
––help––help
Dennis van DokDennis van Dok

Nikhef Computing Course, Monday 2019-11-25Nikhef Computing Course, Monday 2019-11-25

1

UNIX FOR PHYSICISTSUNIX FOR PHYSICISTS

2 . 1

The purpose of this talk is to give a few helpful pointers to aspects of the general Linux computing environment that may

be beneficial to know for a student of physics, i.e. not someone who purposely explores the realm of computing but

rather sees this as (at best) a useful tool or (at worst) a necessary hurdle to overcome.

In contrast with the other talks given at the computing course, which focus on various aspects of how computing is best

approached at Nikhef, this talk is more generally applicable outside our lab. Nevertheless, I've tried to aim for the target

audience of prospective PhD students.

Speaker notes

THE PHILOSOPHY OF UNIXTHE PHILOSOPHY OF UNIX

What? Unix has a philosophy?

2 . 2

The single most important message I have for you is in the title and is about getting help. The Unix environment has

never been known to be particularly user friendly and it can be daunting to get started. The general philosophy seems

always to have been that with a basic set of skills you should be able to find documentation and apply knowledge on

your own, and learn from your peers as you gain experience.

These days there is Stack Overflow, but the hardest part about that is knowing which question to ask. The question 'how

do i do X' is easy to answer, but knowing that X can be done at all, or that X is a useful step along the way to achieving

your overall goal, is not always obvious.

The student is expected to know the tools of the trade, and understand what power they wield. How to apply that power

in their own work is then a matter of developing one's skills.

Speaker notes

DEVELOPING SKILLSDEVELOPING SKILLS

3 . 1

The background against we should consider this presentation is this poignant question: should you really learn any of

this at all? As this lecture is not going in depth in any of the topics it touches on, it is up to you to investigate further,

exploring and trying out to see if these are techniques you should adopt; as time is a limited resource and there is a lot

of work to be done, you need to be able to make a fair judgement whether the investment is worth the cost.

Speaker notes

SHOULD YOU LEARN A NEW SKILL?SHOULD YOU LEARN A NEW SKILL?
time normally spent on related tasks

investment

rate of productivity increase

Learning a skill is worthwhile if

T

I

R

T ≥ I +
T

R

3 . 2

This is the only piece of mathematics I'll discuss here and it is a piece of pseudo-science, but this formula does reflect

the key point to learning a new skill. If this skill applies to your daily work and makes you, say, twice as fast at

accomplishing a task, it is easy to see that the investment is sound if it cost less then half of the time normally spent.

It is also immediately obvious from the formula that if you spent very little time using a skill, no matter how high gets,

you will never recoup your investment.

The big problem with this knowledge is that the three quantities are not obvious to estimate let alone know exactly.

Speaker notes

R

SHOULD YOU LEARN TOUCH TYPING?SHOULD YOU LEARN TOUCH TYPING?

 (Yes, absolutely)

T ≈ 1000h

I ≈ 10h

R ≈ 2

3 . 3

As a simple example, the skill of being able to type with all fingers on a keyboard without looking at the keys and getting

a reasonable 50 words per minute is something that is lacking from today's school curriculum, at least in the

Netherlands. (We have so-called iPad schools which are as bad as they sound.) People are left to make this choice for

themselves and many people don't.

That is a shame because in most modern professions it is likely that you will be entering a lot of text via the computer

keyboard and with some practice (10 hours according to one testimonial, the equivalent of half an hour per day for two

weeks, not counting weekends) you can reach excellent performance and this will undoubtedly pay off.

Speaker notes

SO HOW WILL I KNOW WHAT TO LEARN?SO HOW WILL I KNOW WHAT TO LEARN?

, , and can only be learned from experience.T I R

3 . 4

It is hard to judge these quantities for most skills, as life in general is complicated.

On the slides ahead I have compiled a collection of techniques and hidden gems of the Linux systems that I believe can

improve your productivity as you are working on the Nikhef computing facilities.

But keep in mind that the theme of the talk is that you should use your own judgement in deciding whether you are going

to try this.

Speaker notes

UNIXUNIX
Getting Linux on your laptop:

http://get.debian.net/
https://www.ubuntu.com/download
https://getfedora.org/
https://software.opensuse.org/

4 . 1

http://get.debian.net/
https://www.ubuntu.com/download
https://getfedora.org/
https://software.opensuse.org/

Since you are going to see so much Unix on Nikhef systems, it makes no sense to run anything else on your laptop.

Luckily this is easy enough to install since about ten years.

I'm listing four of the more popular flavours in no particular order, and I can't really say that any of them (cough Debian

cough) is better than the others.

Not listed above are the many distributions which are for advanced users and/or Linux freaks, because if you feel these

are your cup of tea then this lecture is probably not for you.

Speaker notes

APPLE HARDWAREAPPLE HARDWARE
OS X = Unix
VirtualBox/VMWare
hard-core install Linux anyway

4 . 2

Aficionados of overpriced hardware need not worry; although Apple tries to make it harder to install Linux on your

devices, at the core of OS X is a POSIX compliant Darwin kernel. Some of the commands behave slightly differently

because it has a BSD pedigree and Unix was never a single unified OS. Virtual machines are another option.

Speaker notes

MICROSOFT WINDOWSMICROSOFT WINDOWS
Don't. But if you must:

Dual Boot
VMWare/VirtualBox
CygWin

4 . 3

https://www.cygwin.com/

If you are stuck on Microsoft's OS for whatever reason you need not despair. Any modern Linux installer will be able to

turn your system into a dual-boot machine. For the less adventurous there is still the virtual machine option and most of

the common tools are available anyway through CygWin.

Speaker notes

PROGRAMMING LANGUAGESPROGRAMMING LANGUAGES

5 . 1

In the course of your time here you will not only be expected to operate and run computer programs, but also to write

your own programs and scripts for doing analysis. You may already have heard of a number of programming languages

and you may be wondering which of these you should learn well, which you can get away with learning only superficially

and which ones you can avoid completely.

Speaker notes

SCRIPTING LANGUAGESSCRIPTING LANGUAGES
No compilation required
Easy prototyping
Can be used interactively
Ideal to build workflows

Examples:

Bash
Python
Perl

5 . 2

Let's start by cutting the field into two large portions. The first is made up of the languages that run via an interpreter, i.e.

a special program that reads the program statement by statement, translates these into actions and executes these

actions until the script ends, usually by reaching the end of the file, or an explicit call to end, or an error condition from

which it cannot recover.

Speaker notes

COMPILED LANGUAGESCOMPILED LANGUAGES
Translate down to the CPU instruction level
High performance
Various degrees of abstraction away from the
underlying architecture

Examples:

C++
Fortran
Go

5 . 3

The other portion are the languages that take an intermediate step: a compiler translates the statements down to

snippets of machine code particular to the architecture of the CPU that the program is supposed to run on; it optimizes

constructs to make use of certain features of the CPU. These programs are much faster for processing and

computational tasks.

Speaker notes

MOST LIKELY COMBOMOST LIKELY COMBO
Bash/C++

(Special recommendation: Python/Jupyter)

5 . 4

There is a place for both types so you have to learn at least two. For compiled languages it is hard to escape C++. For

scripted languages it is hard to beat the double-barrelled power of having an interactive shell that is also a programming

language, more about Bash later.

The shortcomings of Bash as a data processor are obvious, and here Python jumps in the gap. With the power of

notebooks (a.k.a. Jupyter) this could be an excellent tool for workflow-building and note keeping.

Speaker notes

A NOTE ON C++A NOTE ON C++
There is a decade of architectural development
between current CPUs (AMD EPYC 7551P) and what
we still had last year (Intel Xeon 5400). The clock
speed, however, is still the same.

Principally, your C++ program will compile to both.
Technically, to make use of all the advancements in
processor design it takes a lot of insider knowledge of
both the CPU and compiler optimization.

5 . 5

SSHSSH
secure remote shell
Passwordless
versatile

6 . 1

The standard way to get around on systems is by way of a secure remote shell, a.k.a. ssh.

SSH will set up an encrypted communication channel between your computer and the remote server; even if the traffic

across this channel is intercepted, the actual data will be indecipherable for the interceptor.

What most people don't realise right away is how versatile ssh really is.

Speaker notes

SETTINGSSETTINGS
.ssh/config

Host *.nikhef.nl
 ControlMaster auto
 ControlPath /tmp/%h-%p-%r.shared
Host *
 ForwardAgent yes
 User yournamehere
 HashKnownHosts yes

6 . 2

Connection sharing means that only the first connection needs to authenticate and subsequent ssh actions to the same

host will happen much quicker. I'd always recommend this with the caveat that if the master session dies, so do all the

clients.

Hashing of the known hosts file is generally a good idea, but it is not a productivity gain; it is a security measure to

prevent others from seeing which machines you regularly log on to.

Read the man page of ssh-keygen to see how to find and remove old entries.

Agent forwarding is discussed below.

These settings go to your laptop and your Nikhef home directory.

Speaker notes

SSH PUBLIC/PRIVATE KEYSSH PUBLIC/PRIVATE KEY

Permissions:

ssh-keygen
cat ${HOME}/.ssh/id_rsa.pub > authorized_keys
scp authorized_keys login:.ssh/authorized_keys

drwxr-xr-x .ssh/

-rw-r--r-- .ssh/authorized_keys

-r--r--r-- .ssh/id_rsa.pub

-r-------- .ssh/id_rsa

6 . 3

Instead of having to type your password every time it is possible to set up a public/private key pair. The private part stays

with you and you alone; there is a password on it for good measure.

The public part you can spread everywhere.

Keep the private key on your laptop. Don't copy it anywhere else!

If you also work at Nikhef desktop systems, make another ssh key there and add it to the authorized keys file as well.

Speaker notes

AGENT FORWARDINGAGENT FORWARDING
ssh-add -l # list keys in the agent
ssh -A login # login with agent forwarding

6 . 4

Logging in through a chain of servers is easier with an ssh agent. Normally an agent is already started for you.

The forwarding means that the agent can be reached through a backchannel.

This saves so much typing of passwords that this should almost be considered mandatory.

Speaker notes

PROXY FROM OUTSIDE NIKHEFPROXY FROM OUTSIDE NIKHEF
Host stbci5.proxy
 Hostname stbc-i5.nikhef.nl
 user yournamehere
 CheckHostIP no
 ProxyCommand ssh -q -A login.nikhef.nl /usr/bin/nc %h %p 2>/d

6 . 5

This little trick so useful that recent implementations of ssh have now incorporated this functionality so you could try the

ProxyJump option instead. See the man page for ssh_config.

In combination with Agent forwarding this means you get to log on to Stoomboot from anywhere in the world without

typing your password once.

Speaker notes

SSHFSSSHFS
Fuse mount your remote home directory locally:

sshfs login.nikhef.nl: /tmp/login
ll /tmp/login/
fusermount -u /tmp/login

6 . 6

Copying files by SSH can be done with scp, but there is a really convenient way under Linux using the FUSE file system

driver.

The sshfs command mounts a remote server directory based on your ssh authentication. It appears just like an ordinary

directory.

Be mindful of the abstraction and realise this is all going over a single TCP connection before you run a recursive

directory listing or a find command.

Speaker notes

COMMAND LINE SHELLCOMMAND LINE SHELL
tell the computer what to do, one line at a time
most powerful way of direct interaction
also used for scripting and fast prototyping
ideal for taking notes as you go

7 . 1

Although the graphical desktop environments on Linux systems have evolved and matured over time to be among the

best in the industry, any serious work that involves scientific programming and analysis will require working with a

command-line shell.

Speaker notes

WHICH SHELL DO I NEED?WHICH SHELL DO I NEED?
.

/bin/bash YES

/bin/zsh YES

/bin/csh !

select your default shell at https://sso.nikhef.nl/chsh

NO

7 . 2

https://sso.nikhef.nl/chsh/
http://www.faqs.org/faqs/unix-faq/shell/csh-whynot/

If you believe there is any semblance between the C programming language and the C shell, you are regrettably misled.

Nikhef offers two perfectly reasonable shells but for the remainder of this presentation we are going with bash. I cannot

vouch for productivity gains using zsh as I am not using it myself, but there are plenty of people who do and you may

ask them.

Speaker notes

TUNINGTUNING
everything can be tuned
but you must resist
use only the common enhancement

7 . 3

Everybody wants to optimise their environment according to personal preference. The Unix attitude takes this into

consideration and allows a million settings to suit everybody’s whim. The collective wisdom accumulated over four

decades have delivered some tricks that everybody will want to know.

Speaker notes

STARTUP FILESSTARTUP FILES

login shell .bash_profile

non-login shell .bashrc

This distinction is outmoded.

7 . 4

.bash_profile

if [-f "$HOME/.bashrc"]; then
 . "$HOME/.bashrc"
fi

7 . 5

rc files are 'runcom' files, a holdover from a more beautiful era.

When a shell is started, a couple of files are sourced both system-wide and personal, and that is where to put your

preferences.

Put all of your favourite settings in .bashrc and leave everything else to the system-wide /etc/profile.

Speaker notes

PATHPATH

.bashrc

if [-d "$HOME/bin"] ; then
 PATH="$HOME/bin:$PATH"
fi

7 . 6

The PATH variable is a list of directories which are searched when you type a command.

Stick your own programs and scripts in ${HOME}/bin.

Do not put . in your PATH and certainly not at the beginning! This poses a security risk because you will not be sure that

you are not running a program from a local directory that you did not intend to run. It is better to adopt the notation of

./program for local programs.

Speaker notes

COMPLETIONSCOMPLETIONS

pressing TAB will auto-complete your command line
works better with the package bash-
completions installed

7 . 7

I mentioned touch typing before and how much of a difference that will make. But command-line completion will have

much more of an impact because it will save you from having to make all those keystrokes in the first place.

This functionality comes standard with your shell. Any partly written command or argument followed by a tap on the TAB

key will either:

complete the command if it is unique, or

list the possible completions if there are multiple matches

Install the bash-completion package to unleash the full power.

Most programs (like git) come with their own collection of completion-fu so as to make the command line git-aware.

Speaker notes

HISTORYHISTORY

.bashrc

don't keep more than one copy of a repeated command
HISTCONTROL=ignoredups
append to the history file, don't overwrite it
shopt -s histappend
keep plenty of history
HISTSIZE=65000
useful on systems with shared home directories
HISTFILE=${HOME}/.bash_history-$(hostname)
keep track of time
HISTTIMEFORMAT='%F %T %Z # '

7 . 8

Let bygones be bygones but learn from your mistakes. Keeping a record of commands you ran earlier is quite useful. By

default bash will keep track of this but there are a few useful enhancements.

For instance, the size of how much of history to keep can be tuned and modern systems can easily deal with thousands

of lines.

On a shared home directory system such as Nikhef's it is sensible to have a history file per host, because you run

different commands on on them.

Bash does not record the time at which a command was run by default, but this is also useful information to keep.

Speaker notes

HISTORY RECALLHISTORY RECALL

Arrow up/down cycles through previous commands.
Ctrl-R reverse search in history

7 . 9

This is one of those little gems that you either stumble upon or go for years without until somebody points it out to you.

I've seen people furiously rapping at the up key to find an earlier command and it is so sad.

Type Ctrl-R

type a few letters from the command; this will start a reverse search through the history

type Ctrl-R again to cycle back through matches

or type more characters to refine the search term

press enter to rerun the found command

or press arrow keys to edit the command line

Speaker notes

RECALL THE LAST ARGUMENTRECALL THE LAST ARGUMENT

Seeing is believing.
stat /some/path/to/file
now I want to run cat on the same file
cat <esc><.>
cat /some/path/to/file
</esc>

7 . 10

This is something I use surprisingly often. E.g.

Instead of recalling the history for the second line, simply type cat Meta-. to stick the last argument of the previous

line on the end of the current line. The meta-key may be Alt, or the Windows key, or just us ESC. Repeat the command

to cycle back through earlier commands.

These are ingrained in muscle memory over time.

Speaker notes

stat /some/path/to/file
cat /some/path/to/file

PROMPTPROMPT

.bashrc

This shows:

PS1='\u@\h:\w \A $(__git_ps1 " (%s)")\$ '

a07@lena:/project/newton 11:24 (master)$

7 . 11

The prompt is displayed to indicate that the shell awaits your next order. Did you know you can enhance the prompt, e.g.

to indicate the time, host name, and current path? Or even the current git branch name?

Letting the computer tell you something useful here is pretty sensible, but I've seen people go overboard on what they

display in their prompts. That is entirely up to you of course, but keep in mind the increase in productivity is probably no

too much.

Speaker notes

ALIASESALIASES
alias ls='ls --color=tty'
alias ll='ls -lhF'
alias rm='rm -i'
alias mv='mv -i'

7 . 12

It’s safer to protect potentially dangerous commands with a mandatory interactive flag.

More fanciful shortcuts can easily be implemented with shell scripts.

Often used commands can be abbreviated by creating aliases. My advice: don’t overdo it on the aliases. Stick to some

of the more usual ones. any alias can be overridden by putting a backslash in front.

Speaker notes

KEEPING NOTESKEEPING NOTES
use script to capture an entire session
run a jupyter notebook with a
emacs org-mode babel extension

bash kernel

7 . 13

https://github.com/takluyver/bash_kernel

Interactive sessions help you work through certain problems in rapid short cycles. But it can be frustrating after a

succesful bout of trial-and-error to retrace your steps.

One fix could be the use of script. Start it at the beginning of your session, and everything you type will be recorded in

a file to peruse later.

A modern technique that is gaining popularity is the python notebook a.k.a. jupyter notebook. This can also be run with a

bash kernel.

Finally a more fringe option is the Emacs org-mode capability of inserting and running code blocks inside documentation

and capturing the results.

Speaker notes

SCRIPTINGSCRIPTING
Write myscript.sh:

And then run it like

my first script
echo "This is my first shellscript"

bash ./myscript.sh

8 . 1

Turn it into an executable like so:

followed by

#!/bin/bash
my first script
echo "This is my first shellscript"

chmod +x myscript.sh
./myscript.sh

8 . 2

The power of bash as a command-line tool is complemented by its power as a programming language. Without learning

any more commands you can start writing a shell script by writing the commands to a file.

Speaker notes

ESCAPINGESCAPING
Make a habit out of always quoting variables like so:

and you will never go wrong.

"${var}"

8 . 3

EVAL IS EVILEVAL IS EVIL

Do not use eval ever.

8 . 4

By the time you think you need eval, you need to switch to a real programming language.

Speaker notes

PARSING COMMAND-LINE OPTIONSPARSING COMMAND-LINE OPTIONS
#!/bin/sh
proxyhost=login.nikhef.nl
proxyport=8888
while getopts :h:p: OPT; do
 case $OPT in
 h|+h) proxyhost="$OPTARG" ;;
 p|+p) proxyport="$OPTARG" ;;
 *) echo "usage: `basename $0`"\
 "[+-h proxyhost] [+-p proxyport} [--] ARGS..."
 exit 2 ;;
 esac
done
shift `expr $OPTIND - 1`
OPTIND=1
ssh -n -N -f -D "$proxyport" "$proxyhost" "$@"

8 . 5

The getopt utility can be used as well and supports long options.

Speaker notes

DANGERS OF QUOTESDANGERS OF QUOTES

Jeff thoroughly tested the following code. Then he
changed one line. What went wrong?

#!/bin/bash

clean up leftover files

echo 'running in test mode'

echo 'now it's running in production'

path=var/batch/jobs

it's ok to drop old file

retention="30"

find /$path -type f -mtime +$retention -exec rm {} +

8 . 6

#!/bin/bash

clean up leftover files

echo 'running in test mode'

echo 'now it's running in production'

path=var/batch/jobs

it's ok to drop old file

retention="30"

find /$path -type f -mtime +$retention -exec rm {} +

#!/bin/bash
clean up leftover files
echo 'running in test mode'
echo 'now it's running in production'
path=var/batch/jobs
it's ok to drop old file
retention="30"
find /$path -type f -mtime +$retention -exec rm {} +

8 . 7

This real-world example (slightly adapted for brevity) shows how tricky the shell can be when it comes to quotes. I've

displayed the text with and without syntax highlighting, so you see how important that is.

The quote in the echo statement cancelled the quoted string, so the last quote actually started another one not

cancelled until the ‘it’s’ in the comment further on.

This skips the setting of $path and that means that the cleanup script will run from ~/~… Oops.

You may not lose an entire Saturday over a single quote but it may be a good idea to read up on the subtleties between

single and double quotes.

Speaker notes

DEBUGGING SHELL SCRIPTSDEBUGGING SHELL SCRIPTS
You will find yourself at times pondering why your shell
script went south. Here is what you do next.

8 . 8

DON’T IGNORE ERRORSDON’T IGNORE ERRORS
echo $?

8 . 9

Decent programs (and your shell scripts, right?) exit with a zero (0) exit value when everything went OK, and non-zero

otherwise. The special variable $? shows the exit value of the last command that was issued and it is prudent to inspect

this value before carrying on.

Speaker notes

FAIL EARLY AND GRACEFULLYFAIL EARLY AND GRACEFULLY
set -e
trap 'fail $LINENO' ERR
fail() {
 echo "error on line $1" >&2
}

8 . 10

The default behaviour of a shell script is to carry on in the event of failures. It will only bomb out if it encounters a serious

syntax error in the script, but no checking is done before it runs. Your script could be crawling with errors but as long as

they aren't in the execution path, you’re fine.

Another approach is to be very strict about errors.

This will ensure that the execution stops when a non-zero return value is encountered and that the line number is

printed.

Speaker notes

INPUT, OUTPUT, ERRORS?INPUT, OUTPUT, ERRORS?

input stdin 0

output stdout 1

output stderr 2

8 . 11

Each Unix process has at least three standard data streams: one for input, and two for output

stdin (fd 0)

stdout (fd 1)

stderr (fd 2)

It is useful to keep the normal output stream separate from the error stream.

Speaker notes

REDIRECTIONSREDIRECTIONS

Redirect both output streams to separate files.
run=`date -u +%FT%T`
./analysis.sh > "output.$run" 2> "err.$run"

8 . 12

Common pattern to split normal output from diagnostics/warning/errors/info.

Use >> instead to append to a file instead of overwriting.

Speaker notes

DEBUGGING STATEMENTSDEBUGGING STATEMENTS
echo "now starting the frobnicator" >&2

8 . 13

Putting echo statements in your scripts may help with debugging. They should not be mixed with the standard output.

This means that stdout goes to the same stream as where stderr happens to go to.

Speaker notes

TRACESTRACES

Renders:

set -x
foo=somevalue
echo $foo
set +x
echo done

+ foo=somevalue

+ echo somevalue

somevalue

+ set +x

done

8 . 14

Use set -x judiciously throughout your code to print traces of all executed statements.

Speaker notes

DEBUGGING—CHECK THE ENVIRONMENTDEBUGGING—CHECK THE ENVIRONMENT

Dump the environment and check carefully:

PATH

LD_LIBRARY_PATH

LD_RUNPATH

PYTHONPATH

LANG, LC_*

8 . 15

Beware of funky influences of locale settings on the behaviour of some programs. When paranoia sets in, issue

and try again. Also check the output of the locale command.

Speaker notes

export LC_ALL=C
export LANG=C

KEEPING IT IN ONE FILEKEEPING IT IN ONE FILE

For completeness sake, here we compound stdout and
stderr onto a single file.

Mind the ordering. First you need to send stdout to a
file, then you want to send stderr to the same stream.

./whatever.sh > all_the_output 2>&1

8 . 16

COMMON UNIX TOOLSCOMMON UNIX TOOLS
“do one thing and do it well.”

––help
man/info
Google

9 . 1

http://lmgtfy.com/?s=d&iie=1&q=how+do+i+select+every+second+row+of+a+text+file+in+unix

The Unix philosophy is “do one thing and do it well.” There are a couple of programs out there that implement the

primitives for basic data manipulation.

In true self-documenting spirit, all tools have manpages. Start with man man and work your way up.

For everything else, there is .

Speaker notes

Google

http://lmgtfy.com/?s=d&iie=1&q=how+do+i+select+every+second+row+of+a+text+file+in+unix

REGULAR EXPRESSIONSREGULAR EXPRESSIONS
Find e-mail addresses:

grep -E -o "\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,6}\b"

9 . 2

9 . 3

Regular expressions permeate much of the Unix toolchain and they can be a powerful tool. Then again, there are those

who spent their entire lives not using a single regular expression and they look happy, too.

Perhaps it is better to know “that guy” than to be “that guy”.

Speaker notes

SOME OF THE MORE COMMON TOOLSSOME OF THE MORE COMMON TOOLS

9 . 4

The remainder of this section is mostly there for reference.

Speaker notes

TEXT MANIPULATIONTEXT MANIPULATION

cat just listed here for the most useless use of cat
award

sed streamline editor with regular expression
powers

awk the duct tape of Unix tools

grep find strings in files

sort order lines

9 . 5

cut select fields from each line

diff show differences between files

head/tail tail -f is actually useful

tar roll directories into tarballs

gzip compress files or data streams

9 . 6

FILE SYSTEMFILE SYSTEM

ls swiss army knife of file listings

find most of the time you want to use locate
instead

touch create files out of nowhere, update
timestamps

cp copy

mv move or rename

ln link

9 . 7

rm really remove

rsync copy on steroids

which where is my executable?

stat what can we tell about a file

du disk usage

9 . 8

SYSTEM PROCESSESSYSTEM PROCESSES

ps list processes, like ps aux or ps -ef

top who is eating my cpu and memory?

kill sending signals

bg/fg background/foreground programs

lsof find open files

vmstat memory, buffers and io

free overview of memory

9 . 9

NETWORKNETWORK

ip swiss army knife of network tools

ip addr show network addresses on this
system

ip route show the routing table

ping see if we can reach a machine

dig query DNS

traceroute see which path takes us to a machine

ssh secure shell

nc netcat, less useless than cat
9 . 10

PACKAGE MANAGEMENTPACKAGE MANAGEMENT

apt/dpkg Debian’s package manager

yum/rpm Red Hat’s package manager

pip Python package tool

9 . 11

PIPELINESPIPELINES
Traditional Unix tools are designed to work with
stream processing in mind. With ‘pipes’, the tools can be
linked together like perls on a string.

Below are a few examples.

10 . 1

JOB MANIPULATION ON STOOMBOOT BATCH SYSTEMJOB MANIPULATION ON STOOMBOOT BATCH SYSTEM

Find running jobs owned by user id and delete them
(you can only delete your own jobs, of course).

qdel `qselect -u dennisvd -s "R" `

10 . 2

FIND AND GREPFIND AND GREP

This traverses a directory and finds all files of a certain
name and then tries to grep for a certain pattern in
these files.

find . -type d \(-path */.svn \
 -o -path */.git \) -prune -o \
 -type f \(-name *.txt \) \
 -exec grep --color -i -nH -e searchterm {} +

10 . 3

MANIPULATE A SET OF PREDICTABLY NUMBERED FILESMANIPULATE A SET OF PREDICTABLY NUMBERED FILES

A set of 100 comma-separated data files is numerically
sorted on the second field, cut to only output fields 2, 4,
5, 6, 7, and 8, and then the last lines are saved to an
output file.

for i in `seq -f file-%03g.txt 1 100` ; do
 sort -t, -n -k2 $i | cut -d, -f2,4-8 | \
 tail -n 1 > ${i%.*}.ord
done

10 . 4

DISK USAGE REPORTDISK USAGE REPORT

Show which file/directory uses the most disk space.

du -s * | sort -n

10 . 5

MOST RECENTLY CHANGED FILESMOST RECENTLY CHANGED FILES
ls -lrt # sort by timestamp
find . -mmin -10 -ls # find files changed in the last 10 minut

10 . 6

EDITING FILESEDITING FILES
At some point you will need to edit files: source code,
LaTeX files, shell scripts, configuration files…

Modern Linux systems have plenty of editors to choose
from.

11 . 1

But smart people will stick religiously to only one of two: Emacs or VIM.

Speaker notes

EMACSEMACS
The thermonuclear word processor
Everything and the kitchen sink
Now with org-mode

T ≈ 1000

I ≈ ∞

R ≈ 100

11 . 2

Emacs has a reputation for being slow and bloated, as well as overly complex. In truth, this editor has stood the test of

time. There is active development and a ton of packages for every type of file and every type of workflow.

cons pros

not generally installed everywhere can edit files remotely

steep learning curve built-in documentation

encourages heavy customisation superbly extensible

Speaker notes

VIMVIM
Originally vi, its pedigree going back to the original
editor called ed.

T ≈ 1000

I ≈ 10

R ≈ 3

11 . 3

The original text editor of Unix. Nowadays it is actually “VI Improved” or VIM, which is much more powerful. The

graphical version is called gvim. It can be personalised and extended.

cons pros

editing modes require practice powerful editing with very few keystrokes

limited extensibility installed on nearly every system

strictly just an editor Remote editing at lightning speed

Speaker notes

11 . 4

SCREEN/TMUXSCREEN/TMUX
Sometimes you remote session should last longer than
your workday. Or your laptop’s battery.

The screen utility allocates a pseudo terminal
attached to a background process independent of your
session. You can run multiple shells in a screen and
manoeuvre around with the Ctrl-A prefix. Type Ctrl-
A ? for a help screen.

12 . 1

The tmux utility is a remake of screen, with modernised
session handling, scripting, split screen, and ease of use.
It is still less ubiquitous than screen so you may not
have the option to run it unless you bring your own.

12 . 2

GITGIT
Version control of all your work, notes, programming,
etc.

T ≈ 100

I ≈ 10

R ≈ 2

13 . 1

Version control of your work is a game changer. Where you would think of the progress of your labour as a more-or-less

linear affair, adding the ability to veer off into separate branches makes this a multi-dimensional experience. Going back

to revisit earlier versions of the work makes you feel like a regular time-traveller.

All this new space opening up may cause some anxieties, a feeling of not knowing where to go or what to do. It is

worthwhile to invest some time in learning the tools here, because they are especially powerful but not necessarily

intuitive right away.

With git, even if you make a mess of it, there is nearly always a way to clean it up again (without throwing everything

away and starting over).

Speaker notes

WORKFLOWSWORKFLOWS

(This may not be your choice to make.)

gitflow
OneFlow

13 . 2

https://datasift.github.io/gitflow/IntroducingGitFlow.html
http://endoflineblog.com/oneflow-a-git-branching-model-and-workflow

To Rebase or not to rebase

It all comes down to which school of merging you wish to follow. One school follows the principle that merges should be

proper merges as this renders a more faithful representation of the development history. The other school adheres to the

idea that rebasing produces a cleaner, if somewhat synthetic, outline of the project’s past.

Speaker notes

SECURITYSECURITY
Security considerations are usually not at the top of
everyone’s priority list. The adage: “Convenience,
Speed, Security: pick two” might as well be

Convenience, speed, security: we know
you will pick convenience and speed.

14 . 1

RULE 1RULE 1

Talk to the experts. At least once.

14 . 2

It is unreasonable to expect everybody to immediately understand why things are security risks or even security

sensitive. The experts actually appreciate it when you come and talk to them—they don’t get too much social

interactions usually.

Speaker notes

RULE 2—PASSWORDSRULE 2—PASSWORDS

Treat passwords with extreme care.

Passwords are considered ‘something only you know’,
but as soon as you write them down somewhere, on a
piece of paper or in a file, you could inadvertently share
this with others.

14 . 3

Never put passwords in a script. There is always a
better way. Be aware that passwords typed on the
command line will appear in your history file.

14 . 4

RULE 3—DATARULE 3—DATA

Where does this data go? Who has access to it? Since
last year, a new EU directive went into effect governing
the handling of personal information.

For Nikhef, personal data includes user iden��es.

This means that publishing the output of qstat on a
personal web page is already a violation!

14 . 5

RULES 4 THROUGH RULES 4 THROUGH

protect your security tokens (ssh private key)
strong passwords
different passwords everywhere
do not log in from a public computer
encrypt your phone
encrypt your laptop
encrypt your grandmother
program with a deep mistrust of human beings

∞∞

14 . 6

Look, I could go on about all these rules. But the general gist is to be mindful about sensitive data. That could be your

Facebook profile, but also your ssh private key. We hear about data breaches from large corporations nearly every

week. If you use the same password everywhere, chances are it has been stolen.

It is generally a good idea to apply a principle of mistrust when programming. Processing data that comes from

somebody else than yourself should be treated with utter paranoia.

And don't use eval. Ever.

Speaker notes

TEMPORARY FILES AND DIRECTORIESTEMPORARY FILES AND DIRECTORIES
Established practice for safely creating temporary files
is by using mktemp.

This takes care of creating a new file with a randomised
name that is guaranteed to be owned by the user.

tmpfile=`mktemp`
tmpdir=`mktemp -d`

14 . 7

USING PASSWORDS IN SCRIPTSUSING PASSWORDS IN SCRIPTS
Sometimes scripts need to use a password to
authenticate or unlock. The script can read the
password from stdin and keep it in a local variable for
the time that it is needed.

Be aware that putting passwords on the command-line
means that it will show up in the process list.

stty -echo

echo "enter password:"

read passwd

stty echo

mkproxy --passin - <<<$passwd

unset passwd

14 . 8

FINALLYFINALLY
Learn just enough Linux to get things done

Learning git branching

Advanced Bash-Scrip�ng Guide

Focus Hard. In Reasonable Bursts. One Day at a Time

http://alexpetralia.com/posts/2017/6/26/learning-
linux-bash-to-get-things-done

https://learngitbranching.js.org/

http://tldp.org/LDP/abs/html/

https://www.calnewport.com/blog/2009/08/20/foc
hard-in-reasonable-bursts-one-day-at-a-time/

15 . 1

http://alexpetralia.com/posts/2017/6/26/learning-linux-bash-to-get-things-done
https://learngitbranching.js.org/
http://tldp.org/LDP/abs/html/
https://www.calnewport.com/blog/2009/08/20/focus-hard-in-reasonable-bursts-one-day-at-a-time/

#Linux on Freenode.net IRC

Gitlab server at Nikhef

Let me Google that for you

Emacs Org mode

Reveal.js

https://freenode.linux.community/how-to-
connect/

https://gitlab.nikhef.nl/

http://bfy.tw/FDe5

http://orgmode.org/

https://revealjs.com/
15 . 2

https://freenode.linux.community/how-to-connect/
https://gitlab.nikhef.nl/
http://bfy.tw/FDe5
http://orgmode.org/
https://revealjs.com/

