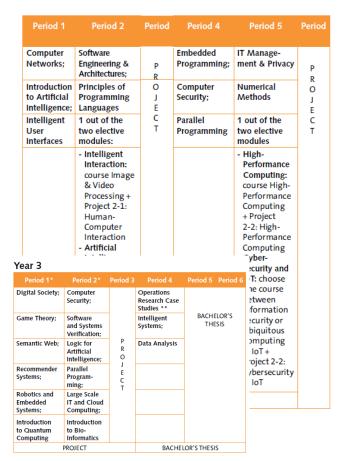
Dreaming of a CS lab

systems and networking perspective

Concepts and needed capabilities a 'fieldlab demonstrator'?

David Groep, November 2024


Why the CS lab?

Initiator and 'basic' and short-term 'urgent' needs

- new Bachelor Computer Science, with strong engineering component (esp. in Y2)
- Large-scale IT and robotics also in DSAI Year-3

But: it meshes with {master, PhD} thesis work and cross-discipline and cross-organisation research as well:

- HPC simulation and modelling, ML models, LLM applications, and collaborating with research output 'as a service'
- science and engineering beyond DACS:
 ET pathfinder & LHCb for GWFP, the MSP programme, ...
- data science in other faculties: need for 'student sandboxes'
- large multi-modal 4D imaging (e.g. for NWO ENW XL FASTER with Ron Heeren), and EU Horizon and Euregio collaborations

'Wereldwijd verbonden vanuit een stevige basis in onze Euregio'

Research and education are inherently collaborative, and 'services exist' and are being used .. whether we know about them or not:

• European Open Science Cloud, 'ESFRI' research infrastructures, Erasmus Without Papers, EU Identity Wallets, SURF-NWO Rekentijd & Snellius, EOSC EU Node 'free VMs for faculty'

Translating 'wereldwijd verbonden' education & research as a technical systems and network design

- 'we can use existing services from outside': AAI interoperability, network connectivity and bandwidth, devolution of responsibility and subsidiarity of concern
- 'we can contribute in collaborations in education and research': we can offer services, support pan-European student mobility in our programme, and provide innovative lab environments that attract students and make our programmes unique
- 'we teach and train our students to understand, design, build, study, work with, and experiment with interconnected services and systems that are globally connected'

Of course we should do that in a safe, scalable, and transparent way, and at the same time build and use our own science and engineering R&E concepts in an agile way With a view towards the future ... a decadal vision of common reference platform model, usable for DACS & FSE, ... for FASTER 4D-imaging, ... for SBE, FASoS, and UM-wide?

Technical inspiration

- DACS CS-Lab concept for today focusses on systems and networks
 - those act a foundation for more specific lab settings: robotics, XR, security
 - focus on education labs, but equally applicable to research networks
- design around micro-segmented networks and inter-subnet controls
 - so you could build multiple labs on a partly-shared infrastructure
 - leveraging the ESnet (US DoE) 'ScienceDMZ' concept, and
 - on the UvA Security and Network Engineering master lab ('every student a machine on the public internet and they are *entirely responsible* for this box')
 - with inspiration from SURF Experimental Technologies
 Platform and Nikhef open innovation lab
- for CS and engineering education (extensible to research), and
 not targeting enterprise services, nor for now sensitive data services

'ScienceDMZ'

Predicable performance and data access for research

'where research services, data, and researchers meet'

- latency hiding through caching
- security zoning/segmentation protects specific data sets
- outside any enterprise perimeter

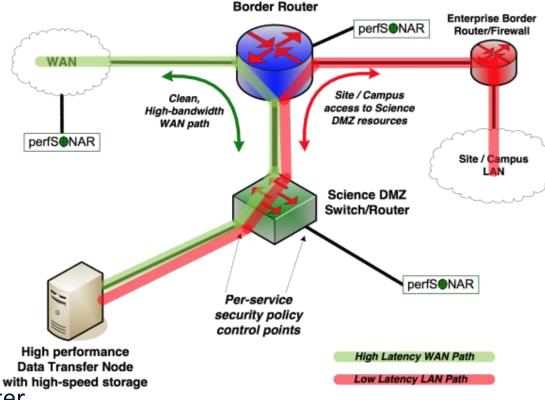
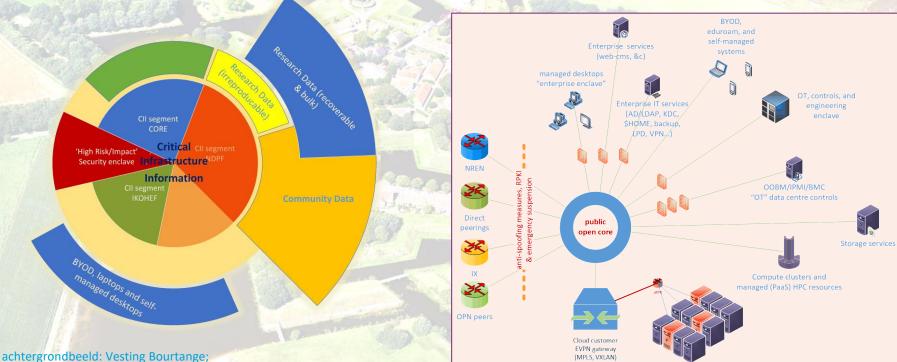
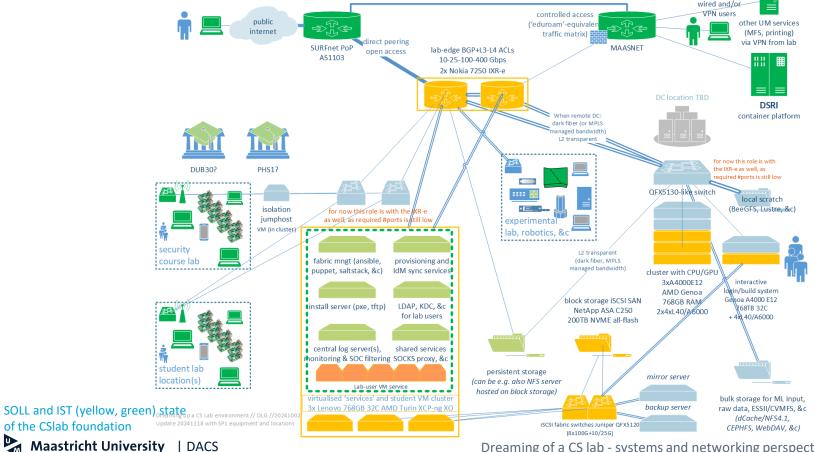



Image and 'ScienceDMZ' concept promulgated by ESnet (see fasterdata.es.net)

Network structure design: logical and topological view segmentation: a research network with office enclaves

segmentation impression represents Nikhef Security Technical and Organisational Measures


The Value Of Routine Performance

- It's important to get to where high performance is normal
- No magic, no arcana, things just normally work for petabytes of data
- DOE HPC facilities now easily shuffle around hundreds of terabytes
 - Some people have smaller data sets too
 - But the point is that it's normal and routine
- What follows is one specific example, chosen because of some specific features

From Eli Dart (ESnet), "The Strategic Future of the Science DMZ", TNC23, https://indico.geant.org/event/2/contributions/186/attachments/168/

Dreaming up a CS lab environment in a ScienceDMZ

CS Lab – the 2024 foundation (<20 December 2024)

Virtualised base infrastructure: fabric management, logging, IAM bridging (to SURF SRAM or locally with a SAML SP), proxy and gateway services for sub-labs, ~300+ student sandbox VMs, XCP-ng & XenOrchestra managed with SAML or OIDC auth

- 3x SR635v3 (each: 786GB RAM, 2x25G data network, 2x25G iSCSI, 64 logical cores 9355P)

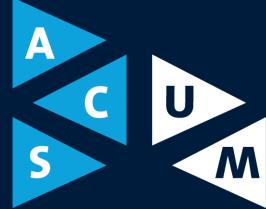
Storage back-end service: block storage for VMs (supporting NFSv4 via VM with linux)

- NetApp C250 with 200 TByte net NVME all-flash capacity, 4x100G iSCSI

HPC starter cluster: AI/ML courses, reasoning, HPC modelling, interactive & batch

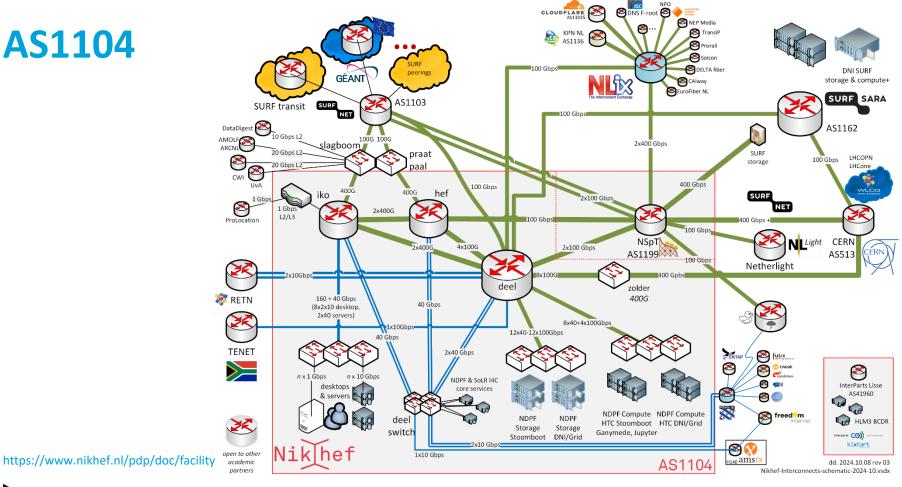
- 4x ASUS ESC4000A (each: 3.25GHz 64 logical core EPYC 9355P, 768 GB RAM, 2x16TB NVME, 2x25G data network), 3 of these systems have 4 Nvidia L40 GPUs each (so 12 GPUs in total)
- one node as the 'interactive' validation and compilation node (scheduling will be in a VM)

Network: access gateway for standard edge connectivity (BGP, MPLS, 802.1q, EVPN, L3/L4 ingress and egress ACLs and policers) and iSCSI SAN fabric switches (25/100G)


- pair of Nokia 7250 IXR-e, each: 2xQSFP28 100G, 8xSFP28 25G, 24xSFP+ 10G (or 1G)
- pair of Juniper QFX 5120's, each: 8xQSFP28 100G, 28xSFP28 25/10/1G

More discussion time ...

David Groep david.groep@maastrichtuniversity.nl https://www.nikhef.nl/~davidg/presentations/
https://orcid.org/0000-0003-1026-6606



AS1104

