?(2)23
22356QZ 53+ 54 (71t g IN7(2)0 s 1+ e IN%(2)C3
581, » 8735 903
— o4 N(2)%6 — 575 IN(2)als — 7 IN(2)C3la
144 > 1036587 3691643
o o000, ikl O 1
288]ZZZ3+ 476928%315+ 1907712%8 (9-18)
2230420 = 20373 +2°-3%.5.13gl3+2°-3%- 7- 1375
+27-3°2705L + 2°- 37180 — 2° - 3% 5 Tqslals
13177 1599
98,327 72 221999
36l 591 ]le
+2%.3%.5. 706204 — 27 - 33g 200 — 2°- 32 - 11%C402
+247 9 3. (9.19)

These relations were verified using the current data base (9EL9) is particularly in-
teresting since it implies a relation between MZVs medidigcone term of the kind
C—jay),—fagl-

There is a series of Theorems proven on the MZVs, which carebéed using the
data base. We used already the duality theorem [2]. For th¥sviZlarge variety of
relations has been proven, which can be verified for specingles using the data
mine.

The first of these general relations is them Theorem Ref. [1,72],

Gy, =Cn - (9.20)
i1+...+lk=niz>1
The sum-theorem was conjectured in [40], cf. [39]. For itawdion using the Euler
connection formula for polylogarithms, cf. [73].

Further identities are given by thgerivation Theorem, [40, 52] Letl = (iy,...,ik)

any sequence of positive integers wiith> 1. Its derivatiorD(l) is given by

D(I) = (i1+Liz,...,ik) 4+ (i, i2+1,... k) +...(in,i2,...,ik+1)
o) = Ciztip.in T T it l) - (9.21)
The Derivation Theorem states

¢p) = &) - (9.22)
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Here 1 denotes the duality-operation (2121). We call an indexdmeradmissible, if
its first letter is notl. The words form the se®. |w| = w is the weight andd(w)
the depth ofw. For the MZVs the wordsv are build in terms of concatenation prod-
ucts ) xax2 0. ¢ 1xq. The height of a word, Iiv), counts the number of (non-
commutative) factorxgxll’ of w. The operatob and its duaD act as follows [7],

Dxo=0, Dx;=XoX1, Dxo=>xox1, Dx1=0.
Define an anti-symmetric derivation

OnXo = Xo(Xo+X1)" 1x1 .

A generalization of the Derivation Theorem was given in [58,:
The identity
{(0nw) =0 (9.23)

holds for anyn > 1 and any worav € $°. Further theorems are the—Murakami Theo-

rem, [75], theOhno Theorem [76], which generalizes the sum- and duality theorem, the

Ohno—-Zagier Theorem [77], which covers the Le—Murakami theorem and the sum the-

orem, and generalizes a theorem by Hoffman [39, 40], andytbiéc sum theorem [78].
Finally, we mention a main conjecture for the MZVs. Consideples k =

(k,...,k) € N ky > 1. One defines

Zzo = Q
Zq = {0}
Zw = Q-{k)CR. (9.24)
|k|=w
If further
z% = Y zwCR  (Goncharoy (9.25)
w=0
2% = Pazw (Cartien (9.26)
w=0

the conjecture states

(a) z®°= z%@ There are no relations ov€r between the MZVs of different weight.
(b) dimzy = dy, withdg=1,d; =0,d, =1,dy =dy_2+dy_3.

(c) All relations between MZVs are given by the extended dexgbhuffle relations [79],
cf. also [80]. If this conjecture turns out to be true all MZsf® irrational numbers.

9.2 Selection of a Basis

Thus far we have not specified which basis we have been usirthddVZVs. In first
instance, we actually let the program select the basis. &beltrwas the collection of
remaining elements after elimination of as many elementsoasible. The ordering in
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the elimination process was such that the remaining elesweniild be minimal in depth
and maximal in their sum notation. Heng > 1 1 would be preferred ovetig411. As it
turned out, all remaining elements had an index field whicméx a Lyndon word. This
is not really surprising due to the ordering. Unfortunatélgre was not much systematics
found in these elements.

Next came the idea that if the Euler sums have a basis madd byihadon words of
only negative odd indices, maybe one should investigatehiotwextent one can write a
basis for the MZVs in terms of Lyndon words with positive oddices only. It turns out
that a number of elements can be selected with odd-onlyesdlaut it is not possible for
the whole basis. A number of basis elements needs at leagsvoindices.

Definition.
Lw is the set of Lyndon words made out of positive odd-integdices, with no index
i =1 at given weightv. O

We observed that Table 117 can be reproduced by basis elemintsdices inL,. As
mentioned, this is not a basis for the MZVs, but if we write aanelements of the basis
as possible as elements of the kgt the remaining elements of the basis have a depth
that is at least two greater than the elements that are ramgamthel,, set and need at
least two even indices. Additionally, it looks like that yhean be written as an extended
version of these remaining elements by adding two indicestheaend and subtracting
one from the first two indices as in

Z753 — Zea3z11- (9.27)

We have been able to construct bases with these propertidseavay up to weight
w = 26. The complete (non-unique) recipe for such bases is:

1. Construct the sét,, of all Lyndon words of positive odd integers excluding onatth
add up tow.

2. Starting at lowest depth, write as many basis elementseobasis as possible in
terms of elements dfy,. Call the remaining elements Ly, at this deptFR\(,{,D).

3. At the next depth, two units larger than the previous omgewgain as many basis

elements of the basis as possible in terms of elemeritg ahd construcR\(,\[,)+2).

4. Write the elements of the basis with dejth- 2 that could not be written as ele-
ments ofL,, as 1-fold extended elements@(ﬁ).

5. Write the elements of the basis with de@h+ 2 that could not be written as el-
ements ofL,, or 1-fold extended elements Ef,\t,)) as 2-fold extended elements of

what remains oRY ), etc.

6. If we are not done yet, raig2 by two and go back to step 3.

The concept oh-fold extension is defined by subtracting one from the firsin2lices and
adding 2 indices with the value one at the end of the index set.
To illustrate this we give two examples. First the basis agivey = 12:
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Li2: Hos Hzs
Pio: Hosz Hga11

and next the basis at weight= 18 :

Lig: Hisz Hizs Hi17 Hgz3zz Hzs3z H7zzs53 H7335 Hssss
Pig: Hisz Hizs Hioe11 Hozzs Hes3311 H73s53 H7335 Hss553

From the basis at weight 18 it should be clear why we put so retfolt in obtaining the
results for the Euler sums at weight 18, depth 6.

Because the construction does not tell which elemeritg ¢ select the results are not
unique. In fact quite a few selections are not possible tmafldependencies between
the elements of,,. Hence the whole procedure requires a certain amount ofiexgwet-
ing before a good basis is found. In Appenldix B we have tridithtba basis in which the
elements that are taken froloy, have the highest values when their index set is seen as a
multi-digit number. Because of reasons being explainetiemiext Section we call these
bases ‘pushdown bases’.

We do not have complete runs for the weights- 27 andw = 28. In these cases the
elements with the greatest depth are missing. But we canrgadh the construction as
far as possible and make predictions about the missing elsmié turns out that for both
these weights a 2-fold extension is needed. For weigkt27 this would be for depth
5 to depth 9 and for weightt = 28 for depth 4 to depth 8. This concept was not taken
into account in the conjectures in Ref. [13]. Hence we foatrib new conjecture that
not only specifies the number of elements for each weight apthdout also how many
elements need how many extensions.

Conjecture 2.
The number of basis elemeri2$w, d, p) of MZVs with weightw, depthd, and pushdown
p is obtained from the generating function

" 3 12,2 2
YW p\D(w,d,p) _ _ Xy X4y (1_y Z)
WDSD:LFDO(:L X de ) =1 1_x2 + (1—X4)(1—X6) (928)

solving for the coefficients of the monomiaéydzP. O

This formula predicts the first-fold extension§ > 1) at weightw = 12n+ 3 and it will
be to deptld = 4n+ 1. The exception is the first extension at weight 12. We shas\ith
Table[18.

It is a great pity that with the resources that were at ouraiapwe just could not
get direct access to a double extension or pushdown. Exatapgfrom the numbers in
Table[15 indicates computer times of the order of half a ykarweight 28, depth 8) to
more than a year (for weight 27, depth 9).

10 Pushdowns

As mentioned in the previous Section, there are elementasidZVs can only be written
with a certain depth, while, when written in terms of Eulemsy can be written with a
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wd|1]|2| 3 4 5 6 7 8 9 10
1
2 |1
311
4
511
6 0
7 |1
8 1
9 |1 0
10 1
11 |1 1
12 1 0,1
13 |1 2
14 2 1
15 |1 2 0,1
16 2 2,1
17 |1 4 1,1
18 2 4,1 0,1
19 |1 5 3,2
20 3 6,1 1,2
21 |1 6 6,3 0,1
22 3 10,1 3,4
23 | 1 8 11,4 1,3
24 3 14,2 8,6 0,1
251 10 18,5 4,7
26 4 19,1 16,11 1,4
27 | 1 11 29,7 11,12 0,11
28 4 25,2 31,14 411,1
29 | 1 14 42,8 25,23 1,51
30 4 33,2 52,21 14,22,1 0,1,1

Table 18: Number of basis elements for MZVs as a function agtte depth and exten-
sion(or pushdown). If there are several numbers, sepabgtedmmas, the first indicates
the number of elements that came fragp, the second the number of 1-fold extensions
from depthd — 2, the third the number of 2-fold extensions from deghth4, etc. A single
number refers to the elementslqf.
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smaller depth. This phenomenon is called pushdown. Thelsghpxample occurs at
weightw = 12 and can be looked up in the Tables for the Euler sums. Itis

76 2107648, | 50048 11756 _F10035%
41,1 15805 1 ~11-11 95193~ 5a7a7d7 5+ —7gga-CoH 0.1
3584Z 320Z 64Z 2535128220786914
158321 2H-7-1—77702H 53~ Z810756905781252
_%69528448 32 23 64 4__21236224 ol
427275 1319~ 3gM362 T 5533~ 554787 71362
11072 696654848 11690624 ,
2IPOOTOT nkebtnddon 10.1
1225 1511302+ —geae=e N7 — e i=eNEtz | (10.1)

in which we remind the reader that = H_,. The next equation is at weight= 15 and is
already considerably lengthier. The rhsZgf, 3 1 1 contains 49 terms when written in this
form and some of the fractions consist of more than 100 dddigas. The phenomenon
of these pushdowns seems to be intimately connected wittidhkling and generalized
doubling relations. We have investigated this at the weighkt 12 system. This is the
only system over which we have complete control, becauseawe the full results for
all depths for all Euler sums up to this weight. If we run thystem without the use of
the doubling and generalized doubling relations therelaeetmore elements left in the
‘basis’, see TablE]5. Two are of depth 4 and one is of depth 21 &tditionally there is
no pushdown. The elemeB 411 = He 41,1 Needs one of these extra elements at depth
4. If we use the doubling relations, but we do not use the GEtiRse is only one extra
element of depth 4, but the pushdown does take place. If wenlgeghe GDRs, there are
no remaining elements beyond the regular basis and the pwshdkes place.

Unfortunately we cannot run this test for other weights. Nsihg the GDRs means
that we cannot run at restricted depth, due to the phenomefieakage. Of course it is
rather adventurous to make the statement that doublinglearigin of the pushdowns,
when we have only a single case, but there is more supponidgrece as we will see
below.

The way we have presented the pushdowii in {10.1), althoughlatpis not its most
transparent form. One can rewrite it to as many MZVs as ptessibd obtain a much
simpler representation. One can, for instance, write

1055 18587 3733
Ho 3 = — [—29,3 — 42715 — %913

1024 5275 1055
1024 18739 926491594826

g g+ 2T IOYREe L (10,2

26378 5T 575 1017 5370120312 2] (10.2)

Additionally, we introduce a new functiofh as

Anl,nZV",np—l,np = ;Sl—linl7in2»”'ainp—l7np (103)

in which the sum is over theP2! possible sign combinations asd= —1 if the number
of minus signs insidél is odd ands = +1 if this number is even as in

A7s3 = H7s3—H_753—H7_53+H_7_53. (10.4)
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Notice that the last index is always positive. In terms of Zheotation the functior is
the sum over alZ-sums with an even number of negative indices, but the ateseélues
of the indices are identical to the indices of #hdéunction. We rewrite then

25 1295 46139 3213
Ho7.5 = —=|-Ars+o—Zgg+——n 2ot
7.-5 3 75+ 5304203+ 153609<7Z5+ 128 CoC3
126 392388059326
~T5 M1 1561960000 4 ’ (10.5)
and finally the result for the pushdown becomes:
64 7967 1., 1143
Zs 411 TIN5 MZQ,S + 1—213 + T%JZﬂS
799 7
—ﬁzgzs +3(2Z73+ 512@ +1002(7(3
3., 1, 18 5, 5607853
+51225,3 5(2&513 35Z213 60810752 (10.6)

which is much simpler than equatidn (100.1). We see the sapgeming in the expression
for Zg 4311,
1408 1666 15048]Z
= —A — — 10(3Z
Z5431,1 + 7531 11664233 T 6a0a05735 0(3Z6 411

81
16282 17 101437 15208274
:%3ZQ3"5613_"§§§§6Z5ZI3" 38880 °°

3888
2065148632
T 7 e A — iy SV /S8t iihdtn
1204772 12060755t 25 %3 2082400 s

14 21 61
+§Z.225,5,3 — 2027733 — 27023773 — 3521525,3 - 5125%53

3175336
840,225+ S s

97962

_|_

1903 93619 3601

— 4737533 — 550375 3

9, . 1865, 490670609,
o0+ T2 ¢ g3 OO0z,

14552 404934 120731
55253, 4049341 0731024, - 10.7)

~283500°2%7 T 311850°2%5 1488375

In both relations there is only a single object in the equmatlmat is not an MZV: the
functionA. This means that we can write thdsfunction alternatively as a combination
of MZVs of which one has a dept#l =d+2. We have done that witA7 5 to obtain
(I0.7), see the fourth term in the right hand side. The intrig part about it all is that
this functionA contains half of the terms on the right hand side of the doghielation in
equation[(Z.14). In terms ¢f-functions it are the terms in which the last index is positiv
and in terms oZ-functions it are all terms with an even number of negativides.

We have been able to construct pushdown relations for adinebed basis elements
up to weightw = 21 and one for weightv =22. Some of these could be constructed
directly from the data mine. The more difficult ones are, hasveoutside the range
of the files in the data mine. There we could use the data mie& @sd in limiting the
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search with numerical algorithms lik&L or PSLQ More details are given in Appendix C.
This search for pushdowns is not always as simple as the taxmbes we gave above.
Sometimes there is more than one pushdown at a given deptlscsmetimes there are
elements at a given depth that should be pushed down, bt éineralso elements that
remain at that depth. In the last case it is usually a lineantipation of the extended
element(s) and the remaining element(s) that get(s) pustvd. But for all cases that
we could check there is a single functiArassociated with each pushed down element. If
there are several pushdowns at a given weight and depthgifieh@nd side may contain
linear combinations of the correspondiAgunctions. In all cases we could select the
bases such that the index fields of #eéunctions corresponded to the index fields of the
elements of the sét, that had to be extended.

The above indicates that the&dunctions have a special status within the Euler sums.
They are quite similar to the MZVs.

It should be noted that not al-functions can be written in terms of MZVs only. This
holds only for a limited subset as we will see in the next SectiAdditionally, not all
A-functions that can be rewritten in terms of MZVs can be usegtishdowns, because
a number of them can be rewritten in terms of MZVs that have@trine same depth as
the A-function itself.

The above observations lead to the following conjecture:

Conjecture 3.

At each weightw, there exists a set of Lyndon wortlg from which one may construct
a basis for MZVs as follows. For each Lyndon word one choogibsrethe associated
Z value or the associatel value, with the number oA values chosen to agree with
the Broadhurst-Kreimer conjectures. Linear combinatmiitheseA values then provide
the pushdowns for the extensionsivalues by a pair unit indices, as exemplified in
Appendix C.O

What the above says is that we can find a good basis for the M2&Wg uhe sel,,
provided we borrow some elements from the Euler sums. In serchs the basis for
weightw = 18 would look like

Lig: Zis3 Zizs Zi17 Zo333 47533 Z£7353 Z47335 45553
Pig: Zis3 Zizs A117 Zo333 Ars33 Z7353 Z7335 45553

11 Special Euler Sums

The discovery of thé-functions brings up a new point. Which Euler sums can beevrit

as a linear combination of MZVs only? This is of course a perfgiestion for a system

like the data mine in which exhaustive searches are relgitveap. At the same time we
ask of course the question whighfunctions can be written in terms of MZVs only. We
should distinguish two cases :

e The object can be written in terms of MZVs that have at moss#rae depth as the
object.
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wid| 2 3 4 5
7 13| 9 2 10
8 | 5]10| 8 | 2
9 |19/ 26| 2 | O

10| 7| 22|17 | 7
11125 38| 6 | O
12| 9| 40 | 43 |13
13|31 62| 4 |1
14 | 11| 62 | 77 | 23
15|37 90| 6 | 3
16 | 13| 90 | 137 34
17 143|121 6 | 3

Table 19: Number of Euler sums with at least one negativexitiit can be rewritten in
terms of MZVs only as a function of weigli) and depth(d).

wd| 2| 3 4 5
7 14 |5]| 2 0
8 | 58] 4 0
9 |6 13| 9 3

10| 7 |18 17 | 7
11| 8 | 25| 31 | 17
12| 9 32| 49 | 34
13 110|411 74 | 67
14 | 11| 50| 106| 116
15| 12| 61| 148 192
16 | 13| 72| 198 | 298
17 | 14| 85| 259 | 449

Table 20: Number oA-functions that can be rewritten in terms of MZVs only as acfun
tion of weight(w) and depth(d).

e The object needs MZVs of a higher depth. This occurs wheretlsealready an
A-function that is used in a pushdown. In that case many @tHanctions may be
rewritten in terms of thig\-function and MZVs of the same depth or lower depth.

We find that whenever the second case can occur, it will forgeléraction of theA-
functions of that depth. The numberldffunctions with at least one negative index that
can be rewritten completely in terms of MZVs is given in Talk& In Table[2D we
show the same for th&-functions. Here there are clearly many more. Actually alslie
fraction of theA-functions can be rewritten like this. For example, theee 365 finite
A-functions ofw = 17,d = 5 of which 449 can be rewritten in terms of MZVs only.
Considering that a number of the Euler sums can be rewrittégrims of MZVs only,
one may raise the question whether the pushdowns can bétezvini such a way that they
do not have thé\-functions, but rather have a single Euler sum in their riggndd side.
This turned out to be a difficult question to answer, becausptishdown at = 21,d =7
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was very time consuming and took several days for each tAalfirst the number of
candidates was rather large. We could make a list of careidata way, similar to that
of Table[1I9 forw = 21,d =5 and see which Euler sums could be expressed in terms of

MZVs andAz 5 3 3 3 Which is the object that was used in the push

wnfortunately

the results fow = 21,d = 5 are in modular arithmetic and without the products of lower
weight objects. Trying several elements of the list gaveatieg results indicating that
many objects that give only MZVs for the terms with the sam&hemay have terms that
are products of Euler sums of a lower weight. Then, afterttaotng Tablé_IP we looked
for patterns and we noticed that the only eligible elememts/f= 13,w = 15,w = 17 are

Z3 2323 Hs 2 323
Z3 43 23 Hz 4323
Z3 2343 H3 2343
Z3 6323 H3 _6-323
Z3 43 43 Hz 4 343
Z3 23 63 Hs 2 363 - (11.1)

Trying to rewriteZz g3 g 3 in terms ofA7 5 3 3 3 by means ofLL (a 130 elements search)
gave the desired result. Hence by now all pushdowns havedigaimed as well in terms

of MZVs as in terms of one single Euler sum only. Unfortunatbk index field of these

Euler sums seems to be completely unrelated to the indexs fdéldur basis elements.

12 Outlook

The data mine has given us already much information and ityiedgt more yet. But the
current results leave also many new questions. To name a few:

e Can the GDRs be derived and/or written in a simpler way?

Why can the GDRs resolve the problem of ‘leakage’?

Why do we need the doubling relations at all?

What is the relation between the doubling formula and théngoans?

Is it possible to see whicA-functions can be used for pushdowns without needing
the Euler sums of the data mine?

e Can a pushdown basis be constructed without needing the MEZie data mine?

In addition there is some ‘unfinished business’. We did noingere than partial ev-
idence for the double pushdowns at weight 27 and weight 281o8gh we can guess
the basis at weight 27, d.L search for the complete formula would involve more than
800 elements and probably more than 10 times the numberité thgn what our current

"Originally we worked withAg 3333 and it was only at a very late stage that we converteigs 3 3.
Hence a number of the ‘raw’ results still referAg 333 3.
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searches needed. Considering the asymptotic behavioke bflt algorithm, this would
mean at least 7Qimes the computer time we needed for the current deteriomsatThe
data mine approach is also not very attractive. There wedvoekd the Euler sums to
weight 27, depth 9. This might need even more extra ordersagfmtude in resources
than for thelLLL algorithm. What would be very welcome is an algorithm by viaee
can determine a (small) subset of the Euler sums that insltidA-functions and com-
bine this subset with the MZVs. For the MZV part of these deuyhlshdowns things look
much brighter. In modular arithmetic the continuously impng hardware and software
technology should place those runs within reach soon. Witeteer ordering of the pro-
cessing of the equations, which unfortunately we do not hidneeruns could already be
attempted. Again, finding non-trivial subsets to which onighthlimit oneself, would
immediately lead to great progress as well. We hope, thaetigrical discoveries we
made in this paper for harmonic sums umte-= 30 will stimulate mathematical research
and eventually lead to proofs of more far reaching theorentke future. Here we re-
gard the consideration of the embedding of the MZVs into thieEsums of importance.
Likewise one may consider colored ‘MZVs’ with even higheot®of unity [81] in the
future, which have not been the objective of this paper.

The data mine will be extended whenever new and relevanitsese obtained. there
is a history page that shows additions and correctionshBrsthave interesting contribu-
tions, they should contact one of the authors.
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A Fibonacci and Lyndon Bases at Fixed Weight

In the past several bases have been considered for both tMs sizd the Euler sums.
In some of these the concept of depth is not relevant and Hendbe counting rules
we should sum over the depth. We will discuss those basessrmppendix. For a
number of these bases conjectures are formulated in thatlite, which cannot be broken
down fixing the depth. The counting relation for the MZVs wasjectured in [2, 13]
and [12], respectively.

The vector space of MZVs can be constructed allowing basisehts, which contain
besides thé—values the index of which is a Lyndon word products of thpetgfl-values
of lower weight. One basis of this kind is

w= 2 & (A1)
= 3 (3 (A.2)
w= 4 (A.3)
w= 5 (500 (A.4)
w= 6 303 (A5)
=7 17,0502,(305 (A.6)
w= 8 535(3,3.03 (A7)
=9 9,072,005, 3,305 (A.8)
w=10  173,{5302, {785, (3, UsCal2, 1325, 33, etc (A.9)

The number of these basis elements is counted by the Padawatrens P, [43], which
have the same recursion as the Perrin numbers, but starttieimitial valuesP, = P, =
P; = 1. Their generating function is

G(B,X) = LXX - % X4B . (A.10)

They also obey a Binet-like formula. The first values are giveTable 21.

w 1 2 3 4 5 6 7 8 9 10
Pw 1 1 1 2 2 3 4 5 7 9
wi 11| 12| 13| 14| 15| 16 17 18 19 20
Pv| 12| 16| 21| 28| 37| 49 65 86| 114| 151
wi 21| 22| 23| 24| 25| 26 27 28 29 30
Pwv || 200| 265| 351 | 465 | 616 | 816 | 1081 | 1432 | 1897 | 2513

Table 21: The first 30 Padovan numbers.

The above basis is of the Fibonacci type. Another basis oFitbenacci type is the
Hoffman basis [69] which consists of all elements of which thdex field is made up
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w 1 2 3 4 5 6 7 8 9 10
Pw 0 2 3 2 5 5 7 10 12 17
wi 11| 12| 13| 14 15 16 17 18 19 20
Pvl| 22| 29| 39| 51 68 90| 119| 158| 209| 277
wi 21| 22| 23| 24 25 26 27 28 29 30
Pwv || 367 | 486 | 644 | 853 | 1130| 1497| 1983 | 2627 | 3480| 4610

Table 22: The first 30 Perrin numbers.

from 2's and 3’s only. If one uses the following constructibms easy to see that the
number of basis elements follows the Padovan sequence.

w=3 (3). (A.11)

The index words at weight are given by

lw= 2,1 3,1p) . A.12
N CSIT RNV EYTS (A12)

Let us now turn to Lyndon bases for the MZVs. Using a Witt-typkation [44] the
size of the basis is conjectured to be given by

1 w
l(w) = =Y ul= )Py,
wg\l <d)
PL=0P,=2P3=3Py=Py_2+Py_3, d>3. (A.13)

Here the sum runs over the divisodgsof the weightw and Py denotes the Perrin-
numbers [45, 46]. They are given by the Binet-like formula

P, = a"+B"+V", with a, B, y the roots of
X—x—1 = 0 (A.14)

and can be derived from the generating function
3—x2 ©

_ k

G(HOX) =

The first values are given in Talle]22.

For the basis different choices are possible, which yielgivedent representations.
Here we choose the basis in termsle¥alues, with an index field which forms a Lyn-
don word. Our first choice consists of indices, which contsrwidely as possible odd

integers. In case of even weights in a series of cases als@gith only even numbers
occur fromw = 12 onwards, as e.g. for

w=18 : {153, (135, (9333, (7533, (5553, (7551, (822222, (12222 . (A.16)
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wi| 1, 2| 3| 4/ 5| 6| 7| 8 9| 10
lwi| O] 1| 12| O] 1| O 1| 1 1 1
wi11/12|13|14|15|16| 17|18 19| 20
lwi| 2| 2| 3| 3| 4| 5| 7| 8| 11| 13
Wi 21222324 |25|26|27|28| 29| 30
lw | 17121|28|34|45|56|73|92| 120| 151

Table 23: Number of basis elements of the Lyndon basis foMB¥'s for fixed weight
W.

A second natural choice is to take the afore mentioned Hoffb@esis and select from
it only those elements of which the index field forms a Lyndaradv Because the alge-
braic relations for the product of basis elements of loweigivedo not give objects that
are closely related to the basis elements at the higher welgh basis is not used very
frequently.

As an example we consider the case 30 and calculate the size of the bases using
the Witt formula [A.IB) resp. the number of Lyndon words mageby the letters 2 and
3 only with 2< 3. 30 has the following decomposition

30=ki*3 + |j*2=2%3 + 12%2=4%x3 + 9%x2=6%3 + 6%x2=8%3 +3%2.
(A.17)

We now calculate the number of Lyndon words for each of thesgributions, with
m = ki +1i,

1 (my/d)!
n=— dy—— =" A.18
= 2 D ea ) (A18)
One obtains
Lipg(30) = 10147 +iE+i E_E_ﬂJrﬂ +i£
{23} T 14|12121 6| "139141 12|62 312 212 " 112 " 11813
= 151. (A.19)

Using [A13) the result is
1

1(30) = 35[Ps0—Pis—Pro—Ps+Ps+Ps+Po— R
1
— 55[4610-68—17—5+5+3+2-0=15L. (A.20)

A basis up to weighiv = 17 for the MZVs was also constructed in [82].

For the Euler sums the Fibonacci basis is counted by the Ridmdbnumbers. When we
consider also all divergent multiple zeta values the Filsonsequence is merely shifted.
It is easily shown that the divergent Euler sums can be repted by the convergent sums
and the elemerdp. As in the MZV case we may span the vector space of the Eules sum
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wi 1 2 3 4 S 6 7 8 9 10
fw| 1 1 2 3 S 8 13 21 34 55
w1l 12| 13| 14| 15| 16 17 18 19 20
fw || 89| 144 | 233 | 377 | 610| 987 | 1597 | 2584 | 4181 | 6765

Table 24: The first 20 Fibonacci numbers.

by forming a basis, which includes products of lower weigdib elements contained in
a Lyndon-basis. One basis of this type, used instinemer program [10] reads

w= 1 1In(2) (A.21)
w= 2 12In?2) (A.22)
w= 3 13,8In(2),In%2) (A.23)
w= 4 Lis(1/2),23In(2),23,22In%(2),In*(2) (A.24)
w= 5 Lis(1/2),Zs,Lis(1/2)In(2),232,3In%(2),22In3(2),25In(2),In°(2)
(A.25)

w= 6 Lig(1/2),{ 5 _1,Lis(1/2)In(2),Z5In(2),Lis(1/2)2>,
Li4(1/2)In%(2),23,2382In(2),23In3(2),23,231n?(2), L2 1n*(2),
In®(2), etc (A.26)

These bases are counted by the Fibonacci-numbers [42,83], which obey the same
recursion relation as the Lucas numbers, but with the Inttaditions fo = 0, f; = 1.
They are represented by the formula given by J.P.M. Bin@&ﬁ

1++/5 1—\/§d
et -

and result from the generating function

fg =

G(fy,x) = 1T x 2 ZX fi . (A.28)

The first values are given in Talile]24.
Another Fibonacci basis can be constructed as

w=0 0
w=1 (-1)
w=2 (0,-1) . (A.29)

H_1(1) andHp —1(1) = H_2(1) are chosen as basis elements.

Conjecture 4.
With the above starting conditions, consider the index w@tweightw to be

w= U (-Ll) U U (-2l A.30
TR AR A P (A-39)

12 The relation was known to Euler and Moivre.
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The basis elements for the Euler sums are then given bg-tfadues with indices out of
lw. The elements of which the index sets are a Lyndon word foriyraan basis(]

The Fibonacci version of this basis seems to have been diseindependently by
S. Zlobin, see Ref. [71].

This construction is analogous to that by Hoffman in the cafsglZVs. It also uses a
2-letter alphabet. The different decomposition of the \Wweig however, leads to a basis
of different length. Again we may derive the length of theibasing the Witt-formula
(A.52) or counting the basis elements as Lyndon words ofrridex set[(A.3D). Let us
give an example fow = 20.

20 = kix1+1j%*2=18%1+ 1x2=16%1 + 2+2=14%1 + 3x2
= 12%x1 + 4%2=10%1 + 5%x2=8%1 + 6%x2=6%1 + 72
4x1 + 8x2=2%1 4+ 9%2 (A.31)

Similar to the non-alternating case one obtains

L (20 = 1 19! n 1| 18! 9l n 1 17! n 1| 16! 9!
{=1-2} ~1918!1! 18 |16!2! 81! 1714'3! 16 |12!4! 8I1!
n 1| 15! 3! 1| 14! 7! n 1 13!
1510151 211! 14 | 8l6! 413! 137'6!
112! 6! 1 11!
== = i A.32
- 12 {8!4! 4!2!} 11912! (A.32)
Likewise the Witt-formulal(A.5PR) yields
[(20) = i[I —l10—Ila+13]
= pl20—lw—latl2
1
= 55151271237+ 3] = 750. (A.33)

The above basis suffers from the same shortcoming as thenldofbasis in that the
concept of depth lacks relevance. Hence we did not use it.
In a similar way we can construct yet another Fibonacci basis

Conjecture 5.
With the starting conditions of (A.29), consider the indexrds at weightv to be

lw= 11 0,0,1p) . A.34
W \a\:%\fv—l)( 7a) U |b|:%§IJV—2)< » b) ( )

The basis elements for the Euler sums are then given bg-tfadues of indices,,. The
elements of which the index fields are a Lyndon word and aliceslare odd valued if
w > 2 form a Lyndon basid.]

The Lyndon basis of this construction happens to be the Ipagosed in ref [12].
We can dividdy,

ly = 1899 1,09 | (A.35)
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with the indices ing% are all odd and the last index gf°? even, all others odd. The
Lyndon words o389, Ly[1999], form the basis elements at weighaind they are counted
by (A.52). Note, that the basis elementat 2 is not odd, which is an exception.

As an illustration we consider the case= 6. The following words are generated,
where we assume the ordering<QL and let the digit 1 play the role of -1.

{000001000011001001001101001111;
{100001100101100111110001110011111001111101111111% . (A.36)

The Lyndon words are

Y

(00001 = (-5,-1); (00111) = (-3,-1,—-1,-1);
(000001 = (—6); (001101 = (-3,-1,-2). (A.37)
The Lyndon words with odd indices taken as index of an Euler ate basis elements,
which we express through the harmonic polylogarithms atrmentx=1,H_s _4(1) and
H,37,17,17,1(1). On the other hand,

62
452 5 55 ,
Hs 1.0 = H.-_ HoH 5_ —H>,— —H A.39
3-1-2 5,-1+H-2H-3-1+ 752H% — 75H% (A.39)

do not belong to the basis.

The last Lyndon basis is the one we actually use in the progréins depth oriented
and no element can be written as a linear combination of elesn& lower depth or
products of elements with lower weight. To weight= 12 the complete basis for the
finite elements is given by

w=1 H.q (A.40)
w= 2 H.: (A.41)
w= 3 H_3; (A.42)
w= 4 H. g (A.43)
w= b H_s, H.3_1_1; (A.44)
w= 6 H,57,;|_7 H_37_17_17_1; (A.45)
w=7 Hz7Hs 3 1, H3z 31, H3z 11 1; (A.46)
w=38 Hz7 1,Hs5 3 Hs5 11 1,H3 311,

H.o3_1-1-1-1; (A.47)

w=9 HgH7 1 1,Hs5 3 1,Hs 1 3 Hs5 1 111,
Ho3 3-1-1-1.H31-3 1-1,H3 1-1-1-1-1-1 (A.48)
w=10 Hog 1,H7 3 H7 1-11,Hs5 31 1,Hs5 1 31,
Hs 1-1-3H33 1 1,Hs5 1-1-1-1-1,H3 3 1-1-1-1,
Ho3-1-3-1-1-1,H3-1-1-1-1-1-1-1; (A.49)
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w 1 2 3 4 5 6 7 8 9 10
lw 1 3 4 7 11 18 29 a7 76 123
wi 11| 12| 13| 14 15 16 17 18 19 20
lw || 199 | 322 | 521 | 843 | 1364 | 2207 | 3571| 5778| 9349 | 15127

Table 25: The first 20 Lucas numbers.

w=11 Ha1,Hg 11, H7-31,H71 3 Hs5 51,
Hs 3 3 H3 31 3 1,H33311,Hs51 113
Hos 113 1,Hs 1 31 1,Hs5 31 11,
H7 1-1-1-1,H3 113 111,H3 131111,
H3 31111 1,Hs5 111 11°1,
Hoz3-1-1-1-1-1-1-1-1; (A.50)
w=12 Hy7 5 Hg 3 H11 1,Hs 1 3 3 Hs5 31 3,
Hos 3-3-1,Hs5 51 1,H7-1-1-3H7-1-31,
H7-3-1-1,Ho9-1-1-1,H3 31131,

H3 3-1-311,H333111,Hs5 11113,

Hos 1-1-1-31,Hs 113 1-1,Hs5 13111,
Hs 3 1-1-11,H7 11111, H3 113 1-1-1-1,

H3 13- 1-1-1-1-1,H3 3 1-1-1-1-1-1,

Hos 1-1-1-1-1-1-1,H3-1-1-1-1-1-1-1-1-1; (A.51)

For the Lyndon basis the conjectured length is [12]

l(w) = WZU lg, w>2

l1=11>=3l3=4lg=Ilg_1+lg—2, d>4.
(1) = 2 (A.52)

Iq denote the Lucas-numbers [46, 83]. They are represented by

d d
Iy = (“2‘/5) + (1_2‘/‘E’> , (A53)

and derive from the generating function

G(lg, x) = Z Xy . (A.54)

1xx2

The first values are given in Talle]25. The case 1 is special as two elements con-
tribute.
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wi 1| 2| 3| 4| 5 6 7 8 9| 10
1) 1] 1] 2 2 4 5 8| 11
wi11|12|13|14 15| 16| 17| 18| 19| 20
lw | 18| 25| 40|58 | 90| 135| 210| 316 | 492 | 750

s
H

Table 26: Number of basis elements of the Lyndon basis foiEihler sums for fixed
weightw.

B Pushdown Bases

We have tried to select a basis in which the elements of thHe,sate maximal and the ex-
tended elements are minimal. At the same time the extenéeakelts should be Lyndon
words. This means for instance that an elementtike s 3 cannot be extended and hence
has to be part of the basis, even though it is the minimal ei¢@iewveightw = 18. One
could of course reverse the criteria. For the constructidhe@bases this does not really
diminish the amount of work. In both cases there are elentkatshould be skipped be-
cause of linear dependencies. We call the basis below thermal pushdown basis’. In
addition we have used the requirement that for the exteniéedeats the corresponding
A-function should be usable for a pushdown. This requiremantould enforce up to
weightw = 22. For higher weights we do not have the information in the daitze, and
hence we do not know whether this requirement can be achieved

P, = H» (B.1)
P; = Hs (B.2)
Ps = Hs (B.3)
P; = Hy (B.4)
Ps = Hs3 (B.5)
Po = Hg (B.6)
Po = Hrgs (B.7)
Pin = HiHs33 (B.8)
Pio = Hg3,Hea11 (B.9)
Pis = Hiz H733,Hs53 (B.10)
Pia = Hi13,Hos,Hs333 (B.11)
Pis = His,H735,Ho33,Hes311 (B.12)
Pis = Hi1s,H133,Hs533,H7333,Hg61.1 (B.13)
P17z = Hi7,H755,Ho35,Hos3,H1133,H53333,He631.1 (B.14)
Pig = Hizs,Hi53,H5553,H7335,,H7,353,H9333,H106,1,1,Hs4,331,1 (B.15)
Pig = Hig,Ho37,Ho55,H1135,H1153,H1333,
Hs3533,Hs55333,H73333,He651.1,He631.1 (B.16)
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P2o

P21

P22

P23

Poa

Pas

Pas

Hi37,His5,H173,H7355,H7553,H7733,Ho 335,
Ho35,3,H11333,H1081,1,H533333,H643511,H8 43311 (B.17)
H21,Ho57,Hg 9.3, H1137,H1335,H1353,H1533,
Hss353,Hs55533,H73335,H73353,H73533,H93333,
Hg65,1,1,H10451.1,H106,31,1,H6 433311 (B.18)
His7,H175,H193,H7573,H7735,Ho355,Ho 373,
Hos35,Ho553,H11335,H11353,H11533,H13333,H1281.1,

H6,4,5,5,1,17 H6,6,5,3,1,17 Hg23711,Hg6331,1 (B.19)
Hz3,H1175,H1193,H1337,H1355,H137.3,H1535,H15533,
H1733,Hs5553,H73733,H73553,H75353,H75533,
H77333,Ho3335,Ho3353,Ho3533,Ho5333,H113333,
Hg6,7,1.1,Hs85.1.1,H10291,1,H104,7,1.1,
Hs333333H6,235511,H625351,1,H643351.1 (B.20)
H177,H195,H213,H7773,H9735,Ho753,Ho033,
Hi1337,H11355,H1137,3,H11535,H11553,H11733,H13335,
Hi3353,H13533,H15333,H12101,1,H14811,H553353,
Hs53533,Hs555333,H733353,H733533,H735333,H753333,

Hg 47311, H6,2,3,3,3,5,1,1 (B.21)
Hos,H11113,H1357,H1375,H1393,H1537,H1555, H15733,
H1735,H1753,H1933,H73735 H75373,H75733,
Ho3337,Ho3355,Ho3373,Ho3535,Ho3553,Hg3733,
Ho5335,Ho5353,Ho5533,Ho7333,H113335,H113353,
Hi113533,H115333,H133333,Hg8711,H104911,
Hi06,7,1,1,H10851,1,H12291.1,H5335333,H5353333,

Hs533333,H7333333,H6255511.H64,35511,H6453511,

He45531,1,H6633511,Hs63531.1.He 653311 (B.22)
Hi179,H197,H215,H233,H7775,Ho593,H11393,H11537,
Hi1555,H11573,H117,35, H11,7,53,H11033,H13337,H133535,
Hi337,3,H13535,H13553,H137,33,H15335,H15353,H15533,
H17333,H141011,H555353,H555533,H733553,H735353,

H735533,H737333,H753353,H753533,H755333,

H9.5.3.3.3.3, H1133333,Hg27711,H845711,Hg47511,

Hge63711.Hg65511,Hs67311,Hs83511.Hg85311,
H1023.91,1,H10257,1,1,H102,751,1,Hs53333333,

He2335511,H62353511,H6253351.1,H6433351.1 (B.23)
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The above bases are complete. For the following basis wethessvo elements at
depth 9 due to limited computer resources. Yet the construbtased or.,7 allows us to
predict the last two elements:

P,7 = Ha7,H1179,H13113,H1539,H1557,H1575,H15903,H1755,H17,7,3,
Hi935,H1953,H2133,H75573,H75735,H77373,H77733,
Ho 393 3,Ho5355,Hos5373Hgs535Ho5553,Hos733,Ho7335,
Ho 7,353,Ho7533,Ho9333,H113337,H113355,H113373,H113535,
H113553,H1137,33,H115335,H115353,H115533,H117,33,3,H133335,
H133353,H133533,H135333,H153333,H108,7,1,1,H10105,1,1,
Hi221111,H12491.1,H1267,1,1,H12851,1,H1627,1,1,
Hs353533,H5533353,H5533533,H5535333,H5553333,

H7,577,5,3 —>?HG,4,6,4,3,1,1,1,1,H7,5,373,3,3,3 —?H64333331.1

We have selected the last two elements for the necessanysexteon the basis of the
Appendix in the thesis by Racinet [68] in which for these twengents the numbers 6 and
4 seem to play a special role.

Although we have also results fébg in which the leading depth is missing, there
are too many elements missing to give a reliable list of tr@s@ements. It should be
remarked though that also fBg we expect a 2-fold pushdown from depth 8 to depth 4.

C Explicit pushdowns

Below we list all pushdowns up @ = 21 and one aiv = 22 with the mixing with terms
of equal weight and depth in the left hand side and all remgiluler sums in the right
hand side. The functioA is defined in[(10.3).

We only list that part of the pushdowns that we consider paldrly interesting. The
complete formulas can be found in the data mine in the progfaent. The name of the
file is pushdowns.h .

64
Z = ——A e Cl
6747171 27 775+ ( )

1408
Z64311 = HA7,5,3+-~- (C.2)

542 19 1024
Y Zss33— =2 et/ VSR c3
28611+175 5533 ~ = 27333 208 o7t (C.3)
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14
Zs631,1— gzs 3,333
10
Z10611—329333
124 124
—7 ——7
— 3547353~ 3547335
328
97525553
2643311
61
286311—7273333
1774 2
Z Z
+—== 175 55333+5 5,3,5,3,3
Zees11+13273333
268 6
——7Z Z
55 55333+5 5,3,5,3,3
13 304
Z ——Z ——Z
10811~ 211333~ —,=20.335
360 3799Z
5529353~ £op £7.355
_+137 . 1632
196 277331 545477553
68
Z643511— 325,3,3,3,3,3
28
Z843311—€Z533333
68 832
286511—3293333—1TF)Z73533
967Z 104
105273353~ 755473335
1318 GZ
g75 255533~ 7755353
46 67
Z -2z B
104511~ 5203333~ 5,27.3533
73 79
21273353 21273335
482 46

_ %7 -7 =
175 5,5,5,3,3 175 55,353
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5120

Sag et (C.4)

8192

337

392

—Z20A
57 7533+ "

11,7 + (C.5)

(C.6)

647168
34263

45056,
1215 973

775+ (C.7)

3598336

- 5, 759808
125631 '

4455 9,73+ "

(C.8)

16384,
6615 19

118784
243

(C.9)

256qA n
524377535

(C.10)
.-(C.11)

9,533 —

3276§A 10249A N
g1 95337 51g7 7535

19424051

9628875
229376

1125 1173
8097254604%

337010625

9,7,5

1155+ (C.12)

15966208

t 641025975 T
1691951104

67402125

3276%A
5025 1173

1155+ (C.13)



46 632
Z10631,1— 329,3,3,3,3 - ﬁzzs,s,s,s

86 572

_z _ 2%
15 7,3,3,5,3 105 7,3,3,3,5
479 L 46, _ 12460851 | 16384
8752555331 175755353 = +gangg7p 0Tt 19154173
758235136
“agrasgrg est o (G19)
5120
26433311 = _HA7’5’3’3’3+M (C.15)
, | 1359845923
128117 7881631159T">"3
979048669 302187983
6109192075>>°° " 2688044513>>"3
56073918102 1996833053
201603338475%°3° " 13440222565%>°3
6654391879 | 259859281
4032066769573 707380135 1335
318605844 2035227827
2688044515353 7 1344022256653
792567754 524288
it - ... 1
1T 122183841613333 10608 139 (C.16)

The+--- indicates terms that are purely MZVs of lower depth or praslo€lower weight
MZVs. The complete relations can have up to about 150 ternesicél we give them in

a file in the data mine. The first 15 of these relations werevddrwith the help of
PSLQand/or thelLLL algorithm. Seven of them could be derived with the data mine.
Unfortunately for deptll = 5 objects we have only exact results up to weight 17 and

for depthd = 4 we have only exact results up to weight= 22.

The above results used the available resources to their lifhie formula in [(C.15)
needed 45 hours of running time using thié algorithms as implemented PARI in a
152 parameter search at 8000 digits and was checked afttnatait 0000 digits.

We have expressed the pushdowns in terms ofAtfienction that has the same in-
dices as the element &f, that was extended. It is not clear whether this scheme can be
maintained for pushdowns beyond the ones we present. S8donections cannot be used
because they express directly in terms of equal or lowehddztVs. This then has again
influence on the selection of the basis. In the end it may bewbkaave to drop one or
more requirements for the basis. A simple example of such-amction exists already
at weightw =15 :

7649 7089 2097

— Z73— - Z
+ 123366735~ 143360°°7% ~ 716805 (7253

5120
11639601% n 1083797, 81059
15

ittt YOV TV OV 2
2867200 40060 22131 71ggct2%1

11099 43311 2783
s 4 Lots . (C.17)

~6272002%° ~ 2280062%7 ~ 784002

3429

A735
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It is also possible to express each pushdown in terms of &edider sum rather than
anA-function. In a sense this is less telling. After all thdunction contains half of the
terms of the doubling relation and the doubling relatiorenséo be at the origin of the
pushdowns. Also we could not find much structure concernihgghvEuler sum(s) to
select. There are often many possibilities. In the caseeftfunctions one can make a
unique selection: thA-function should have the same index field as the elementdde¢h
Lw that represents the pushdown. Anyway, for completenessweengre a single Euler
sum for each of the pushdowns. We have dropped all factorseams which have MZVs
of the same weight or products of MZVs with lower weight.

H-representation Z-representation
Ars — H g3 Z g 3
Ars3  — H_6_36 Z 636
Ag7 — H_ 133 Z 133
A7z — H 6 56 Z g5 6
A7 — H_153 Z 153
A7533 — He, 543 Zs, 543
Ag73 — H g 38,H 676 Z 83 8,2 676
Ar7s  — H_ g 38H_6-76 Z g3 82 676
A9 — H_ 173 Z 173
A7s535 — Hg,543,Hs 563 Zg 5 43,26-563
Ags33 — Hg,543,Hs 563 Zg 5 43,26-5_63
Ag7s5 — H_g s58,H 6 _96H g 310 Z85-82Z69-6,Z2-83-10
A11ss — H_g s58,H g 96,H 8 310 Z85-82Z69-6,Z2-83-10
A1173 — H_g s58,H g 96,H 8 310 Z85-82Z69-6,Z2-83-10
A75333 — Hs 6,363 Z3 6363
Aizg — H_1903 Z 193

Of course more complete results can be found in the data mine.
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