
––help
DENNIS VAN DOK

Nikhef Computing Course, Wednesday 2022-06-22

1



UNIX FOR PHYSICISTS

3



The purpose of this talk is to give a few helpful pointers to aspects of the general Linux computing environment that may

be beneficial to know for a student of physics, i.e. not someone who purposely explores the realm of computing but

rather sees this as (at best) a useful tool or (at worst) a necessary hurdle to overcome.

In contrast with the other talks given at the computing course, which focus on various aspects of how computing is best

approached at Nikhef, this talk is more generally applicable outside our lab. Nevertheless, I've tried to aim for the target

audience of prospective PhD students.

Speaker notes



THE PHILOSOPHY OF UNIX

What? Unix has a philosophy?

4



The single most important message I have for you is in the title and is about getting help. The Unix environment has

never been known to be particularly user friendly and it can be daunting to get started. The general philosophy seems

always to have been that with a basic set of skills you should be able to find documentation and apply knowledge on

your own, and learn from your peers as you gain experience.

These days there is Stack Overflow, but the hardest part about that is knowing which question to ask. The question 'how

do i do X' is easy to answer, but knowing that X can be done at all, or that X is a useful step along the way to achieving

your overall goal, is not always obvious.

The student is expected to know the tools of the trade, and understand what power they wield. How to apply that power

in their own work is then a matter of developing one's skills.

Speaker notes



DEVELOPING SKILLS

6



The background against we should consider this presentation is this poignant question: should you really learn any of

this at all? As this lecture is not going in depth in any of the topics it touches on, it is up to you to investigate further,

exploring and trying out to see if these are techniques you should adopt; as time is a limited resource and there is a lot

of work to be done, you need to be able to make a fair judgement whether the investment is worth the cost.

Speaker notes



SHOULD YOU LEARN A NEW SKILL?
time normally spent on related tasks

investment

rate of productivity increase

T

I

R

7



This is the only piece of mathematics I'll discuss here and it is a piece of pseudo-science, but this formula does reflect

the key point to learning a new skill. If this skill applies to your daily work and makes you, say, twice as fast at

accomplishing a task, it is easy to see that the investment is sound if it cost less then half of the time normally spent.

It is also immediately obvious from the formula that if you spent very little time using a skill, no matter how high R gets,

you will never recoup your investment.

The big problem with this knowledge is that the three quantities are not obvious to estimate let alone know exactly.

Speaker notes



SHOULD YOU LEARN A NEW SKILL?
T time normally spent on related tasks

I investment

R rate of productivity increase

Learning a skill is worthwhile if

T ≥ I +
T
R

7



SHOULD YOU LEARN TOUCH TYPING?

 

8



As a simple example, the skill of being able to type with all fingers on a keyboard without looking at the keys and getting

a reasonable 50 words per minute is something that is lacking from today's school curriculum, at least in the

Netherlands. (We have so-called iPad schools which are as bad as they sound.) People are left to make this choice for

themselves and many people don't.

That is a shame because in most modern professions it is likely that you will be entering a lot of text via the computer

keyboard and with some practice (10 hours according to one testimonial, the equivalent of half an hour per day for two

weeks, not counting weekends) you can reach excellent performance and this will undoubtedly pay off.

Speaker notes



SHOULD YOU LEARN TOUCH TYPING?

 

T ≈ 1000h
I ≈ 10h
R ≈ 2

8



SHOULD YOU LEARN TOUCH TYPING?

 

T ≈ 1000h
I ≈ 10h
R ≈ 2

(Yes, absolutely)

8



SO HOW WILL I KNOW WHAT TO LEARN?

, , and  can only be learned from experience.T I R

9



It is hard to judge these quantities for most skills, as life in general is complicated.

On the slides ahead I have compiled a collection of techniques and hidden gems of the Linux systems that I believe can

improve your productivity as you are working on the Nikhef computing facilities.

But keep in mind that the theme of the talk is that you should use your own judgement in deciding whether you are going

to try this.

There is the law of diminishing returns at work here. Although some of you will find joy in exploring the full width and

breadth of the toolstack and becoming an absolute wiz on the UNIX command line, a little knowledge already goes a

long way. In that sense you could consider this talk a a showcase of so much of what is out there to make your life

easier, and you can come back later to explore at leasure to see what you like.

Speaker notes



UNIX
Getting Linux on your laptop:

http://get.debian.net/
https://www.ubuntu.com/download
https://getfedora.org/
https://so�ware.opensuse.org/

11

http://get.debian.net/
https://www.ubuntu.com/download
https://getfedora.org/
https://software.opensuse.org/


Since you are going to see so much Unix on Nikhef systems, it makes no sense to run anything else on your laptop.

Luckily this is easy enough to install in the last decades.

I'm listing four of the more popular flavours in no particular order, and I can't really say that any of them (cough Debian

cough) is better than the others.

Not listed above are the many distributions which are for advanced users and/or Linux freaks, because if you feel these

are your cup of tea then this lecture is probably not for you.

Speaker notes



APPLE HARDWARE
OS X = Unix
VirtualBox/VMWare
hard-core install Linux anyway

12



Aficionados of overpriced hardware need not worry; although Apple tries to make it harder to install Linux on your

devices, at the core of OS X is a POSIX compliant Darwin kernel. Some of the commands behave slightly differently

because it has a BSD pedigree and Unix was never a single unified OS. Virtual machines are another option.

The modern M1 chip found in newer Apple hardware only recently attained Linux support, which makes the native option

really hard-core geeky.

Speaker notes



MICROSOFT WINDOWS
O�en the best choice when there is but one choice. In
that case:

Dual Boot
VMWare/VirtualBox
CygWin
WSL 2

13

https://www.cygwin.com/
https://docs.microsoft.com/en-us/windows/wsl/


If you are stuck on Microsoft's OS for whatever reason you need not despair. Any modern Linux installer will be able to

turn your system into a dual-boot machine. For the less adventurous there is still the virtual machine option and most of

the common tools are available anyway through CygWin (this is not Linux or even Unix, but since much of Windows is

POSIX-compliant it makes a good effort to behave the same).

The modern option, however, is to go for the Windows Subsystem for Linux, which allows you to run Linux natively under

Windows. This is Microsoft's own product and guarantees to integrate well.

Speaker notes



PROGRAMMING LANGUAGES

15



In the course of your time here you will not only be expected to operate and run computer programs, but also to write

your own programs and scripts for doing analysis. You may already have heard of a number of programming languages

and you may be wondering which of these you should learn well, which you can get away with learning only superficially

and which ones you can avoid completely.

Speaker notes



SCRIPTING LANGUAGES
No compilation required
Easy prototyping
Can be used interactively
Ideal to build workflows

Examples:

Bash
Python
Perl

16



Let's start by cutting the field into two large portions. The first is made up of the languages that run via an interpreter, i.e.

a special program that reads the program statement by statement, translates these into actions and executes these

actions until the script ends, usually by reaching the end of the file, or an explicit call to end, or an error condition from

which it cannot recover.

The Bash interactive shell doubles as a makeshift programming language but it is probably the ugliest and least efficient

one out there. Since nearly every 'call' to a routing is really forking another pipeline the overhead is enormous. Still, it is

a useful control language for batch jobs, preparing input files, etc. and it prototypes so naturally because everything can

also be done on the command line.

Perl never really went away, but it is now eclipsed by the massive uptake of Python as a scripting language.

Speaker notes



COMPILED LANGUAGES
Translate down to the CPU instruction level
High performance
Various degrees of abstraction away from the
underlying architecture

Examples:

C/C++
Fortran
Go
Rust

17



The other portion are the languages that take an intermediate step: a compiler translates the statements down to

snippets of machine code particular to the architecture of the CPU that the program is supposed to run on; it optimizes

constructs to make use of certain features of the CPU. These programs are much faster for processing and

computational tasks.

You probably won't end up choosing your own here, as much of the work that has come before has already been done in

one way or the other. The newcomer with the most potential at this moment looks to be the Rust language.

All of the heavy lifting and advanced compiler tech happens in C++, which is more of a conclomerate of language

features than an actual design.

Speaker notes



MOST LIKELY COMBO
Python/C++

(Special recommendation: Jupyterlab)

18



There is a place for both types so you have to learn at least two. For compiled languages it is hard to escape C++. For

scripted languages it is hard to beat the double-barrelled power of having an interactive shell that is also a programming

language, more about Bash later.

The shortcomings of Bash as a data processor are obvious, and here Python jumps in the gap. With the power of

notebooks (a.k.a. Jupyter) this could be an excellent tool for workflow-building and note keeping.

Speaker notes



A NOTE ON C++
There is a decade of architectural development
between current CPUs (AMD EPYC 7H12) and what we
still had last year (Intel Xeon E5-2650). The clock
speed, however, is still in the same ballpark.

Principally, your C++ program will compile to both.
Technically, to make use of all the advancements in
processor design it takes a lot of insider knowledge of
both the CPU and compiler optimization.

19



This is beyond the scope of this talk but just wanted to mention it: newer compilers tend to do a lot better on modern

hardware. Typically somebody in the project will have set this up so you just need to source a single shell script to have

access to the latest and greatest.

Speaker notes



SSH
secure remote shell
Passwordless
versatile

21



The standard way to get around on systems is by way of a secure remote shell, a.k.a. ssh.

SSH will set up an encrypted communication channel between your computer and the remote server; even if the traffic

across this channel is intercepted, the actual data will be indecipherable for the interceptor.

What most people don't realise right away is how versatile ssh really is.

Speaker notes



SETTINGS
.ssh/config

Host *.nikhef.nl 
    ControlMaster auto 
    ControlPath /tmp/%h-%p-%r.shared 
Host * 
    ForwardAgent yes 
    User yournamehere 
    HashKnownHosts yes 

22



Connection sharing means that only the first connection needs to authenticate and subsequent ssh actions to the same

host will happen much quicker. I'd always recommend this with the caveat that if the master session dies, so do all the

clients.

Hashing of the known hosts file is generally a good idea, but it is not a productivity gain; it is a security measure to

prevent others from seeing which machines you regularly log on to.

Read the man page of ssh-keygen to see how to find and remove old entries.

Agent forwarding is discussed below.

These settings go to your laptop and your Nikhef home directory.

Speaker notes



SSH PUBLIC/PRIVATE KEY

Permissions:

ssh-keygen 
cat ${HOME}/.ssh/id_rsa.pub > authorized_keys 
scp authorized_keys login:.ssh/authorized_keys 

drwxr-xr-x .ssh/ 
-rw-r--r-- .ssh/authorized_keys
-r--r--r-- .ssh/id_rsa.pub 
-r-------- .ssh/id_rsa 

23



Instead of having to type your password every time it is possible to set up a public/private key pair. The private part stays

with you and you alone; there is a password on it for good measure.

The public part you can spread everywhere.

Keep the private key on your laptop. Don't copy it anywhere else!

If you also work at Nikhef desktop systems, make another ssh key there and add it to the authorized keys file as well.

Speaker notes



AGENT FORWARDING
ssh-add -l      # list keys in the agent 
ssh -A login    # login with agent forwarding 

24



Logging in through a chain of servers is easier with an ssh agent. Normally an agent is already started for you.

The forwarding means that the agent can be reached through a backchannel.

This saves so much typing of passwords that this should almost be considered mandatory.

Speaker notes



PROXY FROM OUTSIDE NIKHEF
Host stbci2.proxy 
    Hostname stbc-i2.nikhef.nl 
    user yournamehere 
    CheckHostIP no 
    ProxyCommand ssh -q -A login.nikhef.nl /usr/bin/nc %h %p 2

25



This little trick so useful that recent implementations of ssh have now incorporated this functionality so you could try the

ProxyJump option instead. See the man page for ssh_config.

In combination with Agent forwarding this means you get to log on to Stoomboot from anywhere in the world without

typing your password once.

Speaker notes



SSHFS
Fuse mount your remote home directory locally:

sshfs login.nikhef.nl: /tmp/login 
ll /tmp/login/ 
fusermount -u /tmp/login 

26



Copying files by SSH can be done with scp, but there is a really convenient way under Linux using the FUSE file system

driver.

The sshfs command mounts a remote server directory based on your ssh authentication. It appears just like an ordinary

directory.

Be mindful of the abstraction and realise this is all going over a single TCP connection before you run a recursive

directory listing or a find command.

Speaker notes



COMMAND LINE SHELL
tell the computer what to do, one line at a time
most powerful way of direct interaction
also used for scripting and fast prototyping
ideal for taking notes as you go

28



Although the graphical desktop environments on Linux systems have evolved and matured over time to be among the

best in the industry, any serious work that involves scientific programming and analysis will require working with a

command-line shell.

Speaker notes



WHICH SHELL DO I NEED?
.

/bin/bash YES

/bin/zsh YES

/bin/csh !

select your default shell at https://sso.nikhef.nl/chsh

NO

29

https://sso.nikhef.nl/chsh/
http://www.faqs.org/faqs/unix-faq/shell/csh-whynot/


If you believe there is any semblance between the C programming language and the C shell, you are regrettably misled.

Nikhef offers two perfectly reasonable shells but for the remainder of this presentation we are going with bash. I cannot

vouch for productivity gains using zsh as I am not using it myself, but there are plenty of people who do and you may

ask them.

Speaker notes



TUNING
everything can be tuned
but you must resist
use only the common enhancement

30



Everybody wants to optimise their environment according to personal preference. The Unix attitude takes this into

consideration and allows a million settings to suit everybody’s whim. The collective wisdom accumulated over four

decades have delivered some tricks that everybody will want to know.

Speaker notes



STARTUP FILES

login shell .bash_profile

non-login shell .bashrc

This distinction is outmoded.

31



.bash_profile
if [ -f "$HOME/.bashrc" ]; then 
    . "$HOME/.bashrc" 
fi 

32



rc files are 'runcom' files, a holdover from a more beautiful era.

When a shell is started, a couple of files are sourced both system-wide and personal, and that is where to put your

preferences.

Put all of your favourite settings in .bashrc and leave everything else to the system-wide /etc/profile.

Speaker notes



PATH

.bashrc
if [ -d "$HOME/bin" ] ; then 
   PATH="$HOME/bin:$PATH" 
fi 

33



The PATH variable is a list of directories which are searched when you type a command.

Stick your own programs and scripts in ${HOME}/bin.

Do not put . in your PATH and certainly not at the beginning! This poses a security risk because you will not be sure that

you are not running a program from a local directory that you did not intend to run. It is better to adopt the notation of

./program for local programs.

Speaker notes



COMPLETIONS

pressing TAB will auto-complete your command
line
works better with the package bash-
completions installed

34



I mentioned touch typing before and how much of a difference that will make. But command-line completion will have

much more of an impact because it will save you from having to make all those keystrokes in the first place.

This functionality comes standard with your shell. Any partly written command or argument followed by a tap on the TAB
key will either:

complete the command if it is unique, or

list the possible completions if there are multiple matches

Install the bash-completion package to unleash the full power.

Most programs (like git) come with their own collection of completion-fu so as to make the command line git-aware.

Speaker notes



HISTORY

.bashrc
# don't keep more than one copy of a repeated command 
HISTCONTROL=ignoredups 
# append to the history file, don't overwrite it 
shopt -s histappend 
# keep plenty of history 
HISTSIZE=65000 
# useful on systems with shared home directories 
HISTFILE=${HOME}/.bash_history-$(hostname) 
# keep track of time 
HISTTIMEFORMAT='%F %T %Z # ' 

35



Let bygones be bygones but learn from your mistakes. Keeping a record of commands you ran earlier is quite useful. By

default bash will keep track of this but there are a few useful enhancements.

For instance, the size of how much of history to keep can be tuned and modern systems can easily deal with thousands

of lines.

On a shared home directory system such as Nikhef's it is sensible to have a history file per host, because you run

different commands on on them.

Bash does not record the time at which a command was run by default, but this is also useful information to keep.

Speaker notes



HISTORY RECALL

Arrow up/down cycles through previous
commands.
Ctrl-R reverse search in history

36



This is one of those little gems that you either stumble upon or go for years without until somebody points it out to you.

I've seen people furiously rapping at the up key to find an earlier command and it is so sad.

Type Ctrl-R
type a few letters from the command; this will start a reverse search through the history

type Ctrl-R again to cycle back through matches

or type more characters to refine the search term

press enter to rerun the found command

or press arrow keys to edit the command line

Speaker notes



RECALL THE LAST ARGUMENT

Seeing is believing.
stat /some/path/to/file 
# now I want to run cat on the same file 
cat <ESC><.> 
cat /some/path/to/file 

37



This is something I use surprisingly often. E.g.

Instead of recalling the history for the second line, simply type cat Meta-. to stick the last argument of the previous

line on the end of the current line. The meta-key may be Alt, or the Windows key, or just us ESC. Repeat the command

to cycle back through earlier commands.

These are ingrained in muscle memory over time.

Speaker notes

stat /some/path/to/file 
cat /some/path/to/file 



PROMPT

.bashrc

This shows:

PS1='\u@\h:\w \A $(__git_ps1 " (%s)")\$ ' 

a07@lena:/project/newton 11:24 (master)$ 

38



The prompt is displayed to indicate that the shell awaits your next order. Did you know you can enhance the prompt, e.g.

to indicate the time, host name, and current path? Or even the current git branch name?

Letting the computer tell you something useful here is pretty sensible, but I've seen people go overboard on what they

display in their prompts. That is entirely up to you of course, but keep in mind the increase in productivity is probably no

too much.

Speaker notes



ALIASES
alias ls='ls --color=tty' 
alias ll='ls -lhF' 
alias rm='rm -i' 
alias mv='mv -i' 

39



It’s safer to protect potentially dangerous commands with a mandatory interactive flag.

More fanciful shortcuts can easily be implemented with shell scripts.

Often used commands can be abbreviated by creating aliases. My advice: don’t overdo it on the aliases. Stick to some

of the more usual ones. any alias can be overridden by putting a backslash in front.

Speaker notes



KEEPING NOTES
use script to capture an entire session
run a jupyter notebook with a 
emacs org-mode babel extension

bash kernel

40

https://github.com/takluyver/bash_kernel


Interactive sessions help you work through certain problems in rapid short cycles. But it can be frustrating after a

succesful bout of trial-and-error to retrace your steps.

One fix could be the use of script. Start it at the beginning of your session, and everything you type will be recorded in

a file to peruse later.

A modern technique that is gaining popularity is the python notebook a.k.a. jupyter notebook. This can also be run with a

bash kernel.

Finally a more fringe option is the Emacs org-mode capability of inserting and running code blocks inside documentation

and capturing the results.

Speaker notes



SCRIPTING
Write myscript.sh:

And then run it like

# my first script 
echo "This is my first shellscript" 

bash ./myscript.sh 

42



Turn it into an executable like so:

followed by

#!/bin/bash 
# my first script 
echo "This is my first shellscript" 

chmod +x myscript.sh 
./myscript.sh 

43



The power of bash as a command-line tool is complemented by its power as a programming language. Without learning

any more commands you can start writing a shell script by writing the commands to a file.

Speaker notes



ESCAPING
Make a habit out of always quoting variables like so:

and you will never go wrong.

"${var}"     

44



EVAL IS EVIL

Do not use eval ever.

45



By the time you think you need eval, you need to switch to a real programming language.

Speaker notes



PARSING COMMAND-LINE OPTIONS
#!/bin/sh 
proxyhost=login.nikhef.nl 
proxyport=8888 
while getopts :h:p: OPT; do 
    case $OPT in 
    h|+h) proxyhost="$OPTARG" ;; 
    p|+p) proxyport="$OPTARG" ;; 
    *) echo "usage: `basename $0`"\ 
           "[+-h proxyhost] [+-p proxyport} [--] ARGS..." 
       exit 2 ;; 
    esac 
done 
shift `expr $OPTIND - 1` 
OPTIND=1 
ssh -n -N -f -D "$proxyport" "$proxyhost" "$@"

46



The getopt utility can be used as well and supports long options.

Speaker notes



DANGERS OF QUOTES

Jeff thoroughly tested the following code. Then he
changed one line. What went wrong?

#!/bin/bash 
# clean up leftover files 
# echo 'running in test mode' 
echo 'now it's running in production' 
path=var/batch/jobs 
# it's ok to drop old file 
retention="30" 
find /$path -type f -mtime +$retention -exec rm {} + 

47



#!/bin/bash 
# clean up leftover files 
# echo 'running in test mode' 
echo 'now it's running in production' 
path=var/batch/jobs 
# it's ok to drop old file 
retention="30" 
find /$path -type f -mtime +$retention -exec rm {} + 

#!/bin/bash 
# clean up leftover files 
# echo 'running in test mode' 
echo 'now it's running in production' 
path=var/batch/jobs 
# it's ok to drop old file 
retention="30"
find /$path -type f -mtime +$retention -exec rm {} + 

48



This real-world example (slightly adapted for brevity) shows how tricky the shell can be when it comes to quotes. I've

displayed the text with and without syntax highlighting, so you see how important that is.

The quote in the echo statement cancelled the quoted string, so the last quote actually started another one not

cancelled until the ‘it’s’ in the comment further on.

This skips the setting of $path and that means that the cleanup script will run from ~/~… Oops.

You may not lose an entire Saturday over a single quote but it may be a good idea to read up on the subtleties between

single and double quotes.

Speaker notes



DEBUGGING SHELL SCRIPTS
You will find yourself at times pondering why your
shell script went south. Here is what you do next.

49



DON’T IGNORE ERRORS
echo $? 

50



Decent programs (and your shell scripts, right?) exit with a zero (0) exit value when everything went OK, and non-zero

otherwise. The special variable $? shows the exit value of the last command that was issued and it is prudent to inspect

this value before carrying on.

Speaker notes



FAIL EARLY AND GRACEFULLY
set -e 
trap 'fail $LINENO' ERR 
fail() { 
    echo "error on line $1" >&2 
} 

51



The default behaviour of a shell script is to carry on in the event of failures. It will only bomb out if it encounters a serious

syntax error in the script, but no checking is done before it runs. Your script could be crawling with errors but as long as

they aren't in the execution path, you’re fine.

Another approach is to be very strict about errors.

This will ensure that the execution stops when a non-zero return value is encountered and that the line number is

printed.

Speaker notes



INPUT, OUTPUT, ERRORS?

input stdin 0

output stdout 1

output stderr 2

52



Each Unix process has at least three standard data streams: one for input, and two for output

stdin (fd 0)

stdout (fd 1)

stderr (fd 2)

It is useful to keep the normal output stream separate from the error stream.

Speaker notes



REDIRECTIONS

Redirect both output streams to separate files.
run=`date -u +%FT%T` 
./analysis.sh > "output.$run" 2> "err.$run" 

53



Common pattern to split normal output from diagnostics/warning/errors/info.

Use >> instead to append to a file instead of overwriting.

Speaker notes



DEBUGGING STATEMENTS
echo "now starting the frobnicator" >&2 

54



Putting echo statements in your scripts may help with debugging. They should not be mixed with the standard output.

This means that stdout goes to the same stream as where stderr happens to go to.

Speaker notes



TRACES

Renders:

set -x 
foo=somevalue 
echo $foo 
set +x 
echo done 

+ foo=somevalue 
+ echo somevalue 
somevalue 
+ set +x 
done 

55



Use set -x judiciously throughout your code to print traces of all executed statements.

Speaker notes



DEBUGGING—CHECK THE ENVIRONMENT

Dump the environment and check carefully:

PATH
LD_LIBRARY_PATH
LD_RUNPATH
PYTHONPATH
LANG, LC_*

56



Beware of funky influences of locale settings on the behaviour of some programs. When paranoia sets in, issue

and try again. Also check the output of the locale command.

Speaker notes

export LC_ALL=C 
export LANG=C 



KEEPING IT IN ONE FILE

For completeness sake, here we compound stdout and
stderr onto a single file.

Mind the ordering. First you need to send stdout to a
file, then you want to send stderr to the same stream.

./whatever.sh > all_the_output 2>&1  

57



COMMON UNIX TOOLS
“do one thing and do it well.”

––help
man/info
Google

59

http://lmgtfy.com/?s=d&iie=1&q=how+do+i+select+every+second+row+of+a+text+file+in+unix


The Unix philosophy is “do one thing and do it well.” There are a couple of programs out there that implement the

primitives for basic data manipulation.

In true self-documenting spirit, all tools have manpages. Start with man man and work your way up.

For everything else, there is .

Speaker notes

Google

http://lmgtfy.com/?s=d&iie=1&q=how+do+i+select+every+second+row+of+a+text+file+in+unix


REGULAR EXPRESSIONS
Find e-mail addresses:

grep -E -o "\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,6}\

60



61



Regular expressions permeate much of the Unix toolchain and they can be a powerful tool. Then again, there are those

who spent their entire lives not using a single regular expression and they look happy, too.

Perhaps it is better to know “that guy” than to be “that guy”.

Speaker notes



SOME OF THE MORE COMMON TOOLS

62



The remainder of this section is mostly there for reference.

Speaker notes



TEXT MANIPULATION

cat
just listed here for the most useless use of cat
award

sed
streamline editor with regular expression
powers

awk the duct tape of Unix tools

grep find strings in files

sort order lines

63



cut select fields from each line

diff show differences between files

head/tail tail -f is actually useful

tar roll directories into tarballs

gzip compress files or data streams

64



FILE SYSTEM

ls swiss army knife of file listings

find
most of the time you want to use locate
instead

touch
create files out of nowhere, update
timestamps

cp copy

mv move or rename

ln link

65



rm really remove

rsync copy on steroids

which where is my executable?

stat what can we tell about a file

du disk usage

66



SYSTEM PROCESSES

ps list processes, like ps aux or ps -ef

top who is eating my cpu and memory?

kill sending signals

bg/fg background/foreground programs

lsof find open files

vmstat memory, buffers and io

free overview of memory

67



NETWORK

ip swiss army knife of network tools

ip addr
show network addresses on this
system

ip route show the routing table

ping see if we can reach a machine

dig query DNS

traceroute
see which path takes us to a
machine

ssh secure shell
68



PACKAGE MANAGEMENT

apt/dpkg Debian’s package manager

yum/rpm Red Hat’s package manager

pip Python package tool

conda More general packaging

69



PIPELINES
Traditional Unix tools are designed to work with
stream processing in mind. With ‘pipes’, the tools can
be linked together like perls on a string.

Below are a few examples.

71



JOB MANIPULATION ON STOOMBOOT BATCH SYSTEM

Find running jobs owned by user id and delete them
(you can only delete your own jobs, of course).

qdel `qselect -u dennisvd -s "R" `     

72



FIND AND GREP

This traverses a directory and finds all files of a certain
name and then tries to grep for a certain pattern in
these files.

find . -type d \( -path \*/.svn \ 
    -o -path \*/.git \) -prune -o \ 
    -type f \( -name \*.txt \) \ 
    -exec grep --color -i -nH -e searchterm {} + 

73



MANIPULATE A SET OF PREDICTABLY NUMBERED
FILES

A set of 100 comma-separated data files is numerically
sorted on the second field, cut to only output fields 2,
4, 5, 6, 7, and 8, and then the last lines are saved to an
output file.

for i in `seq -f file-%03g.txt 1 100` ; do
    sort -t, -n -k2 $i | cut -d, -f2,4-8 | \ 
        tail -n 1 > ${i%.*}.ord 
done 

74



DISK USAGE REPORT

Show which file/directory uses the most disk space.

du -s * | sort -n 

75



MOST RECENTLY CHANGED FILES
ls -lrt    # sort by timestamp 
find . -mmin -10 -ls    # find files changed in the last 10 mi

76



EDITING FILES
At some point you will need to edit files: source code,
LaTeX files, shell scripts, configuration files…

Modern Linux systems have plenty of editors to choose
from.

78



But smart people will stick religiously to only one of two: Emacs or VIM.

Speaker notes



EMACS
The thermonuclear word processor
Everything and the kitchen sink
Now with org-mode

79



Emacs has a reputation for being slow and bloated, as well as overly complex. In truth, this editor has stood the test of

time. There is active development and a ton of packages for every type of file and every type of workflow.

cons pros

not generally installed everywhere can edit files remotely

steep learning curve built-in documentation

encourages heavy customisation superbly extensible

Speaker notes



EMACS
The thermonuclear word processor
Everything and the kitchen sink
Now with org-mode  

T ≈ 1000
I ≈ ∞
R ≈ 100

79



VIM
Originally vi, its pedigree going back to the original
editor called ed.

80



The original text editor of Unix. Nowadays it is actually “VI Improved” or VIM, which is much more powerful. The

graphical version is called gvim. It can be personalised and extended.

cons pros

editing modes require practice powerful editing with very few keystrokes

limited extensibility installed on nearly every system

strictly just an editor Remote editing at lightning speed

Speaker notes



VIM
Originally vi, its pedigree going back to the original
editor called ed.

T ≈ 1000
I ≈ 10
R ≈ 3

80



81



SCREEN/TMUX
Sometimes you remote session should last longer than
your workday. Or your laptop’s battery.

The screen utility allocates a pseudo terminal
attached to a background process independent of your
session. You can run multiple shells in a screen and
manoeuvre around with the Ctrl-A prefix. Type Ctrl-
A ? for a help screen.

83



The tmux utility is a remake of screen, with
modernised session handling, scripting, split screen,
and ease of use. It is still less ubiquitous than screen so
you may not have the option to run it unless you bring
your own.

84



GIT
Version control of all your work, notes, programming,
etc.

Nikhef has a .public gitlab

T ≈ 100

I ≈ 10

R ≈ 2

86

https://gitlab.nikhef.nl/


Version control of your work is a game changer. Where you would think of the progress of your labour as a more-or-less

linear affair, adding the ability to veer off into separate branches makes this a multi-dimensional experience. Going back

to revisit earlier versions of the work makes you feel like a regular time-traveller.

All this new space opening up may cause some anxieties, a feeling of not knowing where to go or what to do. It is

worthwhile to invest some time in learning the tools here, because they are especially powerful but not necessarily

intuitive right away.

With git, even if you make a mess of it, there is nearly always a way to clean it up again (without throwing everything

away and starting over).

Speaker notes



WORKFLOWS

(This may not be your choice to make.)

gitflow
OneFlow

87

https://datasift.github.io/gitflow/IntroducingGitFlow.html
http://endoflineblog.com/oneflow-a-git-branching-model-and-workflow


To Rebase or not to rebase

It all comes down to which school of merging you wish to follow. One school follows the principle that merges should be

proper merges as this renders a more faithful representation of the development history. The other school adheres to the

idea that rebasing produces a cleaner, if somewhat synthetic, outline of the project’s past.

Speaker notes



SECURITY
Security considerations are usually not at the top of
everyone’s priority list. The adage: “Convenience,
Speed, Security: pick two” might as well be

Convenience, speed, security: we know
you will pick convenience and speed.

89



RULE 1

Talk to the experts. At least once.

90



It is unreasonable to expect everybody to immediately understand why things are security risks or even security

sensitive. The experts actually appreciate it when you come and talk to them—they don’t get too much social

interactions usually.

Speaker notes



RULE 2—PASSWORDS

Treat passwords with extreme care.

Passwords are considered ‘something only you know’,
but as soon as you write them down somewhere, on a
piece of paper or in a file, you could inadvertently
share this with others.

91



Never put passwords in a script. There is always a
better way. Be aware that passwords typed on the
command line will appear in your history file.

92



RULE 3—DATA

Where does this data go? Who has access to it? Since
last year, a new EU directive went into effect governing
the handling of personal information.

For Nikhef, personal data includes user identities.

This means that publishing the output of qstat on a
personal web page is already a violation!

93



RULES 4 THROUGH 

protect your security tokens (ssh private key)
strong passwords
different passwords everywhere
do not log in from a public computer
encrypt your phone
encrypt your laptop
encrypt your grandmother
program with a deep mistrust of human beings

∞

94



Look, I could go on about all these rules. But the general gist is to be mindful about sensitive data. That could be your

Facebook profile, but also your ssh private key. We hear about data breaches from large corporations nearly every

week. If you use the same password everywhere, chances are it has been stolen.

It is generally a good idea to apply a principle of mistrust when programming. Processing data that comes from

somebody else than yourself should be treated with utter paranoia.

And don't use eval. Ever.

Speaker notes



TEMPORARY FILES AND DIRECTORIES
Established practice for safely creating temporary files
is by using mktemp.

This takes care of creating a new file with a
randomised name that is guaranteed to be owned by
the user.

tmpfile=`mktemp` 
tmpdir=`mktemp -d` 

95



USING PASSWORDS IN SCRIPTS
Sometimes scripts need to use a password to
authenticate or unlock. The script can read the
password from stdin and keep it in a local variable
for the time that it is needed.

Be aware that putting passwords on the command-
line means that it will show up in the process list.

stty -echo 
echo "enter password:" 
read passwd 
stty echo 
mkproxy --passin - <<<$passwd 
unset passwd 

96



FINALLY
Learn just enough Linux to get things done

Learning git branching

Advanced Bash-Scripting Guide

Focus Hard. In Reasonable Bursts. One Day at a Time

http://alexpetralia.com/posts/2017/6/26/learning-
linux-bash-to-get-things-done

https://learngitbranching.js.org/

http://tldp.org/LDP/abs/html/

https://www.calnewport.com/blog/2009/08/20/focu
hard-in-reasonable-bursts-one-day-at-a-time/

98

http://alexpetralia.com/posts/2017/6/26/learning-linux-bash-to-get-things-done
https://learngitbranching.js.org/
http://tldp.org/LDP/abs/html/
https://www.calnewport.com/blog/2009/08/20/focus-hard-in-reasonable-bursts-one-day-at-a-time/


#Linux on Freenode.net IRC

Gitlab server at Nikhef

Let me Google that for you

Emacs Org mode

Reveal.js

https://freenode.linux.community/how-to-
connect/

https://gitlab.nikhef.nl/

http://bfy.tw/FDe5

http://orgmode.org/

https://revealjs.com/
99

https://freenode.linux.community/how-to-connect/
https://gitlab.nikhef.nl/
http://bfy.tw/FDe5
http://orgmode.org/
https://revealjs.com/

